

A SIZE METRIC-BASED EFFORT ESTIMATION METHOD FOR SERVICE

ORIENTED ARCHITECTURE SYSTEMS

SAMSON WANJALA MUNIALO

A Thesis Submitted in Partial Fulfillment of the Requirement of the Degree of

Doctor of Philosophy in Information Technology of Masinde Muliro University of

Science and Technology

SEPTEMBER, 2020

ii

DECLARATION

This thesis is my own original work prepared with no other than the indicated sources and

support and has not been presented elsewhere for a degree or any other award.

___________________________________ ________________________

Samson Wanjala Munialo DATE

SIT/LH/003/2015

CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance of

Masinde Muliro University of Science and Technology a Thesis entitled “A Size Metric-

Based Effort Estimation Method for Service Oriented Architecture Software

Systems.”

___________________________________ ________________________

Prof. Geoffrey Muchiri Muketha DATE

Department of Computer Science

School of Computing and Information Technology

Murang’a University of Technology

___________________________________ _________________________

Dr. Kelvin Kabeti Omieno DATE

Department of Information Technology and Informatics

School of Computing and Information Technology

Kaimosi Friends University College

iii

DEDICATION

I dedicate this thesis to my wife Hellen Wasike and my sons Gerrard Munialo and Warren

Wachie.

iv

ACKNOWLEDGEMENT

I thank the almighty God for granting me the opportunity of developing this thesis and for

providing me with ample environment to enable me to progress in my PhD studies.

I would like to express my gratitude to my supervisors Prof. Geoffrey Muchiri Muketha and

Dr. Kelvin Kabeti Omieno for extending their knowledge and experience in guiding and

shaping this thesis. I thank them for their great support, patience, motivation and

constructive comments that enabled this thesis to develop in depth and in content.

I thank my wife Hellen, my sons Gerrard and Warren for their encouragement and patience.

I also thank my loving parents for their continued support and prayers.

I acknowledge my fellow PhD students Mary Mwadulo and Amos Chege for their

encouragement and support as we walked together through the PhD journey. I also thank

members of staff school of Computing and Informatics Masinde Muliro University of

Science and technology for their support that motivated me to progress smoothly in my

study. I also acknowledge my friends and my colleagues in School of Computing and

Informatics, Meru University and Science and Technology for their encouragement.

v

ABSTRACT

Service Oriented Architecture (SOA) is one of the recent software development paradigms

that enable alignment of business processes into integrated services within and outside

organizations regardless of the heterogeneity of technologies used. Determining the scope,

effort and cost of SOA systems is important to facilitate the planning and eventually

successful implementation of software projects. A number of methods have been proposed

to estimate effort of building SOA projects. Despite the fact that these methods are

promising, the problem of measuring SOA size and estimating SOA effort still remains

largely unresolved mainly because there is limited attempt in using Unified Modeling

Language (UML) size metrics to define size-based attributes for estimating SOA

development effort. To address this problem, a set of size metrics were defined and effort

estimation method that is based on the size metrics was developed. To automate the

computation of the metric and the method, a static analysis tool that uses deep learning

techniques to detect UML arrows and recognize text was constructed. The automated tool

deep learning techniques were each subjected to validity checks based on datasets of 100

operation names and 100 arrow head images. Briand’s theoretical validation was used to

test the validity of the designed size metrics and they were found to be mathematically

sound. Experimental research design was employed to sampled SOA systems to test

variables used in the study and the accuracy of the proposed effort estimation method and

implementation automated tool. A survey involving experts from the industry was carried

out to replicate and validate the experiment done by students and to determine the

appropriateness of the proposed size metrics, SOA development effort factors and the

implementation automated tool. The experiment was based on a sample of 15 students’

SOA projects developed by Meru University of Science and Technology students while the

survey involved 20 programmers from the industry. Descriptive statistics such as Mean

magnitude of relative error (MMRE) and Magnitude of Error (MRE) were used to test SOA

effort estimation accuracy while linear regression analysis tested relationship among

variables identified in the study. Result from the experiment revealed that the proposed

metrics and method are more accurate and there is a correlation between size attributes and

SOA size and between SOA size and SOA development effort. Response from the survey

showed that the proposed metrics and effort factors are valid and they have influence on

size and effort respectively. Findings from this study were meant to provide a basis for

future software engineering researchers to develop more effective and more accurate size

metrics and effort estimation methods.

vi

TABLE OF CONTENTS

DECLARATION.. ii

DEDICATION... iii

ACKNOWLEDGEMENT .. iv

ABSTRACT ...v

LIST OF FIGURES .. xiv

LIST OF TABLES .. xvi

ACRONYMS AND ABBREVIATIONS ... xix

DEFINITION OF OPERATIONAL TERMS .. xxi

CHAPTER ONE : INTRODUCTION ..1

1.1 Background to the Study ... 1

1.2 Problem Statement .. 4

1.3 Objectives ... 5

1.3.1 General Objective .. 5

1.3.2 Specific Objectives .. 5

1.4 Research Questions ... 5

1.5 Hypotheses .. 5

1.6 Scope of the Study .. 6

1.7 Significance of the Study .. 7

1.8 Limitations of the Study.. 8

1.9 Assumptions of the Study ... 8

1.10 Contribution of the Thesis .. 9

1.11 Organization of the Thesis .. 9

CHAPTER TWO : LITERATURE REVIEW ...11

2.1 Introduction ... 11

2.2 Basic Concepts of SOA .. 11

2.2.1 Evolution of SOA .. 12

2.2.2 A Typical SOA System .. 13

2.2.3 SOA layered Architecture .. 14

2.2.4 SOA Characteristics ... 15

vii

2.2.5 Web Services ... 16

2.2.5.1 SOAP Web Service Standard.. 16

2.2.5.2 REST Web Service Architecture .. 17

2.2.6 SOA Development Methodologies .. 18

2.2.6.1 Service Oriented Architecture Framework (SOAF) ... 18

2.2.6.2 Service Oriented Modeling Architecture .. 19

2.2.6.3 Service Oriented Architecture Modeling Language ... 19

2.3 Existing Software Size Metrics ... 20

2.3.1 Traditional Software Size Metrics ... 20

2.3.1.1 Source Line of Code (SLOC) ... 21

2.3.1.2 Function Point Analysis (FPA) ... 21

2.3.1.3 Story Points ... 23

2.3.1.4 Use Case Points (UCP) ... 24

2.3.1.5 Object Points ... 25

2.3.1.6 Object – Oriented Size and Complexity Metrics .. 26

2.3.2 Existing SOA Complexity and Size Metrics ... 27

2.3.7.1 Weighted Service Interface Count (WSIC) .. 27

2.3.7.2 Number of Services (NOS) ... 28

2.3.7.3 COSMIC-SOA Metrics ... 28

2.4 Existing Effort Estimation Methods ... 30

2.4.1 Traditional Effort Estimation Methods .. 30

2.4.1.1 Expert Judgment ... 30

2.4.1.2 Analogy ... 31

2.4.1.3 Price-to-Win .. 31

2.4.1.4 Bottom-up and Top-up .. 32

2.4.1.5 Wideband Delphi .. 32

viii

2.4.1.6 Constructive Cost Model (COCOMO) ... 33

2.4.1.7 Artificial Neural Network Effort Estimation Methods ... 36

2.4.1.8 Fuzzy Logic Effort Estimation Methods ... 37

2.4.2 Existing SOA Cost Estimation Methods.. 38

2.4.2.1 SMAT-AUS Scope, Cost and Effort Estimation Framework for SOA 38

2.4.2.2 SOA Cost Estimation for Customization to Packaged Applications 39

2.4.2.3 Effort Estimation for Web Service Composition .. 41

2.4.2.4 Software Cost Estimation Framework for SOA using Divide-and-conquer 42

2.4.2.5 Service Point Estimation Model for SOA Based Projects .. 43

2.4.2.6 Requirements Based Model for SOA Systems Effort Estimation 45

2.4.2.7 Estimating Size and Effort of Business Process SOA Applications 46

2.4.2.8 Phased Approach for Effort Estimation for SOA projects.. 47

2.5 Existing Automated Tools to Interpret design artifacts .. 49

2.6 Theoretical Framework ... 50

2.6.1 Software Effort Estimation Factors ... 51

2.6.1.1 Size Factor .. 51

2.6.1.2 Technical Factors .. 52

2.6.1.3 Personnel Factors .. 52

2.6.1.4 Requirements Factors .. 53

2.6.1.5 Service Type Factors... 53

2.6.2 COCOMO 2.0 Model... 54

2.7 Conceptual Framework ... 56

2.8 Identified Gaps .. 57

2.9 Chapter Summary ... 59

CHAPTER THREE: RESEARCH METHODOLOGY ...60

3.1 Introduction ... 60

ix

3.2 Research Philosophy ... 60

3.3 Research Design.. 61

3.4 Target population .. 63

3.5 Sampling and Sample size .. 64

3.6 Data Collection Instruments ... 65

3.7 Reliability and Validity of Data Collection Instruments .. 66

3.7.1 Validity .. 66

3.7.2 Reliability ... 67

3.8 Data Collection Procedure .. 67

3.9 Data Analysis .. 68

3.10 Ethical Issues .. 69

3.11 Chapter Summary ... 69

CHAPTER FOUR : DESIGN OF SIZE METRICS FOR SOA71

4.1 Introduction ... 71

4.2 SOA Size Attributes .. 71

4.2.1 Weighted Operation Count (WOC) ... 72

4.2.2 Service Dependency Count (SDC) .. 74

4.2.3 Weighted Message Count .. 77

4.2.4 Weighted Service Count (WSC) .. 80

4.3 Application of defined SOA size metrics in a Purchase order SOA Application 81

4.3.1 Purchase Order Business Processing Modeling ... 81

4.3.2 UML Diagram for Purchase Processing System ... 84

4.3.3 Application of SOA Size Metrics .. 87

4.3.3.1 WOC for Purchase Order System ... 87

4.3.3.2 SDC for Purchase Order System... 89

4.3.3.3 WMC for Purchase Order System .. 90

4.3.3.4 WSC for Purchase Order .. 91

4.4 Theoretical Validation of the Proposed Metrics ... 91

x

4.4.1 Overview of Briand’s ... 91

4.4.2 Results .. 92

4.5 Chapter Summary ... 95

CHAPTER FIVE: DESIGN OF SOA EFFORT ESTIMATION METHOD96

5.1 Introduction ... 96

5.2 SOA Size ... 97

5.3 Service Type Factors (STF) .. 99

5.3.1 Service Construction Type ... 99

5.3.1.1 Available Service .. 99

5.3.1.2 Migrated Service ... 100

5.3.1.3 New Service .. 101

5.3.2 SOA Architectural Style (SA) ... 102

5.3.2.1 SOAP .. 102

5.3.2.2 REST ... 102

5.3.2.3 Comparison between REST and SOAP Effort Factor .. 103

5.4 SOA Effort Multiplier Factors (EMF) .. 104

5.4.1 Product factors ... 106

5.4.1.1 Database Complexity and size ... 107

5.4.1.2 Database complexity and Database size fuzzy effort multiplier 109

5.4.1.3 User Interface Complexity .. 114

5.4.1.4 Integration complexity .. 114

5.4.1.5 User inteface and Integration fuzzy logic effort multiplier 115

5.4.2 Service Development Environment ... 118

5.4.2.1 Web Service Development Tool Support ... 118

5.4.2.2 Web Service Infrastrucure Capabilities .. 119

5.4.2.3 Web service development tool and intrastructure fuzzy effort multiplier 120

xi

5.4.3 Requirement Factors .. 123

5.4.3.1 Requirements Elicitation ... 123

5.4.3.2 Business Value .. 126

5.4.3.3 Security Requirements .. 128

5.4.4 Personnel Factors ... 130

5.4.4.1 Web Service Experience ... 130

5.4.4.2 Application Experience ... 132

5.4.4.3 Programming Experience.. 134

5.3.4.4 Team Cohesion ... 135

5.5 Effort Estimation Method Example .. 136

5.6 Chapter Summary ... 137

CHAPTER SIX : IMPLEMENTATION OF SIZE METRICS AND EFFORT

ESTIMATION TOOL (SOA-SMET) ...139

6.1 Introduction ... 139

6.2 Requirements of SMET .. 139

6.3 Architecture of SMET... 140

6.3.1 Automated UML Feature Extraction Component .. 141

6.3.1.1 Service Operation Names Extraction .. 142

6.3.1.2 Service Operation Classification... 144

6.3.1.3 Arrow Head Detection .. 145

6.3.2 Manual Entry/Display .. 147

6.3.3 Business Logic Layer ... 149

6.3.4 Data Layer .. 152

6.3.5 SMET Output ... 152

6.4 Chapter Summary ... 153

xii

CHAPTER SEVEN : AN EMPIRICAL VALIDATION OF PROPOSED METRICS,

EFFORT ESTIMATION METHOD AND AUTOMATED TOOL154

7.1 Introduction ... 154

7.2 Empirical Validation Strategy ... 154

7.3 Context Definition .. 156

7.4 Experimental Preparation.. 156

7.5 Experimental Planning .. 157

7.5.1 Hypotheses ... 158

7.5.2 Threats to Validity ... 159

7.6 Experimental Operation .. 159

7.7 Experiment Results ... 162

7.7.1 SOA Size Metrics Validation Results .. 162

7.7.1.1 SOA Size Metrics descriptive analysis ... 163

7.7.1.2 Function Point Size Metric Descriptive Analysis ... 164

7.7.1.3 Correlation between Size Metrics and SOA Size ... 166

7.7.2 Effort Estimation Method Validation Results.. 168

7.7.2.1 Proposed Effort Estimation Method Descriptive Analysis 169

7.7.2.2 COCOMO Effort Estimation Method Descriptive Analysis 171

7.7.2.3 Correlation between Size Metrics and SOA Size ... 173

7.7.3 Automated Implementation Tool Accuracy Level .. 174

7.8 Expert Opinion Survey ... 175

7.8.1 Survey Preparation and Planning ... 176

7.8.2 Demographic Summary of the Respondents.. 177

7.9 Survey Results .. 178

7.9.1 Response on SOA Size Metric Validation ... 178

7.9.1.1 Experts’ response on service internal structure influence on SOA size 178

7.9.1.2 Experts’ response on influence of service dependency on SOA size 179

xiii

7.9.1.3 Experts’ response on influence of data movement on SOA size 179

7.9.1.4 Experts’ response on WSC and SOA size effect on effort 180

7.9.2 Response on Effort estimation factors ... 180

7.9.2.1 Experts’ response on influence of service type on SOA effort 180

7.9.2.2 Response on influence of SOA Effort Multiplier Factors (EMF) to Effort 181

7.9.3 Response on the Validity and Appropriateness of the Implemented Tool 182

7.10 Chapter Summary ... 183

CHAPTER EIGHT: SUMMARY, CONCLUSION AND RECOMMENDATIONS 185

8.1 Summary ... 185

8.1.1 Defining Metrics for SOA Size.. 185

8.1.2 Developing an Effort Estimation Method for SOA Projects 186

8.1.3 Automating the SOA Metrics and Effort Estimation Method 186

8.2 Conclusion .. 187

8.2.1 Defined SOA Size Metrics ... 187

8.2.2 Effort Estimation Method for SOA.. 188

8.2.3 Automated Implementation Tool ... 188

8.3 Recommendations for Future Work.. 188

REFERENCES ..190

APPENDICES ...196

xiv

LIST OF FIGURES

Figure 2.1: SOA Model .. 13

Figure 2.2: SOA n-tier layers . .. 14

Figure 2.3 COCOMO 2.0 model variables relationship ... 55

Figure 2.4: Conceptual framework showing SOA effort estimation variables 57

Figure 4.1: Service interface diagram ... 74

Figure 4.2: UML Diagram showing dependency among services .. 76

Figure 4.3: UML sequence diagram showing data movement ... 79

Figure 4.4: Purchase order process Business Processing Modeling Notation 82

Figure 4.5: UML interface diagram representing purchase order process services 85

Figure 4.6: UML sequence diagram representing purchase order process services 86

Figure 5.1 : Fuzzy Effort estimation method model ... 106

Figure 5.2: Triangular Membership function.. 110

Figure 5.3: Database complexity fuzzification ... 111

Figure 5.4: Database size fuzzification ... 111

Figure 5.5 : User interface complexity fuzzification .. 115

Figure 5.6: Integration complexity fuzzification .. 116

Figure 5.7: Development tool fuzzification .. 120

Figure 5.8: Infrastructure capabilities fuzzification .. 121

Figure 5.9: Requirements elicitation factor .. 124

Figure 5.10: business value fuzzification.. 127

Figure 5.11: security requirements fuzzification .. 129

Figure 5.12 Web service developers’ experience fuzzification .. 131

xv

Figure 5.13 Application experience fuzzification ... 133

Figure 5.14: Programming experience fuzzification .. 135

Figure 6.1: SMET architecture ... 141

Figure 6.2: Taxi Service UML interface diagram ... 142

Figure 6.3: Highlighted operation names detected by EAST detector 143

Figure 6.4: Group of text recognized by Tesseract OCT .. 144

Figure 6.5: WOC arrow classification by ResNet50 CNN ... 146

Figure 6.6: WMC arrow classification by ResNet50 CNN .. 146

Figure 6.7 SMET Manual entry interface of SOA size attributes....................................... 147

Figure 6.8: SMET Effort factors input interface ... 148

xvi

LIST OF TABLES

Table 2.1 Function Point Complexity weights ... 22

Table 2.2: UCP Actors classification .. 24

Table 2.3 UCP Use cases classifications .. 24

Table 2.4: Classification of objects weight ... 26

Table 2.5: COCOMO Complexity factor weights .. 34

Table 2.6 Context Effort Factors .. 41

Table 2.7: Comparison between orchestration and choreography .. 42

Table 3.1: Research Method per objective ... 62

Table 3.2: Statistical analyses for each research objective ... 69

Table 4.1: Service Operation weight .. 73

Table 4.2 Weighted Service dependency weights .. 76

Table 4.3 Weighted message type arrows ... 78

Table 4.4: WOC for Invoice service ... 88

Table 4.5: WOC for Production service ... 88

Table 4.6: WOC for shipping service ... 89

Table 5.1: Intermediate COCOMO Effort coefficients .. 97

Table 5.2: Effort distribution among development phases ... 100

Table 5.3: Effort factors for SOA service types. .. 101

Table 5.4: Service architectural style weights .. 103

Table 5.5 SOA Effort multiplier Factors (EMF) .. 105

Table 5.6 Database complexity factor .. 107

Table 5.7 Database size factor .. 108

xvii

Table 5.8: Summary of database complexity and database size rules 112

Table 5.9 User Interface complexity ... 114

Table 5.10 Integration complexity .. 114

Table 5.11: Summary user interface complexity and integration complexity 116

Table 5.12 Web Service development tool support .. 119

Table 5.13 Infrastructure capabilities factor ... 120

Table 5.14: Summary of automated and infrastructure capabilities rules 121

Table 5.15: Requirements elicitation effort factors .. 124

Table 5.16: Business value effort factor ... 126

Table 5.17 Security Requirements effort multiplier ... 128

Table 5.18 Web service developer’s experience effort multiplier 130

Table 5.19 Application experience effort multiplier ... 132

Table 5.20 Programming experience effort multiplier ... 134

Table 5.21 Team Cohesion factor ... 135

Table 5.22 Purchase order SOA application EMF .. 136

Table 7.1: Data Analysis for the proposed SOA size metrics... 163

Table 7.2 Descriptive analysis for the proposed SOA size metrics 164

Table 7.3: Data Analysis for Function point analysis ... 164

Table 7.5: Correlation between WOC metrics and SOA size ... 166

Table 7.6: ANOVA analysis correlation between WOC metrics and SOA size 167

Table 7.7: Correlation between SDC metrics and SOA size .. 167

Table 7.8: Correlation between WMC metrics and SOA size .. 167

Table 7.9: ANOVA correlation analysis between WMC metrics and SOA size 168

Table 7.10: Effort Estimation Analysis based the proposed method 170

xviii

Table 7.11: COCOMO Effort Estimation Method descriptive analysis 171

Table 7.12: Correlation between SOA Size and SOA development effort 173

Table 7.13: ANOVA correlation between SOA size and SOA development effort 173

Table 7.15 Experts’ experience in Software development ... 177

Table 7.16: Response on service internal structure attributes influence on SOA size 178

Table 7.17: Experts’ response on weights assigned to service internal structure. 178

Table 7.18: Experts’ response on weights assigned to service internal structure. 179

Table 7.19: Experts’ response on WMC attributes and weights ... 179

Table 7.20: Experts’ response on influence of service type to SOA development effort ... 180

Table 7.21: Experts’ response on influence of EMF on SOA development effort 182

Table 7.22: Experts’ response on appropriateness of implementation tool 183

xix

ACRONYMS AND ABBREVIATIONS

API – Application Programming Interface

BPMN – Business Process Modeling notations

COCOMO - Constructive Cost Model

COM – Component Object Model

CORBA – Common Object Request Broker Architecture

COSMIC-FFP -Common Software Measurement International Consortium-Full function

Points

CORBA - Common Object Request Broker Architecture

CRM - Customer Relationship Management system

DCOM - Distributed Component Object Model

EAF - Effort adjustment factor

FC – Function Count

FP – Function Point

FPA – Function Point Analysis

FUR – Functional User Requirements

GQM – Goal/ Question/ Metric

HTTP – Hypertext Transfer Protocol

ISO – International Organization for Standardization

JSON – JavaScript Notation

MMRE - Mean magnitude of relative error

MRE – Magnitude of Relative Error

NOP – Number of objects points

xx

OMG – Object Management Group

PHP – Hypertext Preprocessor

REST – Representational State Transfer

RMI – Remote Method Invocation

RPC – Remote Procedure Call

SDC – Service Dependency Count

SOA – Service Oriented Architecture

SOAF – Service Oriented Architecture Framework

SOAML – SOA Modeling language

SOAP – Simple Object Access Protocol

SOMA – Service Oriented Modeling Architecture

SLOC - Source line of codes

UDDI – Universal Description Discovering and Integration

UCP – Use Case Point

UFP – Unadjusted Function Point

UML – Unified Modeling Language

URL – Universal Resource Locator

WBS – Work Breakdown Structure

WMC – Weighted Message Count

WOC – Weighted Operation Count

WSDL – Web Service Description Language

WSC – Weighted Service Count

xxi

DEFINITION OF OPERATIONAL TERMS

Effort – Exertion of physical or mental power to complete a task or a project.

Project Size – The scope of a project that describes how big the project is.

Service Oriented Architecture: SOA is a paradigm for organizing and utilizing services

made available to consumer services and applications over a distributed network.

Service: A service is a discoverable and self-contained software entity that interacts with

applications and other services for the purpose of achieving business objectives.

Software Development Effort estimation: is the process of predicting the amount of

human effort required to develop software, expressed in person-hours or person-month.

Software size metrics: Software size metric is a standard of measure of a degree to which a

software system or processes possesses some size properties.

1

CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Software effort estimation is the process of predicting human effort required to build a

software project. The bulk of the cost of software development is due to human effort

estimated in terms of person-months (Borade & Khalker, 2013). Reliable effort estimation

enables adherence to schedule and budget for successful resource allocation and software

project implementation. The main reason for software effort estimation is to help software

developers and managers to answer the question “how much effort is required to build a

software project?”

The ability to measure size and estimate software effort precisely contributes to better

management of IT project. Demand for more functionality, higher reliability and higher

performance has resulted to higher competitiveness among software developers (Coelho &

Basu, 2012). To stay competitive, software developers need to deliver software products on

time, within the budget and to the agreed level of quality. Most projects fail due to

planning issues such as cost, effort, time and requirements specifications. A study on

software projects in 2012 shows that 43% of projects were challenged and 18% failed due

to over budget, late delivery and less than required features (Standish, 2013).

One of the key indicators to be considered when estimating software development effort is

software project size. Other indicators include environmental factors, technical factors and

human factors. The size of the software project determines the scope and is modeled as the

main input when estimating development effort. Software size metrics is a standard of

2

measure of a degree to which a software system possesses size based properties (Coelho &

Basu, 2012). The goal of using size metrics in software engineering is to obtain objective

and quantifiable measurements which may have valuable applications in estimating

software development effort. Software developers and Software project managers must tell

“how big is the software project” before estimating software development effort.

Software developers and software project managers have had the interest of estimating

accurately the size, effort and cost of developing software products. Earlier effort

estimation methods were based on software lines of codes or function points to estimate the

size (Litoriya & Kothari, 2013). However, demand for new functionalities and inclusion of

new features such as software re-use, distributed systems and iterative development

established a need for new software size, effort and cost estimation methods (Prokopova &

Silhavy, 2015).

Furthermore, most software size metrics and software effort estimation methods are not

automated due to the fact that they do not use artifacts such as Unified Modeling Language

to expose software attributes that are relevant to software size (Harizi, 2012). UML not

only provide a view of the system for design purpose but also reveal the scope or size of a

software system. Use of diagrams such as UML to reveal attributes that determine software

size provides an opportunity to capture attributes that are relevant to computing software

size and effort from UML automatically. Automation of software size attributes extraction

from UML provides a more efficient way of computing software size and software

development effort.

3

Service oriented Architecture (SOA) is an example of a popular paradigm for developing

distributed systems that provides a challenge to existing software effort estimation

techniques. SOA consists of service providers which are elements that offer services to be

used by other service users. The need for agility, cost-effectiveness and efficiency,

adaptability and legacy leverage in the rapidly changing business environment has led

many organizations to migrate to SOA applications. SOA other benefit include clear

separation of services from implementation which allows service upgrades to occur

without overhaul of the entire system and less impact on service users (Farrag & Moawad,

2014). SOA is an important aspect of organization’s IT infrastructure as it links all

applications and services that support business processes. SOA is a paradigm shift in

designing information systems where services corresponding to business functions are

published in form of standard interface to be discovered by other services.

Estimating SOA systems development effort is difficult because they consist of integration

among services within and outside the organization regardless of heterogeneous technology

and programming language over a distributed network. Secondly, there are different types

of services including new, migrated and discovered and factors that affect SOA effort are

different from other software applications. Furthermore, SOA embraces the principle of

software reuse and enabling modification of legacy systems to suit today’s business needs.

A number of research studies have attempted to introduce effort estimation methods for

SOA. However, existing SOA effort estimation methods do not rely on size metrics in their

effort estimation.

4

1.2 Problem Statement

Over decades, researchers have attempted to introduced software size metrics and effort

estimation methods. Traditional software size metrics such as Source Line of Code (SLOC)

and Function Point (Albrecht, 1983) are challenged when dealing with SOA applications

due to SOA architectural difference when compared to other software paradigm. This

prompted researchers to introduce size metrics specifically for SOA but still they did not

capture all key SOA size attributes (Zhang & Li, 2009; Hirzalla, Cleland-Huang &

Arsanjani, 2009; Elhag & Mohamad, 2014; COSMIC, 2010). On the other hand, existing

traditional effort estimation methods such as Constructive Cost Models (Boehm, 1981;

Boehm, 2000), Artificial Neural Network Effort Estimation Methods (Bawa & Chawla,

2012; Rijwani & Jain, 2016) and Fuzzy Logic Effort Estimation Methods (Thamarai &

Murugavalli, 2015; Patra & Rajnish, 2018) are also unable to estimate effort for SOA due

to SOA effort factors which are different from traditional software effort factors. In an

attempt to estimate SOA development effort, researchers have proposed SOA effort

estimation methods (Obrien, 2009; Akkiraju & Hendrik, 2010; Li & Liam, 2010; Farrag &

Moaward, 2014; Li & Keung, 2010; Gupta, 2013; Verlaine, Jureta & Faulkner, 2014;

Mishra & Kumar, 2014). Despite the fact that these methods are promising, the problem of

estimating SOA development effort still remains largely unresolved mainly because there

is limited attempt in using size metrics and key SOA effort factors to estimate SOA

development effort.

5

1.3 Objectives

1.3.1 General Objective

The main objective of the study was to define a suite of size-based metrics and then use

them as the basis of developing an effort estimation method for SOA systems.

1.3.2 Specific Objectives

i. To define a suite of size metrics to measure size attributes of SOA software systems.

ii. To develop an effort estimation method for SOA systems based on the size metrics.

iii. To implement a static analysis tool that automates computing of the size and estimating

effort for developing SOA systems.

1.4 Research Questions

i. How to define a suite of metrics for measuring the size attributes of SOA systems?

ii. How to estimate SOA development effort effectively based on the size metrics?

iii. How to implement the proposed metrics and effort estimation method into a static

analysis tool for SOA software systems?

1.5 Hypotheses

This research study conceptualized the following 4 alternative hypotheses statements.

1. There is a correlation between SOA size attributes and SOA size.

2. There is a correlation between SOA size and SOA development effort.

3. The proposed SOA size metrics and SOA effort estimation method are more accurate

as compared to existing metrics and methods.

4. The proposed SOA automated tool deep learning techniques are accurate in extracting

UML text and images.

6

1.6 Scope of the Study

Over the years SOA communication methods included DCOM (Distributed Component

Object Model), RMI (Remote Method Invocation) and CORBA (Common Object Request

Broker Architecture). These communication methods were specific to a particular platform

and operating system. With the development in internet communication, web service is

currently the most common SOA communication infrastructure due to availability,

interoperability and affordability of internet infrastructure. Therefore, this study focused on

web services which offer services over the web.

A web service can be developed using any programming language such as JAVA, ASP,

PHP, Python and Visual Basic among others. However, this study focused on web services

developed using PHP programming languages rather than examining the entire population

of programming languages platform and projects. SOA infrastructure developments were

excluded from this study on the basis of their availability from the industry. It is cheaper to

acquire a ready-made standard infrastructure that has been developed and tested by the

industry rather than developing new infrastructure.

Research investigation was based on a controlled laboratory experiment in the context of

undergraduate students in computer science and Information Technology. Furthermore, a

survey was done in the context of industry programmers to replicate and validate the

experiment. Participants and projects to be used in the laboratory experiment and survey

were sampled from a population of participants and projects.

7

1.7 Significance of the Study

Software size and effort estimation are critical components of software project

management. The proposed size metrics and SOA effort estimation method will enable

Software developers and software project managers to plan and implement software

projects successfully. A well-defined software size metrics and effort estimation method

will help project managers not to underestimate or overestimate SOA software projects

(Rijwani & Jain, 2016). Underestimating leads to under-scoping, setting too short schedule

and under-staffing (Shivakumar, Balaji & Ananthakumar, 2016). On the other hand,

overestimating leads to over-scoping, over-staffing and over-costing. Cost overruns

increased from an average of 56% in 2004 to 59% in 2012 in sampled software projects

while time overruns increased from 71% in 2010 to 74% in 2012 (Standish, 2013).

Existing software effort estimation methods are less accurate given the fact that software

engineering industry is evolving rapidly. Since 1960’s software development paradigm has

evolved from procedural language to object oriented language to internet programming to

component based and SOA among others. This evolution requires similar evolution in

software size and effort estimation methods to cater for new attributes introduced by new

software development paradigms. This study introduced SOA size metrics and effort

estimation method that will contribute in improving estimation accuracy in software

industry. Furthermore, software engineer researchers will use this model’s framework to

develop more accurate metrics and methods for SOA and other types of software

architecture.

8

1.8 Limitations of the Study

Due to inability to access SOA projects developed in the industry and unavailability of

datasets based on UML artifacts in the industry, the study research investigation was based

on SOA projects developed by students in a controlled laboratory experiment in a

university setup. In order to overcome the challenges that may arise from the use of

students’ SOA projects, programmers from the industry participated in a survey to replicate

the controlled experiment to improve the research validity. Secondly, research on SOA size

metrics and effort estimation methods is still at infancy and thus there is limited publication

on validation and calibration of existing SOA size metrics and effort estimation methods

providing fewer opportunities for comparison with the metrics and method proposed in this

study. Therefore, this study research results were compared with the industry accepted

effort estimation error margin of up to 25%.

1.9 Assumptions of the Study

The study assumed that participants in the laboratory experiment and survey answered the

questions in an honest and candid manner. This was enhanced by explaining to participants

how anonymity and confidentiality was preserved. Participants were allowed to withdraw

from the study at any time with no negative consequences to their withdrawal. Secondly,

the study assumed that participants had sincere interest in participating in the research and

they did not have any other motives. Lastly, the study assumed that the samples were

representative of the population and participants were to experience similar phenomenon of

the study.

9

1.10 Contribution of the Thesis

This thesis has made the following contributions:

a) The proposed size metrics for SOA can contribute to knowledge in the area of

software engineering in the field of software metrics. The metrics can provide

foundation to future researchers in software metrics who may want to implement or

extend the proposed size metrics. The proposed size metrics can contribute to

practice in project management where software size is a critical component when

estimating scope, effort, cost and time taken to develop a SOA application system.

b) The developed method can contribute positively to knowledge and to practice in the

area of software project management where project scope, effort and cost

estimation are key aspects that determine project successful implementation.

c) The tool can enhance metric computations and software method estimation by

project managers working with SOA software systems.

d) Provided empirical evidence that the proposed metrics and effort estimation method

for SOA are valid and more accurate.

1.11 Organization of the Thesis

This thesis is organized into 8 chapters. The first chapter introduces the thesis by detailing

the background of the study, problem statement, research objectives and research

questions, scope of the study, significance of the study and limitations of the study. In

addition, the chapter also provides details on contribution and structure of the thesis.

The second chapter reviews literature on basic concepts of SOA including description of

web services, SOA characteristics and SOA development methodologies. The chapter

10

further reveals analysis of existing software size metrics, existing effort estimation methods

and discusses the theoretical framework and conceptual framework.

The third chapter discusses how the research was carried out including research

philosophy, research design, target population, sampling and data collection. The chapter

also describes data collection instruments’ reliability and validity and ethical issues.

The fourth chapter proposes a suite of SOA size metrics including Weighted Operation

Count (WOC), Service Dependency Count (SDC), Weighted Message Count (WMC) and

Weighted Service Count (WSC). The chapter also provides detailed theoretical validation

of the proposed suite of size metrics for SOA.

The fifth chapter proposes SOA effort estimation method with a detailed analysis of SOA

development effort estimation factors. The chapter also provides detail analysis of

application of fuzzy logic to SOA software development effort factors to give more

accurate and realistic results.

The sixth chapter provides a detailed design of SOA size metrics and effort estimation

implementation tool including the requirements of the tool and the tool architecture design.

The seventh chapter provides empirical analysis details on how laboratory experiment and

expert survey was planned and conducted. The chapter also shows detail of statistics

analysis by comparing the proposed size metric and effort estimation method with existing

size metric and effort estimation method. The last chapter concludes the thesis by

highlighting achievement made by the research study, contribution to knowledge and

practice and recommendation for future work.

11

CHAPTER TWO

LITERATURE REVIEW

1.

2.1 Introduction

This chapter presents a detailed analysis of basic SOA concept, existing software size

metrics, SOA development effort factors and existing software effort estimation methods

including their challenges and strengths with regard to SOA. This chapter further provides

a conceptual framework detailing relationship among variables discussed in this study and

a theoretical framework which entails the theory behind this research study.

2.2 Basic Concepts of SOA

SOA is a software system comprising of various communicating services working in

synergy to achieve a defined objective. A service thus can be viewed as a reusable

component that represents business processes such as order form, foreign exchange

conversions or tax calculations. A service is a course-grained, discoverable and self-

contained software entity that interacts with applications and other services through a

loosely coupled, asynchronous, message based communication model (Johnston & Kelly,

2002; Chindove et. al, 2017). SOA defines an interaction model between functional units,

in which the consumer of the service interacts with the service provider to find out a

service that matches its needs through a registry (Chindove et. al, 2017).

SOA is defined as ‘a paradigm for organizing and utilizing distributed capabilities that may

be under control of different ownership domains’. It is an environment of services made

available to consumers over a distributed network (Hussain, Muhammad & Ahmed, 2010).

12

It consists of a set of business-aligned services that support a flexible and dynamic

configuration to end-to-end business processes (Siddiqui & Tyagi, 2016).

2.2.1 Evolution of SOA

Software architecture of a computer system is the structure of the system, which comprise

of the software components and interaction among them. From earlier computing age to

present time, software architectures have evolved rapidly from fulfilling basic

functionalities to affecting human life by providing corporate agility and operational

efficiency. This result in utilization of shared application functionalities, reuse services and

resources (Farrag & Moawad, 2014).

Improvement in hardware technologies, operating systems and networking enabled

developers to gain more benefits by building more complex and composite software

systems. Earlier computing systems used monolithic programs based on procedural

software architecture which did not encourage modification. Structural design was later

introduced to decompose a large program into manageable modules for easy modification

(Seth, Singla & Aggarwal, 2012). Thereafter, object oriented programming was presented

to enable encapsulation, information hiding, inheritance and polymorphism. Object

oriented programming concept gave rise to component based architecture and service

oriented architecture which allows building of more complex software in a distributed

network and maximize utilization of resources and applications reuse (Asha, Kavana &

Parvathy, 2017).

With regard to networking, earlier computers were single user machines not connected in a

network. Currently networking technology has developed tremendously from local area

13

networking to wide area networking, from client-server architecture to n-tier architecture

and from centralized server systems to distributed systems. These developments have

contributed immensely to development of more complex systems such as service oriented

architecture that fits well in the current networking technologies (Domdouzis et. al, 2016).

2.2.2 A Typical SOA System

The main elements of a service oriented architecture systems are services and service

infrastructure (Bianco, Lewis, Meison & Simanta, 2011). SOA is an architectural style that

defines an interaction model between 3 main functional units in which the consumer of the

service interacts with the service provider by searching for a service that meets its

requirements through a registry (Kubasell, 2006) as illustrated in Figure 2.1.

Figure 2.1: SOA Model (Adopted from Kubasell, 2006)

Service consumer is an entity that searches for a service to execute a required function by

discovering a service through a registry. Secondly, Service registry is a directory which is

accessed by consumers to enable location of service providers. Thirdly, service provider is

a network addressable entity that accepts and execute request from consumers by providing

the service description to fulfill consumer’s requirements.

Service

consumer

Service

description

Service

Provider

Service

registry

14

2.2.3 SOA layered Architecture

The early systems were based on 2-tier architecture where a client was connected directly

to the database without any logical layer in between. Later on, 3-tier architecture was

introduced with business logic layer in between presentation layer and data layer. The 3-

tier approach isolates code implementation from the client and provides a platform for

sharing data and concurrency access (Sharbanoo, Ali & Mehran, 2012). SOA is based on

n-tier architecture in which services are layered on top of components that supports certain

functionalities and provides quality of service (Seth, Singla & Aggarwal, 2012) as shown

in Figure 2.2.

Figure 2.2: SOA n-tier layers (Adopted from Sharbanoo, Ali & Mehran, 2012).

The SOA n-tier layers are operational/enterprise layer, service layer, business process

composition layer and presentation layer. Operational layer contains existing applications

such as Enterprise Resource Planning (ERP), Supply Chain Management (SCM), Customer

Relationship Management (CRM) and other applications which provide background

services. Each of these systems are self-contained which their own databases and

Presentation Ports User Interface

Enterprise / Operational

Systems

CRM/

ERP

Business

Intelligence

Business Process

Composite Services

Services

15

implementation infrastructure. Enterprise component layer provides functions and

requirements including management, availability and load balancing to services. The third

layer is the service layer which contains the actual services. The fourth layer is the business

process composition layer where services are composed into a single application through

service orchestration and choreography which supports specific use cases and business

processes. Lastly the presentation layer provides a link between users and the services and

composite applications (Sharbanoo, Ali & Mehran, 2012.

2.2.4 SOA Characteristics

SOA characteristics includes clear separations of service interface from implementation,

loosely-coupled, coarse grained, interoperability and location transparent. Clear separation

of services interfaces from implementation allows service upgrades to occur without

impact on system users. Secondly, services are loosely-coupled software entities with

minimal level of dependency that facilitates software re-use (Farrag & Moawad, 2014).

Loosely coupled refers to defining interfaces in such a way that they are independent of

each other implementation such that replacing a component will have less effect on the

system (Svanidzaite, 2014). Thirdly, course-grained services means that services can

encapsulate and perform complete business logic such that services are discovered

dynamically at run-time through a consumer searching a registry. Furthermore, services are

interoperable with the ability to communicate with each other independent on the platform

and programming language. Lastly, services are location transparent where clients of

service don’t have pre-knowledge on the position of service.

16

2.2.5 Web Services

An example of SOA are the web services technology which are the most commonly used

SOA systems that provide a platform to link services developed in different programming

languages running in different platforms using internet protocols (Mumbaikar & Padiya,

2013). For example, an application written in Java running on Linux communicates with an

application outside the organization written in .NET or PHP running on Windows platform

via internet standards. An exposed service provides a basic API by which a service can be

invoked.

Before web services, SOA distributed technologies such as RMI (Remote Method

Invocation), CORBA (Common Object Request Broker Architecture) and DCOM

(Distributed Component Object Model) were only able to operate on a specific platform.

RMI was specific for java Runtime environment which allows invocation of a method in a

different address. On the other hand, DCOM was a component based model specifically

made for Windows applications relying on RPC to enable communication among different

application in different addresses. Similarly, OMG’s CORBA enabled a client to request an

object in a server. To link applications using the three technologies one required gateways

to link and enable communication between two different technologies (Frantisek & Stal,

1998). In contrast, web services use internet standards and styles such as SOAP (Simple

Object Access Protocol) or REST (Representational State Transfer) to communicate and

interoperate among services (Dudhe & Sherekar, 2014).

2.2.5.1 SOAP Web Service Standard

Simple Object Access Protocol (SOAP) is a W3C standard that allows message exchange

among services in a distributed environment (Dudhe & Sherekar, 2014). SOAP uses XML

17

to define an object to exchange messages regardless of different languages and platforms

used. SOAP standard protocols include WSDL (Web service description language) and

UDDI (Universal Description, Discovery and Integration). WSDL is a standard that uses

XML to describe web services. A web service defines its methods in WSDL document,

input/output parameters for each method, data types, transport protocol and the URL where

a service is hosted. On the other hand, UDDI enables web services to publish details about

their organization and web services to the registry. It also provides a way of finding a

service via the registry also known as service discovery (Belqasmi, Singh, Ban melhem &

Glitho, 2012).

2.2.5.2 REST Web Service Architecture

REST is an architectural style for communication among services across a distributed

environment. REST web service respond to request made by consumer service via HTTP

request for resources (Mumbaikar & Padiya, 2013). In this case, resources are the building

blocks for web services such as a database record. REST architecture uses HTTP GET,

PUT, POST and DELETE methods to access and manipulate resources. REST messages

are smaller, perform better and consume less bandwidth as compared to SOAP standard.

REST models data into a resource and enables identification of a resource through resource

URI (Belqasmi, Singh, Ban melhem & Glitho, 2012).

Through internet SOAP standard or REST architectural style, a web service is simply

accessed by its URL exposed online. Consumer web services only need to know the URL

of the provider services, data types and methods to call the provider service. Provider web

services publish their functions while hiding their implementation details from the client.

Resources are accessed through XML of JSON messages that have standard meaning

18

making it easier to exchange information via internet (Mumbaikar & Padiya, 2013).

Introduction of SOAP standard and REST architectural style provided a window for

growth development of SOA projects due to their simplicity in application as compared to

earlier SOA standards.

2.2.6 SOA Development Methodologies

SOA development life cycle is different from other traditional software development

lifecycle due to SOA’s development objective which is to implement IT solutions based on

business requirements and processes. The most common SOA development methodologies

are Service Oriented Architecture Framework (SOAF)(Erradi, Anand & Kulkarini, 2006),

Service Oriented Modeling and Architecture (SOMA) (Arsanjani et al, 2008) and Service

Oriented architecture Modeling Language (SoaML) (Amsdon, 2010). They all advocated

for developing SOA based on business modeling process in order to add value to business

requirements.

2.2.6.1 Service Oriented Architecture Framework (SOAF)

SOAF methodology consists of 5 main phases namely information elicitation, service

identification, service definition, service realization, roadmap and planning. It combines

the top-down modeling of an existing business process with a bottom-up analysis of

existing applications (Erradi, Anand & Kulkarini, 2006). Information elicitation phase

entails the analysis of the current business processes “as-is” model and proposed business

process “to-be” model. Candidate services are identified to implement the “to-be” business

model while Process-to-Application model (PAM) is done to analyze existing legacy

application assets to discover which application can be transformed to suit into SOA

implementation (Erradi, Anand & Kulkarini, 2006). SOAF Process-to-Application model

19

(PAM) provides a blueprint for identifying significant SOA size attributes when dealing

with legacy applications. However, SOAF “to-be” business model is at a higher level of

abstraction which cannot show a detailed service attributes which can assist in identifying

SOA size attributes.

2.2.6.2 Service Oriented Modeling Architecture

SOMA provides a guideline on how to use business model details as input to define

services. It emphasize on SOA principles to solve business problems by designing SOA

based on business aligned goals and strategy. SOMA has 3 phases namely: Identification,

Specification and Realization (Arsanjani et al, 2008). The main objective of identification

phase is to capture exhaustively list of services that are potential candidates for exposure.

Secondly, specification phase includes checking the requirements against what services can

provide and to design services in detail. Lastly, Realization phase provide guidance on how

to translate architectural decisions and designs to service realization and eventually

implementation (Arsanjani et al, 2008).

2.2.6.3 Service Oriented Architecture Modeling Language

SOAML is an Object Management Group (OMG) standard that is intended to bridge the

gap between business requirements and IT solutions. It is an extension of UML with an

aim of supporting SOA modeling (Amsdon, 2010). SOAML proposed 5 main phases

namely: Service Identification, Service Specification, Service Realization, Service

composition and Service Implementation. In SOAML, the most important phase in

identifying SOA attributes is the Service specification phase which is modeled by defining

each service in detail. It includes details on services interfaces, the role played by the

interfaces, functional capabilities and inputs/outputs details and communication protocols.

20

Service specification phase is modeled using SOAML interface diagram and sequence

diagram (Amsdon, 2010).

2.3 Existing Software Size Metrics

Over the decades, software development process has transformed from structured design

such as waterfall to new approaches such as agile, component based, software re-use and

service oriented architecture. This transformation resulted to increase in software size and

complexity. Consequently, software effort factors have also changed over time due to

evolution in software practices (Sharma, Bajpai & Litoriya, 2012). Software size has been

the main software effort factor or indicators since early 1980’s with the introduction of

Lines of Codes and Function Point analysis metrics to measure software size. Later

software paradigms such as Object Oriented programming led software size metrics

researchers’ to shift focus from lines of codes to modules internal structure and relationship

among modules as the main attributes to measure. With the introduction of SOA,

researchers introduced size metrics specifically for SOA including Number of service

Count, Service interface count (Zhang, Li, 2009; Hirzalla, Cleland-Huang & Arsanjani,

2009; Elhag, Mohamad, 2014) and Functional Size measurement method for SOA

(COSMIC, 2010) built on the foundation of earlier programming architectures. This study

classify software size metrics into traditional size metrics and SOA based size metrics.

2.3.1 Traditional Software Size Metrics

Traditional software size metrics were constructed to measure size of software applications

without considering the software type or design methodology. Traditional software size

metrics identified in this study include Lines Source of codes (SLOC), Function Points

21

Analysis (FPA) (Albrecht, 1983), Story Points (Greening, 2003), Use Case Points (Karner,

1993) and Object Points.

2.3.1.1 Source Line of Code (SLOC)

SLOC was the earliest size metric used to measure the size of a program by counting the

number of lines of a program’s code (Albrecht & Gaffney, 1983). The goal was to measure

the amount of intellectual work put into program development (Khatibi & Jalawi, 2010;

Prokopova & Silhavy, 2015). SLOC can also be used to measure number of errors, defects

and documentation pages. One major limitation of SLOC is that, it is applied in procedural

programming languages and it works at the coding phase of program development cycle.

Currently it is not a suitable metrics due to rise in automated generated codes. SLOC is

dependent on programming language platform and therefore it is inadequate when dealing

with heterogeneous systems developed using different programming platforms such as

SOA (Prokopova & Silhavy, 2015).

2.3.1.2 Function Point Analysis (FPA)

Function Point Analysis (FPA) presented by Albrecht (1983) measures number of

functionalities in a software application. Software functionality is not directly related to the

number of lines of codes, a skilled developer may use less SLOC to develop functionality

than unskilled programmer. Furthermore, a programmer whose productivity is measured in

SLOC may tend to include unnecessary codes (Coelho & Basu, 2012). It is based on this

principle that functionality of application software is the key driver of the application

software size which will eventually make a major contribution to software development

effort (Arnuphaptrairong & Suksawasd, 2017).

22

FPA is independent on programming language and thus can work with different

programming languages. FPA can be applied at requirement specification and design

phases of software development process. Function point measure is arrived at by counting

the number of five basic software components including external inputs, external outputs,

external inquiries, logical internal files and external interfaces. Each of the 5 function

component is weighed by a respective complexity level ranging from low, average to high

as indicated in Table 2.1 then summed up to give Unadjusted Function (UFP) (Albrecht &

Gaffney, 1983).

Table 2.1 Function Point Complexity weights

Function type Low Average High

Internal logical file 7 10 15

External interface file 5 7 10

External Input 3 4 6

External Output 4 5 7

External Inquiry 3 4 6

(Albrecht, 1983)

Therefore, Unadjusted Function Points (UFP) is,

Where N is the number of function type and W is the weight of a function type.

UFP is then adjusted with 14 complexity factors (CF)

Total CF (TCF) = 0.65 + (sum of factors)/100

23

Adjusted Function Point = UFP * TCF

Another advantage of FPA is that non-technical user can easily understand the metric.

Function point work best when requirements are well defined and there is certainty on the

structure of system to be developed.

A number of function Points metrics were introduced since 1985 including Mark II

Function points, 3D Function Points, COSMIC full Function Points, De-Marco Function

Points and Feature Function Points (David, 2006) and International Function Point User

Group (IFPUG). However, tradition Function point metrics versions do not capture SOA

features such as service dependency, operations and message movement. This prompted

adjustment of traditional Function Point by researchers to take SOA features into

consideration (Mahmood, Ilahi, Ahmad & Ahmad, 2012). Mahmood et al introduced a

Function Point version calibrated to meet SOA features demand by adjusting data

communications, distributed data processing, performance and heavily used configuration

factors. Based on case studies involving three projects, their proposed function point

metrics returned more accurate results as compared to the traditional function point

method. However, service internal structure, service dependency, service types were not

captured in their modified FPA and detailed analysis of the method was not documented.

2.3.1.3 Story Points

A Story Point measures the size of a story or a feature in agile software development. It is

relative in nature in that a story that is assigned 2 points requires twice the effort of a story

that takes 1 Point. A story relies on analogy where the developer must have experience on

the type of application software being developed. A Story Point is based on the effort,

complexity and inherent risk in developing a feature (Greening, 2003; Cohn, 2005; Coelho

24

& Basu, 2012). Agile team estimate the effort and duration required to deliver a feature

based on story points. Story Point only deals with applications developed based on agile

software development method as it represents size of a feature to be developed in agile

process.

2.3.1.4 Use Case Points (UCP)

Use Case Point is suitable for applications built using object oriented paradigm. It

calculates unadjusted software application size (unadjusted UCP) by counting the number

of use cases and the number of actors resulting from users’ requirements specifications. A

use case diagram shows interaction between different users and the systems. Use case

diagram provides an opportunity to measure software size at an early stage of software

development (Karner, 1993; Azzeh, 2013; Kirmani & Wahid, 2015). Actors and Use cases

are classified and weighted based on their complexity as shown in Table 2.2 and Table 2.3.

Table 2.2: UCP Actors classification

Actor type Description Weight

Simple Actor interaction with API 1

Average Actor interaction with Protocol driven interface 2

Complex Actor interaction with GUI 3

(Karner, 1993)

Table 2.3 UCP Use cases classifications

Use case Number of transactions Weight

Simple Less than or equal to 3 5

Average Between 4 and 7 10

Complex Greater than 7 15

(Karner, 1993)

25

Unadjusted Actor Weight (UAW) = Number of actors * Weights

Unadjusted Use case weight (UUCW) = Number of use cases * Weights

Unadjusted Use Case Point (UUCP) = UAW + UUCW

The study identified 13 Technical Factor (TF) and 8 Environment Factors (EF) which are

scored from 0 to 5 then multiplied and added to specific constants to get Technical

Complexity Factor (TCF) and Environmental Complexity Factor (ECF) as shown below

(Karner, 1993).

 TCF = 0.6 + (0.01 * TF)

 EFC = 1.4 + (-0.03 * EF)

Use Case Points (UCP) is computed by finding the product of UUCP multiplied by TCF

and ECF.

 UCP = UUCP * TCF * ECF

UCP is appropriate for measuring the size of Object Oriented Application at an early age

and it is simple to implement (Azzeh, 2013). However, it requires adjustments in the

classification of use cases due to the advancement in technology and factors need to be

included apart from environmental and technical factors (Kirmani & Wahid, 2015).

Furthermore, it is not suitable for SOA due to its inability to capture SOA attributes.

2.3.1.5 Object Points

Object points measures the size of software based on number and complexity of objects

(Borade & Khalker, 2013). The objects are screens, reports and 3GL components. The

steps for estimating development effort using object point include counting the number of

objects, classification of objects (simple, medium, average) and assigning weights to

objects with regard to complexity as shown in Table 2.4.

26

Table 2.4: Classification of objects weight

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3 GL components 10

(Borade & Khalker, 2013)

Object point is determined by adding all the weights of object instances to get object point

count. Estimate percentage re-use is finally used to compute the overall object points

(NOP) where,

NOP = (Object Point) * (100-% reuse)/100

Furthermore, developers’ productivity is weighted from low to highest then effort is

estimated by dividing net object point by productivity (Borade & Khalker, 2013). Object

point only considered Third Generation Languages (3GL) and Fourth Generation

Languages (4GL) factors and thus cannot apply to current programming paradigms such as

OOP, Component-based and SOA.

2.3.1.6 Object – Oriented Size and Complexity Metrics

Object-Oriented programming share a number of properties with SOA and Component

based systems. Properties that are common in these paradigms are separation of tasks into

methods or operations, cohesion and dependency properties. Similarities between Object

Oriented applications and SOA properties prompted a number of SOA metric researchers

to adopt Object Oriented Metrics to measure SOA. Traditional Object-Oriented Metric that

was adopted and configured to measure SOA complexity attribute is Weighted Method

Count (WMC). WMC measures software complexity by counting the number of weighted

27

methods based on Cyclomatic Complexity (McCabe, 1976; Chidember & Kemerer, 1998;

Hirzalla, Cleland-Huang & Arsanjani, 2009). Other metrics adopted by SOA researchers

from Object-Oriented are coupling and cohesion metrics. Furthermore, Object-Oriented

design tools such as UML is widely used to represent SOA design. A case in point is

Service Oriented Architecture Modeling Language (SoaML) (Amsden, 2010) which is an

extension of UML design tool.

2.3.2 Existing SOA Complexity and Size Metrics

Existing SOA complexity and size metrics include Weighted Service Interface count

(WSIC), Number of Services (NOS) metrics and COSMIC-SOA metrics.

2.3.7.1 Weighted Service Interface Count (WSIC)

WSIC was proposed to measure the number of exposed interfaces or operations as defined

in the Web Service Description Language (WSDL) documents (Hirzalla, Cleland-Huang &

Arsanjani, 2009; Elhag & Mohamad, 2014). However, the metric was not validated

empirically and it did not take into consideration other related attributes. WSIC returns the

number of operations in a service based on the hypothesis that the higher the number of

service operations the more complex a SOA application will be. They observed that the

amount of work needed to develop and test a service operation increases with rise in the

number of operations. WSIC provided an insight on the relevance of operations as an

attribute in determining SOA complexity. However, no literature so far has revealed the

empirical analysis to verify the metrics reliability. Furthermore, WSIC metric is a not a size

metric but a complexity metric.

28

2.3.7.2 Number of Services (NOS)

Number of services metric is a simple count of services contained in a SOA system (Zhang

& Li, 2009; Hirzalla, Cleland-Huang & Arsanjani, 2009; Elhag & Mohamad, 2014).

Number of services metric is a measure of a system’s complexity based on the hypothesis

“The higher the number of services the more complex a SOA system becomes.”. Factors

that contribute to system’s complexity as a result of number of services include increase in

the number of operations, increase in number of integrations and dependencies and need to

provide better governance and infrastructure to support SOA application.

Number of services metric provided a foundation for developing more SOA metrics that

rely on number of services. However, according to this research study knowledge, there is

no literature on empirical validation done on NOS metric. In addition, the metric simply

counts the number of services disregarding the fact that services are different and therefore

should be assigned weights in relation to their complexity or size.

2.3.7.3 COSMIC-SOA Metrics

COSMIC is a consortium of software measurement professionals that was started in 1998.

COSMIC-FFP (Common Software Measurement International Consortium-Full function

Points) was introduced purposely to measure functional size of software. COSMIC-FFP

(2003) is a software size estimation method approved by ISO (ISO/IEC 19761:2003).

COSMIC measurement methods involves applying a set of models, principles, processes

and rules to measure functional user requirements of a given software which will result to

the function size of software (COSMIC, 2015). The group has published several methods

which include COSMIC-FFP for web application and COSMIC-SOA for SOA based

projects.

29

COSMIC was originally introduced for business and real-time applications which are

characterized with large amount of data movement. COSMIC-SOA was presented to

handle service applications over distributed network. With data exchange among service

providers and users being the concept behind SOA, it matched COSMIC philosophy of

sizing software in relation to amount of data exchange which prompted the introduction of

COSMIC-SOA specifically for SOA application systems which also embraces data

movement principle (COSMIC-SOA, 2010).

COSMIC principle states that the main programming efforts are dedicated towards

handling of data movements from/to the storage and users. Therefore, the number of data

movement provides insight into the system size (Martino & Gravino, 2009). COSMIC

methods require a definition of the context model for a specific application with clear

boundaries separating the software from its operating environment. Each data movement

crossing the boundary is counted to give the full function points.

The data movements are classified as Entry, Exit, Read and write. One advantage of

COSMIC is the ability to estimate software size of big projects by counting the amount of

data. However, COSMIC methods focus more on data movement rather than considering

other SOA size indicators. Furthermore, data movement alone does not recognize the fact

that a service that is more complex in design, with more operations and dependencies is

bigger than a service that is less complex, with fewer operations and dependencies. Data

movement only caters for one aspect of SOA size.

30

2.4 Existing Effort Estimation Methods

This study classified existing effort estimation methods as traditional effort estimation

methods and SOA effort estimation methods.

2.4.1 Traditional Effort Estimation Methods

Research in software cost estimation has been around for several years now, although it is

still at its infancy due to changes in software environments and development methods.

Traditional software effort estimating include expert judgment, Analogy, top-down,

bottom-up, price-to-win, Wideband Delphi, Source line of codes (SLOC), Object points,

Function-Point Analysis (Albrecht, 1983), Constructive Cost Model-I (COCOMO-I)

(Boehm, 1981), Constructive Cost Model-II (COCOMO-II) (Boehm, 2000), Artificial

neural Network (ANN) methods and Fuzzy logic methods.

2.4.1.1 Expert Judgment

Expert Judgment technique is the most frequently applied effort estimation method where

experts are responsible for estimating the size and effort of a software (Khatabi & Jawawi,

2010). This method is based on the project manager experience in similar software projects

(Borade & Khalker, 2013). Expert judgment is prone to human errors and biasness and its

success is grounded on expert judgment (Bhalerao & Ingle, 2009). Expert experience may

differ from one expert resulting to varying estimates on the same type of project. However,

it is helpful in small and medium sized software project and when the development teams

and software attributes have not experienced significant changes as compared to previous

projects. However, this method cannot be used to estimate a large and complex software

project such as SOA.

31

2.4.1.2 Analogy

Analogy technique estimation is done according to the actual effort of one or more

completed projects that are similar to the new project to be estimated (Khatabi & Jawawi,

2010; Borade & Khalker, 2013). Estimation can be done at the total project level or at sub

system level. The strength of estimation by analogy is that the estimate is based on actual

project experience and estimation can be done in the absence of an expert. However, it

does not take into consideration the extent of other relevant effort factors in the previous

project such as the environment and functions which may differ with new project cost

factors (Kumari & Pushkar, 2013). In addition, a lot of past information about past projects

is required whereas in some situations there may be no similar projects developed in the

past to compare with. Most SOA projects are unique to the organization and the types of

services offered depend on unique organization’s needs providing a challenge when

comparing with past projects’ data to estimate software development effort.

2.4.1.3 Price-to-Win

Price-to-Win estimation method is based on customer budget instead of software

parameters or features. Example is when a customer is willing to pay for 6 persons-month

and the project estimate is 8 persons-month then estimation is done as per the customer

ability to pay. This may cause delays and force developers to work overtime (Kumari &

Pushkar, 2013). Price-to-win method helps in getting the contract but it generally causes

effort, cost and time overruns. Furthermore, price-to-win may demotivate developers due

to set budget that is client centered as compared to consensus between developers and the

client. In addition, price-to-win may compromise the quality of a project due to developers’

need to fit into the client’s budget.

32

2.4.1.4 Bottom-up and Top-up

Bottom-up estimation method estimates by separating each software component then

summed to give the overall estimate for the product. It is possible only when the

requirements and design of the system are known at an early stage of software

development (Sharma, Bajpai & Litoriya, 2012). While top-down method establish an

overall estimate for the project then the software project is sub-divided into its functional

components which are then estimated based on the overall estimate (Sharma, Bajpai &

Litoriya, 2012).

The design and requirements must be well defined to partition software to its component.

Bottom–up and top-down methods may also apply to SOA systems by sub-dividing a

system into services which are the basic components of SOA. SOA design may include

different service types and legacy systems considerations becoming difficult to sub-divide

to functional components. Bottom up and top-up method only enable sub-division of a

project into smaller quantifiable sub-projects but there is no documented evidence to show

how the smaller sub-projects size and software development effort are computed then

summed up to give the overall result.

2.4.1.5 Wideband Delphi

Wideband Delphi method is an estimation technique where effort and cost are estimated

centered on team consensus. It is done by getting advices from experts who have extensive

experiences in similar projects. Wideband Delphi technique was introduced by Barry

Boehm and John Farquher in 1970s. It uses work breakdown structure as the basis for

estimating project size, effort and cost (Gandomani, Wei & Binhamid, 2014; Stellman &

33

Greene, 2005). This method emphasizes on consultations, communication and interaction

among participants.

Participants include customer representatives and technical team members involved in

development of the software product. Each member estimates for each task and identify

changes and missing assumptions in work breakdown structure. Members with high or low

estimates are asked to justify, and then members revise the estimates. The cycle repeats

until when estimators agree on the estimates. The coordinator collects estimates from team

members and assembles the tasks and estimates into a single final task list.

Wideband Delphi depends on team members experience and agreement among members

and thus it is not appropriate method when applied to a software project that is unfamiliar

to members (Stellman & Greene, 2005). Furthermore, it is a preferred method when

requirements are well defined and therefore, cannot work for software development

methodologies where requirements are not clear. However, it encourages collaboration and

it is simple to apply. Even though Wideband Delphi estimates are consensus-based, experts

may be biased, optimistic or pessimistic in their estimation.

2.4.1.6 Constructive Cost Model (COCOMO)

COCOMO model proposed by Boehm (1981) used parametric to compute and estimate

software development effort. Due to COCOMO methods popularity various studies have

extended COCOMO framework to develop cost estimation methods with an aim of

improving software estimation accuracy. The 4 original COCOMO methods were simple

COCOMO (Boehm, 1981), Intermediate COCOMO (Boehm, 2000), Detailed COCOMO

and COCOMO II.

34

Basic COCOMO computes software effort and cost as a function of program size

expressed in thousands lines of codes (KLOC) using the formula:

 Effort = a(KLOC)
b

Where a and b are effort coefficient and economy of scale constants respectively which are

assigned weights according to software project complexity and size as shown in Table 2.5.

Table 2.5: COCOMO Complexity factor weights

Model Effort coefficient (A) Economy of scale constants (B)

Organic (Small) 3.2 1.05

Semi-detached(Average) 3.0 1.12

Embedded (Large) 2.8 1.20

With the advancement in software development methods and environment, basic

COCOMO was not able to capture all relevant effort factors in its estimation. Therefore,

intermediate COCOMO was released to include emerging software attributes in their

computation of software estimates.

Intermediate COCOMO also used Kilo lines of codes as in basic COCOMO but it included

Effort adjustment factors (EAF) which are subjective assessment of products, hardware,

personnel and project attributes (Boehm, 2000; Kumari & Pushker, 2013). EAF considered

a set of four factors, with each factor having a number of attributes. The complexity factors

were hardware, personnel, project and product with 17 attributes rated on a 6 point scale

that ranges from very low to very high. The intermediate COCOMO model takes the form

EFFORT = a* (KLOC)
b
 * EAF.

35

Later on, detailed COCOMO was introduced to incorporate all characteristics of

intermediate COCOMO on each step of software development process (Analysis, Design,

coding and testing). The 17 attributes were used at each stage of development cycle to

estimate software development effort (Boehm, 2000; Kumari & Pushker, 2013; Borade &

Khalker, 2013).

In addition, COCOMO-II was introduced in 1997 as an extension of intermediate

COCOMO. COCOMO II used Thousands lines of code (KLOC) or Function point to

measure software size. Furthermore, Effort Adjustment Factors (EAF) were increased by 5

to 22 attributes (Boehm, 2000; Kumari & Pushker, 2013). The Usage of COCOMO II was

very wide and its results were more accurate compared to previous versions of COCOMO.

Tansey & Stoulia (2007) attempted to use COCOMO II to estimate the cost of developing

and reusing SOA services. They concluded that COCOMO II has a number of coefficients

that capture some of SOA attributes. However, COCOMO II is inadequate when estimating

effort required when reusing a service and could not capture all SOA attributes such as

service type factor. They proposed that COCOMO II should be extended to accommodate

new characteristics of SOA.

All COCOMO versions captured a wide range of parameter when estimating the cost of a

project. So far COCOMO methods are the most popular methods and the most validated

method with clear results. The use of COCOMO requires clear and well defined

requirements (Basha & Dhavachelvan, 2010). However, SOA attributes are not included

among COCOMO complexity factors that determine software effort. Therefore, all

versions of COCOMO are inadequate in relation to estimating SOA effort.

36

2.4.1.7 Artificial Neural Network Effort Estimation Methods

Artificial Neural Network (ANN) effort estimation methods were proposed with an aim of

acquiring facts from previous software projects and use the facts to predict software

development effort more accurately (Rijwani & Jain, 2016; Bilgaiyan, Sagnika, Mishra,

Madhabunenda & Das, 2017). Neural networks are simulation of human biological nervous

system with mathematical functions for prediction and estimation (Park & Bark, 2008).

There are several types of neural networks used by researchers to estimate effort including

back propagation algorithm and feed forward network algorithm such as Radial basis

function neural network, Generic regression, wavelet neural network among others.

Neural networks use a function that works on identified software project attributes as input

to the function to give a predictive output. Neural network requires training of the method

using past software project data and use of trial and error to attain a more accurate

estimation. After training ANN method, weights are modified appropriately to give an

expected output (Bawa & Chawla, 2012). Based on trained project data, neural network

method use a function to compute on the project attributes as input then predict

development effort more accurately (Rijwani & Jain, 2016).

Neural network methods are preferred when there is enough previous project data to train

the ANN method. Secondly, they are able to use training datasets to give more accurate

prediction. In addition, ANN methods are able to model complex relationship between

project effort attributes and effort (Bawa & Chawla, 2012). However, according to this

research knowledge there is no enough data on exiting SOA projects to use as training data

to ANN.

37

2.4.1.8 Fuzzy Logic Effort Estimation Methods

Various research on Software development effort estimation have incorporated fuzzy logic

in their estimation methods to yield more accurate results as compared to traditional

algorithmic methods (Ziauuddin et al, 2013; Ahlawat & Chawla, 2015; Thamarai &

Murugavalli, 2015; Patra & Rajnish, 2018; Kaur, Narula, Wason & Jain, 2018). They

proposed fuzzy effort estimation model based on existing arithmetic methods such as

COCOMO II. Their main objective was to develop estimation methods that are more

representative of human thinking and perception with regard to effort estimation.

Fuzzy estimation methods take values assigned to traditional methods such as COCOMO

II effort multiplier factors then convert the values into linguistic values through

fuzzification membership functions including Triangular and Trapezoidal membership

functions (Thamarai & Murugavalli, 2015; Patra & Rajnish, 2018; Kaur, Narula, Wason &

Jain, 2018). Fuzzy sets derived from fuzzification represents membership functions which

correlates fuzzy sets to degree of membership in the interval [0,1].

Most research studies on fuzzy logic effort estimation employed Mamdani Inference

Engine to apply IF..THEN rules on crisp values entered into the system to give a fuzzy

output in relation to the input (Ziauuddin et al, 2013; Ahlawat & Chawla, 2015; Thamarai

& Murugavalli, 2015). The summed output were then defuzzified by Center of gravity

method to give crisp data as the final output. They used MATLAB to implement their

proposed fuzzy effort estimation methods. Through experiments, they proved that fuzzy

logic effort estimation methods yielded more accurate results when compared to traditional

methods such as COCOMO II. However, according to this study’s knowledge no research

to date has proposed fuzzy logic effort estimation method for SOA applications.

38

2.4.2 Existing SOA Cost Estimation Methods

Attempts to estimate SOA effort and cost have also been discussed in various studies

although there has been no evidence of validation or calibration of frameworks published

in recent literature. Existing SOA frameworks include: Estimating the cost of development

customization to packaged applications using SMART-AUS scope, cost and effort

estimation framework for SOA (Obrien, 2009), SOA Cost Estimation for Customization to

Packaged application (Akkiraju & Geel, 2010), Effort Estimation for Web Service

composition (Li & Liam, 2010), Phased effort estimation of legacy systems migration to

SOA (Farrag & Moaward, 2014), Software Cost Estimation Framework for SOA Systems

using Divide-and-Conquer (Li & Keung, 2010), Service Point Estimation Model for SOA

Based Projects (Gupta,2013), Requirements Based Model for SOA Systems Effort

Estimation (Verlaine, Jureta & Faulkner, 2014) and Estimating Development Size and

Effort of Business Process SOA Applications (Mishra & Kumar, 2014).

2.4.2.1 SMAT-AUS Scope, Cost and Effort Estimation Framework for SOA

SMAT-AUS framework recognized types of SOA projects as key inputs when determining

scope, cost and effort of Service oriented Architecture (SOA) projects (O’Brien, 2009).

The framework identified different SOA project types including service mining, service

development, application development, service integration, SOA infrastructure, SOA

governance and SOA architecture analysis (Li & Keung, 2010).

For each of the project type, the study proposed a template that will capture details about

existing applications (legacy systems) to migrate to SOA, existing services to be mined and

services to be developed. The study also recommended identification of cost factors that

39

are specific to a SOA project type and factors that are common across more than one

project type (O’Brien, 2009).

The study identified Technical and social factors that influence SOA development effort.

Technical factors identified in the framework include hardware and software issues that

impact SOA development effort. On the other hand, social factors presented in the

framework were factors that deal with people including communication among people,

developers’ skills, organization’s structure and development teams. SMAT-AUS

framework was validated based on a case study involving one SOA project. However, the

paper only provided a framework and proposals with no detail or metrics to measure

identified factors. Furthermore, the paper excluded service size as one of the cost factors in

the proposed framework.

2

2.4.2.2 SOA Cost Estimation for Customization to Packaged Applications

Akkiraju & Geel (2010) introduced a model to estimate effort involved in developing SOA

systems by taking into account SOA advanced features such as business object

management, load balancing, web server management and web page management. This

model estimates effort and cost using business process model by counting business objects.

Inputs to the model include number of process steps, number of user roles, packaged

application landscape, legacy application landscape and size of message object.

Akkiraju & Geel (2010) applied Service Oriented Modeling Architecture (SOMA) to

conduct process decomposition to arrive at granular process steps. With the use of SOMA,

they were able to identify business objects. Based on Artifact-centric approach, inputs and

outputs flowing in and out of the process steps were identified to capture all business

40

objects whose state changes are significant to the process (Kumaran, Liu & Wu, 2008).

This approach works well when process model artifacts are revealed by BPMN (Business

Processing Modeling notations). In cases where business processes have not been

documented using BPMN notations, linguistic analysis approach is used to parse the

business processes stated in English sentences. Linguistic text analysis approach use noun

identification, tokenization and verb identification mechanisms to identify business objects.

Other inputs to the model included service interface count and user interface count. Service

interface counts were defined as interfaces that are exposed by the application whose

complexity was taken into consideration. On the other hand, user interface was defined as

count of user roles which represents a web page with features for creating, reading,

updating and deleting operations (Akkiraju & Geel , 2010). All these inputs were entered

into an effort estimation engine that is based on work breakdown structure (WBS). The

time required for each activity was captured then summed up to obtain overall person-

month. The model was validated using a laboratory experimentation that was based on

three projects.

One advantage of estimating by considering business objects as the key input to the model

is the ability to estimate effort at an early stage of software development. However, at an

early stage, key service attributes such as structural attributes, message movement and

dependency attributes cannot be captured. Furthermore, key factors that influence SOA

development effort such as service type, personnel factors, requirement factors and product

factors were not used in the method.

41

2.4.2.3 Effort Estimation for Web Service Composition

Li & Liam (2010) proposed an effort classification matrix for web service composition

with regard to context and technology aspects of service composition. The method defined

qualitative effort estimation hypotheses to identify effort factors that influence web service

composition. They identified two classifications of effort factors as context and

Technology dimensions. Context dimension included Pattern, Semiotics, Mechanism,

Design time and Run-time as shown in Table 2.6. On the other hand, Technology

dimension included Workflow based, Model Driven and AI planning.

Table 2.6 Context Effort Factors

Context factor Type

Pattern Orchestration and Choreography

Semiotics Service Discovery and Matchmaking

Mechanism SOAP based and RESTful

Design-time Manual, Semi-Automatic and Automatic

Run-time Dynamic and Static Composition

(Li & Liam, 2010)

They applied a set of service composition effort estimation hypotheses to generate a

checklist to qualitatively define composition effort factors. Special symbols and rules were

used to assign weights to each effort factors (Li & Liam, 2010). For example, they used

E(F-H) to represent effort influenced by factor F when using hypothesis H. A weight/Score

of S was used to set E(F-H) to flag effort according to different factors scores. For instance,

they compared orchestration and choreography as shown in Table 2.7.

42

Table 2.7: Comparison between orchestration and choreography

Hypothesis Comparison Score

H3 EFor-H3<FFch-H3 S(EFor-H3) = 1,

S(EFch-H3) = 2

H5 EFor-H3<FFch-H3 S(EFor-H5) = 1,

S(EFch-H5) = 2

Total EFor<FFch S(EFor) = 1,

S(EFch) = 2

By associating effort factors weights and hypotheses, they were able to classify all effort

factors and develop a matrix that compares different factors in relation to a set of

hypotheses. They eventually constructed an effort estimation checklist table that can be

used by developers to apply expert judgment to qualitatively judge and compare effort

factors (Li & Liam, 2010). However, they focused on qualitative analysis with no emphasis

on empirical analysis. The research is based on service composition disregarding other

aspects of web service development phases.

2.4.2.4 Software Cost Estimation Framework for SOA using Divide-and-conquer

A framework for costing SOA using work breakdown structure provided an approach that

follows the work breakdown structure principle by decomposing SOA into sub-problems

(services) until a service cannot be sub-divided further. Effort of each service is estimated

then recomposed to form the overall effort and cost (Li & Keung, 2010). The study

classified services into available service (service discovery), migrated service (service

migration), new service (service development) and combined service (integrated).

43

The study proposed an algorithm based on divide and concur technique to separate a SOA

project into the four types of services. They proposed different sets of metrics for each

service type and the total cost is calculated through the service integration metrics (Li &

Keung, 2010). A case study based on one SOA project was used to show the framework

applicability. This study revealed a framework for classifying SOA by using an algorithm

to sub-divide a SOA system into distinct and smaller services. However, the study focus on

a framework to decompose SOA project with no regard to SOA key attributes contributing

to SOA development effort such as SOA size and other key attributes.

2.4.2.5 Service Point Estimation Model for SOA Based Projects

A technique to calculate size of SOA projects and estimate SOA development effort was

proposed (Gupta, 2013). The model takes service operation as the unit of measurement

whose complexity forms the basis of computing service size. Therefore size and effort are

computed at service level rather than project level. The Model considered 3 dimensions to

take into account when computing SOA size and effort. The three dimensions are

Functional Complexity, Quality of service (QoS) and service development environment.

Functional complexity includes invocation data, business logic and downstream

integration. On the other hand, Quality of Service are non-functional requirements for

services which are classified into operational objectives and implementation objectives.

Operational objectives include response time, data load, concurrency and security while

implementation objectives include interface type, reusability and testability. Whereas

functional complexity and QoS applies at a service level, service development environment

attributes applies at project level. Service development environment attributes include

44

knowledge of business domain, knowledge of technology, team dynamics, service

governance, requirements stability and tool support (Gupta, 2013).

The model involves 4 steps which include complexity identification, project sizing, effort

estimation and cost estimation. Complexity identification entails identifying attributes,

allocating weights to identified attributes based on their complexity and summing up the

weights to give the overall score. For instance, Functional Complexity Factor (FCF)

attribute classify operations type as simple, average and complex operations assigned

weights of 3, 5 and 7 respectively(Gupta, 2013). Other factors computed based on weights

are Integration Complexity Factor (ICF), Technical Complexity Factors (TCF) or QoS

factors and Environment Complexity Factors (ECF). Complexity factors were used to

compute SOA project size by multiplying summed complexity factors weights with set

constants.

Where, TCF = 1.0 + (0.01 x TCS)

 ECF = 0.7 + (0.01 x ECS)

TCS is Technical Complexity score and ECS is Environment Complexity score.

Therefore, Size of a service operation (SOS) = USP x TCF

USP is Unadjusted Service Point and therefore, Size of Service Interface (SIS) is,

Development effort depends on productivity of a team. Productivity level varies from one

team to another and from one programming language to another. Development effort is

productivity multiplied with SOA size (Gupta, 2013).

Effort (E) = P x S, Where P is productivity and S is SOA size.

45

The model provided a clear and detailed analysis of SOA attributes focusing on service

internal structure complexity, technical complexity and environment complexity. It

provided an insight into SOA attributes, weights and computation. However, so far there is

no literature revealing theoretical validation and empirical validation of the model to

determine the model’s accuracy in relation to other existing models (Gupta, 2013).

2.4.2.6 Requirements Based Model for SOA Systems Effort Estimation

Software complexity factors were considered as key aspects that determine SOA

application development effort (Verlaine, Jureta & Faulkner, 2014). They defined service

structural complexity as attributes that involves software structural design attributes that

influence service development effort. Structural complexity included Input/ Output

complexity (IOC), Functional Requirements Complexity (FRC), Data Store Complexity

(DSC), Non- functional Requirements Complexity (NFRC), Design Constraint Imposed

Complexity (DCI), Interface Complexity (IFC), System Feature Complexity (SFC) and

Software Deployment Location Complexity (SDLC). Service structural complexity factors

were allocated weights based on their impact on service development effort to compute

Requirement-Based Complexity (Verlaine, Jureta & Faulkner, 2014).

Requirement-Based Complexity (RBC) = (PC + DCI + SFC) x SDLC.

Where PC = IOC x RC values, IOC includes the sum of IC, OC and DSC while RC is the

sum of FRC and NFRC.

The model was validated theoretically based on 5 complexity properties of software

complexity measurement process (Kitchenham et al, 1995). Technical Complexity Factors

46

(TCF) were used to adjust the model’s computation. TCF are factors that influence

development effort allocated weights of 0 (non-influence) to 5 (strong influence).

TFC Value = 0.65 + 0.001 x DI Where DI is the degree of influence.

Adjusted Requirement –Based Complexity = RBC X TFC Value

Software development effort is related to productivity of development staff. Productivity of

staff is the ratio between the number of lines of codes and required time. Productivity

varies from one programming language to another. For example the value for J2EE

productivity of staff is 46 as proved by empirical research on 2190 software projects.

Final effort = (Adjusted RBC x L)/ P

Where L is the number of codes of lines per function point and P is productivity of staff.

The Model revealed relevant factors that contribute to SOA development effort, the metrics

were validated theoretically and a case example was used to implement the metrics. Results

from the theoretical validation and case study were encouraging. They considered

structural complexity metrics when computing SOA size and effort but they didn’t include

service dependency and movement of data as key size attributes.

2.4.2.7 Estimating Size and Effort of Business Process SOA Applications

Business Process Modeling Notations (BPMN) constructs were used as the basis for

computing development effort of business process SOA applications (Mishra & Kumar,

2014). They used modeling tools such as IBM webSphere and BPMN2 to construct BPMN

model which eventually generated BPEL codes where size of business process is estimated

using metrics. BPMN model constructs that were used to estimate SOA size include

47

number of processes, number of associated tasks, number of patnerLink elements, number

of input and output variables, number of operations, number of Xpath queries, number of

events, number of associated links and number of mapped BPEL properties.

Based on BPMN artifacts, size of a process, total process size, total number of tasks,

mapped BPEL properties and task size are computed to give SOA size. After estimating

size, COCOMO model was used to estimate development effort based on medium-sized

project COCOMO semi-detached type of project constants. MMRE was used to validate

the model’s accuracy with regard to provided datasets from existing projects. The model

approach towards SOA size measurement is different from other approaches. The model

only focuses on BPMN and BPEL models artifacts and other key SOA features such as

service type that were not captured in the model.

2.4.2.8 Phased Approach for Effort Estimation for SOA projects

Farrag & Moawad (2014) proposed a model to estimate effort to migrate from legacy

systems to SOA systems. They identified and analyzed key factors contributing to effort

and cost of developing SOA systems (Farrag & Moawad, 2014). The identified factors

were distributed among SOA development phases including Requirement, Design,

Development, Testing and integration. The study further classified services into four

categories namely: Available service, migrated service, new service and Composite

service. They focused on migrated service in which they identified three strategies

employed when migrating from legacy systems to SOA. The strategies are wrapping, re-

engineering and replacement.

48

Wrapping is a strategy where interface is built to wrap existing legacy systems. It is

preferred in situations where legacy systems codes are too expensive, limited time to

rewrite and are of high business value that it becomes a risk to develop a new solution from

scratch. On the other hand, re-engineering is a strategy of adjusting the legacy system by

adding new functionalities. Meanwhile, replacement is a strategy of removing the old

applications and replacing with a new SOA system (Farrag & Moawad, 2014).

Using the identified factors spread over SOA development phases, the study analyzed key

factors against the three migration strategies which they applied weights ranging from

1(low) to 3(high) depending on effort required for a factor in relation to a migration

strategy. For example, Obsolete legacy system technology is one of the factor in design

phase weighted 3 when applying wrapping, 2 when applying re-engineering and 1 when

replacing. This is done for all factors then a percentage effort per development phase is

calculated (Farrag & Moawad, 2014). The study emphasis is on the cost of migrating from

legacy systems to SOA applications. Furthermore, the study only focused on other key

factors disregarding the size of services which is critical when estimating SOA effort.

In a different study, Farrag & Moawad (2016) proposed an effort estimation method that

considers four types of web service namely new service, migrated service, available and

composed service. For available service, effort is based on integration phase and testing

phase effort. Secondly, they identified factors that influence migrated and new service

distributed among all phases of SOA development cycle. Identified effort factors for

migrated services were allocated weights of 1(low influence) to 3(high influence) while

new service was allocated weights ranging from 0 (no influence) to 5 (very high influence).

The total weights for all factors were summed up to give Total Degree of Influence (TDI).

49

Value Adjusted Factor (VAF) = (TDI x 0.01) + 0.05

Adjusted FP count = Unadjusted FP count x VAF

To convert function point count to effort in man-hour, a productivity factor of 8 per

function point was used.

Estimated total effort = Adjusted FP count * 8

Two SOA projects were used to test the accuracy of their proposed SOA effort estimation

method in an experiment which returned Relative errors of 3.66% to 19.08% (Farrag &

Moawad, 2016). The proposed effort estimation method returned encouraging results with

regard to SOA. However, they used only 2 projects from the same organization in the

experiment. Furthermore, the aspect of SOA size factor was not captured.

2.5 Existing Automated Tools to Interpret design artifacts

Various research studies have proposed automated tools to read and interpret design

artifacts such as UML and Computer Aided Design (CAD) (Karasneh & Chaudron, 2013;

Intwala, Kharade, Chaugule & Magikar, 2016). Karasneh & Chaudron (2013) presented a

tool to read UML class diagram to an XML file. The tool provided a platform to upload

UML images, use geometrical technique to detect rectangles with attribute names, detect

existence of relationship among class rectangles and extract attribute names using

Microsoft Office Document Imaging (MODI) Optical Character Reader (OCR). The tool

accuracy was validated based on various UML diagrams including large diagrams

(Karasneh & Chaudron, 2013). However, the tool is challenged when dealing with various

styles of representing UML diagram in existence currently. In addition, the tool was not

able to establish the type of relationship among class interface rectangles.

50

Inwala et al. (2016) introduced a geometrical tool to detect arrow symbols contained in

CAD image. The tool allows upload of CAD images which are converted to grayscale, then

to binary using OTSU thresholding. The tool was required to detect two types of arrows

based on the shape of the arrow head. Based on morphological technique, the tool was able

to detect solid arrows using Black Top Hat morphology and detect line based arrows using

White Top Hat morphology. The tool made use of contour detection and area checks to

enhance arrow detection. The tool was tested by subjecting it with different types of CAD

diagrams and it returned encouraging results. However, when different types of arrows

with varied line thickness, area and contour features are used, the tool is challenged due not

implementing the tool with machine learning techniques.

In the past few years, machine learning and deep learning techniques have become critical

and effective techniques in detecting patterns in images. These techniques include

Artificial Neural Network (ANN), Decision tree, Naïve Bayes (Dong-Chul, 2016), Support

Vector machine (SVM) (Thai, Hai & Thuy, 2012) and Convolutional Neural Network

(CNN) (Sultana, Sufian & Dutta, 2018). These techniques are more efficient and are able

to capture varied shapes, thickness and style of shapes and pattern if training was done

exhaustively.

2.6 Theoretical Framework

Theoretical framework presents the underlying theories that support a research study to

validate the existence of a research problem (Swanson & Chermack, 2013). Over the years,

various studies have looked into the study of software size metrics and software

development effort estimation. In this study, key independent variables are SOA size,

51

service type and Effort Multiplier Factors (EMF) while the dependent variable is SOA

development effort.

2.6.1 Software Effort Estimation Factors

Various researchers have identified and classified effort factors differently based on the

type of software architecture and period when a factor was recognized as a key indicator

contributing to software development effort.

2.6.1.1 Size Factor

One common factor identified by various studies is software size attribute. The first

method to introduce software size factor was Function Point Analysis (Albrecht, 1983).

Later on COCOMO versions also embraced the use of software size factor as the key input

when computing software development effort. Basic COCOMO used Lines of codes

(LOC) to measure software size. Apart from Lines of codes, other versions of COCOMO

were designed to allow the use of Function Point and Object Point metrics to compute size

for effort estimation. Despite the fact that size is a critical factor when estimation effort,

various SOA based effort estimation methods miss to capture all size attributes but capture

one or two size attributes. Service interface count which takes into account service internal

structure was captured by various studies (Obrien, 2009; Li & Keung, 2010; Gupta, 2013;

Farrag & Moaward, 2014) while service dependency attribute of size was captured by

(Obrien, 2009; Li & Liam, 2010; Farrag & Moaward, 2014). Message count was first

considered by COSMIC (2015) and later on various research studies used message count

attribute to compute SOA size (Li & Liam,2010; Li & Keung, 2010; Gupta, 2013).

However, according to this study’s knowledge, no research study considered the three key

SOA size metrics as a whole to compute size.

52

2.6.1.2 Technical Factors

Most researchers have identified technical factors also known as environmental factor as a

contributor to software development size. Technical factor encompasses hardware and

software issues that may affect development effort. Technical factors were identified in all

other research on software effort estimation with variance in the number of technical sub-

attributes and type of sub-attributes. Albrecht (1983) identified 10 technical factors related

to hardware and software configuration issues. On the other hand, Use Case Point (UCP),

Karner (1993) identified 14 technical attributes that contribute to effort. Furthermore,

Boehm (2000) classified technical attributes into two namely product attributes and

computer attributes with 7 factors. With advancement of technology, hardware technical

factors influence on effort has reduced tremendously.

2.6.1.3 Personnel Factors

Another common factor mentioned in most research on effort estimation is personnel

factors also referred to as human factors. Boehm (2000) identified 5 personnel attributes

which include analyst capability, application experience, programmer capability, virtual

machine experience and programming language experience. Use case point (UCP)

captured 8 personnel factors which were grouped under environmental factors. Most recent

research studies on effort estimation have identified personnel factors as critical

determinant of development effort. Common personnel attributes in literature include

programming experience, application experience, system analyst experience and team

cohesion (Boehm, 2000; Karner, 1993; Gupta, 2013; Kuan, 2017).

53

2.6.1.4 Requirements Factors

Software Effort estimation Researchers have also identified requirement issues as factors

that determine software development effort. Gupta (2013) identified quality of service

factors where he featured factors related to requirement factors such as security objectives.

Requirements factors captured in recent literature include business agility, business value

and integration with other businesses (Farrag, Moawad & Imam, 2016). Requirement

factor was also identified as one of the attributes under environment factors in Use Case

Points (Karner, 1993). However, requirements factors including security factors and

business value factors were not captured.

2.6.1.5 Service Type Factors

With the introduction of SOA effort estimation methods, service type factors became key

attributes that determines SOA development effort. Service type is classified into new

service, migrated service and available service (Li & Keung, 2010; Farrag, Moawad &

Imam, 2016; O’Brien, 2009). This is informed by the fact that it will take more effort to

develop a service from scratch than to discover and use available effort. Service type can

also be classified as SOAP and REST based depending on the technology used to develop

a service (Belqasmi & Glitho, 2012). Relatively, REST service takes less effort to develop

as compared to SOAP service when all factors are held constant. However, based on this

study literature, no research study so far has captured both construction type and service

development architecture. Construction type is categorized as new, migrated and available

service while development architecture is classified as REST and SOAP.

54

2.6.2 COCOMO 2.0 Model

The theory that best explains the relationship among variables in the area of software effort

estimation is the COCOMO 2.0 model (Boehm et al., 1995). COCOMO 2.0 provided a

template that considered various types of software development paradigm rather than a

specific type of software development method. The COCOMO 2.0 model consider

software size, Software reuse and re-engineering factor and effort multiplier factors to

estimate software development effort.

COCOMO 2.0 allows use object points or function point or source lines of codes to

measure software size (Boehm et al., 1995). After computing size, the model includes other

parameters constants to take care of economy of scale and effort coefficient. The size

factor discussed in COCOMO provided the foundation towards the definition of size

metrics proposed in this study (Boehm et al., 1995). However, COCOMO model is not

focused on SOA and thus it does not capture SOA size attributes such as operations count,

dependency count and data movement as defined in this study.

Another component that is included in the COCOMO 2.0 model is software reuse and

reengineering to compute the amount of percentage of effort required when reusing

software (Boehm et al., 1995). The aspect of software reuse is vital in recent software

development paradigms including SOA. It is in this backdrop that this study and other

SOA effort estimation methods included service type factor which captures new service,

migrated service and available service (O’Brien, 2009; Li & Keung, 2010; Farrag, Moawad

& Imam, 2016). However, COCOMO 2.0 defined software reuse and reengineering factor

as an input to software size but in this research study it is an input to software development

effort.

55

Lastly, COCOMO 2.0 revealed a list of factors known as effort multiplier cost drivers that

have significant impact on software development effort. COCOMO 2.0 effort cost drivers

include product factors, platform factors, personnel factors and project factors. However,

with rapid evolution in software and hardware technologies, influence of these factors to

effort has continued to vary with time. For instance, storage space is currently not a

significant factor due to improvement in storage technology. Therefore, these factors vary

depending on the software paradigm or time when the model was proposed. In this study,

these types of factors are classified as product factors, service development environment,

requirement factors and personnel factors. The COCOMO 2.0 model revealing the

relationship among variables is as shown in Figure 2.3.

 Figure 2.3 COCOMO 2.0 model variables relationship

Product factors

Platform factors

Personnel Factors Project Factors

Software

development

effort

Software

Size

Software

Reuse

56

Figure 2.3 shows an overview of COCOMO 2.0 variables with software size being the

main independent variable and software development effort is the dependent variable while

software reuse and effort multiplier factors including product, platform, personnel and

project factors are moderating variables. This model provided the foundation to

development of most software effort estimation methods including the method proposed in

this study.

2.7 Conceptual framework

The focus of this study was to develop a SOA effort estimation method based on size

metrics and other factors such as service type and SOA effort factors. This study defined

SOA size attributes including weighted operations count, service dependency count and

weighted message count attributes as independent variables to SOA size which is

considered as the dependent variable. On the other hand, SOA size is independent variable

in relation to SOA development effort as the dependent variable. Weighted operations

count attribute provided an analysis of SOA internal structure to determine SOA size,

Service dependency count focuses on relationship and dependency among service while

Message count reveals messages exchange between services.

This study, defined SOA size and Service Type Factor (STF) as independent variables to

SOA development effort while Effort Multiplier Factors (EMF) as moderating variables.

EMF defined in this study includes 12 factors classified as Product factors, Requirement

factors, Environment factors and Personnel factors. A conceptual framework showing

relationship among variables in the study is as shown in Figure 2.4.

57

Figure 2.4: Conceptual framework showing SOA effort estimation variables

2.8 Identified gaps

It is clear from literature that existing effort estimation methods are inadequate when

estimating SOA as compared to other applications due to SOA complexity. A number of

SOA cost estimation frameworks were introduced due to demand for a more accurate SOA

effort estimation method. For instance, estimating the cost of development customization

to packaged applications using SOA framework (Akkiraju & Geel, 2010) captured SOA

cost factors exhaustively by taking into consideration the entire project life cycle but

classification of service type was not done.

Independent Variable Dependent Variable

Number of

operations

Message

Count

Dependency

Count

Product factors

Database Complexity

Database size

Integration complexity

Requirements factors

Requirement Elicitation

Business risk/value

Security requirements

Environment factors

Tool support

Hardware/software

capabilities

Personnel factors

Developers’ experience

Application experience

Team cohesion

SOA

development

effort

SOA

Size

Service

type

Moderating Variable

Moderating Variable

58

Phased effort estimation of legacy systems migration to SOA framework (Farrag &

Moaward, 2014) and SMART-AUS scope, cost and effort estimation framework for SOA

(Obrien, 2009) proposed a wide scope of effort estimation factors based on SOA projects.

The methods covered the whole project life cycle. However, they disregarded service size

which is a key factor when estimating development effort..

Functional Size measurement method for SOA (COSMIC, 2010) is based on size

estimation to estimate SOA development effort. COSMIC provides a detailed analysis of

message count as a way of measuring SOA size. COSMIC was adopted by ISO as SOA

measurement method (ISO 19761). However, they focused on data movement as an aspect

of software size disregarding size indicators such as service internal structure complexity.

BPMN and BPEL models artifacts provided means of estimating effort at an early phase of

software development (Mishra & Kumar, 2014; Akkiraju & Geel, 2014). However, BPMN

and BPEL artifacts cannot reveal aspect of SOA internal structure, dependency and

message count which are critical for computing SOA size. Li & Liam (2010) proposed a

method that analyzes effort factors qualitatively but with no empirical analysis and

computation which implementation of the method into a tool is rendered practically

difficult. This prompted researchers to propose methods that consider structural complexity

as a key input to service size and effort (Vaerlaine, Jureta & Faukner, 2014; Gupta, 2013).

However, service structural complexity attributes were not based on any artifacts such as

UML. Furthermore, service dependency and data movement were not captured.

59

2.9 Chapter Summary

Based on literature review, different situations and development environment determine

the appropriate software development effort method to use. There are situations where

accuracy in software development effort estimation is critical then in this case a more

accurate method should be employed, in other instance, winning a contract is important

therefore, price-to-win becomes the most appropriate method to estimate software

development effort. (Borade & Khalker, 2013).

Over the years software developers have had the interest of estimating accurately the size,

effort and cost of developing SOA systems. However, traditional size metrics and effort

estimation methods are inadequate when estimating effort for SOA due to their inability to

capture SOA features in their estimation. Estimating SOA systems development effort is

difficult because they comprise of integration among services within and outside the

organization regardless of heterogeneous technology. This prompted introduction of SOA

effort estimation methods which still they do not make full use of size metrics to estimate

SOA software development effort.

60

CHAPTER THREE

RESEARCH METHODOLOGY

2

3.1 Introduction

The purpose of this chapter was to describe in detail the research philosophy, research

design, population, data collection, sampling, analysis, reliability and validation techniques

used in this study.

3.2 Research Philosophy

Research philosophy is about the development of knowledge, the nature of knowledge and

important assumptions on the ways the researcher view the world (Saunders, Lewis &

Thornhill, 2012). Research philosophy provided a guide on the way data was gathered,

analyzed and used to generate knowledge. One of a research philosophy view is

Epistemology which describes value systems for different types of research.

Epistemology constitutes “what the researcher think what is important in the area of

study”. It is what the researcher value in an area of study. Important aspects of

epistemology are pragmatism (Both observable and subjective phenomena), positivism

(deals with observable phenomena), realism (focus on explaining within a context) and

interpretivism (subjective meaning and social phenomena) (Saunders et al., 2012).

Positivism refers to natural science that emphasize on observable and quantifiable

phenomena (Saunders, Lewis & Thornhill, 2012). In this philosophy, quantitative

phenomena are of great value within a study. Positivism believes that reality is stable and

can be observed from an objective view point to describe a phenomenon. It involves

61

hypothesis to be tested to confirm or refute a theory. This research study adopted

positivism philosophy with a view of working with quantitative and measurable

phenomena. This research proposed SOA size metrics and effort estimation methods which

are as a result of related attributes/variables which were validated empirically.

There are two types of research approach namely inductive research approach and

deductive research approach. Inductive approach starts from a specific view to a general

view of a phenomenon while deductive moves from general to specific view of a

phenomenon (Saunders, Lewis & Thornhill, 2012). This research study adopted deductive

research approach. The study started from a wide variety of factors contributing to SOA

development effort, this research study narrowed down to specific factors for SOA

software development effort.

3.3 Research Design

Research design is a plan on what needs to be done to achieve the research objectives. This

research study used both exploratory and descriptive research. The objective of exploratory

research in this study was to identify key variables that influence SOA effort while

descriptive research was used to gather experimental results and expert opinion to

accurately describe effort estimation factors (Kothari, 2004). Briand’s properties

theoretical framework was used to validate each size metrics theoretically.

Research investigation was based on a controlled laboratory experiment to validate the

proposed SOA size metrics and effort estimation method and to test the accuracy of deep

learning techniques used in the automated tool. Experiment was appropriate for this

research to provide manipulation and high control of variables under study (Kothari, 2004).

62

Another advantage of using experiment is the ability to perform statistical analysis using

hypothesis testing methods and opportunities for replications (Wohlin, Roneson, Host,

Ohlsson, Regnell & Wesslenal, 2000). Experiment was used to validate the proposed SOA

size metrics, effort estimation method and automated tool techniques empirically. Research

design methods and analysis used to confirm the achievements of each objective are as

shown in Table 3.1.

Table 3.1: Research Method per objective

 Objective Research Method

i. To define a suite of size metrics that

will be used to measure the identified

SOA effort estimation indicators.

Briand’s properties theoretical framework

was used to validate Size metrics

theoretically.

Experimentation and survey were used to

validate the metrics empirically.

ii. To develop an effort estimation method

for SOA systems based on the size

metrics.

Experimentation and survey were used to

validate the SOA effort estimation method.

iii. To implement the size metrics and

effort estimation method into analysis

tool for SOA systems

Experiment was used to validate the

accuracy of deep learning techniques. Expert

survey was conducted to determine the

validity of the implemented tool

Survey enables more variables to be examined as compared to a laboratory experiment

(Kothari, 2004). In this study, a survey was carried out to replicate and validate the

experiment done by students and to validate more variables. The survey objective was to

collect experts’ opinion on the proposed SOA size metrics, effort estimation method and

63

the implementation automated tool. Results from the experiment and survey were analyzed

to reveal the relationship among variables used in the study and to test the accuracy of the

proposed metrics, effort estimation method and automated tool.

3.4 Target population

The target population included all third year undergraduate students in Meru University of

Science and Technology taking computing related programs including BSc. Computer

Science (76), BSc. Information Technology (61), BSc. Computer Technology (45), BSc.

Computer Security and Forensics and Bachelor (34) and Bachelor of Business Information

Technology (58). Third year computing students were selected due to their knowledge in

Programming and Systems analysis and design. On the other hand, Fourth year students

were not selected because their focus is on completing their course and they also undertake

an academic project in their final year.

Bachelor of Science in Computer Science was selected based on the fact that a course

named “CCS 3353 Research Methodology and Group Project” was done at this level which

provided an environment to engage them in the experiment as compared to other third year

computing students in the University. It was also convenient to meet a class during the

allocated time in the timetable rather than assemble students from various groups. Selected

students participated in developing web services, tested the proposed size metrics, effort

estimation method and implemented tool for the metrics and method. University

environment was selected due to convenience, availability and accessibility of resources

and control of subjects and participants in the experiment (Kothari, 2004).

64

To validate existing deep learning techniques used to build the proposed automated tool,

this study identified dependency arrows and possible class attribute names to train and test

deep learning techniques. Efficient and Accurate Scene Text (EAST) detector (Zhou,

2015), Tesseract OCR with Long Short-Term Memory (LSTM) (Deepa & Lalwani, 2019)

and Multi-class SVM required text depicting class attributes names to test their accuracy

while ResNet50 CNN (He, Zhang, Ren & Sun, 2016) required arrows with varied arrow

heads representing type of relationship to validate ResNet50 CNN detection accuracy.

The second phase involved a survey with a view of capturing expert opinion on the

proposed size metrics and effort estimation method. A population of 40 programmers was

identified as potential participants in the study out of which the sample was selected.

Programmers were selected based on their previous web-service development work and

profile. The significance of carrying out this survey was to subject the proposed size

metrics and SOA effort estimation method parameters to industry experts and complement

the laboratory experiment.

3.5 Sampling and Sample size

A sample of 15 web service projects were used in the experiment. The 15 web services

developed by 15 groups of BSc. Computer Science students were subjected to the proposed

size-metrics to determine the metrics validity. The projects were also exposed to the

proposed estimation method to compare the estimated value with the actual estimation.

Non-probability purposive sampling was used to sample all BSc. Computer Science

students to participate in this study in the laboratory experiment in the university

environment. The study focused on PHP web services with SOAP and RESTful

communication protocols.

65

Datasets were prepared for the purpose of training and testing deep learning techniques

used in this study. EAST detector and Tesseract OCT (LSTM) did not require any training

while Multi-class SVM was trained using a dataset of 1200 operation names and ResNet50

CNN was trained with a datasets of 900 arrow head images for UML interface and 900

arrow head images for UML sequence diagram. Each technique was validated using 100

images of varying characteristics to determine the techniques accuracy. All datasets used in

this study were created by extracting from various sources due to non-existence of class

diagram dependency arrows and class attributes names datasets online in one repository.

On the other hand, 27 practicing programmers were selected to participate in the survey

based on their response on their experience determined by the number of years they have

worked with Web services and their knowledge in PHP-SOAP and PHP REST web

services. Furthermore, 20 practicing programmers were selected randomly through simple

probability sampling from the group of 27 programmers selected. The selected developers

were requested via a questionnaire to give their opinions on the proposed SOA size metrics

and effort estimation method.

3.6 Data Collection Instruments

The study used primary data which were collected via questionnaire. The questionnaire

contained structured and closed questions. The questionnaire was piloted with a group of 5

programmers to validate the feasibility of the survey questionnaires. Questionnaires were

delivered physically and uploaded online to the respondents to reach a wider scope. Clear

instructions were provided to respondents on the need to answer questions, the purpose of

the questionnaire and to assure them on confidentiality. Collected data was checked for

discrepancies, inconsistencies and outliers for correction before analysis.

66

A questionnaire in Appendix 2 was provided to students to record data concerning SOA

project in the experimentation. Students were required to record data on web service

projects they developed and record results upon exposing developed web service projects

to the proposed metrics and method. On the other hand, questionnaire in appendix 1 was

distributed to software industry web service software developers to validate the experiment

results. Data collected from industry developers included opinion on relevance of

identified SOA size attribute, Effort estimation factors and to test the validity of the

proposed metrics, proposed estimation method and implementation tool.

3.7 Reliability and Validity of Data Collection Instruments

Research instruments were tested to confirm their validity and reliability.

3.7.1 Validity

The results are said to be valid if they represents the population adequately away from the

experiment setting (Wohlin et al, 2000). The research instrument is said to be valid if it

measured what it is supposed to measure. Validity threats included construct validity,

content validity, internal validity and external validity. A pilot survey involving 5

programmers in the university was done to test the content and the structure of the

instrument.

Content validity is the extent to which a measuring instrument provides adequate coverage

for the research study (Kothari, 2004). This study ensured that research instrument

questions cover all variables, and give answers to all research questions under study.

Thirdly, internal validity was enhanced by designing instruments to measure what the

study aims to measure. On the other hand, external threat in this study was as a result of

67

using students as subjects in the research experiment. External threat was reduced by

validating the experiment with a survey based on programmers in software engineering

industry.

3.7.2 Reliability

Reliability is the degree at which different rates give consistent estimates of the same

phenomenon (Wohlin et al, 2000). A measuring instrument is reliable if it provides

consistent results (Kothari, 2004). Reliability threat includes inconsistency results when

measuring SOA size and estimating effort for sampled SOA projects. The threats was

checked by comparing results of the proposed size metrics and proposed effort estimation

method with existing metrics and existing effort estimation method.

3.8 Data Collection Procedure

A pilot survey was carried out with questionnaires issued to 5 programmers to determine

the adequacy of the expert survey instrument. Feedback from the 5 programmers helped to

improve the survey instrument validity and reliability. Secondly, to identify 20

programmers to participate in the study, 50 simple questionnaires were issued to 50

programmers online asking them if they have ever worked with SOA applications. This

was meant to ensure that the research only deals with programmers who have experience

with SOA applications. Out of which 27 programmers responded positively with regard to

having participated in developing SOA application. A sample of 20 programmers was

selected randomly to participate in the study. This study used questionnaires to give

respondents adequate time to understand the metrics to enable them fill questionnaires

correctly. Questionnaires were hand delivered to the programmers because the study

required explaining to programmers on the metrics and effort estimation method. Annex

68

documents were attached to the questionnaire for further explanation. Students who

participated in the laboratory experiment were also guided on how to fill the questionnaire.

They were guided on how to participate in developing the applications to be used in the

experiment and how to record the experiment results. Outlier and inconsistency data

caused by erroneous recording or misunderstanding by students were discarded to ensure

data collected reflects the actual results.

3.9 Data Analysis

Data collected was analyzed using statistical techniques which include descriptive and

inferential statistics. Descriptive statistics was used to calculate mean, minimum and

maximum value, variance and Magnitude of Relative Error (MRE) while linear regression

analysis was used to test the correlation among variable.

The main descriptive analysis to be employed was Magnitude of relative error (MRE) and

Mean Magnitude of Relative Error (MMRE) to show the deviation in effort estimation

between the actual effort and the effort estimated by the proposed estimation method.

MRE = (Actual effort – Estimated Effort)/Actual effort

Other descriptive statistics included tabulation of data then finding the mean, standard

deviation and median time and effort used to complete the project under study. Descriptive

analysis was also applied to compute the accuracy of deep learning techniques in in the

implementation tool. Linear regression analysis was used to test if there is relationship

between SOA size and SOA project development effort and relationship between size

attributes and SOA size. Statistical analyses for each research objective are as shown in

Table 3.2.

69

Table 3.2: Statistical analyses for each research objective

Objective Statistical Analysis tools

i. To define a suite of size metrics that will be

used to measure the size attributes of SOA

software systems

Linear regression analysis Descriptive

statistics

ii. To develop an effort estimation method for

SOA systems based on the size metrics.

Magnitude of Relative Error (MRE).

 Mean Magnitude of Relative Error

(MMRE)

Linear regression analysis

iii. To implement a static analysis tool that

computes the size and estimate effort of SOA

software systems.

Descriptive statistics

3.10 Ethical Issues

Research ethics were observed when conducting the research to ensure consistency and

valid contribution to the industry. Data collected was secured for confidentiality and

participants in the laboratory experiment were informed on the confidentiality issues and

guided on the need to record the actual result. The research proposal was approved as per

letter from the Directorate of Postgraduate studies, Masinde Muliro University of Science

and Technology as attached in Appendix 3. An authorization letter by National

Commission of Science Technology and Innovation (NACOSTI) in Appendix 4 was

provided.

3.11 Chapter Summary

This chapter discussed research methodology techniques employed in this study to guide

on the methods and instruments used to collect and analyze data. The chapter described the

70

direction this research study took with regard research design, target population, sampling

technique, data collection, reliability and validity of research instrument and ethical issues.

71

CHAPTER FOUR

DESIGN OF SIZE METRICS FOR SOA

4.1 Introduction

This chapter provides a detailed analysis of identified SOA size attributes and their

respective metrics. Software metrics defined in this chapter are for measuring and

qualifying identified attributes relevant for computing SOA size. This chapter provides the

solution to the first specific objective in this study which was to define a suite of SOA size

metrics. Theoretical validation was used to test the metrics’ constructive validity.

4.2 SOA Size Attributes

Since the introduction of Object Oriented Programming to date, software applications have

been organized and developed in modular manner. Currently, analysis of software

attributes focuses on module internal structure, module interactions and relationships

among modular software. Recent software development paradigm such as SOA and

component based have also adopted a modular approach by considering internal structures,

interaction and relationship among services when analyzing software attributes. In fact,

some of Object Oriented Programming metrics are applicable to Service Oriented

architecture (Elhag & Mohamad, 2014). SOA size attributes are well captured when

analyzing interaction of components within a SOA application in both static design level

and dynamic run-time level (Marsyahariani, Daud & Kadir, 2014).

This study considered SOA internal structure, data movement, interaction and relationship

among services as key parameters for defining SOA size metrics. The level of abstraction

is based on UML static (design-time) design and run-time (dynamic) design. Static metrics

72

refers to artifacts of software that are taken from design phase level while dynamic metrics

are derived when designing the system run-time model (Marsyahariani, Daud & Kadir,

2014). SOA being an architectural style that enables development of services that are

modular and integrated can be represented at different levels of abstractions using UML

diagram and other extensions of UML such as SOAML (Amsden, 2010).

This study defines three metrics namely Weighted Operation Count (WOC), Service

Dependency Count (SDC) and Weighted Service Count (WSC) metric at static level

exposed through SOAML and UML class diagram. On the other hand, Weighted Message

Count (WMC) metrics is defined at run-time level exposed through UML sequence

diagram. Furthermore, SOA size attributes in this study are classified into two categories

that is service level metrics and system level metrics. WOC is a service level metric while

SDC, WMC and WSC metric are systems level metrics.

4.2.1 Weighted Operation Count (WOC)

Weighted Operation Count (WOC) metric evaluates the internal structure of an individual

service by counting the number of operations or methods contained in a service based on

their complexity. WOC takes into consideration the number of operations, operations’

complexity and operations’ parameters to determine the size of a service.

WOC is defined as a set of operations and a set of parameters contained in an operation.

Therefore,

S denotes a service, O is a set of operations and P is a set of parameters in an operation.

WOC is based on the hypotheses that the more the number of operations and complexity of

operations the greater the size of a service. Consequently, it takes more effort to construct a

73

service with more and complex operations as compared to a service with fewer and simple

operations. WOC metric takes into account the number of parameters in an operation as an

indicator of more processes to be done by the operation. The WOC metric counts the

number of operations weighted according to their complexity and the number of

parameters in an operation as shown in Equation 4.1.

 (4.1)

This research study adopted weights of 2 to simple operation, 3 to average operation and 4

to complex operation as shown in Table 4.1. The weights are based on the ratio of number

of lines contained in sampled simple, average and complex web services. In addition, a

weight of 1 is allocated to each parameter contained in an operation.

Table 4.1: Service Operation weight

Operation type Examples Weight

Simple (SO) Get/ Write operation, Arithmetic Calculations,

Simple decision making process

2

Average Operations based on simple algorithm e.g.

Searching, sorting.

3

Complex Operations based on intelligence techniques,

decision support algorithm.

4

WOC is a service level metric captured at static level design based on SOAML service

interface diagram which reveals operations and parameters graphically. A sample of

SOAML service interface diagram showing service operations and parameters is as shown

in Figure 4.1.

74

Figure 4.1: Service interface diagram

The proposed Weighted Operations Count (WOC) considers a service interface X in figure

4.1, with the sum of operations O1 . . . On . Service X contains two operations namely

+simpleOperation1() with 2 parameters and +averageOperation2() with one parameter.

WOC(X) = simpleOperation1() + averageOperation2() web service points

simpleOperation1() = O + P = 2 + 2 = 4 web service points

averageOperation2() = O + P = 3 + 1 = 4 web service points

WOC (X) = 4+4 = 8 Web service points

The size of service X based on its internal structure as revealed by SOAML service

interface diagram is 8 web service points according to WOC metrics.

4.2.2 Service Dependency Count (SDC)

Service dependency also known as coupling is the degree of interaction and extent of

dependency between services (Sharma, Shewandayn & Bhukya, 2017). This study

identified Service Dependency attribute as an indicator of web service size measurement.

A service oriented principle states that services should be “loosely coupled” meaning the

nature of interaction should be limited to solely exposing operations for the purpose of

Service X interface

+ SimpleOperation1(parameter1, parameter2)

+ AverageOperation2 (parameter1:datatype)

75

interaction with other services. The study defined Service Dependency Count (SDC) metric

to count the number dependencies among services.

SDC captures dependency attributes from UML static design class diagram at system level.

SDC focuses on direct dependency which is dependency that exists between a service

provider and a service consumer. Based on this study hypothesis, a service with more

interaction will have more configurations to link to other services as compared to a service

that is linked to fewer services. Implying that a service is bigger in size when it depends on

more services or services depends on it and more effort is spent when configuring a service

dependency.

SDC considers the type of dependency determined by the depth of relationship between

services. The type of dependency based on how deep services are related is known as

service composition (Hirzalla, Cleland-Huang & Arsanjani, 2009). Service composition is

a collection of related services that take part in solving a specific business function. For

service composition to be formed, at least two participant services must be present to

complete its functionality (Hirzalla, Cleland-Huang & Arsanjani, 2009). Services that are

not in composition are said to be atomic in which case they do not require other services to

complete a business process. Dependency attributes according to UML representation are

classified based on service composition as atomic point-to-point message exchange, lighter

aggregation and strong composition. SDC considers the number of dependency among

service multiplied by a weight according to the type of composition between services.

Dependencies are allocated weights of 1, 2 and 3 for atomic, lighter aggregation and strong

composition respectively as shown in Table 4.2.

76

Table 4.2 Weighted Service dependency weights

Composition type Weight (Points)

Atomic (point-to-point dependency) 1

Lighter aggregation 2

Strong composition 3

SDC is defined as a set of types of dependencies among services as shown in Equation 4.2.

 (4.2)

Where a is a set of atomic dependency, g is a set of lighter aggregation dependency and t is

a set of strong aggregation dependency.

Atomic dependency is indicated by a dotted arrow in UML diagram while lighter

aggregation and strong composition are denoted by a light diamond arrow and a dark

diamond arrow respectively as shown in UML class diagram in Figure 4.2.

Figure 4.2: UML Diagram showing dependency among services

Figure 4.2 represents 4 service interfaces with X service interface depending on W service

interface in an atomic dependency interaction as indicated by dotted arrow. Secondly,

service X depends on service Y in a strong composition relationship denoted by a dark

Service W interface

+ operation ()

Service X interface

+ operation()

+ operation2()

Service Z interface

+ operation ()

Service Y interface

+ operation ()

77

diamond arrow. Service Z depends on service Y in a lighter aggregation relationship

denoted by a light diamond arrow and service Z depends on X in an atomic dependency

relationship.

The proposed Service Dependency Count (SDC) considers a service interface S, with

dependencies D1 . . . Dn identified in the static service interface UML diagram.

Therefore SDC for the SOA application is, SDC = <S, D>

SDC = a + g + t = 2 + 2 + 3 = 7 web service points

Figure 4.2 reveals 2 atomic (a) dependencies weighted 1 point each, one lighter

aggregation (g) dependencies with a weight of 2 points and one strong composition (3)

dependency with a weight of 3 points. SDC provides a measurement of SOA size based on

interaction among services taking into account the service and type of interaction as

stipulated in UML interface diagram.

4.2.3 Weighted Message Count

Weighted Message Count (WMC) represents movement of data groups between services,

databases and other applications. Weighted Message Count takes into consideration the

type of message call which are classified as synchronous, asynchronous and reply

messages. In this regard, data movement specification is linked to the design of

information model which is represented by UML sequence diagram. WMC is a system

level metric that simply counts the number of messages from and to services. Based on this

study hypothesis, there is a relationship between the number of messages in an application

and the size of the SOA application because is it takes a process to produce a message.

78

Furthermore, more weight is assigned to synchronous message call because it requires

coordination of events to enable message movements in unison. On the other hand,

asynchronous message call is assigned lesser weight due its simplicity in design, it does not

return a value and no coordination is required to facilitate data movement as compared to

synchronous message call. Lastly, reply message carries much lesser weight based on the

fact that reply messages are based on conditional tests that will provide error messages or

acceptance messages. Weighted Message Count (WMC) assign weights to data movement

based on the type of message exchange as shown in Table 4.3.

Table 4.3 Weighted message type arrows

Message type UML arrow line Weight

Synchronous 3

Asynchronous 2

Reply message 1

From Table 4.3, each type of message to and from a service is represented by a specific

arrow line assigned different weights in relation to the type of message.

Therefore, WMC (S) = <M>

In this case, M represents a set of messages. M is made up of three types of messages that

is synchronous, asynchronous and reply message. Based on UML sequence diagram, data

movement to and from a service are identified as shown in Figure 4.3.

79

Figure 4.3: UML sequence diagram showing data movement

Figure 4.3 shows five services with horizontal arrows indicating data movement among

service. The diagram shows messages labeled a, s and r representing three asynchronous

messages, one synchronous message and one reply message respectively.

 Equation to compute WMC is as shown in Equation 4.3.

 (4.3)

a = asynchronous message s = synchronous messages r = reply message

Given that asynchronous has a weight of 2, synchronous has a weight of 3 and reply

message has a weight of 1.

WMC = (a * 3) + (s * 1) + (r * 1) = 6+3+1=10 Web service points

 a
 s

 r

 a
 a

Interface Storage Service Z Service Y Service X

80

4.2.4 Weighted Service Count (WSC)

Weighted Service Count (WSC) metric simply sums output derived from WOC, SDC and

WMC.

Where,

- WOC is a set of all weighted operations and parameters contained in the operations.

- SDC is a set of all dependencies between a service and other services weighted with

regard to the type of composition.

- WMC is a set of all messages to and from a service weighted according to the type

of message.

WSC is a systems level metric whose attributes are derived from UML static design

diagram. WSC returns size of a SOA system measured in web service points.

Therefore, WSC = < WOC, SDC, WMC>

According to WSC hypothesis, the more the number of weighted services operations,

dependencies and messages contained in a SOA application, the bigger and more complex

the SOA application will be resulting to more effort required to build and integrate

services. WSC is computed as in Equation 4.4.

 WSC = WOC+ SDC + WMC (4.4)

WSC for the SOA application in UML diagrams 4.1, 4.2 and 4.3 is,

WSC = 8+7 + 10 = 25 web service points

A case example of application the proposed SOA size metrics in a purchase order SOA

application is elaborated in the next section.

81

4.3 Application of defined SOA size metrics in a Purchase order SOA Application

4.3.1 Purchase Order Business Processing Modeling

Based on SoaML design methodology, design of a SOA system starts with business

process modeling which involves capturing the business design from an understanding of

business requirements and objectives (Amsden, 2010). The business requirements and

objectives are translated into business process specification using Business Process

Modeling Notation (BPMN). Services are then identified from the business processes and

service specifications are captured through UML diagram to identify methods or

operations, data movement and relationship among services.

This study identified Purchase order process as a case example to illustrate the applicability

of the proposed SOA size metrics. It involves a consortium of companies with the need to

align their purchase order processes to business requirements. A typical Purchase order

business processes includes managing purchase order, production scheduling, inventory

management, shipping and invoicing. The order process starts by receiving and processing

the purchase order which includes item description, item quantity and customer details.

The purchase order provides information to calculate the price of items, process production

schedule and shipping details. Invoice is then prepared by including the total cost of items,

production cost and shipping cost. The identified purchase order business processes based

on BPMN is as shown in Figure 4.4.

82

Figure 4.4: Purchase order process Business Processing Modeling Notation

Purchase

order

Check item

ingredient Inventory

Update stock

Get customer

address

Calculate

shipping cost

Process shipping schedule

Calculate

item cost

Calculate total

cost

Process invoice

Get production

specifications

Calculate

production cost

Process schedule

83

Based on BPMN representing purchase order for a consortium of companies in Figure 4.4,

processing of invoice, production schedule, inventory and shipping schedule processes are

done at different departments and companies with the main aim of processing invoice to

customers. Purchase order process triggers three processes which include preparation of

invoice, production schedule process and shipping schedule process each with a number of

sub-processes or sub-tasks.

The ultimate goal of the system is to process invoice which rely on other processes output.

First of all, input from purchase order process include list of items requested and their

quantities to calculate the total items cost. Secondly, input from purchase order process

engages the production department to specify the specifications for the items ordered and

check in the inventory the availability of ingredient to produce the ordered item. Once a

request is made in the inventory, the stock level is updated and a production schedule and

production cost are processed and the result is used to update the invoice. Lastly, the third

process triggered by the purchase order process is shipping process which receives

customer address details to calculate the distance to ship items, shipping cost and provide a

shipping schedule. Invoice process captures production cost and shipping cost from

production and shipping processes respectively then add to items cost to give the total cost.

In some instance, currency conversion process provides functionality that enables foreign

currency exchange.

Based on purchase order case example, BPMN diagram in Figure 4.4 helps to break the

entire process into a smaller, structured and easy to understand processes which can be

adopted by systems developers. However, BPMN level of abstraction does not provide

crucial details for software design and measurement. The best lower level of abstraction

84

that provides design and measuring details is UML diagram. UML interface diagram

provides interface diagrams showing number of operations and relationships while UML

sequence diagram shows movement of data among different processes or services. SOA

size metrics proposed in this study rely on UML design framework to identify SOA

attributes relevant for size measurement.

4.3.2 UML Diagram for Purchase Processing System

To measure the size of purchase order process, Business Process Modeling Notation in

Figure 4.4 was converted to UML diagram for a detailed and lower abstraction. UML

diagram is used to expose number of services, number of operations, number of

parameters, relationship among services and data movements among services in a SOA

system (Amsden, 2010). These attributes provide key variables when applying metrics

proposed in this study. A UML interface diagram representation of the purchase order

process in Figure 4.5 shows attributes to use when calculating Weighted Operation Count

(WOC) and Service Dependency Count (SDC). On the other hand, UML sequence diagram

in Figure 4.6 represents data movement among services which is a key attribute when

calculating Weighted Message count (WMC).

85

Figure 4.5: UML interface diagram representing purchase order process services

Shipping service

+calculateShippingCost(address, quantity)

+processShippingSchedule(address, shipNo)

Purchase service

+processPurchaseOrder(customer, item)

Production service

+getItemSpecification(itemsdescription)

+processProductionSchedule(orderdate, item)

+calculateProductionCost(quantity)

Inventory service

+checkItemIngredient (ingredient, quantity)

Invoice service

+calculateItemsPrice (itemdescr, quantity)

+calculateTotalPrice(itemcost, shippingcost, productioncost)

Currency exchange service

+exchangeCurrency (country,amount)

86

Figure 4.6: UML sequence diagram representing purchase order process services

Purchase

service

Production

service

Inventory

service

Shipping

service

Invoice

service

Currency

exchange

service

itemdetails

customerdetails

itemdetails

productdetails

ingredient

shippingcost

productioncost

invoicedetails

invoicecost

 resultcost

87

WOC considers the number of operations contained in each service, complexity of each

operation and the number of parameters as key attributes when determining the size of a

service with regard to a service internal structure. Based on SOAML service interface

diagram representing the purchase order SOA system in Figure 4.5, WOC metric measures

the size of a service by counting the number of service operations and parameters.

Secondly, SDC measures the size of a SOA system by considering the relationship among

services. SDC counts the number dependencies and type of dependency between services.

Based on the UML interface diagram in Figure 4.5, dependencies are indicated by using

different types of arrows linking consumer services with provider services with different

types of arrows depicting different type of dependency.

Thirdly, WMC counts the number of message movements from a service based on the type

of message. Details of message movements are well captured by the UML sequence

diagram in Figure 4.6 showing different types of horizontal arrow lines representing

different types of messages weighted accordingly. Lastly WSC will take the results of

WOC, SDC and WMC for the entire SOA application system to give the final SOA size

measure for the purchase order SOA system.

4.3.3 Application of SOA Size Metrics

4.3.3.1 WOC for Purchase Order System

a) WOC for Invoice service - Invoice service in UML diagram in Figure 4.5 has two

operations with simple arithmetic calculation classified as simple operations each allocated

a weight of 2. The first operation has 2 parameters and the second operation has 3

parameters as shown in Table 4.4.

88

Table 4.4: WOC for Invoice service

Operation Type Weight Number of

Parameters

Total

weight

calculateItemsPrice (itemdescr, quantity) Simple 2 2 4

calculateTotalPrice(itemcost, shippingcost,

productioncost)

Simple 2 3 5

Total weight (Web service points) 9

WOC (Invoice service) =

 = (2 + 2) +(2 +3) = 9 web service points

b) WOC for Purchase service - Purchase service hosts one operation classified as a

simple operation with two parameters. Therefore,

WOC (Purchase service) = 2 + 2 = 4 web service points

c) WOC for Production service - Production service contains operations and number of

parameters weighted as shown in Table 4.5.

Table 4.5: WOC for Production service

 Operation Type Weight Number of

Parameters

Total

getItemSpecification(itemsdescription) Simple 2 1 3

processProductionSchedule(orderdate,item) Average 3 2 5

CalculateProductionCost (quantity) Simple 2 1 3

Total weight (Web service points) 11

WOC (Production service) = 11 web service points

89

d) WOC for shipping service - Shipping service contain 2 operations and 4 parameters

weighted as shown in Table 4.6.

Table 4.6: WOC for shipping service

 Operation Type Weight Number of

Parameters

Total

calculateShippingCost(address, quantity) Simple 2 2 4

processShippingSchedule(address, shipNo) Average 3 2 5

Total weight 9

WOC (Shipping service) = 9 web service points

e) WOC for Inventory service: Inventory service has one operation classified as simple

operation with two parameters. Therefore, WOC (inventory) = 2 + 2 = 4 web service

points.

f) WOC Currency exchange service

Currency exchange service has one operation with a simple operation having 2 parameters.

Therefore, WOC = 2 + 2 = 4 web service points.

Total WOC for the entire purchase order SOA system is the total sum of all the services

Total WOC = WOC (invoice) + WOC (purchase) + WOC (production)+ WOC (shipping)

+ WOC(inventory) + WOC (currency exchange)

 = 9 + 4 + 11 + 9+ 4 + 4 = 41 web service points

4.3.3.2 SDC for Purchase Order System

SDC for the entire purchase order SOA system is captured at system application level

rather than individual service. It entails counting the number of arrow types representing

dependency in UML service interface diagram. In this case, UML interface diagram in

90

Figure 4.5 reveals five atomic dependencies, one lighter aggregate dependency and one

strong composition dependency. To compute SDC, the number of type of dependency is

considered.

Therefore, SDC (purchase order SOA) = <S, D>

SDC (purchase order SOA) =

 = 5 + 2 + 3 = 10 web service points

Where a represents atomid dependency, g represents lighter agregation dependency and t

represents strong composition.

4.3.3.3 WMC for Purchase Order System

WMC considers amount of data movement in a SOA system depicted by UML sequence

diagram at system level. According to the sequence UML diagram in Figure 4.6,

horizontal solid arrow head with continuous line depicts synchronous message, horizontal

line arrow head with continuous line represent asynchronous message and horizontal

dotted arrow lines represent reply messages. Figure 4.6 reveals 3 synchronous, 3

asynchronous and 3 reply messages. Therefore WMC for purchase order SOA system is,

WMC (Purchase order) = 9 + 6 + 3 = 18 web service points

Given that asynchronous has a weight of 2, synchronous has a weight of 3 and reply

message has a weight of 1.

91

4.3.3.4 WSC for Purchase Order

To calculate the size of Purchase Order (PO) system involves summing WOC, SDC and

WMC to compute WSC.

WSC (Purchase Order) = WOC (PO) + SDC (PO) + WMC (PO)

 = 41 + 10 + 18

 = 69 web service points

The result reflects the size of purchase order SOA system based on attributes revealed by

UML interface diagram and sequence diagram.

4.4 Theoretical Validation of the Proposed Metrics

4.4.1 Overview of Briand’s

Metrics development involves 2 stages which include metrics definition and metrics

validation (Muketha, Ghani & Selamat, 2010). Metric definition is the actual design of the

metrics through identification of key factors and their contribution to the metric. On the

other hand, metrics validation is determining the validity of software metrics with respect

to the domain under research. There are two types of software metrics validity namely

theoretical validity and empirical validity (Srinivasan & Devi, 2014).

In this study, Briand’s size properties (Briand, Morasca & Basili, 1991) formed the basis of

theoretical validation while survey and experimentation documented in Chapter seven

provides a framework for empirical validation to the proposed metrics. Briand, Morasca &

Basili(1991) proposed a rigorous mathematical framework based on precise mathematical

concept with regards to software size, length and complexity measurements. They defined

a concept that takes into consideration a system as an entity that has elements and

relationships among elements.

92

According Briand’s size properties framework, the size of a system is a function of size (S)

containing sets of elements (E) and sets of relationship among elements (R). The

framework defines three fundamental size properties that determine the validity of a

software metrics. The three properties include non-negativity, null value and module

additivity summarized as follows:

Size Property 1: Non-negativity – The size of a system S is non-negative.

 S = <E,R> where S > = 0

Size Property 2: Null value – The size of a system (S) is null if elements (E) is empty.

 S = <E,R> where S = 0 if E = 0

Size Property 3: Additivity – The size of a system (S) is equal to the sizes of its elements.

 S =  (E)

4.4.2 Results

i) Weighted Operation Count (WOC) Theoretical Validation

Based on Briand’s size property framework, a software size metric should satisfy non-

negativity, null value and additivity properties to confirm a metric theoretical validity. In

this regard, WOC = < O, P> is non-negative given that the size of service operations and

parameters cannot be negative. Given a service S = <O,P> where O S P O.

WOC(S) involves counting the number of operations and parameters which in this case it

cannot return a negative value. Therefore, WOC(S)  0 satisfying Briand’s size 1 property

which states that the size of a system is non-negative.

Secondly, according to Briand’s size 2 property, service must have an operation for its size

to count. According to WOC, a service size is determined by the number and complexity of

93

operations and parameters. WOC(S) = <O,P> such that if O = , then WOC(S) = 

conforming to Briand’s size 2 property which states that the size of a system is null if it has

empty modules (E).

Thirdly, Briand’s size 3 additivity property requires that the size of a system should be

equal to the total size of all modules. With WOC case, the size of a service is equivalent to

the sum of the size of all weighted operations and parameters contained in a service. The

size of a service (S) according to WOC is not greater than the size of all operations

contained in a service.

WOC(S) = M1+M2+ ….Mn. Where M1=<O1,P1>, M2=<O2,P2> and Mn=<On,Pn>

Where M represents a set of operations and parameters, O represents weighted operations

and P represents parameters. WOC metric meets Briand’s size 3 additivity property which

demands the sum of a system to be equal to the sum of all modules.

ii) Service Dependency Count (SDC) Theoretical Validation

SDC theoretical validation is based on Briand’s property framework to confirm the metric

validity. SDC conforms to Briand’s size 1 property given that SDC cannot return a

negative value as it involves adding weighted operation count and dependencies.

 SDC (S) = < D> where D S.

 Therefore, SDC (S)  0 and D0 where S represents sets of services and D represents

sets of dependencies then the value of S cannot be negative. Consequently, the value of

adding dependencies cannot return negative values.

Secondly, SDC meets Briand’s size 2 null value property because when there is no

dependency (D), SDC will return a null value. When D =  then SDC =. Thirdly, the

94

value of SDC a is equivalent to the sum of all services and dependencies of services. SDC

(S) = D1+D2+……… Dn conforming to Briand’s size 3 additivity property which states that

the size of a SOA System (S) is equivalent to the sizes of its elements.

iii) Weighted Message Count (WMC) Theoretical Validation

Weighted Message Count (WMC) considers the amount of message exchange among

services as indicator of size. WMC counts the number of weighted messages to determine

the size of a service. In this regard, If M represents message originating from a service,

WMC (M) cannot return a negative value therefore,

WMC= <M>  0

WMC (M) satisfy Briand’s non-negativity property given that the size of a service is non-

negative as it results from summing messages from a service which cannot be negative.

Secondly, WMC metric returns a null value if there is no message originating from a

service. Therefore,

If M= then WMC (A) = .

which conforms to Briand’s Null value property which states that the size of a system (S) is

null if element (M) is empty. Thirdly, Briand’s size 3 property demands that the size of a

system should be equal to the sizes of its elements. WMC meets the size 3 property

requirements given that, the size of a service S is equal to the sum of the sizes of its

messages. S= <M> is equal to the size of S1 = <M1>, S2 = <M2> …. Sn =<Mn>.

iv) Weighted Service Count (WSC) Theoretical Validation

Weighted Service Count provides a framework for summing up results from WOC, SDC

and WMC. Based on Briand’s size 1 non-negativity property, WSC cannot return a

negative value because all the WSC ingredients cannot return a negative value. Secondly

95

WSC =  IF WOC SDC WMC =  conforming to the size 2 property. Lastly the size

of a SOA application is equivalent to the sum of all services WOC, SDC and WMC

conforming to Briand’s size 3 property.

WSC (A) = WOC(S1), SDC(S1), WMC(S1) + WOC(S2), SDC(S2), WMC(S2) ……

WOC(Sn), SDC(Sn), WMC(Sn)

The size of a SOA application is a result summation of all services WOC, SDC and WMC.

4.5 Chapter Summary

Theoretical validation of the SOA size metrics proves the validity of the metrics in

measuring SOA size. The metrics derived from UML diagram provided a framework for

identifying key attributes relevant for measuring SOA size. The metrics were designed and

applied to a purchase systems example to show the metrics applicability. To establish

construct validity, the metrics were subjected to Briand’s property framework to establish

if the metrics are structurally valid. Later on in this study, an empirical validation will be

carried out to prove that the metrics results are consistent with the predicted results.

96

CHAPTER FIVE

 DESIGN OF SOA EFFORT ESTIMATION METHOD

5.1 Introduction

This chapter highlights key attributes for determining SOA development effort. In this

context, effort is determined by considering how many programmers are needed to

accomplish a task and for how long. The effort of developing an application is largely

mental activities which require human activities to complete a task or a project

(Li,O’Brien, 2010; Rijwani & Jain, 2016). The unit of measuring software development

effort is person-day or person-month. Due to SOA structural differences as compared to

other software architecture, SOA development factors or attributes differ from other

software development effort attributes.

This study introduced attributes that are specific to SOA in addition to existing software

development effort attributes revealed by previous research studies. This study estimates

SOA development effort for all development phases including requirement specification,

software architecture phase, software construction phase and testing phase because

Software developers engage with the system from requirement specifications to software

testing (Farrag, Moawad, Imam, 2016). Three main factors identified in this study that

contribute to SOA development effort are SOA size, service type and Effort multiplier

Factors (EMF). Effort estimation process is relative and uncertain in nature which

necessitated the use of fuzzy logic in the proposed effort estimation method to represent

SOA Effort multiplier Factors (EMF) in a more representational and accurate manner.

97

5.2 SOA Size

SOA size is the main attribute that determines SOA development effort. There is a positive

relationship between software size and software development effort. The bigger the size of

software the more effort is required to develop the software. Most effort estimation

methods estimate software development effort as a function of size. They compute effort

by considering software size multiplied by proven and tested constants (Boehm, 2000;

Albrecht, 1983; Kuan, 2017). This study effort estimation method is based on COCOMO II

constant A which represents effort coefficient and scale (exponential) factor B to account

for relative economies of scale as shown in Equation 5.1 (Boehm, 2000).

Therefore, Effort (PM) = A * (Size)
B

 (5.1)

This study focused on small and medium sized projects developed in a familiar stable

environment with a relatively small team of developers. Small and medium size projects

were used due to their availability and they constitute the majority of projects. In this

regard, this study used intermediate COCOMO organic coefficient (Boehm, 2000) in Table

5.1 to compute software development effort as a function of SOA size. The size metric

from chapter 4 that serves as an input to the proposed method is Weighted Service Count

(WSC) which is computed by summing WOC, SDC and WMC.

Table 5.1: Intermediate COCOMO Effort coefficients

Project Type Coefficient

constant (A)

Exponential Scale

factor (B)

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.20

98

SOA effort is computed at SOA application system level having computed WSC for the

entire SOA application. For instance, based on Purchase order SOA application system

discussed in chapter 4, the total WSC for the entire SOA application was 69 web service

points. Therefore, effort for developing Purchase order SOA application when considering

effort as a function of size is,

Effort (X) = A * (WSC)
 B

This study web service point is closer to Function Points with regard to taking key

functional aspects when computing SOA size. COCOMO metrics take KLOC (Kilo Lines

of Codes) as the software size input to effort function rather than Function Points.

Therefore, Function point must be converted to KLOC to compute software development

effort. The same principle applies to web service points computed in this study which is

converted to KLOC to be used in effort computation. Based on previous research and

validation on function point to KLOC conversion, programming languages including PHP,

Java, Perl, JavaScript and C++ Function Point are each equivalent to 53 Lines of Codes

(LOC) (Anders, 2018). Therefore, this study adopted 53 LOC per web service point to

convert web service point to LOC when computing SOA application development effort.

 Therefore, for purchase order SOA application with 69 web service points,

 LOC = 53 x 69 = 3657 LOC = 3.657 KLOC

 Effort for developing Purchase order SOA application system as a function of size is,

Effort = (3.2 * (3.657)
1.05

) = 12.486 persons per month

Effort as a function of size alone is not enough to estimate SOA development effort

effectively. The above effort of 12.486 persons per month is based on Purchase order SOA

application size before multiplying with Service Type Factors (STF) and 12 Effort

multiplier Factors (EMF) also known as cost drivers. EMF which include product factors,

99

service development environment factors, requirements factors and personnel factors

provide a positive or negative fraction effect on effort.

5.3 Service Type Factors (STF)

This study classified Service type into Service Construction type (SC) and Service

Architectural Style type (SA). STF have great effect on SOA development effort especially

at service coding or construction phase. For example if a service is discovered type the

amount of effort at coding phase is near to zero. STF is determined at service level because

different service may have different service type.

5.3.1 Service Construction Type

Service Construction types (SC) is classified into three types based on how the service was

realized. The three types are available service, migrated service and new service. Available

services is a service that exist to be discovered by consumer services, on the other hand,

migrated service is a services that is converted from legacy system to web service

application while a new service is built from scratch. The type of service construction type

determines greatly the amount of effort required to build a service (Li & Keung, 2010).

5.3.1.1 Available Service

Available service is a service that already exists provided by a third party or from an

existing system in the organization which only requires to be discovered. This type of

service constitutes minimal construction effort with more effort focused on the requirement

specification, design, testing and integration. Effort at requirement specification phase,

design, testing phase and integration phases remain the same as effort to develop new

service. Consequently, effort at construction phase is minimal to near zero (Farrag,

100

Moawad, Imam, 2016). Therefore, the amount of effort required to enable discovery of a

service is a fraction of the overall effort which is a summation of effort at requirements

phase, design phase, testing phase and integration phase excluding effort at coding phase.

Based on previous research on effort distribution, more effort is at construction phase with

lesser effort at requirement phase as shown in the Table 5.2 (Farrag, Moawad, Imam,

2016).

Table 5.2: Effort distribution among development phases

Phase Estimated effort (%)

Requirements and Analysis 16

Design 15

Development 40

Testing 22

Integration 7

Total Effort 100

(Farrag, Moawad, Imam, 2016)

According to Table 5.2, effort to discover an available service consist of requirement

specification effort, Design effort, testing effort and integration effort which is equivalent

to 60% of the entire effort. Therefore, based on Purchase order SOA application, if invoice

service is available service then Service Construction Factor (SC) for service (invoice) is

0.6 effort factor based on SC.

5.3.1.2 Migrated Service

Migrated service is created through wrapping or modifying an existing legacy system. Its

creation involves effort in all software development phases and a fraction of effort at

construction phase. At construction phase, the main effort involved is reengineering a

101

software module into a service. This requires considerable amount of effort especially

effort of understanding the structure of the legacy system and effort to deal with

compatibility issues between the legacy system programming language and the service

language. This effort is estimated at 50% of effort at construction phase which is

equivalent to 20% of overall effort across all phases and 80% of the entire effort across all

phases. Therefore, if shipping service in Purchase order SOA application discussed in

chapter 4 is a migrated service then effort for developing SC (shipping service) is 0.8 effort

factor based on SC.

5.3.1.3 New Service

New service is built from scratch meaning that Effort is required in all the development

phases represented by an effort factor of 100% which is equivalent to 1. Development of a

new service has no effect on development effort because developers are engaged

throughout the development cycle. Therefore taking an example of inventory service in

chapter 4 as a new service then SC (Shipping service) is 1 effort factor. Details of service

construction type weights are as shown in Table 5.3.

Table 5.3: Effort factors for SOA service types.

Service Type Available service Migrated service New service

Service type Effort Factor 0.6 0.8 1.00

To compute SC for the entire application, SC for all services in a SOA application are

multiplied to get Total Service Construction (TSC)

102

5.3.2 SOA Architectural Style (SA)

SOA architectural style defines that protocols and style for developing web services. The

two most common communication architectural style or protocols used in SOA

applications are REST (Representational State Transfer) and SOAP (Simple Access

Protocol). Basically SOAP and REST are not directly comparable given that SOAP is a

protocol that make use of WS* technologies while REST is an architectural style designed

to communicate via HTTP protocol (Li & O’Brien, 2010). However, they are comparable

in terms of the amount of effort required to build a service using either REST or SOAP.

5.3.2.1 SOAP

SOAP technology exposes a service through a method’s logic interface and sends data

from one service to another based on a standardized set of message patterns. SOAP relies

on XML, WSDL, UDDI, HTTP and WADL standards to interpret, discover, automate and

integrate services (Belqasmi & Glitho, 2012) . SOAP is preferred when developing heavy

weight applications and is suitable when dealing with more quality of service requirements

(Li & O’Brien, 2010). Its Quality of service is based on message layer and functional

components located in machines remotely accessed via API.

5.3.2.2 REST

On the other hand, REST uses a consistent interface to access identified resources based on

data access method. REST allows a wide variety of data formats such as JSON and XML

(Belqasmi & Glitho, 2012). It is faster, easy to integrate with legacy applications and uses

less bandwidth enabling faster development of services as compared to SOAP. REST is

suitable for light-weight and client driven applications. Currently it is the most common

technology for developing web service applications (Li & O’Brien, 2010).

103

5.3.2.3 Comparison between REST and SOAP Effort Factor

When associating complexity involved in developing a SOAP application and a REST

application, it takes more effort to develop a SOAP web application as compared to REST

web service application of the same size. So far there is no publication that has compared

the two development protocols quantitatively with regard to effort estimation. However, Li

& O’Brien (2010) compared effort based on REST and SOAP architectural styles

qualitatively. The composition of web service using REST is different from SOAP

composition hence effort employed must be different. Through qualitative analysis, REST

and SOAP were compared in relation to following hypothesis (Li & O’Brien, 2010):

H1: Increase of information in a service increase effort used to develop the service.

H2: Increase of difficulty of technique used to develop a service increase service

development effort.

Based on the two hypotheses, services built using SOAP technology have more

information and are difficult to build as compared to REST services. The qualitative

analysis assigned a factor of 2 to SOAP and a factor of 1 to REST services effort (Li &

O’Brien, 2010). But because our research study adopted COCOMO models’ function when

defining effort factors, therefore, in this study a factor of 0.2 is the difference between

SOAP and REST. SOAP was allocated a weight of 1.2 and REST was allocated a weight

of 1.00 as shown in Table 5.4

Table 5.4: Service architectural style weights

Service Type REST SOAP

Effort Factor weight 1.00 1.2

104

Therefore, if invoice service in chapter 4 is a REST service, then SA factor is 1 of

development effort while if shipping service is a SOAP service then SA (Shipping) is 1.2

of development effort. STF is computed as shown in Equation 5.2.

Service Type factor (STF) = Service construction type factor * Service architecture factor

STF =

 (5.2)

Effort after including STF is shown in Equation 5.3. For instance, if STF for purchase

order SOA application is 1.2 of effort,

 Effort (Purchase order) = STF * A * (service size)
B

 (5.3)

 Effort (Purchase order) = 1.2 * (3.2 * (3.657)
1.05

) = 14.98 persons per month

From the above example, SFT has a tremendous impact on software development effort

which may be a decreasing or increasing effect on SOA development effort.

5.4 SOA Effort Multiplier Factors (EMF)

SOA development effort is also determined by effort factors also known as cost drivers

which are proportional to the amount of effort employed and whose values either increase

or decrease effort. Apart from SOA size factor and STF discussed in this study, other 12

SOA effort factors also known as Effort multiplier Factors (EMF) were introduced in this

study. EMF have an effect of either increasing or decreasing the amount of development

effort. In most cases when EMF is normal it is assigned a value of 1 which has no effect on

software development effort. On the other hand, EMF that is assigned a value that is less

than one has a decreasing effect on software development effort while EMF with a value

greater than 1 has an increasing impact on development effort. EMF is applied at the SOA

system application level when computing development effort. EMF were grouped into 4

105

categories namely Product factors, Environment factors, Requirement specification factors

and Personnel factors as shown in Table 5.5.

Table 5.5 SOA Effort multiplier Factors (EMF)

S/N SOA Effort Factor categories SOA Effort factors

1. Product factors Database complexity & size

User interface complexity

Integration complexity

2. Development environment factors Development tool support

Infrastructure capabilities

3. Requirements specification factors Requirement elicitation

Business risk/value

Security requirements

4. Personnel factors Web service experience

Application experience

Programming experience

Team cohesion

 This research study EMF processing is based on fuzzy logic for the purpose of accurate

estimation and to provide a realistic way of representing effort attributes. Fuzzy logic

concept provides a platform to represent fuzzy sets, convert crisp data to linguistic

variables and use IF..THEN rules fed into an inference system to give a more accurate

output (Patra & Rajnish, 2018).

Converting SOA EMF crisp values to fuzzy sets enables smooth transition from one

category to another. For example, in real sense complexity value cannot be precisely 0.8

but a value that can also be less than 0.8 or greater than 0.8 e.g. 0.84 or 0.78 and so on.

Meaning there is no clear boundaries among various categories when representing

categories in fuzzy sets.

106

The process of fuzzy logic involves a fuzzy membership function used to relate a point in

the effort attributes fuzzy sets as a value within [0,1] to determine a degree of membership

of an identified attribute value (Thamarai & Murugavali, 2016). Fuzzy rules are then

applied on fuzzy sets to determine the estimated effort given sets of conditions. Lastly,

fuzzification converts the output from inference control system to total effort multiplier as

crisp output which is multiplied with the result of the product of SOA size and service

factors to estimate the final SOA development effort as shown in Figure 5.1.

 Figure 5.1 : Fuzzy Effort estimation method model

5.4.1 Product factors

Product factors or infrastructure complexity (Gupta, 2013) include elements that add

functional value to SOA application with regard to product structure. They constitute the

functional aspects of an application including storage of information used by SOA

Total effort multiplier

MAMDANI FUZZY

INFERENCE

SYSTEM

Product factors

Database Complexity

Database size

Integration complexity

Requirements factors

Requirement Elicitation

Business risk/value

Security requirements

Environment factors

Tool support

Hardware/software

capabilities

Personnel factors

Developers’ experience

Application experience

Team cohesion

107

application, allow data entry and deal with integrating SOA application with other

applications. Product factors proposed in this study are database complexity, database size,

interface complexity and integration complexity. The complexity and size of product

factors have a great impact on SOA development effort. This study adopted COCOMO

DATA factors classified as normal, high and very high with values of 1.00, 1.09 and 1.19

respectively for database complexity and database size values. This study rounded off the

COCOMO values to 1.00, 1.1 and 1.2. Furthermore, COCOMO DATA factor ranking of

low valued at 0.94 was not considered in this study’s product factor. This is based on the

argument that product factor value cannot be less than one. The values were then

represented as 3 fuzzy set namely normal, high and very high linguistic variables.

5.4.1.1 Database Complexity and size

Since 1980s to date database has become a core component in any software application.

Database design shows the data management structure for the entire application design.

Database complexity or Data access complexity (Gupta, 2013) includes database

constraints and commands that affects the complexity of a service. Considerable effort

must be put when designing a database for successful implementation of an application

systems design. This study proposed Database complexity product factors with value 1

representing normal, 1.1 for High and 1.2 for Very high as shown in Table 5.6

Table 5.6 Database complexity factor

Database Complexity Normal High Very High

Weight Factor 1.00 1.10 1.20

108

Database complexity is determined by complexity features included in the database

management system integrated with the SOA application. For example, a database system

that only contains tables and queries with no additional components is classified as

Normal. Secondly, a table that requires views and security features and other constraints is

classified as high complexity and very high complexity is a database with all other features

such as procedures, roles, access rights and database transactions.

Another factor to consider when evaluating database influence on SOA development effort

is database size factor. Database size factor simply counts the number of tables contained

in a database to determine classification of database factor into Normal, High and Very

High as shown in Table 5.7. The more the number of tables contained in a database the

more effort is required to design, integrate the database with SOA application and

implement the database. In this study, when tables in a database are less than 50, effort

factor is classified as normal, while between 50 and 100, effort factor is classified as high

and above 100 is classified as very high.

Table 5.7 Database size factor

Database Size Normal High Very high

Weight Factor 1 1.10 1.20

Database complexity and size not only considers Database management systems but also

storage in other applications storage structure such as text files. For more accuracy and

representational, database complexity and database size factors values are converted to

fuzzy sets.

109

5.4.1.2 Database complexity and Database size fuzzy effort multiplier

Fuzzy logic provides a better way of representing data in fuzzy sets to express data that is

unclear and vague in nature. A case in point is complexity of a product which may be

subjective from one developer from the other. Secondly, representing data in a class or

category provides a wider representation. For example database complexity High value is

represented as a range from 1.00 to 1.20 in fuzzy sets rather than a crisp value. Fuzzy logic

processes include Initialization, Fuzzification, Inference system and Defuzzification

(Ziauuddin et al, 2013; Ahlawat & Chawla, 2015; Thamarai & Murugavalli, 2015; Patra &

Rajnish, 2018; Kaur, Narula, Wason & Jain, 2018).

i) Initialization: Initialization is the process of defining linguistic variables which are words

from a natural language replacing crisp values (Ahlawat & Chawla, 2015). Linguistic

variables in this case include database complexity and database size. Each linguistic

variable has normal, high and very high linguistic values.

Then, Database size = {normal, high, very high}

 Database complexity = {normal, high, very high}

ii) Fuzzification: It is a technique of using membership function to convert crisp data to

fuzzy values. It determines the degree to which inputs belong to a particular fuzzy set.

There are different types of membership functions including Triangular, Trapezoidal

andGaussian (Thamarai & Murugavalli, 2015). This study used Triangular membership

function to convert effort multiplier factors to fuzzy sets as indicated the equation 5.1.

0 for x < a

 for a  x < b

f() =

110

0 for x > c

 Equation 5.1 : Triangular membership function

The equation takes value x as input and compute membership of x in relation to the fuzzy

sets. Triangular membership function considers 4 values including x, a, b and c when

computing membership function based on the locations a triangle shaped chart as shown in

Figure 5.2.

Figure 5.2: Triangular Membership function

According to Figure 5.2, the function  is a value from 0 to 1 [0, 1] indicating the degree of

membership of a particular value x in a fuzzy set represented by the triangle.

Database complexity with three fuzzy sets has 3 triangular shaped charts representing 3

fuzzy sets. The value of crisp data x1 at any point will results to a function () as shown in

Figure 5.3.

1

0.9 1.0 1.1 1.2 1.3

0.25



X1

Normal High Very high

0.75

for a  x < b

a b x c



111

Figure 5.3: Database complexity fuzzification

Given crisp input x1 at 1.125 in Figure 5.3,

 (x1 = Normal) = 0  (x1 = High) = 0.75  (x1 = very high) = 0.25

Figure 5.3 shows that crisp value x1 is at 0 degree of membership at normal fuzzy set,  =

0.75 degree of membership at High fuzzy set and  = 0.25 degree of membership at  =

Very high degree of membership. Result from the function shows fuzzy logic ability to

represent vague and continuous data into a more accurate manner. Triangular membership

function is preferred when the range within a set is not high. Database size factor with the

same number of fuzzy sets is represented in Figure 5.4 when crisp input value y1.

Figure 5.4: Database size fuzzification

Given crisp input y1 = 1.15,

 (y1 = Normal) = 0  (y1 = High) = 0.5  (y1 = Very High) = 0.5

Figure 5.4 shows the degree of membership for each database size fuzzy sets when y1 is

1.15. Results from fuzzy membership function provide inputs to inference engine built with

IF .. THEN structure to evaluate the degree of membership output category.

0.9 1.0 1.1 1.2 1.3



1

Normal Very high

y1

0.4

High

112

iii) Fuzzy Inference System: It is a fuzzy logic component that evaluates rules in the rule

base to determine the outcome of set conditions. Fuzzy inference system employed in this

study is Mamdani System which is the most popular inference engine used by Software

effort estimation researchers (Patra & Rajnish, 2018; Kaur, Narula, Wason & Jain, 2018).

The following rules apply to database complexity and database size factors with regard to

SOA development effort as summarized in table 5.5. The results of IF rules were

strengthened by calculating Wn for each rule using AND operator in the antecedent. The

AND operator is equivalent to MIN function while OR operator is equivalent to MAX

function. Database complexity and database size rules were combined using the AND

operator to give the expected effort as summarized in Table 5.8.

Table 5.8: Summary of database complexity and database size rules

SIZE

COMPLEXITY

Normal High Very high

Normal Normal High High

High High High Very High

Very high High Very high Extremely very High

For example when database complexity is high and size is high the effort multiplier is high

each allocated a value where Normal = 1, High =1.1, Very High = 1.2 and Extremely very

high = 1.3. The AND operator which is equivalent to MIN was used to compute Wn as

follows:

113

After computing the value of Wn, the next step is to convert fuzzy data sets to crisp output

data using a process known as defuzzification.

iv) Defuzzification – Defuzzification is the process of converting output data to crisp

output value using a defuzzification method. There are a number of different methods used

to defuzzify logic data sets including center of gravity (COG), Center of sums method

(COS), Center of Area (COA), weighted average method and Maxima methods. This study

employed center of gravity defuzzification method to convert fuzzy sets to crisp data. The

crisp data is multiplied with all other crisp output from all factors to give the Total Effort

multiplier (TEM).

 

 

 = 1.183 of SOA application development effort

Based on database complexity input x1= 1.125 and database size input y1= 1.15, the result

of COG is a crisp output 1.183 of SOA application development effort which falls in very

high effort category coinciding with COCOMO very high effort multiplier value.

114

5.4.1.3 User Interface Complexity

User interface provides a link between the web service application and the user to enable

the user to interact with the system functionalities (Verlaine, Jureta & Faulkner, 2014).

Interface carries both functional and non-functional features of the service application.

User interface design may be a simple form design or a complex interface design with

multimedia interface. Varied amount of effort is required for different types of interface

based on complexity as shown in Table 5.9.

Table 5.9 User Interface complexity

Complexity Normal High Very high

Factor 1.00 1.10 1.20

5.4.1.4 Integration complexity

SOA principle is based on integration among services, integration between web services

applications and existing legacy applications, integration between web service and

database systems and integration between web services within an organization and

integration with services outside the organization provided by a third party. Integration

effort is inherently the amount of effort used to configure a service to integrate with other

resources. Integration with other services is classified as normal, integration with database

system outside the application is classified as high while integration with legacy system

and services outside the organization is classification as very high as shown in table 5.10.

Table 5.10 Integration complexity

Integration complexity Normal High Very high

Factor 1.00 1.10 1.20

115

5.4.1.5 User inteface and Integration fuzzy logic effort multiplier

i) Initialization – Initialization considers user interface complexity and integration

complexity as linguistic variables with the following values linguistic values:

 User interface complexity = {normal, high, very high}

 Integration complexity = {normal, high, very high}

ii) Fuzzification – Triangular membership function was used to determine the degree to

membership given crisp inputs. Fuzzy sets representation for user interface complexity is

shown in Figure 5.5.

Figure 5.5 : User interface complexity fuzzification

Given examples of crisp input x1 at 1.27,

 (x1 = Normal) = 0  (x1 = High) = 0  (x1 = very high) = 0.3

Considering crisp input x1= 1.27 in Figure 5.5, x1 has  = 0 degree of membership in

normal user interface fuzzy set,  = 0 degree of membership in High user interface fuzzy

set and  = 0.3 degree of membership in very high fuzzy set. On the other hand,

integration complexity fuzzy set representation is as shown in Figure 5.6.

0.9 1.0 1.1 1.2 1.3

1

0.3



X1

Normal High Very high



1
Normal Very high

0.7

High

0.3

116

 Figure 5.6: Integration complexity fuzzification

Given an example of crisp input y1 =1.13,

 (y1 = Normal) = 0  (y1 = High) = 0.7  (y1 = Very High) = 0.3

Based on Figure 5.6 example when crisp input y1=1.13, degree of membership for the

crisp input is 0 for normal fuzzy set, 0.7 for high fuzzy set and 0.3 for very high fuzzy set.

iii) Fuzzy Inference System – Mamdani inference system was used to give the outcome

given conditions set by the crisp input. User interface combined with integration

complexity in relation to web development effort is summarized in Table 5.11.

Table 5.11: Summary user interface complexity and integration complexity

Integration

User Interface

Normal High Very high

Normal Normal High High

High High High Very High

Very high High Very high Extremely very

High

0.9 1.0 1.1 1.2 1.3

117

Table 5.11 illustrates web service development effort result when combining user interface

and integration factors. For example when user interface is normal and integration is

normal then effort is normal allocated a value of 1. Other development effort weights are

High =1.1, Very High = 1.2, Extremely very high = 1.3.

The AND operator in conjunction with Wn was computed to give the following results:

Defuzzification –center of gravity defuzzification method was used.

 

 

 = 1.25 of SOA application development effort

The result of COG is a crisp output 1.25 which a very high effort multiplier value to be

included in the final computation of development effort.

118

5.4.2 Service Development Environment

Service development environment include hardware and software required to support

development and implementation of SOA application. Service development environment

determines the amount of effort with regard to efficiency, constraint and capability of

available hardware and software tools. This study focused on tool support and

Hardware/software capabilities.

5.4.2.1 Web Service Development Tool Support

Current programming practice involves the use of frameworks and tools that automate web

service development as compared to developing a service code by code. Less effort is

spend when developing a web service supported by tools and framework rather than

writing codes from scratch. IDE developers have incorporated assistants and help

techniques that enhances and speed up program design and development. The productivity

of a software development team is directly proportional to the development tools employed

by programmers in developing the web service (Gupta, 2013).

This study classified software development tools with regard to development effort based

on tool usefulness, tool integration with other applications, tools flexibility and

collaboration capabilities properties, presence of assistants and Presence of libraries.

COCOMO II ranked tool support factor from extra low, very low, low, normal, high, very

high and extra high support with an average distance of 0.12 between the categories. This

study adopted COCOMO weights but a departed from COCOMO II in the categorization

of Software development tool. This study classified software development tools into three

categories namely lowly automated, normal and highly automated. The categorization is

based on existing development tools for programming languages used to develop web

119

service applications. Tools that support only coding and compilation are classified as lowly

automated, tools with code line assistant and user friendly is classified as normal while

fully automated is classified as highly automated. Web service development tool support

categories and allocated weights are as shown in Table 5.12

Table 5.12 Web Service development tool support

Tool support Lowly Automated Normal Highly automated

Weight Factor 1.10 1 0.9

5.4.2.2 Web Service Infrastrucure Capabilities

Web services Infrastructure are components that include hardware, networking and

software components that enhance smooth development of web service applications.

Infrastructure capabilities include hardware, networking and software infrastructure

capacity and capability to host, execute and test web services. Web service infrastructure

capabilities factor has an impact on web service software development effort. When

facilities have low capacity and capabilities to host and enable service development more

effort is required as compared to when facilities are capable (Tarawneh, 2011).

Infrastructure capabilities or technical factors are the presence of standard hardware and

software infrastructure (Tarawneh, 2011). Hardware in this case includes storage

infrastructure, processor and hardware configuration issues. Networking infrastructure

includes data communication infrastructure, server and network configuration issues. On

the other hand, software capabilities include software integration issues, operating systems

compatibility and configuration issues. Table 5.13 shows classification of web service

infrastructure capabilities with regard to service development effort.

120

Table 5.13 Infrastructure capabilities factor

Infrastructure Very low Low Normal

 Factor range 1.2 1.1 1

5.4.2.3 Web service development tool and intrastructure fuzzy effort multiplier

i) Initialization: The 2 linguistic variables used in fuzzy logic computation are

development tool and infrastructure while their linguistic values are as shown below:

 Development tool = {lowly automated, normal, highly automated}

 Infrastructure = {very low, low, normal}

ii) Fuzzification – Triangular membership function was used to determine the degree to

which development tool crisp input value belong to a particular fuzzy set is represented in

Figure 5.7.

Figure 5.7: Development tool fuzzification

Given examples of crisp input x1 = 1.03,

 (x1 = Highly automatedl) = 0  (x1 = Normal) = 0.7  (x1 = Lowly automated) = 0.3

X1

1


Highly

Automated Normal
Lowly

automated

0.8 0.9 1.0 1.1 1.2

0.7

0.3

121

Figure 5.7 shows web service development tool degree of membership of value x1=1.03

which is  = 0 in highly automated fuzzy set,  = 0.7 in Normal fuzzy set and  = 0.3 in

Lowly automated fuzzy set. Web service infrastructure fuzzy sets and crisp input y1 and

degree of membership  are shown in Figure 5.8

 Figure 5.8: Infrastructure capabilities fuzzification

Given an example of crisp input y1=0.97,

 (y1 = Normal) = 0.7  (y1 = Low) = 0  (y1 = Very Low) = 0

Based on Figure 5.8 degree of membership () in Normal set is 0.7 and 0 in Low and Very

low sets respectively.

iii) Fuzzy Inference System: Mamdani inference rules combining web service development

tool support and infrastructure capabilities for y1=0.97 in relation to development effort are

summarized in table 5.14.

Table 5.14: Summary of automated and infrastructure capabilities rules

Infrastructure

capabilities

Tool support

Highly

Automated

Normal Lowly

automated

Normal Low Normal High

0.9 1.0 1.1 1.2 1.3



1

Normal Very low

y1

0.7

Low

122

Low Normal High Very High

Very low High Very high Extremely very

High

Table 5.14 shows the result of effort as Low = 0.9, Normal = 1, High =1.1, Very High =

1.2 and extremely very high = 1.3 when web service tool support and infrastructure

capabilities are analyzed. The AND operator which uses MIN was used to compute Wn as

follows:

iv) Defuzzification: Center of gravity was used to convert fuzzy data sets to crisp output

also known as effort multiplier.

 

 

 = 1.03 of SOA application development effort

123

The result of COG is a crisp output 1.03 of SOA application development effort which has

normal influence on development effort. This result is eventually used to compute the final

web service application effort.

5.4.3 Requirement Factors

Requirements are demands or desires or needs defined by stakeholders outlining what must

be provided or accomplished by software developers (Hassan & Salman, 2012). Without

requirements, you cannot measure success or failure of system development and

implementation (Micheal & Boniface, 2014). Critical issues at requirement specification

include business value and security requirements to be incorporated in the system.

Requirement factors proposed in this study include Requirement elicitation factors,

business risk and value and security requirements.

5.4.3.1 Requirements Elicitation

Requirement elicitation is a process of capturing stakeholders’ needs and demands.

Requirement elicitations provide a framework for ensuring software product compliance

with users’ needs and demands. It plays a vital role in determining project success and

failure (Bormane, Grzibovska, Bervisa & Grabis, 2016). Requirements specification also

determines the amount of effort to use in designing, building, testing and implementing a

system (Hassim, 2017).

When requirements are clear and unambiguous less effort is used to develop an application

as compared to when requirements are unclear and ambiguous. This study proposed 4

classification of requirements elicitation effort factors including very ambiguous,

ambiguous, clear and very clear requirements as illustrated in Table 5.15 provides an

124

analysis of effort multipliers based on requirements elicitation. Weight factor for very

ambiguous is 1.30 with an interval of 0.15 all the way to Very clear requirements at 0.85.

Table 5.15: Requirements elicitation effort factors

Requirements

elicitation

Very ambiguous

requirements

ambiguous

requirements

Clear

requirements

Very Clear

requirements

Description Programmers

unable to

envision what is

expected.

Requirements are

not very clear.

Programmers

understand the

requirements.

Fewer revisions

Provides a clear

view of what is

expected.

Weight Factor 1.30 1.15 1 0.85

The weights allocated in table 5.15 are converted into fuzzy sets based on the following

processed:

i) Initialization: The linguistic variable in this case is requirements elicitation with 4 values

namely very ambiguous, ambiguous, clear and very clear as shown beow.

 Requirements elicitation = {very ambiguous, ambiguous, clear, very clear}

ii) Fuzzification – Triangular membership function was used to determine the degree of

membership of input x belongs to a particular fuzzy set is represented in Figure 5.9

Figure 5.9: Requirements elicitation factor

1

 0.7 0.8 0.9 1.0 1.1 1.2 1.30 1.40



X1

Very

clear
Clear

Ambiguous

0.5

Very

ambiguous

125

Given examples of crisp input x1 at 1.05,

 (x1 = Very clear) = 0  (x1 = Clear) = 0 .5  (x1 = Ambiguous) = 0.5

 (x1 = Very ambiguous) = 0

According to Figure 5.9, crisp data x1 = 1.05 falls under clear requirements fuzzy set by

0.5 degree of membership and 0.5 degree of membership in ambiguous requirements fuzzy

set.

iii) Fuzzy Inference System – Rules for requirements elicitation are not combined with

other antecedent as in previous examples, therefore simple IF will establish the rules as

follows:

The result from the above rules are effort multipliers including Low = 0.9, Normal = 1,

High =1.1 and very High = 1.2 of SOA development effort.

 

 

 = 1.05 of SOA development effort

The result of COG is a crisp output of 1.05 which has a normal influence on SOA

development effort. The value is multiplied with other modifiers then the product is

multiplied with the effort size function and service type to give the final effort.

126

5.4.3.2 Business Value

Business value is the perception by the organization on the impact of software product in

relation to organization’s improvement, survival and image. Business risk is also related to

business value in the sense that a system whose failure will have great impact to an

organization is valued more. Business risk in relation to software development is a possible

negative event that may occur in a business as a result of software implementation failure

(Benaroch, Appari, 2010).

More effort is required to build a system that is highly valued and is of high risk to the

organization as compared to a system that is lowly valued and low risk (Farrag, Moawad,

Imam, 2016). A case in point is an e-business enterprise such as Amazon relies on e-

commerce platform for its survival and thus the application is of great value and the risk of

failure has a great impact to the organization. Business risk or value in relation to SOA

development effort is rated from very low to very high as shown in table 5.16.

Table 5.16: Business value effort factor

Business value Very low

value

Low value Normal High value Very high

value

Weight 0.70 0.85 1 1.15 1.30

Based on the relevance and risk that comes with the application system, business value

attributes description include; application software an organization can do without

classified as very low, application to perform non-functional business classified as low,

application to perform a core business process classified as normal, critical system

classified as high and very critical system as very high. The weights allocated are

converted into fuzzy sets through fuzzy logic process as shown below:

127

i) Initialization: Linguistic variable in this case is business value with the following

linguistic values.

 Business value = {very low, low, normal, high, very high}

ii) Fuzzification: Business value fuzzy logic sets are represented using Triangular

membership function as shown in Figure 5.10.

 Figure 5.10: business value fuzzification

Given examples of crisp input x1 at 1.04,

 (x1 = Very low) = 0  (x1 = low) = 0  (x1 = Normal) = 0.4

 (x1 = High) = 0.6  (x1 = Very High) = 0

Figure 5.10 shows input crisp value x1 = 1.16 which falls in normal and high fuzzy sets.

The degree of membership () in normal set is 0.4 and high is 0.6 respectively.

iii) Fuzzy Inference System rules: Mamdani inference system IF rules were used to

evaluate conditions as follows:

X1



1

0.6

Very

low
Low

Normal High Very High

0.4

0.6 0.7 0.8 1.0 1.1 1.2 1.3 1.4

128

Values representing impact of business value of development effort are very low = 0.8, low

= 0.9, normal = 1, high =1.1 and very high = 1.2 .

 

 

 = 1.06 of development effort

Based on the above COG crisp result, 1.06 has normal impact on development effort.

5.4.3.3 Security Requirements

Security requirement is a security condition or capability needed by stakeholders to ensure

confidentiality, integrity, availability, authenticity and authorization of an application

system (Assal & Chiasson, 2018). For an organization where security is a priority such as

financial institutions, they will put more emphasis on demanding applications that are not

vulnerable to threats. The degree of security requirements in the system determines the

amount of effort required to develop the application. Therefore, system with no security

features is classified as very low, low security features is classified as low, confidentiality

and authenticity security features is classified as normal, biometric features is classified as

high while use of algorithm and encryption is classified as very high. Security requirements

factor is categorized as shown in Table 5.17.

Table 5.17 Security Requirements effort multiplier

Security

requirements

Very low Low Normal High security

features

Very high

security

features

Factor 0.70 0.85 1 1.15 1.30

129

Application of fuzzy logic to security requirements is as the following processes.

i) Initialization: Security requirement is the linguistic variable with the following linguistic

values:

Security requirements = {very low, low, normal, high, very high}

ii) Fuzzification: Figure 5.11 illustrates crisp input at x = 1 is fully low security

requirement with 1 degree of membership. In all other sets apart from low set, x = 1 has 0

degree of membership which gives a direct result that need no further computation.

Figure 5.11: security requirements fuzzification

Given examples of crisp input x1 at 1.0

 (x1 = Very low) = 0  (x1 = low) = 0  (x1 = Normal) = 1

 (x1 = High) = 0  (x1 = Very High) = 0

iii) Fuzzy Inference System rules: The rule that applies in this case is IF security

requirements = low which has low impact on SOA application development effort.

X1



1

Very

low Low Normal High Very high

0.6 0.7 0.8 1.0 1.1 1.2 1.3 1.4

130

Where Very low = 0.8, Low = 0.9, Normal = 1, High =1.1, Very High = 1.2

 

 

 = 1 X 1 = 1 of development effort which has no effect on the value of effort.

5.4.4 Personnel Factors

Personnel factors are attributes and behavior of personnel developing a SOA application

system. Personnel factors take into consideration the experience of programmers with the

programming language, experience of developers with the application, experience of

developers with the architecture e.g. SOA and team cohesion. People or personnel factors

are personnel attributes that contributes to SOA development effort (Tarawneh, 2011).

Personnel factors proposed in this study include web service development experience,

Programming language experience, application experience and team cohesion.

5.4.4.1 Web Service Experience

Developers’ experience in web service application is determined by how long developers

have worked with web service applications since when they started developing web service

applications. The more experienced a web service developer is the less effort the developer

will use to develop a web service system as compared to inexperienced web service

developer (Kuan, 2017). Table 5.18 shows classification of web service developers based

on the number of months and years and weights allocated to each category.

Table 5.18 Web service developer’s experience effort multiplier

Personnel

factors

Very low Low Normal High Very High

developer’s 0 to 6 months 6 to 9 months 1 year to 2 2 years to 4 4 years and

131

experience years years above

Factor 1.42 1.17 1 0.86 0.70

This study adopted COCOMO developers’ experience weights whose values were then

converted to fuzzy sets as follows:

i) Initialization: Linguistic variable in this case is Developers’ experience with the

following linguistic values.

Web service experience = {very low, low, normal, high, very high}

ii) Fuzzification: Web service experience factor value is converted to fuzzy sets as in

Figure 5.12

Figure 5.12 Web service developers’ experience fuzzification

Given examples of crisp input x1 at 1.45

 (x1 = Very low) = 0  (x1 = low) = 0.45  (x1 = Normal) = 0.55

 (x1 = High) = 0  (x1 = Very High) = 0

X1 0.5 0.6 0.7 0.8 9.0 1 1.1 1.2 1.4 1.5 1.6

Very

High High Normal Low Very low
1



0.55

0.45

132

Crisp input x1= 1.45 has a degree of membership () 0.45 in low set and 0.55 in normal

logic set. In other logic sets in Figure 5.12, x1 has 0 degree of membership.

iii) Fuzzy Inference System rules- The following rules were generated to display the

outcome of set conditions.

Values for effort are very low = 1.4, low = 1.2, normal = 1, high =0.9 and very high = 0.7

 

 

 = (0.55 X 1) + (0.45x1.1)/(0.55+0.45) = 1.05 which has a normal impact on

software development effort.

5.4.4.2 Application Experience

This factor defines the programmers experience with the type of application. A

programmers knowledge on an application determines the amount of effort spend when

developing a web service. For instance, a programmer who is not familiar with a Banking

application will spend more effort to develop a web service as compared to a programmer

who is familiar with the application. This study adopted COCOMO weights in classifying

application experience based on average developers’ application experience on a particular

application type in number of months and years as shown in Table 5.19.

Table 5.19 Application experience effort multiplier

Application Very low Low Normal High Very High

133

Experience

Application

Experience

0 to 6 months 6 to 9

months

1 year to 2

years

2 years to 4

years

4 years and

above

Factor 1.30 1.10 1 0.90 0.80

This study adopted COCOMO developers’ application experience weights which were

rounded off to the nearest 0.10
th

 whose values were then converted to fuzzy sets as follows:

i) Initialization: Linguistic variable in this case is application experience with the following

linguistic values. Application experience = {very low, low, normal, high, very high}

ii) Fuzzification: Application experience factor fuzzy sets are as shown in Figure 5.13

Figure 5.13 Application experience fuzzification

Given examples of crisp input x1 at 1.08

 (x1 = Very low) = 0  (x1 = low) = 0.8  (x1 = Normal) = 0.2

 (x1 = High) = 0  (x1 = Very High) = 0

Values assigned to impact of application experience to effort are very low = 1.3, low = 1.1,

normal = 1, high =0.9 and very high = 0.8

This will affect the following 2 rules,

COG = (0.8 x 1.1) + (0.2 x 1.0)/ (0.8+0.2) = 1.08 of development effort.

1


Very

High High
Normal Low Very low

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

X1

0.8

0.2

134

5.4.4.3 Programming Experience

Programming experience factor is a measure of how long developers have worked with a

programming language. An experienced developer with a particular language understands

the language syntax, libraries and other issues regarding the language including the

programming environment. Therefore, the developers experience in a particular language

determines the amount of effort used to develop a web service application. This study

adopted COCOMO programming experience as shown in Table 5.20.

Table 5.20 Programming experience effort multiplier

Application

Experience

Very low Low Normal High Very

High

Application

Experience

0 to 6 months 6 to 9 months 1 year to 2

years

2 years to 4

years

4 years

and above

Proposed

factor

1.30 1.10 1 0.90 0.80

This study adopted COCOMO developers’ application experience weights which were

rounded off to the nearest 0.10
th

 whose values were then converted to fuzzy sets as follows:

i) Initialization: Linguistic variable in this case is application experience with the following

linguistic values.

 Application experience = {very low, low, normal, high, very high}

ii) Fuzzification: Application experience factor value was converted to fuzzy sets as in

Figure 5.14.

Very

High
High

Normal Low Very low 1

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5



X1

0.75

135

Figure 5.14: Programming experience fuzzification

Given examples of crisp input x1 at 1.25

 (x1 = Very low) = 0.75  (x1 = low) = 0  (x1 = Normal) = 0

 (x1 = High) = 0  (x1 = Very High) = 0

Values assigned to impact of application experience to effort are very low = 1.3, low = 1.1,

normal = 1, high =0.9 and very high = 0.8

IF (application experience=very low) THEN effort = very low

= 0.75 x 1.3 = 0.975 of development effort.

5.3.4.4 Team Cohesion

Team cohesion factor takes into consideration the team members shared vision, teamwork

and consistency of members’ objectives. SOA involves integration of services which

requires team dynamics and collaborations (Gupta, 2013). Software development is a

teams’ effort that requires coordination among members with regard to integrating service

developed by different programmer. A team that is cohesive encourages seamless

communication among members and willingness to accommodate other members. Team

cohesion is rated from low to very high based on the level of team cohesiveness. The more

a team is cohesive the lesser effort is spent to develop a web service application system as

compared to a team that is less cohesive. Table 5.21 shows team cohesion factor weights

and description.

Table 5.21 Team Cohesion factor

136

Personnel

factors

Very low Low Normal High Very

High

Team

Cohesion

Highly

intolerable

team with

irreconcilable

objectives

Intolerable

team with

irreconcilable

objectives

accommodate

opinions &

reconcilable

objectives

Consistency

of objectives

and

Shared

long term

vision and

objectives

Factor 1.30 1.15 1 0.85 0.70

Applying fuzzy logic to a value x = 1 then,

 (x1 = Very low) = 0  (x1 = low) = 0  (x1 = Normal) = 1

 (x1 = High) = 0  (x1 = Very High) = 0

This will have an impact on one IF rule that is .IF (Team Cohesion=Normal) THEN effort

= very low = 1 x 1 = 1 of development effort.

5.5 Effort Estimation Method Example

The proposed SOA effort estimation method predicts effort for SOA application software

based on size metrics proposed in chapter 4 in web service points. The total effort for

developing the entire system is calculated by taking into consideration the SOA application

size, product of STF and product of EMF. Each of these factors have significant impact on

SOA development effort. Given purchase order SOA application discussed in chapter 4

with size of 3.657 KLOC and STF = 1.2, The Final Effort is computed by considering the

product of EMF.

Assuming EMF values for each factor was computed as shown in Table 5.22 Therefore

final effort is computed as shown in Equation 5.4.

Final Effort (Purchase order) = STF * A * (Application size)
B
 *

 (5.4)

Table 5.22 Purchase order SOA application EMF

137

S/N SOA Effort Factor

categories

SOA Effort factors Rate Factor

value

1 Product factors Database complexity & size (DC) Small 1.15

User interface complexity (UIC) Simple 1

Integration complexity (IC) Simple 1

2 Service development

environment

Development tool support (DT) Normal 1.15

Infrastructure capabilities (FC) Low 1.15

3 Requirements

specification factors

Requirement elicitation (RE) Clear 0.85

Business risk/value (BR) Low 0.85

Security requirements (SR) Normal 1

4 Personnel factors Web service experience (SE) Low 1.15

Application experience (AE) Very low 1.30

Programming Experience (PE) Very low 1.30

Team cohesion (TC) Normal 1

 *
 = DC * UIC * IC * DT * HS * RE * BR * SR * DE * AE * PE * TC

 = 0.8 * 1 * 1.15 * 1 * 1 * 1.15 * 1.15 * 0.85 * 0.85 * 1 * 1.15 * 1.30 * 1 * 1= 1.314

Therefore, Final Effort (Purchase order) = STF * A * (service size)
B
 *

Effort (Purchase order) = 1.2 * (3.2 * (3.657)
1.05

) * 1.314 = 19.683 persons per month

In the above example, effort is estimated as a function of service size then multiplied by

the product of service factors and product of effort multiplier factors value to give the final

effort. Effort computed before including EMF was 14.98 persons per month but after

inclusion of EMF product, final effort was 19.683 persons per month. This shows that the

product of EMF has a great impact on development effort.

5.6 Chapter Summary

SOA Effort estimation method provides predictions on the amount of effort to use when

developing a SOA system. Effort estimated in this case constitutes effort across all phases

of software development from requirements specification to Implementation. Effort is a

138

key component derived from SOA size with an aim of accurate estimation of effort, cost

and scheduling. Empirical validation was employed to the proposed effort estimation

method to ascertain its validity and accuracy.

139

CHAPTER SIX

IMPLEMENTATION OF SIZE METRICS AND EFFORT ESTIMATION TOOL

(SOA-SMET)

6.1 Introduction

This chapter provides a detailed description of a prototype tool named SOA Size Metrics

and Effort Estimation Tool (SOA-SMET) based on the proposed SOA size metrics and

effort estimation method. The chapter describes elements of the tool’s development process

from requirements specification and prototype architecture and implementation.

6.2 Requirements of SMET

The main objective of SOA size measure and effort estimation prototype tool is to allow

entry of SOA size and effort attributes, compute SOA size and estimate effort then display

the result. Requirements of SOA size metrics and effort estimation tool includes:

i) Allow entry of SOA size attributes which includes number of weighted service

operations, number of parameters contained in an operation, number of weighted

dependency, number of weighted messages and number of weighed services. The

tool provides two options of entering size attributes which include:

a) To automated feature extraction from UML using deep learning techniques.

These techniques include EAST detector to detect service operations names,

Tesseract OCR to recognize service operations names and Multi-class SVM to

classify operations into simple, average and complex. On the other hand,

ResNet50 CNN is used to detect arrows depicting dependency and message

exchange among service interfaces.

140

b) The other method for entering SOA size attributes is through direct entry by

manual entry of values via form text box elements.

ii) Use algorithms to compute Weighted Operation Count (WOC), Service

Dependency Count (SDC), Weighted Message Count (WMC) and Weighted

Service Count (WSC).

iii) Allow users to select service types and SOA factors that have impact of SOA

development effort.

iv) Use an Algorithm to compute Effort for SOA application based on SOA size,

product of service type factor and EMF product.

v) Display the result of WOC, SDC, WMC and WSC computation for each service.

vi) Display effort estimated for the entire SOA application.

6.3 Architecture of SMET

Software architecture is an organization of different software components to enhance

seamless information sharing among software components (Cao, Wei & Qin, 2013). In this

study, SMET was constructed based on automated UML Feature Extraction component,

manual SOA size attributes entry, SOA size metrics computation and effort computation

components as shown in Figure 6.1. The automated UML feature extraction component

consists of machine learning and deep learning techniques to detect and recognize text,

classify text and detect UML dependency and message exchange arrows. On the other

hand, manual SOA size attributes value entry component, allow manual input of SOA size

attribute values via the keyboard and mouse click. Upon entry of values automatically or

manually, the tool computed SOA size metrics and SOA development effort.

141

Figure 6.1: SMET architecture

6.3.1 Automated UML Feature Extraction Component

The automated UML feature extraction component of the prototype tool provides a

platform for detecting UML service interface operations, service dependency and message

DATA LAYER

COMPUTE SOA SIZE AND ESTIMATE

EFFORT

AUTOMATED UML

FEATURE EXTRACTION

Operations names

extraction

Operations names

Classification

Compute SOA size

based on size attribute

UML arrow

detection

SOA Application

details

Compute SOA

Development effort

Service details

MANUAL SOA SIZE

ATTRIBUTES VALUES

ENTRY

Number of

operation

Number of

dependency

Number of

messages

142

exchange arrows automatically. One of the input components for SOA-SMET is the UML

image recognizer which enables uploading of UML service interface diagram and UML

sequence diagram images in picture file formats including bmp, gif, png and jpg. Operation

names text from UML diagram that represent SOA attributes are extracted through deep

learning text detection, text recognition and text classification. In addition, dependency and

message exchange arrow head are also detected using deep learning technique.

6.3.1.1 Service Operation Names Extraction

Text embedded into an image can easily be manipulated once extracted from the image.

Text extraction involves 2 steps which includes text detection and text recognition. Text

detection determines the presence of text in an image while text recognition identifies the

text detected. The tool was required to extract service operation names for the purpose of

classifying the names as simple or average or complex to compute Weighted Operation

Count (WOC). For instance, given a UML diagram in Figure 6.2, the task was to extract

operation names listed in lower rectangles representing service operation names.

Figure 6.2: Taxi Service UML interface diagram

143

This study used an existing deep learning technique known as Efficient and Accurate

Scene Text detection (EAST) pipeline to identify operation names contained in UML

diagram images. EAST text detector is a Fully Convolution Network (FCN) deep learning

technique which is efficient and effective when dealing with different types of text

including text of different shapes and texts with different shades and fades (Zhou et al.,

2015). This study used python and openCV library to implement EAST detector. The

implementation utilized feature maps to determine the probability of regions containing

text in an image and defined coordinates of text bounding box by highlighting text as

shown in Figure 6.3.

Figure 6.3: Highlighted operation names detected by EAST detector

The second step in text extraction from UML image is text recognition which takes the

identified text by EAST detector and store the text into an array. This study used an

144

existing technique known as Tesseract OCR with an inbuilt deep learning technique

referred to as Long Short Term Memory (LSTM) to extract text more efficiently and

accurately. This study implemented Tesseract OCR using Python programming language

which facilitated storage of extracted text into arrays. Python also enabled separation of

service interface name and operation names with the use of conditional structure “IF” to

discard names with symbols << or >> and only allow names that ends with brackets which

in this case are service operation names in the lower rectangle of UML interface diagram.

The sample result of Tesseract OCR is as shown in Figure 6.4.

Figure 6.4: Group of text recognized by Tesseract OCT

6.3.1.2 Service Operation Classification

The ultimate objective of text extraction and classification is to determine the type of

service operation which includes simple, average and complex operation. This study used a

machine learning technique known as Multi-class Support Vector Machine (SVM) to

analyze a group of text and classify them accordingly. First of all, SVM was exposed to a

wide variety of possible operation names for the purpose of training the model. In this

context, a dataset of 1200 operation names with 3 categories of simple, average and

145

complex operation names was used to train the SVM model and a dataset of 100 operation

names was used to test the model. This study sourced operation names from various

repositories to create a datasets for training and testing purpose.

6.3.1.3 Arrow Head Detection

This study employed an existing deep learning technique known as ResNet50 CNN (He,

Zhang, Ren & Sun, 2016) to detect types of arrows in UML service interface diagram and

UML sequence diagram to determine the type of dependency or composition and type of

message exchange among services respectively. Convolutional Neural Network (CNN) is a

deep learning technique made up of neurons with learnable weights and biases. CNN is

trained with datasets to analyze and classify patterns (Tripathi & Kumar, 2019). The

objective of ResNet50 CNN in this study was to detect and classify UML interface arrows

into atomic, lighter aggregation and strong composition and UML sequence diagram

arrows into synchronous, asynchronous and reply arrows.

A dataset of 900 UML interface arrow images with the three defined categories was used

to train the model and 100 arrow images were used to test the model. The same applied to

UML sequence diagram arrows which the study used a dataset of 900 arrow images to train

the model and 100 images to test the model. The study constructed the arrow images and

sourced from different repositories due to non-availability of specific host for arrows for

UML diagram online. Python programming language supported by Tensorflow and Keras

frameworks were used to implement the model. A sample result after uploading UML

interface image to the model is as shown in Figure 6.5.

146

Figure 6.5: WOC arrow classification by ResNet50 CNN

The same principle was applied to UML sequence diagram where arrow heads were

classified as synchronous, asynchronous and reply represented as s, a and r as shown in

Figure 6.6.

Figure 6.6: WMC arrow classification by ResNet50 CNN

147

Once the respective arrow types are captured, python is able to count the number of each

arrow type using a counter.

6.3.2 Manual Entry/Display

Apart from reading UML image automatically, a session of computing SOA size may also

start with the user capturing SOA size attributes through entering into the tool the size

attributes values via a form to compute WOC, SDC and WMC as in Figure 6.7. Direct

input through entering size attributes via a form provided an alternative to automated UML

feature extraction. It is used in situations where UML diagram is not clear or when it is

handwritten or an image cannot be loaded due to various reasons.

Figure 6.7 SMET Manual entry interface of SOA size attributes

148

Furthermore, effort estimation factors such as service type factors and Effort multiplier

factors can only be entered via the form elements and cannot be entered automatically.

Service types are selected among provided options while effort multiplier efforts are

entered through a slide element due to fuzzy logic application that requires continuous data

input as shown in Figure 6.8.

Figure 6.8: SMET Effort factors input interface

149

6.3.3 Business Logic Layer

Business logic layer also known as the middle tier layer links the presentation layer with

the data layer. In this tool, components in this layer receive data from automated UML

feature extraction component or Manual Entry component, process the data then send

result to data layer. This layer performs control of data functionalities and data

manipulation through arithmetic, logical and conditional expressions (Cao, Wei & Qin,

2013).

In this study, user-side interactive scripting known as JavaScript and Common Gateway

Interface known as php scripting language were used to build the business logic of the

proposed prototype. JavaScript was employed to enable data manipulation, validation and

controls at the user-side browser before data is send to the server. On the other hand, data

send from the form is received by php, manipulated by php then send to a database

management system.

The SOA-SMET prototype business logic performs computation on Service operations

attributes to give WOC, Service dependency attributes to give SDC and Message

movement attributes to give WMC. The tool then compute SOA size by summing WOC,

SDC and WMC. Furthermore, SMET estimates effort for the entire SOA application after

including Service Type Factors (STF) and Effort Multiplier Factors (EMF).

SMET Algorithms - Algorithm provide a step by step procedure in simple English

showing the processes involved including input, computation flows and output. SMET

algorithms provide detailed procedure of how metrics are computed and effort estimated.

SMET algorithm includes SOA size metrics algorithm and Effort estimation algorithm.

150

Where size attributes input in this case is either through SMET UML recognizer or direct

input via text elements.

i) SOA Size metrics Algorithm

START

Input SOA application name (Appname)

Input number of service contained in an application (N)

Count=0 ; Atotal =0; Stotal = 0;

Weighted Operation count (WOC)

Count number of simple operation(s) contained in a service (SO)

Count number of average operation(s) contained in a service (AO)

Count number of complex operation(s) contained in a service (CO)

Count number of parameters contained in a service (P)

Weighted Operation Count (WOC) = 2SO + 3AO+ 4CO + P

Write (WOC)

Weighted Service Dependency count (SDC)

Count number of atomic dependencies (A)

Count number of lighter aggregation dependencies (G)

Count number of strong composition dependencies (T)

Service Dependency Count (SDC) = A + 2G+ 3T

Write (SDC)

Weighted Message count (WMC)

Count number of synchronous messages from a service (S)

Countnumber of Asynchronous messages from a service (AS)

Count number of reply messages (R)

Weighted Message Count (WMC) = 3S + 2AS+ R

Write (Sname+WMC)

151

Weighted Service Count (WSC)

Weighted service count (WSC) = WOC+SDC+WMC

Write (WSC)

ii) SOA Effort Estimation method algorithm

Service type factors

WHILE (count<n)

Count=count+1;

Select Service construction (SC) type[Available/migrated/New]

If service=available SC=0.6

else if service=migrated SC=0.8

else if service=New SC=1

 Select Service communication protocol (SP) type[SOAP/REST]

If service=SOAP SP=1.2 else if service=REST SP=1

 Service type factor (STF) = SC * SP

 Total STF = Stotal*STF // Compute total service type factor for the entire application

 End while

Effort multiplier Factors (EMF) computation

x=0; f=1;

X++

Select Service Effort multiplier Factors ratings

EMF = f*Factor

End while

Display EMF

SOA application size computation

SOA Application effort (SAE) = 3.2 * (WSC*53) ^ 1.05 * STF * EMF

Display (Appname + SAE)

STOP

152

The algorithm show the processes involved in SMET which are structured in nature. The

processes include arithmetic operations, logical operations and control operations. The

algorithm shows how the tool calculates SOA size also referred to as WSC. The algorithm

multiply service construction type factor with service architectural type factor to give

service type factor (STF). STF for all services are multiplied then used to estimate effort

together with the product of Effort multiplier Factors (EMF) to compute the estimated

effort.

6.3.4 Data Layer

Data layer provides database management functionality responsible for modeling data to

ensure optimization of data access, data consistency and data security (Cao, Wei & Qin,

2013). This layer is concerned with storage, indexing and relational modeling of a database

which forms the prototype storage backbone. Data layer receives result from business logic

layer after computation and provides data to the same for further analysis and

manipulation.

SMET data layer model identified two main entities namely SOA application entity and

Service entity. The SOA application entity stores details of a SOA application while

service entity represents individual service details. The two entities are related in a one-to-

many relationship with the application entity being the parent and service entity the child

entity.

6.3.5 SMET Output

SMET output is a simple display of results of SOA size metrics and effort estimation

method computation. Results are presented as a report detailing the name of the

application, number of services, results of WOC, SDC, WMC and WSC. To compute

153

WOC, SDC and WMC metrics, the user clicks compute button for each metric and the

result is displayed via the provided text box element. Output from computed WOC, SDC

and WMC provide input to WSC which is computed automatically to give the size of a

service.

WSC is multiplied by constants by Service type Factor (STF) and by Effort multiplier

Factors (EMF) to estimate effort for developing SOA application. User selects service

construction type (SC) and service communication protocol type (SP) options through the

two drop-down menus provided in the effort estimation form interface to compute service

type factor (STF). Lastly, users select EMF by moving the slider to a specified EMF

factor rating.

6.4 Chapter Summary

This chapter provided details of SMET prototype tool implemented to capture SOA size

attributes to compute size and estimate SOA effort. The tool provides an automatic

interface for capturing UML diagram images through feature extraction and manual entry

of SOA size attributes via a form. The prototype tool then computes SOA size and estimate

effort for SOA based on values entered or captured automatically. The results of the tool

size computation and estimation are stored in a database.

154

CHAPTER SEVEN

AN EMPIRICAL VALIDATION OF PROPOSED METRICS, EFFORT

ESTIMATION METHOD AND AUTOMATED TOOL

7.1 Introduction

This chapter provides a detailed analysis of SOA size metrics, effort estimation method and

automated tool empirical validation based on a laboratory experiment and a survey. The

experiment involved 15 SOA based projects developed by university students. The survey

was used to gather experts’ opinion on the validity of the proposed SOA size metrics,

proposed effort estimation method and the proposed automated prototype tool. The main

objective of empirical validation was to test correlation between size attributes and SOA

size, test correlation between SOA size and SOA development effort, test the accuracy of

the SOA size metrics, SOA development effort estimation method and the implementation

prototype tool.

7.2 Empirical Validation Strategy

The 15 SOA based projects were exposed to the proposed size metrics and function points

analysis metrics to compare the results of the two approaches. From the proposed size

metrics, development effort for each SOA based project was computed and compared with

COCOMO effort estimates and the actual effort to determine the proposed effort estimation

method accuracy. The implementation tool was also tested to determine the accuracy of

deep learning techniques used in the tool. Lastly expert opinion via questionnaire were

used to test the validity of each attribute, validity of size metrics and effort factors

proposed in the study with regard to their influence to SOA effort estimation effort. Expert

also validated the appropriateness of the implementation tool.

155

Experimentation Empirical validation preparation started by guiding 15 groups of students

on how to develop software requirement specification (SRS) document and Software

Design Document (SDD) for web service. The web service projects’ SDD provided design

artifacts such as UML diagram, Entity Relation Diagram (ERD) and Data Flow Diagram

(DFD) which revealed key attributes and dimensions used to measure web service size.

The groups were tasked to use the design artifacts to develop web service projects as they

record the time each student worked on the project from requirement specification phase to

integration phase.

The experiment involved subjecting web service projects design UML artifacts to the

proposed SOA size metrics to measure web service size. The projects DFD and ERD were

then exposed to Function point size metrics to enable comparison of the proposed metrics

and function point analysis metric results for the purpose of testing the accuracy of the

proposed metrics. Analysis of experiment results provided details on the relationship

among variables proposed in the study. Furthermore, the accuracy of deep learning

techniques used in the implementation automated prototype tool was tested based on

testing datasets.

Secondly, the proposed effort estimation method was used to estimate effort spend to

develop each SOA based project in persons per day. The estimated effort was then

compared with COCOMO estimated effort and also compared with the actual effort spend

to determine the proposed method’s validity. Lastly, a survey was used to capture experts’

opinions and analyses of the opinions were done to determine the validity of variables used

in the study.

156

7.3 Context Definition

The laboratory experiment was intended to test the achievement of objective 1 and 2 of this

study by measuring the accuracy of the proposed SOA size metrics and effort estimation

method as compared to function point analysis and COCOMO II respectively. The

experiment involved 15 web service based projects developed by 15 groups of 3
rd

 year

undergraduate Computer Science students from Meru University of Science and

Technology. Apart from one group with 6 students, all other 14 groups had 5 students per

group which is a total of 76 students who participated in the experiment.

7.4 Experimental Preparation

The subjects used in this study were 76 students in 3
rd

 year BSc. Computer Science

students who were all selected based on the fact that they were taking a course named CCS

3353 Research Method and Group project as part of their third year second semester

course. Before this experiment the participants had knowledge in Systems Analysis and

design, Fundamentals of computer programming, Object oriented programming, IT project

management and Internet application programming which provided relevant background

knowledge to this experiment.

The subjects being students, had no experience in the industry and had no knowledge of

SOA based project development before this experiment. This challenge was addressed by

training the subjects in SOA projects requirement specifications, systems design, SOA

construction, testing and integration. More emphasis was on training subjects how to

develop DFD, ERD, UML interface and UML sequence diagrams.

157

Experimental objects included 15 SOA based projects Systems design artifacts modeled

using DFD, ERD, UML interface and UML sequence diagrams. DFD and ERD revealed

SOA size attributes as input to Function point analysis while UML interface and UML

sequence diagrams revealed attributes to enter into the proposed SOA size metrics. Other

materials used in the experiment include laptops, lecture notes, web server, text editors and

system design tools.

7.5 Experimental Planning

The goal of this experiment was to determine the relationship between size attributes and

SOA size. The second goal was to test the relationship between SOA size and SOA

development effort, the third goal was to determine the accuracy of the proposed SOA size

metrics, the fourth goal was to determine the accuracy of SOA effort estimation method

and lastly to determine the accuracy of deep learning techniques used in the automated

implementation tool.

Variables in this experiment included SOA size attributes, SOA size, SOA development

effort factors and SOA development effort. This study was set to check 2 sets of

relationships. The first relationship was between SOA size attributes as independent

variables and SOA size as the dependent variable. The second set of relationship was

between SOA effort factors as independent and SOA effort as the dependent variable.

Correlation among variables in this study was determined by testing relationship between

size attributes and SOA size and between SOA size with effort for developing SOA. The

accuracy of the proposed SOA size metrics and Effort development method were

determined by comparing the results of the proposed SOA size metrics with Function point

analysis metric results. The accuracy of the proposed SOA effort estimation method was

158

compared with COCOMO effort estimation result and also compared with actual effort

used to develop the 15 projects.

Planning for the implementation automated tool involved preparing the datasets for

machine learning and deep learning techniques used in the tool. Due to unavailability of

datasets for UML service operation names and arrows depicting service dependency and

data movement, this study embarked on collecting images from various sources. Sources

that provided datasets for this study included random identification of operation names and

arrows used in various UML images from various sources accessed online.

7.5.1 Hypotheses

This research study conceptualized the following 4 hypotheses statement to guide

experimentation analysis.

Null hypothesis H0: There is no correlation between size attributes and SOA size

Alternative hypothesis H1: There is a correlation between SOA size attributes and SOA

size.

Null hypothesis H0: There is no correlation between SOA size and SOA development

effort.

Alternative hypothesis H1: There is a correlation between SOA size and SOA development

effort.

Null hypothesis H0: The proposed SOA size metrics and effort estimation method are less

accurate as compared to existing metrics and methods.

Alternative hypothesis H1: The proposed SOA size metrics and effort estimation method

are more accurate as compared to existing metrics and methods.

159

Null hypothesis H0: The proposed SOA automated tool deep learning techniques are not

accurate in extracting UML text and images.

Alternative hypothesis H1: The proposed SOA automated tool deep learning techniques are

accurate in extracting UML text and images.

7.5.2 Threats to Validity

Validity threats in the experiment included construct validity, internal validity and external

validity. Construct validity was ensured by subjecting metrics to theoretical validity tests.

On the other hand, internal validity threat was as a result of inconsistencies and errors in

students SOA based project design artifacts. To reduce this threat, the design artifacts had

to undergo a thorough cleaning by removing and correcting inconsistencies and errors.

Given that experiment involved students with no industrial experience, the proposed

metrics and methods were subjected to expert opinion to reduce external validity. Lastly, to

ensure all possible operation names and UML arrows are captures, images sources for

training and testing purposes were collected exhaustively from various sources online to

capture a wide range of images.

7.6 Experimental Operation

Experiment process started from 4
th

 March 2019 where students were required to

developed software requirement specification (SRS) document for SOA based project as

they record the actual time taken to gather user requirements and develop the document.

Each group submitted their SRS documents by 8
th

 March 2019 which were verified and

errors corrected before design phase. The corrected SRS documents were then re-submitted

on 13
th

 March 2019 and verified again before the next phase.

160

Upon verification of SRS documents, the groups were guided on how to develop a SOA

based Software design document (SDD). The design phase ran from 18
th

 March 2019 to

29
th

 March 2019 with each group recording the time spent by each individual student to

work on SDD. After correcting and verifying SDD, construction of SOA based projects

progressed from 2
nd

 April 2019 to 19
th

 April 2019 after which integration and testing were

done from 24
th

 April 2019 to 3
rd

 May 2019 with developers recording the time taken in

each phase. Based on the final SOA based projects and documentations that were presented

and submitted by each group, design artifacts were used as inputs to the proposed SOA size

metrics and Function point analysis metrics.

UML interface diagram and UML sequence diagram revealed SOA size attributes as input

to the proposed SOA size metrics. The attributes included number of operations per service

measured by Weighted Operation Count (WOC) metrics, Number of dependencies

measured by Service dependency Count (SDC) and Data movement measured by

Weighted Message Count (WMC). On the other hand, attributes entered to Function point

analysis were derived from DFD and ERD diagrams. The DFD and ERD attributes

included Internal Logic File(ILF), External Interface File (EIF), External Input (EI),

External Output (EO) and External Query (EQ).

Based on size attributes captured from design artifacts , SOA size was computed for each

project and actual time used to develop the projects were recorded for further analysis. To

compute SOA effort estimation, students recorded the type of services contained in each of

project in relation to Service Architectural (SA) and Service Construction (SC) types. In

addition, EMF details were captured from each group including product factors, service

development environment factors, requirement factors and personnel factors. Due to

161

inability by students to capture their EMF effectively, these factors were captured through

observation and experience with students as they interact with their projects. For instance,

students could not capture their experience, team cohesion and other factors with sincerity

and honesty. With all factors gathered from the 15 SOA based projects, effort for

developing each the project was computed.

On the other hand, to develop deep learning models for the automated tool, datasets were

required to train and test the existing techniques. In this regard, UML dependency or

composition arrow types were collected from various sources, then they were grouped in

two folders namely training folder and testing folder. In each of the folder, three sub-

folders named atomic, aggregation and composite were created to store their respective

arrow types with each folder holding 300 specific arrows. The same procedure was done

for UML sequence diagram arrows grouped into asynchronous, synchronous and reply sub-

folders with 300 arrow type in each folder. A GPU machine was used to train and test the

ResNet50 CNN technique to come up with the model.

In the same principle, possible operation names were collected for training and testing the

SVM technique for classifying operation names into simple, average and complex

operations. However, EAST detector and Tesseract OCR (LSTM) did not require training

but they were also tested for accuracy in relation to the UML interface operation names.

Testing for EAST detector and Tesseract OCR involved 100 different operation names

contained in UML diagrams.

162

7.7 Experiment Results

This section provides a detailed analysis of SOA size metrics validation, SOA development

effort estimation method validation and SOA implementation prototype tool validation

results. SOA size metrics validation involves comparison with Function Points Analysis

results while effort estimation validation includes comparison with COCOMO results and

the actual development effort.

7.7.1 SOA Size Metrics Validation Results

Data was collected from the 15 SOA based projects in two sets which include data for the

proposed SOA metrics and data for Function point analysis to compare the two metrics

results accuracy in relation to SOA. Table 7.1 represents results of the proposed SOA size

metrics based on 15 SOA application projects. The Table shows the values of WOC, SDC,

WMC and SOA size (WSC) in web service points. These values were captured from UML

service interface and UML sequence diagrams designed by students for SOA projects.

Based on size metrics values, WOC contributes more to SOA size an average of 70% of

SOA size while SDC and WMC contribute 30% of total SOA size. However, in projects

that involve linking with services contained in legacy systems and services outside the

organization will impact positively to SDC and WMC. Being student SOA project,

dependency was only within the project itself rather than outside impacting negatively to

the value of SDC and WMC.

163

Table 7.1: Data Analysis for the proposed SOA size metrics

Project

ID

Project Name WOC SDC WMC SOA

size

(WSC)

1 Online Carpool System
31 7 6 44

2 Online doctors’ appointment system
24 3 3 30

3 SACCO management system
32 4 6 42

4 Online Event & Catering system
25 7 6 38

5 Bus service online reservation system
27 5 5 37

6 Online furniture purchase system
27 4 7 38

7 Construction Material online purchase

systems
29 4 7 40

8 Prime freelance systems
30 7 7 44

9 Real Estate online property

management system
28 7 6 41

10 Tourism and accommodation online

system
23 6 3 32

11 Apartment rental online system
27 6 6 39

12 Online Horticulture Sales Information

system
30 8 3 41

13 CDF disbursement management

system
25 5 3 33

14 Online Pharmaceutical management

system
27 5 6 38

15 Online Event ticketing system
24 5 3 32

7.7.1.1 SOA Size Metrics descriptive analysis

According to Table 7.1, details captured from each project shows the projects were small in

size and developed in a predicted environment. Being small projects developed by

students, SOA size for all projects were less than 50 web service points with the biggest

project having 44 web service points and the smallest project had 30 web service points.

164

Having used projects developed by students in this study, the time duration and scope of

SOA based projects used in this experiment are closer to each other as indicated in the

standard deviation. Summary of descriptive statistics for SOA size experiment results are

as shown in Table 7.2.

Table 7.2 Descriptive analysis for the proposed SOA size metrics

Descriptive

analysis

WOC SDC WMC SOA size (WSC)

Maximum 32 8 7 44

Minimum 23 3 3 30

Mean 27.26667 5.6 5.2 37.93333

Standard

deviation
2.737743 1.45733 1.641718 4.415341

Based on Table 7.2 descriptive statistics, average size of projects developed by students

was 37.9333 and standard deviation was 4.415341. The maximum WOC was 32 while the

minimum SDC and WMC were 3 and 3 respectively. The same pattern is revealed when

computing maximum value, mean and standard deviation.

7.7.1.2 Function Point Size Metric Descriptive Analysis

Function Point Analysis was used as a benchmark to the proposed SOA size metrics.

Function was selected based on its popularity with the industry and has been calibrated

several times. Based on DFD and ERD design artifacts from the 15 projects FP analysis

was computed project size as in Table 7.3.

Table 7.3: Data Analysis for Function point analysis

Proj.

ID

Project Name ILF EIF EI EO EQ UFP

165

1 Online Carpool System 12 0 12 3 3 30

2
Online doctors’ appointment system 7 0 5 3 3 18

3 SACCO management system 12 0 6 4 3 25

4 Online Event & Catering system 9 0 4 3 4 20

5 Bus service online reservation system 12 0 6 3 3 24

6 Online furniture purchase system 12 0 5 4 3 24

7 Construction Material purchase systems 14 0 5 3 4 26

8 Prime freelance systems 11 0 7 4 3 25

9 Real Estate online property management

system
12 0 4 3 3 22

10 Tourism and accommodation system 9 0 7 2 3 21

11 Apartment rental online system 11 0 7 3 6 27

12 Online Horticulture Sales Information system 16 0 6 7 6 35

13 CDF disbursement management system 10 0 7 3 3 23

14 Online Pharmaceutical management 13 0 5 3 4 25

15 Online Event ticketing system 9 0 7 2 3 21

However, whereas the proposed size metrics are focused on web service projects, Function

Point analysis is for all types of application software. This study used FP analysis to

compare with the proposed SOA size metrics accuracy. Table 7.3 shows details of the 15

SOA based projects attributes based on Function point measurement. Because the projects

are relatively small in size, the unadjusted function point (UFP) returned is low. For all the

SOA based projects used in the experiment no project was linked to an outside application

for the purpose of external storage and thus they all returned 0 for External Interface file

(EIF). Table 7.4 shows a descriptive statistics for the 15 web service project subjected to

Function point analysis.

Table 7.4: Descriptive analysis for Function Point

Descriptive ILF EIF EI EO EQ UFP

166

statistics

Maximum 16 0 12 7 6 35

Minimum 7 0 4 2 3 18

Mean 11.2666667 0 6.2 3.333333 3.6 24.4

Standard

deviation
2.25092574 0 1.934647 1.175139 1.055597 4.188419

As compared to the proposed SOA metrics, Function point returned lower mean points of

24.4 due to the fact that, Function point analysis focuses more on the structured design

with no points for integration, dependencies and data movement. The accuracy of the

proposed SOA metrics and Function point analysis can be determined when using their

results to compute development effort. Lastly, there is a high relationship between the

results returned by the proposed SOA metrics and function points analysis results with a

coefficient of 0.654 which indicates there is a correlation between the value of size

computed by the proposed metrics and Function Point analysis.

7.7.1.3 Correlation between Size Metrics and SOA Size

The three metrics that contribute to SOA size namely WOC, SDC and WMC were each

tested for correlation with SOA size based on linear regression analysis. Based on Table

7.5 regression analysis, there is a high degree of correlation between WOC metric and

SOA size as indicated by the value of R at 0.912, R
2
 at 0.831 and a p-value of 0.000 as

shown in Table 7.6.

Table 7.5: Correlation between WOC metrics and SOA size

Model R

R

Square

Adjusted

R Square

Std. Error of the

Estimate

1 0.912
a
 0.831 0.818 1.884

a. Predictors: (Constant), WOC

167

Table 7.6: ANOVA analysis correlation between WOC metrics and SOA size

Model

Sum of

Squares Df

Mean

Square F Sig.

1 Regression 226.794 1 226.794 63.900 0.000
b

Residual 46.140 13 3.549

Total 272.933 14

a. Dependent Variable: Size

b. Predictors: (Constant), WOC

Secondly, linear regression analysis was used to test the correlation between SDC and SOA

size but the relationship was not significant as shown in Table 7.7 where the R value is

0.494 and R
2
 value is 0.244. This lack of significance was as a result of using student SOA

projects in the experiment with minimum aspect of service dependency among services as

compared to real life services in organizations that are linked to services within and outside

the organization.

Table 7.7: Correlation between SDC metrics and SOA size

Model R R Square

Adjusted R

Square

Std. Error of

the Estimate

1 0.494
a
 0.244 0.186 3.983

a. Predictors: (Constant), SDC

Based on Table 7.8 linear regression analysis, there is a significant correlation between

WMC and SOA size as indicated by R value at 0.731 and R
2
 value at 0.534. In addition,

WMC is a key indicator of SOA size as shown in Table 7.9 p-value of 0.002.

Table 7.8: Correlation between WMC metrics and SOA size

Model R

R

Square

Adjusted R

Square

Std. Error of

the Estimate

1 0.731
a
 0.534 0.498 3.129

168

a. Predictors: (Constant), WMC

Table 7.9: ANOVA correlation analysis between WMC metrics and SOA size

Model

Sum of

Squares Df

Mean

Square F Sig.

1 Regression 145.647 1 145.647 14.875 0.002
b

Residual 127.286 13 9.791

Total 272.933 14

a. Dependent Variable: Size

b. Predictors: (Constant), WMC

WOC and WMC metrics are significantly correlated to SOA size with coefficients of 0.912

and 0.731 respectively. The null hypothesis that there is no significant correlation between

the size attributes and SOA size was rejected and alternative hypothesis that there is

significant correlation between size attributes and SOA size was accepted. However, the

relationship between SDC and SOA size was not as significant as WOC and WMC in

relation to SOA size.

7.7.2 Effort Estimation Method Validation Results

Software development effort is a function of size multiplied by other effort factors. In this

study size of the 15 SOA based projects were computed by the proposed SOA size metrics.

The measured size and SOA development effort factors were then used to estimate effort

for each project based on intermediate COCOMO for organic projects given that each of

the SOA based projects are small, predictable and in a stable environment. SOA

development effort factors used in this study include Service Type Factors (STF) and

Effort multiplier Factors (EMF). Therefore,

Effort (SOA application) = STF * A * (SOA service size)
B
 *

 Where a = 3.2 , b = 1.05 for organic project (Small-scale projects)

169

Service type (STF) is factor determined by the type of service which includes Service

Construction (SC) and Service Architectural style (SA). SC is classified as available,

migrated and new service while SE is classified as REST and SOAP. STF was computed

by multiplying the value of each of 15 web service projects SC and SA. In this regard, STF

is first determined per service then the product of all services STF is computed for the

entire SOA project. On the other hand, total EMF was computed by multiplying product

factors, service development environment factors, requirements specification factors and

personnel factors for each project. In this case, EMF is computed at the system level by

considering the entire SOA application.

7.7.2.1 Proposed Effort Estimation Method Descriptive Analysis

The product of EMF per project was multiplied to SOA size and product of STF to

compute effort estimation for each project as shown in Table 7.10. SOA sizes for the 15

projects which were computed in web service points had to be converted to KLOC to be

used in the effort estimation based on COCOMO principle. Therefore, SOA size computed

for the 15 projects were multiplied by 53 which is the constant used for java, C++, Perl and

PHP to convert to LOC. LOC was then converted to KLOC by dividing by 1000.

170

Table 7.10: Effort Estimation Analysis based the proposed method

ID Project Name Size STF EMF Estimate

d Effort

(P/M)

Actual

Effort

(P/M)

MRE

1 Online Carpool System 44 1.2 1.294 12.813 9.54 -0.343

2 Online doctors’ appointment

system
30 1 1.294 7.142 6.32 -0.130

3 SACCO management system 42 1.2 1.125 10.611 8.84 -0.200

4 Online Event & Catering system 38 1 1.176 8.322 8.12 -0.025

5 Bus service online reservation

system
37 1.2 1.294 10.682 8.31 -0.285

6 Online furniture purchase system 38 0.8 1.125 6.368 7.14 0.108

7 Construction Material online

purchase systems
40 1 1.294 9.661 7.06 -0.368

8 Prime freelance systems 44 1 1.238 10.213 8.43 -0.212

9 Real Estate online property

management
41 1 1.294 9.914 7.86 -0.261

10 Tourism and accommodation

online system
32 1 1.294 7.643 6.21 -0.231

11 Apartment rental online 39 0.8 1.294 7.526 6.53 -0.152

12 Online Horticulture Sales

Information system
41 1 1.294 9.914 8.84 -0.122

13 CDF disbursement management

system
33 1 1.294 7.894 6.23 -0.267

14 Online Pharmaceutical

management system
38 0.864 1.238 7.565 6.62 -0.143

15 Online Event ticketing 32 1 1.238 7.310 5.73 -0.276

 Mean Magnitude of Relative Error -0.194

According to Table 7.10, effort factors had tremendous effect on final development effort

due to personnel factors where each project had a weight of 1.29 for SOA application

experience given that students had no experience in SOA applications and its development

171

techniques. On database complexity, database size, hardware/ software capabilities,

business risk/value and security requirements were awarded 1 for each project due to

similarity in students’ projects based on these factors. Integration complexity had a weight

of 1.15 for all projects in the study due to connectivity to databases. Factors that experience

variance among different projects in the experiment are interface complexity, development

tool support and requirements elicitation.

The most common measures for effort estimation methods accuracy according to literature

are Magnitude of Relative Error (MRE) and Mean Magnitude of relative error (MMRE).

Where y is actual effort and is the estimated effort.

Where n is the number of projects and MREi is for each project.

The accuracy of the proposed effort estimation method was -0.194 MMRE which is within

the acceptable margin of -0.25 and +0.25. Therefore the accuracy of the proposed effort

estimation method as revealed in the experiment shows that the proposed SOA effort

estimation method is more accurate when dealing with SOA based applications.

7.7.2.2 COCOMO Effort Estimation Method Descriptive Analysis

The 15 web service projects were also subjected to COCOMO II effort estimation method

as shown in Table 7.11 to enable comparison with the proposed effort estimation method.

Table 7.11: COCOMO Effort Estimation Method descriptive analysis

172

ID Project Name Size

FP

AEF Estimate

d Effort

(P/M)

Actual

Effort

(P/M)

MRE

1 Online Carpool System 30 1.27 7.01 9.54 0.2652

2
Online doctors’ appointment system 18 1.24 4 6.32 0.3671

3 SACCO management system 25 1.20 5.47 8.84 0.3812

4 Online Event & Catering system 20 1.29 4.65 8.12 0.4273

5 Bus service reservation system 24 1.21 5.28 8.31 0.3646

6 Online furniture purchase system 24 1.20 5.24 7.14 0.2661

7 Construction Material online purchase

systems
26 1.21 5.75 7.06 0.1856

8 Prime freelance systems 25 1.17 5.33 8.43 0.3677

9 Real Estate online property management 22 1.19 4.74 7.86 0.3969

0 Tourism and accommodation online

system
21 1.20 4.55 6.21 0.2673

11 Apartment rental online 27 1.34 6.62 6.53 -0.0138

12 Online Horticulture Sales Information

system
35 1.30 8.44 8.84 0.0452

13 CDF disbursement management system 23 1.33 5.55 6.23 0.1091

14 Online Pharmaceutical management

system
25 1.24 5.65 6.62 0.1465

15 Online Event ticketing 21 1.26 4.78 5.73 0.1658

According to Table 7.11, COCOMO was used because it is the most documented and

validated Software development effort estimation method. COCOMO takes software size

and Effort Adjustment Factors (EAF) to compute effort the 15 web service projects.

Where Effort based on COCOMO II = A*(Size)
B
 *

A = 3.2 and B = 1.05 and EAF is a product of 17 effort adjustment factors. Size is

expressed in KLOC after converting size in Function point to KLOC by multiplying FP

size with 53 and divide by 1000.

173

Based on Table 7.10 and Table 7.11 results, the proposed SOA effort estimation method is

more accurate when compared to COCOMO given that COCOMO returned a higher

MMRE of 0.2495 while the proposed SOA effort estimation method returned MMRE of

-0.194.

7.7.2.3 Correlation between Size Metrics and SOA Size

The SOA size computed by the proposed metrics was correlated with the estimated effort

for SOA as shown in Table 7.12 based on linear regression analysis.

Table 7.12: Correlation between SOA Size and SOA development effort

 Change Statistics

Model R

R

Squar

e

Adjusted

R Square

Std.

Error of

the

Estimate

R

Square

Change

F

Change df1 df2

Sig. F

Chang

e

1 0.716
a
 0.513 0.475 1.2899 0.513 13.684 1 13 0.003

a. Predictors: (Constant), size Metrics

As shown in Tables 7.12 and 7.13, regression analysis results were significant with an R

value of 0.716, R
2
 value of 0.513, and a p-value of 0.003. This implies that there is a

significant correlation between SOA size and SOA development effort. Therefore, the null

hypothesis that there is no significant correlation between the SOA application size and

SOA development effort was rejected and alternative hypothesis that there is significant

correlation between SOA size and development effort was accepted.

Table 7.13: ANOVA correlation between SOA size and SOA development effort

174

Model

Sum of

Squares Df Mean Square F Sig.

1 Regression 22.769 1 22.769 13.684 0.003
b

Residual 21.631 13 1.664

Total 44.400 14

a. Dependent Variable: effort

b. Predictors: (Constant), size Metrics

7.7.3 Automated Implementation Tool Accuracy Level

The third objective required this study to develop an automated tool to improve on

efficiency and accuracy of capturing SOA size attributes. Having used deep learning

techniques to extract features from UML diagram, testing the accuracy of techniques used

in the tool before implementation was a requirement. First of all, the accuracy of extracting

text from UML diagram by EAST detector and Tesseract OCR was tested based 100

different operation names. Secondly, operation names classification accuracy by SVM was

tested with 100 operation names and ResNet50 CNN was also tested with 100 different

service composition arrow heads and 100 arrow heads for message exchange arrows.

Table 7.14 shows validation of each technique used to extract data from UML diagram

when subjected to testing datasets.

Table 7.14: UML extraction techniques validation

Models Training

dataset

Testing

dataset

Average

accuracy

EAST detector - 100 96.4%

Tesseract OCR - 100 95.8%

Multi-class SVM 1200 100 93.1%

ResNet50 CNN (UML Interface) 900 100 97 %

ResNet50 CNN (UML sequence) 900 100 97.4%

175

Based on the analysis in Table 7.14, EAST detector, Tesseract OCR, Multi-class SVM and

ResNet50 CNN returned encouraging result after validation. Issues that led to inability to

capture names included faded text, unclear text shape and spacing issues that made some

text to look like separated texts. On the other hand, ResNet50 CNN was affected by arrows

whose shapes were not clear. Based on these results, the deep learning techniques were

accurate as in alternative hypothesis,

Based on objective one, two and three of this study that required us to develop of a size

metrics, development effort estimation method and develop an implementation tool, this

study achieved the three objectives based on validation of the metrics, estimation method

and implementation tool. However, due to the use of students as subjects and their projects

as objects, there was need to seek opinions from experts which the study went further to

collect expert opinions through a survey.

7.8 Expert Opinion Survey

A survey was used to gather expert opinions on the validity of the proposed SOA size

metrics, proposed SOA effort estimation method and the proposed implementation tool.

Expert opinion survey was also meant to complement laboratory experiment done by

students. Preparation and planning was done appropriately before the survey was

conducted to ensure validity and reliability of the instrument. The survey was conducted

successfully and data from the survey was analyzed with a view to validate the proposed

metrics and effort estimation method.

176

7.8.1 Survey Preparation and Planning

A pilot study was conducted based on five programmers to determine the adequacy of the

survey instrument and gather feedback on how to improve the instrument. The five

programmers were provided with annex documentation with details on the proposed

metrics and method. They were given one week to read and understand the metrics and the

method before answering the questionnaire. Feedback from the five programmers helped in

improving the questionnaire content and context.

To identify the 20 programmers to participate in the study, 40 simple questionnaires were

sent to programmers to indicate if they have ever worked with SOA applications including

web services. Out of the fifty questionnaire 46 were returned with 27 responded positively

having engaged in SOA applications before while 19 said they had never participated in

developing SOA applications before. Random sampling was used to select 20 programmers

out of 27 who had worked with SOA applications before.

The sampled programmers were taken through the proposed metrics, proposed effort

estimation method and the implementation tool. They were required to ask questions where

they did not understand the questionnaire. Upon satisfactory understanding of the proposed

metrics, method and implementation tool, the sampled programmers were issued with

questionnaires accompanied with annex documentation describing in detail the proposed

metrics, estimation method and the implementation tool.

Threats to validity – Conclusive validity was under threat due to a relatively small sample

of 20 experts who participated in the survey. However, the type of data required from

experts did not require a bigger sample to validate the metrics. Furthermore, internal

177

validity was reduced by explaining and demonstrating to the experts the proposed tool to

enable them to understand the proposed metrics, method and tool to instill objectivity when

answering the questionnaire.

7.8.2 Demographic Summary of the Respondents

All the 20 questionnaires were returned successfully with no outlier data and all required

data were entered. Before starting the survey, sampled experts were asked to provide their

demographic details including their knowledge and experience in software development,

SOA development and their highest level of academic qualifications. Based on academic

qualification, 2 of the respondents had MSc. Degree in computing related field and the

remaining 18 respondents had BSc. Degree in computing related field. Summary of

respondents’ experience in software development and experience in SOA application

development is as shown in Table 7.15.

Table 7.15 Experts’ experience in Software development

Experience Below 1 year Between 1 and 3 years Above 3 years

Software development 4 12 4

SOA application

development
8 7 5

According to Table 7.15, 16 respondents had over 1 year experience in software

development and 12 respondents had over 1 year experience working with SOA

applications. This confirmed that the experts had enough experience to assist in validating

SOA size metrics and effort estimation method. However, 8 experts had less than 1 year

experience in SOA development which disadvantaged the study but this is as a result of

prevailing circumstance in the region.

178

7.9 Survey Results

7.9.1 Response on SOA Size Metric Validation

7.9.1.1 Experts’ response on service internal structure influence on SOA size

Sampled experts responded on the relevance of internal structure attributes used in WOC

metric to SOA size as shown in Table 7.16.

Table 7.16: Response on service internal structure attributes influence on SOA size

Attribute Strongly

Agree

Agree Disagree Strongly

Disagree

Number of Operations/Methods 10 10 0 0

Operation’s complexity 17 3 0 0

Number of parameters 13 7 0 0

Result in Table 7.16 shows that 10 respondents strongly agreed and 10 of the respondents

agreed that the number of operation in a service has influence on service size. Secondly, 17

respondents strongly agreed that operation has influence on SOA size. Lastly, 13

respondents strongly agreed that number of parameters is a factor when measuring size.

All respondents also agreed on the weights assigned to each service internal structure

attribute when measuring the size of a service as shown in Table 7.17.

Table 7.17: Experts’ response on weights assigned to service internal structure.

Attribute Weights Strongly

Agree

Agree Disagree Strongly

Disagree

Simple operation 2 4 16 0 0

Average operation 3 4 14 2 0

Complex operation 4 11 9 0 0

Parameter 1 9 11 0 0

179

According to Table 7.17, Experts agreed on the weights assigned to WOC size attributes in

relation to classification of operations based on complexity and parameters. However, 2

experts disagreed on the weights assigned to average in relation to simple operation.

7.9.1.2 Experts’ response on influence of service dependency on SOA size

All sampled experts reported that service dependency attribute contributes to SOA size

with 75% of the respondents strongly agreeing and 25% agreeing with the attribute

influence. They also concurred that the weights allocated to service dependency attributes

are relevant to enable measurement of SOA size as shown in Table 7.18.

Table 7.18: Experts’ response on weights assigned to service internal structure.

SDC Attribute Weights Strongly

Agree

Agree Disagree Strongly

Disagree

Atomic dependency 1 9 11 0 0

Lighter Aggregation 2 10 10 0 0

Strong composition 3 5 15 0 0

7.9.1.3 Experts’ response on influence of data movement among services on SOA size

All sampled experts agreed that data movement among services attributes contributes to

SOA size as indicated in Table 7.19.

Table 7.19: Experts’ response on WMC attributes and weights

WMC Attribute Weights Strongly

Agree

Agree Disagree Strongly

Disagree

Synchronous 3 15 5 0 0

Asynchronous 2 8 11 1 0

Reply 1 7 13 0 0

180

According to Table 7.19 most experts confirmed that WMC attributes and their weights are

relevant. However, one expert disagreed on asynchronous attribute but he did not give the

reason for contrary opinion. The research maintained the weight of two on the basis of no

reason given and only one expert had contrary opinion.

7.9.1.4 Experts’ response on WSC and SOA size effect on effort

SOA size which is basically the sum of WOC, SDC and WMC is a factor identified in this

study which affects SOA development effort. Respondents also believed WSC is

equivalent to SOA size where 15 strongly agreed. On the other hand, 10 respondents

strongly agreed and 10 agreed that SOA size has influence on SOA development effort.

7.9.2 Response on Effort estimation factors

7.9.2.1 Experts’ response on influence of service type on SOA development effort

Another variable proposed in this study that influence SOA development effort is Service

Type Factor (STF). Selected experts were asked to rate the influence of STF to SOA

development effort to validate this research. Most experts sampled agreed that STF

contribute immensely to SOA development effort and they also agreed on the allocated

STF weights used to multiply with SOA size as shown in Table 7.20.

Table 7.20: Experts’ response on influence of service type to SOA development effort

 Service type Weight Strongly

agree

Agree Disagree Strongly

disagree

Available service 0.6 4 16 0 0

Migrated service 0.8 10 10 0 0

New service 1 4 16 0 0

181

SOAP 1.3 8 12 0 0

REST 1 9 11 0 0

7.9.2.2 Response on influence of SOA Effort Multiplier Factors (EMF) to Effort

Expert confirmed that SOA EMF identified in this study are relevant when included in the

method to estimate SOA effort. According to Table 7.21, all sampled experts agreed that

EMF are relevant in estimating SOA effort. Factors which experts strongly agreed that they

are relevant to effort estimation include service developers’ experience (85%), SOA

application experience (80%), Hardware/software capabilities (80%) and database

complexity (75%). On the other hand, most experts did not agree strongly with the fact that

requirement elicitation (30%) and business risk/value (25%) contribute immensely to SOA

development effort. With no expert disagreeing with any of the proposed SOA effort

factors, this research adopted all the factors. Response of EMF is based on expert

experience, environment where they operate from and their personal intuition or feeling

about a factor. For instance, an ambiguous user requirement may not be that ambiguous to

another expert based on previous experiences on what ambiguity is in their respective

context.

182

Table 7.21: Experts’ response on influence of EMF on SOA Development Effort

7.9.3 Response on the Validity and Appropriateness of the Implemented Tool

Respondents were asked to rate the appropriateness of the tool features, tool interface

design and tool performance. Based on tool main features 70% of the respondents strongly

agreed that the features included in the tool are appropriate and 30% agreed on the

appropriateness of the implementation tool features. Secondly, 60% of the respondents

strongly agreed that the tool interface design were appropriate, 30% strongly agreed and

SOA effort

factor

Description

Strongly

agree

Agree Disagree

Strongly

disagree

Product factors

Database complexity 15 5 0 0

Database size 10 10 0 0

Integration complexity 11 9 0 0

Service

development

environment

factors

Development tool support 13 7 0 0

Hardware/Software

capabilities

16 4 0 0

Requirements

specification

factors

Requirement elicitation 6 14 0 0

Business risk/value 5 15 0 0

Security requirements 14 6 0 0

Personnel

factors

Service developers’

experience

17 3 0 0

SOA Application experience 16 4 0 0

Team cohesion 14 6 0 0

183

10% disagreed. Lastly, 80% of the respondents strongly agreed on the tool performance

and 20 percent agreed as shown in Table 7.22

Table 7.22: Experts’ response on appropriateness of implementation tool

Implementation tool

appropriateness

Strongly

Agree

Agree Disagree Strongly

Disagree

Tool Features 14 6 0 0

Tool Interface design 12 8 0 0

Tool performance 16 4 0 0

According to Table 7.22 analysis, experts agreed on the appropriateness of the

implementation to with regard to tool features, tool interface design and tool performance.

7.10 Chapter Summary

This research study involved 76 students who developed 15 SOA based applications used

in this research laboratory experiment. All size metrics proposed in this study showed

strong correlation with size. The experiment further revealed that the proposed metrics are

more accurate when compared with function point analysis metrics when dealing with

SOA based applications. The experiment also tested the accuracy of the proposed effort

estimation method which was proved to more accurate as compared to the existing effort

estimation methods. Due to the fact that the laboratory experiment in this study was done

by students, there was need to subject the proposed metrics to the industry for further

validation. In this regard, this research conducted a survey involving 20 sampled experts to

validate the proposed metrics and effort estimation method. Based on the expert survey

results, selected experts confirmed that the proposed size metrics and effort estimation

method are relevant and valid for SOA based applications. The general observation made

in the laboratory experiment and survey is that the proposed metrics which includes WOC,

184

SDC, WMC and WSC are valid metrics for measuring SOA size. Furthermore, factors used

to estimate effort including SOA size, service type and SOA effort factors proposed by this

study are relevant and valid when estimating SOA effort.

185

CHAPTER EIGHT

SUMMARY, CONCLUSION AND RECOMMENDATIONS

8.1 Summary

This research study examined existing literature of Software size metrics and Software

effort estimation methods with a view of identifying existing gaps. The study then

identified attributes that contribute to SOA size and defined SOA size metrics that rely on

the identified size attributes to measure SOA size. The study further identified factors that

contribute to SOA development effort and proposed a SOA effort estimation method based

on the factors. The study implemented a tool to compute SOA metrics and effort estimation

method. Experiment and survey methods were used to validate the metrics, effort

estimation method and the tool.

The main objective of this research was to define a suite of size-based metrics and then use

them to develop an effort estimation method for SOA systems. The summary of this

research study is illustrated based on the three main objectives set by this study which were

to define a suite of size metrics to measure the size attributes of SOA software systems, to

develop an effort estimation method for SOA systems based on the size metrics and to

implement a static analysis tool that computes the size and estimate effort of SOA software

systems.

8.1.1 Defining Metrics for SOA Size

Existing software metrics and effort estimation methods analysis provided this research

study with the opportunity to identify the gap in the industry that motivated this study to

propose new SOA metrics and effort estimation method. Based on the identified gaps in

186

literature, this research identified SOA size attributes that are relevant in designing SOA

size metrics. The research study proposed WOC, SDC, WMC and WSC size metrics in

relation to the identified size attributes. The metrics were validated theoretically by

Briand’s theoretical properties to determine the proposed size metrics’ structure validity.

The proposed metrics were subjected to a laboratory experiment based on web service

projects developed by 3
rd

 year University students taking BSc. Computer Science. Expert

opinions were gathered through a survey and data analyzed to validate the metrics

empirically.

8.1.2 Developing an Effort Estimation Method for SOA Projects

This study identified key factors including SOA size, Service Type Factors (STF) and SOA

Effort Multiplier Factors (EMF) which contribute to SOA development effort. The study

proposed effort estimation method for SOA applications to fill in the gap that existed in the

industry. The proposed method was exposed to empirical validation through a laboratory

experiment to ascertain the proposed method accuracy as compared to an existing method.

The proposed method was also subjected to experts to give their opinion on the relevance

of the identified effort factors and the validity of the proposed SOA effort estimation

method.

8.1.3 Automating the SOA Metrics and Effort Estimation Method

This study automated the proposed SOA size metrics and effort estimation method into a

tool. The tool provides a platform to capture size attributes and compute WOC, SDC,

WMC and WSC automatically then display the results. The implemented tool computes

SOA size upon input of SOA size attributes through deep learning UML text and image

extraction and also offers manual size attributes input via a form. The tool computes

187

development effort factors to estimate effort required to develop a SOA application. The

tool was validated by testing the accuracy of underlying deep learning techniques and

through a survey which captured experts’ response on the tool appropriateness.

8.2 Conclusion

The research study successfully carried out a literature review on existing SOA size

metrics and effort estimation methods which resulted to gaps identification that eventually

prompted the design of the proposed metrics, proposed effort estimation method and the

implementation automated tool.

8.2.1 Defined SOA Size Metrics

This research study contributed to the knowledge of software metrics and software project

management by introducing the proposed metrics into the field of software engineering.

The theory development in this study was as a result of the gap identified in literature

review. Literature review developed in this study contributed immensely to the area of

software size metrics which will enable future researchers to develop more software

metrics. Theories on development of SOA size metrics in this study, revealed how SOA

architectural difference from other software provided an opportunity to identify SOA

attributes that contribute to size. These will contribute greatly to theory of software size in

relation to attributes identification and development of size metrics. This study’s

contribution to practice include a new SOA size metrics that will be used to measure SOA

application size to allow project managers and programmers to determine the scope of

SOA based software application.

188

8.2.2 Effort Estimation Method for SOA

Literature review on Software effort estimation revealed the gaps and challenges of

existing software effort estimation methods. This revelation is a contribution to researchers

in software effort estimation. The design of effort estimation method documented in this

study is a contribution to theory in Software project management. The design reveals the

process of identifying software effort factors and how to compute effort which is a great

contribution to theory. The new effort estimation method for SOA will contribute to

practice by enabling project managers and developers to plan on the effort required, cost

and time schedule for implementing a SOA project.

8.2.3 Automated Implementation Tool

Lastly, project managers and SOA developers will use the automated implementation tool

compute SOA size and development effort more efficiently and accurately by simply

uploading a UML diagram representing SOA attributes for the tool to compute SOA size

and eventually estimate effort.

8.3 Recommendations for Future Work

This study recommends future work based on the three research objectives to enable future

researchers to improve on software metrics, estimation methods and implementation tools

for computing software size and effort.

This study recommends more software size metrics to be designed to capture emerging

issues and attributes in the dynamic software engineering industry. The industry is

dynamics with regard to changes in software attributes that contribute to software size, new

software development methods, changes in SOA programming languages and changes in

189

programming platforms and architectures. All this changes require a review of metrics to

capture new issues in the industry. There is also need to define metrics that measure size of

multi-architectural applications such as an application that has a component of SOA and

Component based elements.

Research in software effort estimation is still at infancy due to emerging issues that affect

software development effort. First of all, there is no software effort estimation method is

that returns a Relative Margin of Error that is zero, there is always a margin of error which

researchers should strive to improve. Secondly, there is need to capture more factors that

contribute to software development effort due to emerging issues in software development.

Lastly, with the introduction of new software architecture and software development

methods, there is need to develop effort estimation methods that meet the needs of different

architecture and software development methods.

This study only automated the aspect of entering SOA size attributes into the tool to

compute SOA size. This research study recommends an improvement to the

implementation tool by adding a feature that automatically detect effort estimation features

such as service type factors, database complexity, integration factors, infrastructural factors

and interface complexity. Automating capturing of effort factors will reduce subjectivity

and errors and improve on the speed of estimating effort.

The research recommends further validation of the SOA size metrics and SOA

development effort estimation method in laboratory experiments or case studies through

the use of industry based projects including medium-scale and large-scale SOA projects.

190

REFERENCES

Ahlawat, D. & Chawla, R. (2015). Software Development Effort Estimation using Fuzzy

Logic framework: An implementation. International Journal on Advanced Computer

Theory & Engineering.

Ahmed, N.A. & Ahmed A.H. (2012). Enabling Complexity Use Case Function point on

SOA. 2013 International conference on Computing, Electrical and Electronic

Engineering.

Akkiraju, R. & Geel, V.H. (2010). Estimating the Cost of developing customization to

packaged Applications Software Using SOA. IEEE International Conference on web

services.

Albrecht, A.J. & Gaffney, G.E. (1983). Software Function, Source lines of Codes, and

Development Effort Prediction. A Software Science Validation, IEEE Trans Software

Engineering.

Amsden, J. (2010). Modeling with SoaML, The Service-Oriented Modeling Language. Part

I. Service Identification, IBM.

Anders, L. (2018). Function Point Analysis FPA on Team Planning Website Based on PHP

and MYSQL. Journal of Information Technology & Software Engineering.

Arnuphaptrairung, T. & Suksawasd, W. (2017). An Empirical Validation Application

Effort Estimation Model. Proceeding of International Multi-conference of Engineers

and Computer Scientists, Hong Kong.

Asha, R.N., Kavana, M.D. & Parvathy, S.J. (2017). Object-Oriented Programming for

Enhanced Programming Modularity. International Journal for Science Research &

Development. Vol. 5. Issue 09.

Assal, H. & Chiasson, S. (2018). Security in the Software Development Lifecycle,

Advanced Computing systems Association.

Azzeh, M. (2013). Software Cost Estimation on Use case points for Global software

development. 5
th

 International Conference on Computer Science and Information

Technology, IEEE.

Basha, S. & Dhavachelvan, P. (2010). Analysis of Empirical Software Effort Estimation

Model. International Journal of Computer Science and Information Security.

Bawa, A. & Chawla, R. (2012). Experimental Analysis of Effort Estimation Using ANN.

International Journal of Emerging trends & Technology in Computer Science.

Belqasmi, F., Singh, J., Ban melhem, S. & Glitho, R. (2012). SOAP-based vs RESTful

Web services for Multimedia Conferencing: A Case study.

Benaroch, M. & Appari, A. (2010). Financial Pricing of Software Development Risk

Factors. IEEE.

191

Bhalerao, S. & Ingle, M. (2009). Incorporating Vital factors in agile estimation through

algorithmic method. International Journal of Computer Science and Computer

applications.

Bianco, P., Lewis, G., Merson, R., & Simanta, S. (2011). Architecting Service Oriented

Systems: Software Engineering Institute, Carnagie Mellon University.

Bilgaiyan, S., Sagnika, S., Mishra, S. & Das, M. (2017). A systematic Review on Software

Cost Estimation in Agile Software Development. Journal of Engineering Science and

Technology Review.

Boehm, B.W. (1981). Software Engineering Economics, Prentice Hall.

Boehm, B.W., Clark, B., Horowitz, E. & Westland, C. (1995). Cost Models for future

software life cycle processes: COCOMO 2.0. J.C. Baltzer AG, Science Publishers.

Boehm, B.W. et al. (2000). Software Cost Estimation with COCOMO: Prentice-Hall.

Borade, J.G., & Khalker, V.R. (2013). Software Effort and Cost Estimation Techniques,

International Journal of Advanced Research in Computer Science and Software

Engineering.

Bormane, L., Grzibovsha, J., Bervisa, S. & Grabis, J. (2016). Impact of Requirements

Elicitation Processes on success of Information System Development Projects.

Information Technology and Management Science.

Briand, L.C., Morasca, S., & Basili, C.H. (1991). Property – Based Software Engineering

Measurement, IEEE Transactions on Software Engineering.

Cao, J., Wei, J. & Qin, Y. (2013). Research and Application of the Four-Tier Architecture.

International Conference of Education Technology and Information Systems.

Cao, L. (2008). Estimating Agile Software Project Effort: An empirical study. Association

of Information Systems AIS Electronic Library(AISeL), Americas Conference on

Information Systems.

Chidamber, S, R., Kemerer, C, F. (1998). Managerial Use of Metrics for Object-Oriented

Software: An Exploratory Analysis, IEEE.

Chindove, H., Seymour L. F., & Van Der Merwe F. I. (2017). Service-oriented

Architecture : Describing Benefits from an Organisational and Enterprise

Architecture Perspective. vol. 3, no. Iceis. pp. 483–492.

Coelho, E., Basu, A. (2012). Effort Estimation in Agile Software Development using Story

Points. International Journal of Applied Information Systems.

Cohn, M. (2006). Agile Estimating and Planning: Pearson Education.

COSMIC. (2010). Guideline for Sizing SOA Software, v1.0 : The Common Software

Measurement International Consortium (COSMIC)

COSMIC. (2015). Guideline for Sizing SOA Software, v4.0 : The Common Software

Measurement International Consortium (COSMIC)

192

Deepa, R. & Lalwani, K.N. (2019). Image Classification and Text Extraction using

machine learning. Proc. 3
rd

 International Conference of Electronic Communication

Aerosp. Technology.

Domdouzis, K., Andrews, S. & Akhgar, B. (2016). Application of a New Service-Oriented

Architecture (SOA) Paradigm on the Design of a Crisis Management Distributed

System. International Journal of Distributed Systems and Technologies. Vol 7. Issue

2.

Dong-Chul, P. (2016). Image Classification Using Naïve Bayes Classifier. International

Journal of Computer Science Electronics Engineering. Vol 4.

Dudhe, A. & Sherekar, S. (2014). Performance Analysis of SOAP and REST Mobile web

service in cloud environment. International Journal of Computer Applications.

Elhag, M, A., Mohamad, R. (2014). Metrics for Evaluating the Quality of Service Oriented

Design. IEEE.

Farrag, A. E. & Moawad, R. (2014). Phased Effort Estimation of legacy Systems

Migration to SOA. International Journal of Computer and Information Technology.

Farrag, A. E. , Moawad, R. & Imam, I. (2016). An Approach for Effort Estimation of SOA

projects. Journal of Software.

Frantisek, P. & Stal, M. (1998). An architectural view of distributed Objects and

Components in CORBA, Java RMI, COM/DCOM, Springer.

Gandomani, T.,Wei, T., & Binhamid, K. (2014). Software Cost Estimation Using Expert

Estimates, Wideband Delphi and Planning Poker Technique. International Journal

of Software Engineering and its applications.

Gupta, D. (2013). Service point Estimation Model for SOA Based Projects, Service

Technology Magazine.

Harizi, M. (2012). The Role of Class Diagram in Estimating Software Size. International

Journal of Computer Applications. Volume 44.

Hassan, S. & Afsar, S. (2012). Software Engineering: Factors Affecting Requirement

Prioritization. Global Journal of Computer Science and Technology Software and

Data Engineering.

Hassim, W.B. H.W. (2017). A Review on effective Requirement Elicitation Techniques.

International Journal of Advances in Computer Science and Technology.

Hirzalla, M., Cleland-Huang, J., & Arsanjani, A. (2009). A metrics Suite for Evaluating

Flexibility and Complexity in Service Oriented Architectures. ACM.

Hussain, S., Muhammad, & S., Ahmed, S. (2010). Mapping of SOA and RUP: DOA as a

case study. Journal of Computing.

Inwala, A.M., Kharade, K., Chaugule, R. & Magikar, A. (2016). Dimensional arrow

detection from CAD drawings. Indian Journal of Science and Technology. Vol. 9.

Karasneh, B. & Chaudron, M.R.V. (2013). Extracting UML Models from images. 5
th

International conference on Computer Science and Information Technology (CSIT).

193

Karner, G. (1993). Metrics for Objectivity. University of Linkoping. Sweden.

Kaur, I., Narula, S.G., Wason, R. & Jain, V. (2018). Neuro Fuzzy – COCOMO II Model

for Software Cost Estimation. Institute of Computer Applications and Management.

Khatibi, V., & Jawawi, D.N. (2010). Software Estimation Methods: A review. Journal of

Emerging Trends in Computing and Information Sciences.

Kitchenham, B., Pfleeger, S.L. & Fenton, N.E. (1995). Towards a Framework for Software

Measurement Validation, IEEE Transaction on Software Engineering.

Kirmani, M. & Wahid, A. (2015). Use Case Point and e-Use Case Point method of

Software Effort Estimation: A critical performance comparison. International

Journal of Computer Application.

Kubasell, M. (2006). Cashing Optimization in Service Oriented Architecture: Masarykiana

University

Kumari, S., & Pushkar, S. (2013). Performance Analysis of software cost Estimation

methods: A Review. International Journal of Advanced Research in Computer

Science and Software Engineering.

Kothari, C.R. (2004). Research Methodology: Methods and Techniques, 2
nd

 Edition: New

Age International (P) Ltd Publishers.

Kuan, S.W. (2017). Factors on Software Effort Estimation. International Journal of

Software Engineering & Application.

Li, Z. & Keung, J. (2010). Software Cost Estimation Framework for Service-Oriented

Architecture Systems Using Divide-and-Conquer Approach. 5
th

 IEEE International

Symposium on Service Oriented System Engineering.

Li, Z. & O’Brien, L. (2010). Towards Effort Estimation for Web Service Compositions

Using Classification Metrics, IEEE

Litoriya, R. & Kothari, A. (2013). An Efficient Approach for Agile Web Based Project

Estimation: AgileMOW. International Journal of Computer Science and Computer

applications.

Mahmoud, K., Ilahi, M., Ahmed & B., Ahmed, S. (2012). “Empirical Analysis of Function

points in service oriented in Service oriented architecture (SOA) Applications”, :

Industrial Engineering letters.

Marsyahariani, N., Daud, N. & Kadir, W.M.N. (2014). Static and Dynamic Classification

for SOA Structural Attributes Metrics. 8
th

 Malaysian Software Engineering

Conference.

Martino, S.,Gravino, C. (2009). Estimating Web Application using COSMIC-FFP Method.

International Journal of Computer and Applications.

McCabe, T, J. (1976). A Complexity Measure. IEEE.

Micheal, A. & Boniface, A. (2014). Inadequate Requirements Engineering Process: A key

factor for poor Software development in Developing Nations: A case study.

International Journal of Computer and Information Engineering.

194

Mishra, S. & Kumar, C. (2014). Estimating Development Size and Effort of Business

Process SOA Applications. 2
nd

 International Conference on Systems and Informatics.

Mumbaikar, S. & Padiya, P. (2013). Web services Based on SOAP and REST principles.

International Journal of Scientific and Research Publications.

Muketha, G.M., Ghani, A. & Selamat, M. (2010). A Survey of Business Process

Complexity Metrics, Information Technology Journal.

O’Brien, L. (2009). A framework for scope, cost and effort estimation for Service oriented

Architecture (SOA) projects, Australian Software Engineering Conference. IEEE.

Park, H. & Back, S. (2008). An empirical validation of Neural Network Model for

Software Effort Estimation, Expert Systems with Applications. Elsevier.

Patra, P. & Rajnish, K. (2018). A Fuzzy based Parametric Approach for Software Effort

Estimation. International Journal of Modern Education and Computer Science.

Prokopova, Z. & Silhavy, P. (2015). Algorithmic Method for Effort Estimation.

Programming and Computer Software Society.

Rijwani, P. & Jain, S. (2016). Enhanced Software Effort Estimation Using Multilayered

Feed Forward Artificial Neural Network Technique. Science Direct, Elsevier.

Seth, A., Agarwal, H., & Singla, A. (2010). Testing and Evaluation of Service Oriented

Systems. International Journal of Engineering Research and Application.

Seth, A., Singla, A.R. & Aggarwal, H. (2012). Service-Oriented Architecture Adoption

Trends: A Critical Survey. Springer-Verlay Berlin Heidelberg. Pp 164-175.

Saunders, M., Lewis, P. & Thornhill, A. (2012). Research Methods for Business Students,

6
th

 Edition, Pearson Education Limited.

Shamsoddid-Mutlah, E. (2012). A survey of Service Oriented Architecture systems

testing. International Journal of Software Engineering and applications.

Sharbanoo, M., Ali M., Merran M. (2012). An Approach for Agile SOA development

using Agile Approach. International Journal of Computer Science.

Sharma, N., Bajpai, A., & Litoriya, R. (2012) Software Effort Estimation. International

Journal of Computer Science and Applications.

Sharma, T.N., Bhardwaj, A., & Kherwa, G.R. (2012). Analysis of various Models of

Software Cost Estimation. International Journal of Engineering Research and

Application.

Sharma, V., Shewandayn, B. & Bhukya N. (2017). Measuring Usability of Web services

using Coupling Metrics. International Journal of Advanced Research in Basic

Engineering Science and Technology.

Shivakumar, N., Balaji, N. & Ananthakumar, K. (2016). A Neuro Fuzzy Algorithm to

Compute Software Effort Estimation. Global Journal of Computer Science and

Technology: Software Engineering & Data Engineering.

195

Siddiqui Z. A. & Tyagi K. (2016). A critical review on effort estimation techniques for

service-oriented-architecture-based applications. International Journal of Computer

Application. vol. 7074.

Srinivasan, K. & Devi, T. (2014). Software Metrics Validation Methodologies in Software

Engineering. International Journal of Software Engineering & Applications.

Stellman, A., & Greene, J. (2005). Applied Software Project management: O’Relly Media.

Svanidzaite, S. (2014). An Approach to Service Oriented Architecture development

methodology: SOUP Comparison with RUP and XP, Computational Science and

Techniques.

Sultana, F., Sufian, A. & Dutta, P. (2018). Advancement in image classification using

convolutional Neural Network. Proc. – 2018 4
th

 IEEE International conference

Computer Intelligence and communication Networks.

Swanson, R.A. & Chermack, T.J. (2013). Theory Building in Applied Disciplines. Berret-

Koehler publisher. San Francisco.

Tarawneh, H. (2011). A suggested Theoretical Framework for Software Project Success.

Journal of Software Engineering and Applications.

Tensey, B. & Stoulia, E. (2007). Valuating Software Service Development: Integrating

COCOMO II and Real Options Theory. The First International Workshop on the

Economics of Software and Computation.

Thai, L.H., Hai, T.S. & Thuy, N.T. (2012). Image Classification Using Support Vector

Machine and Artificial Neural Network. International Journal of Information

Technology and Computer Science. Vol 2.

Thamarai, I. & Murugavali, S. (2016). Analogy Based Software Effort Estimation Based

Differential Evolution and Hybrid Fuzzy logic and Firefly Algorithm. Asian Journal

of Information Technology.

The Standish group, (2013)., Chaos Manifesto: Think big, Act small, The Standish Group

International.

Tripathi, S. & Kumar, R. (2019). Image classification using small Convolutional Neural

Network. 9
th

 International Conference on Cloud computing.

Verlaine, B., Jureta, J.I. & Faulkner, S. (2014). A Requirements – Based Model for Effort

Estimation in Service – Oriented Systems. Springer

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B. & Wesslen, A. (2000).

Experimentation in Software Engineering. The Kluwer International series in

Software Engineering.

Zhang, Q., Li, X. (2009). Complexity metrics for Service-Oriented Systems, Second

International Symposium on Knowledge Acquisition and Modeling.

Zhou, X. et al. (2017). EAST:An Efficient and Accurate Scene Text Detector. IEEE.

Ziauuddin, Kamal, S., Khan, S. & Nasir, A.J. (2013). A Fuzzy Logic Cost Estimation

Model. International Journal of Software Engineering and Its Applications.

196

APPENDICES

APPENDIX 1: QUESTIONNAIRE TO EXPERTS

SOA SIZE METRICS AND EFFORT ESTIMATION METHOD VALIDATION BY

EXPERTS

This questionnaire is part of a study that aims to develop a SOA size metrics, an effort

estimation method and an automated implementation tool for the metric and effort

estimation method. The main objective of this questionnaire is to determine if the proposed

SOA size metrics and SOA effort estimation method are valid. You have been chosen to

participate in this study due to your knowledge and experience in software development

especially SOA applications such as web service applications.

Please note that any identifying information you provide is purely for the purpose this

study, it will remain confidential and will never be shared with a third party. If you have

any query, contact me via email address sammunialo@gmail.com or telephone

0721452484. Kindly familiarize yourself with the attached SOA size metrics and

estimation method (Annex 1, 2, 3 and 4) before responding to the questionnaire.

PART A - PERSONAL DETAILS

i) What is the Name of your organization …………………………………………..…

ii) Kindly indicate your highest level of academic qualifications……………………….

………………………………………………………………………………………..

iii) How long have you worked as a programmer/developer/system designer?

[] Less than 1 Year [] 1-3 Years [] Over Three Years

iv) How long have you worked with API/web service as a developer/designer?

 [] Less than 1 Year []1-3 Years []Over Three Years

mailto:sammunialo@gmail.com

197

PART B- SOA SIZE METRICS

In this section, we want to capture your approval rating of the correctness of proposed SOA

metrics underlying theory, structure and assumptions for achieving its intended purpose.

This study considered SOA internal structure, data movement, dependency among services

and number of services as key parameters for defining SOA size metrics. (See Annex 1)

i) SOA internal structure – This study proposed Weighted Operation Count (WOC) metric

to measure service size based on service internal structure. WOC takes into account the

number of operations/methods, operation’s complexity and number of parameters as key

attributes influencing the size of a web service. The metric assigns a weight to an

operation/method in a service based on its complexity and counts number of parameters

then sums the weights of all operations in a service.

a) To what extend do you agree on the influence of the following service internal

structure attributes to service size and development effort?

SN Component Strongly

agree

Agree Disagree Strongly

disagree

1 Number of

operations/methods

2 Operations

complexity

3 Number of

parameters in an

operation

198

b) If you don’t believe in some or all of these attributes, recommend appropriate

alternative attributes that contribute to service size based on service internal

structure.

………………………………………………………………………………..……..

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………..……..

c) To what extend do you agree on the following categorization and weights of

operations/methods based on their complexity?

SN Attribute

Weight Strongly

agree

Agree Disagree Strongly

disagree

1
Simple

operation
2

2
Average

operation
3

3
Complex

operation
4

d) If you don’t believe in some or all of the above categorization and weights,

recommend appropriate alternative categorization and weights that

contributes to operations complexity.

……………………………………………………………………………………….

…………………………………………………………………………………….…

………………………………………………………………………………………

……………………………………………………………………………..,………..

……………………………………………………………………………………….

199

ii) Dependency among services - Service dependency also known as coupling which is

the degree of interaction and extent of dependency between services. This study

identified Service dependency attribute as an indicator of web service size

measurement. The study defined Service Dependency Count (SDC) Metrics to

count the number of dependencies between services as represented in UML

interface diagram. SDC takes into consideration different types of dependencies as

attributes contributing to SOA size. Dependency is classified into three namely

atomic, lighter aggregation and strong composition based on the depth of

dependency also known as service composition (See annex 2).

a) To what extend do you agree that dependency between services influence web

service size?

[] Strongly agree [] Agree [] Disagree [] strongly disagree

b) To what extend do you agree on the following categorization and weights of

web service fan-out dependency?

SN Attribute

Weights Strongly

agree

Agree Disagree Strongly

disagree

1
Atomic

dependency
1

2
Lighter

Aggregation
2

3
Strong

composition
3

c) If you don’t believe in some or all of the above categorization and weights,

recommend appropriate alternative categorization and weights that

contributes to size based on web service dependency.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

200

iii) Data movement among services – This attribute is measured by Weighted Message

Count (WMC) which takes into account the amount of data groups moving between

services, databases and other applications. Weighted Message Count categorizes

messages as synchronous, asynchronous and reply messages. In this regard, data

movement specification is linked to the design of information model which is

represented by UML sequence diagram (See annex 3).

a) To what extend do you agree that the amount of data movement among

services influence web service size?

[] Strongly agree [] Agree [] Disagree [] strongly disagree

b) To what extend do you agree on the following categorization and weights of

data movement types among services?

c) If you don’t believe in some or all of the above categorization, recommend

appropriate alternative categorization that contributes to size based on web

service dependency.

………………………………………………………….…………………………..

………………………………………………………………………………………

………………………………………………………………………………………

…………………………………………………………….…………………………..

SN Attribute Description

W
ei

g
h

ts

S
tr

o
n

g
ly

a
g
re

e

A
g
re

e

D
is

a
g
re

e

S
tr

o
n

g
ly

d
is

a
g
re

e

1 Synchronous

It requires coordination of events

between the sender and receiver to

enable message movements in

unison.

3

2 Asynchronous

It does not return a value and no

coordination is required with the

receiver service to facilitate data

movement

2

3
Reply

message

Reply messages are based on

conditional tests that will provide

error messages or acceptance

messages.

1

201

iv) SOA size: Weighted Service Count (WSC) metric is used to sum the output derived

from WOC, SDC and WMC then sum for all services to get the overall SOA size.

a) To what extend do you agree that the number of services influence web

service application size?

[] Strongly agree [] Agree [] Disagree [] Strongly disagree

PART B- EFFORT ESTIMATION METHOD VALIDATION

In this section we want to capture your approval rating of effort estimation factors

proposed in this study. Effort is determined by considering how many programmers are

needed to accomplish a task and for how long measured in person-day or person-month.

This study estimates SOA development effort for all development phases including

requirement specification, software architecture phase, software construction phase and

testing phase. Effort is determined by SOA size and other key factors/ cost drivers which

are proportional to the amount of effort employed and whose values either increase or

decrease effort.

i) SOA size – This study identified SOA size as the main attribute that determines SOA

development effort.

a) To what extend do you agree that the size of SOA influence SOA development

effort?

[] Strongly agree [] Agree [] Disagree [] strongly disagree

ii) Service type – It is defined by how the service was developed or realized. This study

classified Service type into service construction type and service communication

protocol. Service construction types include discovered, migrated and new service

while service communication protocols include SOAP and REST.

a) To what extend do you agree that service type influence SOA development

effort?

[] Strongly agree [] Agree [] Disagree [] strongly disagree

202

b) To what extend do you agree on the following categorization and weights of

service construction types which influence SOA development effort?

 Service

construction type

Description

W
ei

g
h

t

S
tr

o
n

g
ly

a
g
re

e

A
g
re

e

D
is

a
g
re

e

S
tr

o
n

g
ly

d
is

a
g
re

e

Available service Existing service to be

discovered.

0.6

Migrated service Service created from an

existing legacy system

0.8

New service Service built from scratch 1

c) If you don’t believe in some or all of the above categorization and weights,

recommend appropriate alternative categorization that contributes to

operations complexity.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………..………………………………………………..

d) To what extend do you agree on the following categorization service

communication types and their weights which influence SOA development

effort?

Service

communication

protocol type

Description

W
ei

g
h

t/
ra

te

S
tr

o
n

g
ly

a
g
re

e

A
g
re

e

D
is

a
g
re

e

S
tr

o
n

g
ly

d
is

a
g
re

e

SOAP web

service

SOAP is a communication

protocol that sends data from one

service to another based on a

standardized set of message

patterns.

1.2

REST web

service

Uses a consistent interface to

access identified recourses based

on data access method

1

203

e) If you don’t believe in some or all of the above categorization and weights,

recommend appropriate alternative categorization that influence to SOA

effort.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………….………………………………………………

iii) Other Service development effort factors – Other service development effort factors

include SOA product factors, Service development environment factors, Requirement

specification factors and Personnel factors.

a) To what extend do you agree on the following categorization factors which

influence SOA development effort?

SOA effort

factor
Description

S
tr

o
n

g
ly

a
g
re

e

A
g
re

e

D
is

a
g
re

e

S
tr

o
n

g
ly

d
is

a
g
re

e

Product factors

Database complexity

Database size

Integration complexity

Service

development

environment

factors

Development tool support

Hardware/Software capabilities

Requirements

specification

factors

Requirement elicitation

Business risk/value

Security requirements

Personnel factors

Service developer’s experience

SOA Application experience

Team cohesion

204

b) If you don’t believe in some or all of the above categorization, recommend

appropriate alternative categorization that influence to SOA effort.

………………………………………………………………………………………

……………..……………..…………………………………………………………

………………………………………………………………………………………

205

PART C: APPROPRIATENESS OF THE IMPLEMENTATION TOOL

Based on the implementation tool demonstration rate the tool appropriateness with

regards to tool features, tool interface design and tool performance.

a) To what extend do you agree on the appropriateness of the following

implantation tool aspects?

Implementation tool

appropriateness

Strongly

Agree

Agree Disagree Strongly

Disagree

Tool Features

Tool Interface design

Tool performance

b) If you disagree, indicate any suggestion on modifications or improvement to

the implementation tool.

……………………………………………………………………………………..

…………………………………………………………………………………….

……………………………………………………………………………………..

Thank you for your participation.

Your contribution to this research study will go a long way to improve SOA size

metrics and effort estimation method.

206

APPENDIX 2: QUESTIONNAIRE TO STUDENTS ON WEB SERVICE

PROJECTS EXPERIMENTATION

This questionnaire is part of the study that aims to develop a SOA size metrics and an

effort estimation method based on the size metrics. The main objective of this

questionnaire is to determine if the proposed metrics and method are valid as compared to

existing metrics and effort estimation methods with regard to SOA. You have been chosen

to participate in this study to provide details about your project in relation to size and effort

factors. Please note that any identifying information you provide is purely for the purpose

this study, it will remain confidential and will never be shared with third party.

PART A – WEB SERVICE APPLICATION DETAILS

i) Project ID:___

ii) Project Name: __

iii) Start Date:_________________________ End Date:______________________

iv) Number of developers involved in the system___________________________

v) Indicate the total hours spend in the following phases of project development.

Phase Number of hours

Requirements and Analysis

Design

Development

Testing

Integration

Total hours

207

PART B- SOA SIZE DETAILS

In this section, we want to capture details of your SOA application project to be input to

the proposed SOA size metrics. This study considered SOA internal structure, data

movement and dependency among services as key inputs into the proposed metrics. (For

more details on the attributes see annex 1, 2, 3 and annex 4)

i) List services included in the application as per the UML interface diagram.

 ID Service name ID Service name

1 4

2 5

3 6

ii) Indicate the number of size attributes in the table below for each service listed

above.

NUMBER OF WEB SERVICE SIZE ATTRIBUTES

Application Name: ___

Service Internal Structure per service (See annex 1 for more details)

 Services ID

No Attribute 1 2 3 4 5 6

1 Number of simple operations

2 Number of average operations

3 Number of Complex operations

4 Number of parameters

Service dependency in the application (See annex 2 for more details)

1 Number of atomic dependency

2 Number of lighter aggregation

3 Number of Strong composition

Data movement among services in the application (See annex 2 for more details)

1 Number of Synchronous messages

2 Number of Asynchronous messages

3 Number of reply messages

208

PART C- SOA DEVELOPMENT EFFORT FACTORS

In this section we want to capture factors that influence SOA development effort. These

factors include size, service type, product factor, service development environment factors,

requirement specification factor and personnel factors (See annex 4 for more details and

clarifications).

i) For each service in your project, indicate (tick) the type of service in relation

to Service Construction (SC) type and Service Architectural type.

SERVICE TYPE FACTOR

Application Name: ___

Service Construction type per service (See annex 3 for more details)

 Services ID

No Attribute 1 2 3 4 5 6

1 Discovered service

2 Migrated Service

3 New service

Service architectural type per service (See annex 3 for more details)

4 SOAP

5 REST

Add more details if services are more than 6:

209

ii) Rate the web service application based on the following effort factors based on

the SOA application development (See annex 4)

SOA effort

factor
Description

N
o
rm

a
l

H
ig

h

V
er

y
 H

ig
h

Product factors

Database complexity

Database size

Integration complexity

SOA effort

factor
Description

V
er

y
 l

o
w

L
o
w

N
o
rm

a
l

H
ig

h

V
er

y
 H

ig
h

Service

development

environment

factors

Development tool support

Hardware/Software

capabilities

Requirements

specification

factors

Requirement elicitation

Business risk/value

Security requirements

Personnel factors

Service developer’s

experience

SOA Application experience

Team cohesion

Thank you participating in this study

210

APPENDIX 3: PROPOSAL APPROVAL LETTER FROM BOARD OF

POSTGRADUATE STUDIES OF MMUST

211

APPENDIX 4: RESEARCH PERMIT FROM NACOSTI

