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Abstract: The characterization of the zero divisor graphs of commutative finite rings has

attracted a lot of research for quite sometime, however not so much has been done concerning

their Adjacency and Incidence matrices. In computer modelling, matrices are better under-

stood than graphs and therefore the representation of graphs by matrices is worth studying.

Given an arbitrary square matrix Mn, it is not known in general the classes of finite rings

for which it represents the zero divisors. In spite of that , there exist some expositions on

the adjacency and incidence matrices of the zero divisor graphs of commutative finite rings(

reference can be made to [3, 7, 9] among others). Let R be a square radical zero finite commu-

tative ring. This paper characterizes the adjacency and incidence matrices of the zero divisor

graphs Γ(R) of such rings of characteristic p and p2. We have drawn a zero divisor graph of

the classes of rings studied using TikZ software and studied its properties, then generalized

the properties of such graphs in the same category. By using the standard algebraic concepts,

we have formulated the Adjacency and Incidence matrices of the graphs. A cursory study of

these matrices has been undertaken on some of their algebraic properties. We also extend our

findings on the adjacency matrices [Aij ] as transformations. The results provide an extension
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on the classification problem of rings in which the product of any two zero divisors is zero.
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1. Introduction

The definitions of terms and the notations are standard and can be obtained
from the references.

Much work has been done on the zero divisor graphs for commutative rings
with identity. A few expositions have been given by Anderson and Livingston[1],
Beck[2], Mulay[4] and Redmond [8]. For instance, Beck in [2] constructed a
graph of zero divisors in which every element is a vertex and focused on the
determination of the coloring of the graphs. Anderson and Livingston in [1] re-
defined the concept of the zero divisor graph and constructed graphs in which
every vertex is a nonzero-zero divisor. Their motivation was to give a better
illustration of the zero divisor structure of the ring. Mulay in [4] introduced
another zero divisor graph which is constructed from the classes of zero divi-
sors determined by annihilator ideals rather than the individual zero divisors
themselves. A further study was done by Redmond in [8] who introduced an-
other zero divisor graph in which an element x ∈ R \ I is a vertex when I is
an ideal of R and x, y ∈ R\I are adjacent when x.y = 0. He discussed the
relationship between ΓI(R) and Γ(R/I). Their results did not however extend
to the adjacency and the incidence matrices of the said graphs.

Godsil, Sin and Xiang in [3] gave some results on the invariants of incidence
matrices of some arbitrary graphs. They posed a general problem concerning
the computation of the invariants of matrices representing linear maps over
fields by computing the eigenvalues and p−ranks.

Sharma et’ al in [9] analyzed the adjacency matrices and the neighbourhood
associated with the zero divisor graphs of finite commutative rings. Some of
their findings were that, for p 6= 2, the adjacency matrix is always singular for
Zp × Zp. Moreover, the number of the zero divisors in Zp × Zp are 2(p − 1),
the Eigenvalues of the matrix with respect to the zero divisor graph are (p− 1)
and 0, the rank of the matrix is 2 and the matrix is singular, among others.
A similar study was done by Patra and Baruah in[7] on the Adjacency matrix
and the neighbourhood associated with the zero divisor graphs of Zp × Zp2−2

and Zp × Z2p together with Zp × Zp2 where p is a prime integer. They estab-
lished that the determinant of the adjacency matrices corresponding to the zero



ON THE ADJACENCY AND INCIDENCE MATRICES OF... 775

divisor graphs are 0, the matrices have a rank of 2 and both symmetric and
singular.

This paper presents an investigation on the adjacency and incidence matri-
ces of the zero divisor graphs of finite commutative rings of the square radical
zero, constructed through the idealization of R◦-modules.

2. Preliminaries

Definition 1. For any vertices xi,xj and for all i, j ∈ N, the adjacency
matrix of the zero divisor graph Γ(R) of R is defined as A=[Aij ], where

Aij =

{

1, xixj = 0;
0, otherwise.

Definition 2. If G is a graph with n vertices, m edges and without self-
loop, for any vertices xi, xj ∀ i, j ∈ N, the incidence matrix D=[Dij ] of G is
an n × m matrix D=[Aij] whose n rows correspond to the n vertices and m
columns correspond to m edges such that

Dij =

{

1, when there is an edge between i and j;
0, otherwise.

Definition 3. A function Q(x1, x2, · · · , xn) from R
n to R is called a

quadratic form if it is a linear combination of functions of the form xixj. A
quadratic form can be written as Q(−→x ) = −→x .A−→x = −→x TA−→x for any symmetric
n× n matrix such that aij = coefficient of x2i while aij =

1
2(coefficient of xixj ,

for i 6= j).

3. Constructions I and II of R in which (Z(R))2 = (0)

3.1. Construction I: Finite Rings of Characteristic p

For any prime integer p and a positive integer r, let R◦ = GR(pr, p) be a
Galois ring of order pr and characteristic p. For each i = 1, 2, · · · , h, let ui ∈
Z(R) and U be an h-dimensional R◦-module generated by {u1, · · · , uh} such
that R = R◦ ⊕ U is an additive Abelian group. On R, define multiplication
by; (r◦, r1, · · · , rh)(s◦, s1, · · · , sh) = (r◦s◦, r◦s1 + r1s

σ1
◦ , · · · , r◦sh + rhs

σh
◦ ), for

(r◦, r1, · · · , rh), (s◦, s1, · · · , sh) ∈ R and σ1, · · · , σh ∈ Aut(R◦). It is verifiable
that R is a finite ring with identity (1, 0, · · · , 0) and it is commutative iff σi =
idR◦

∀ i = 1, · · · , h. (see [6]).
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3.2. Construction II: Finite Rings of Characteristic p2

For any prime integer p and a positive integer r, let R◦ = GR(p2r, p2) be a
Galois ring of order p2r and characteristic p2. Suppose U is finitely generated
R◦-module such that U is generated by h elements so that R = R◦ ⊕ U where
U = R◦/pR◦ ⊕ R◦/pR◦ ⊕ · · · ⊕ R◦/pR◦ is an additive Abelian group. On R,
define multiplication as follows;

(r◦, r1, · · · , rh)(s◦, s1, · · · , sh) = (r◦s◦, r◦s1 + r1s
σ1
◦ , · · · , r◦sh + rhs

σh
◦ ),

where σi ∈ Aut(R◦), i = 1, · · · , h. The additive abelian group R defined above
is a commutative finite ring with identity (1, 0, · · · , 0). The ring R is completely
primary of characteristic p2. The ring is commutative if and only if σi = IdR◦

(see[6]).

4. The Zero Divisor Graphs Γ(R)

Consider the ring R of construction I. Let p = 2, h = 3, k = 1 and r = 1 so
that R = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2.
The set of non-zero, zero divisors is

(Z(R))∗ = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 1, 1, 1)}.

The zero divisor graph Γ(R) is given by:
From the graph, | V (Γ(R)) |= 7 which corresponds to the number of edges,

diam(Γ(R)) = 1, ∆(Γ(R)) = 6, girth(Γ(R)) = 3 and χ(Γ(R)) ≤ 7.

Remark 1. From constructions I and II, the invariants p, k, r and h can
be suitably chosen so as to have appropriate structures of the ring R, the zero
divisors Z(R), the non-zero zero divisors Z(R)∗ and consequently the graph
Γ(R).

The following results in the sequel hold:

Lemma 1. Let R be the ring described by construction I and Γ(R) be its
zero divisor graph. Then,

(i) | V (Γ(R)) |= prh − 1.

(ii) Γ(R) is complete.

(iii) Γ(R) = Kprh−1.
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(0,0,1,1)

(0,1,0,1)

(0,1,1,1)

(0,1,1,0)(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

(iv) diam(Γ(R)) = 1.

(v) girth(Γ(R)) =

{

∞, if r=1 and p=2,3
3, elsewhere

(vi) b(Γ(R)) = ∞.

(vii) ∆(Γ(R)) = prh − 2.

(viii) χ(Γ(R)) ≤ prh − 1.

Proof. (i) From the construction I, we have that R◦ = GF (pr, p) and
F ≃ R◦/pR◦. So U = F h is an R◦-module generated by u1, · · · , uh
over F . It is clear that Z(R) = R◦u1 ⊕ R◦u2 ⊕ · · · ⊕ R◦uh and every
non-zero element in Z(R) is of the form (0, r1, r2, · · · , rh). We show that
any element not in Z(R) is invertible. Suppose (r◦, r1, r2, · · · , rh) is not
contained in Z(R). Choose an element say (s◦, s1, s2, · · · , sh) not in Z(R)
such that (r◦, r1, r2, · · · , rh)(s◦, s1, s2, · · · , sh) = (1, 0, · · · , 0). This implies
that r◦s◦ = 1 ⇒ s◦ = r−1

◦ and r◦si + ris◦ = 0 ⇒ si = −rir
−2
◦ for 1 < i ≤

h. Since this holds in the reverse order as well, we have established that
(r◦, r1, r2, · · · , rh)

−1 = (r−1
◦ ,−r1r

−2
◦ , · · · ,−rhr

−2
◦ ).

Since | R |=| R◦ || U |= p(h+1)r ⇒| Z(R) |= prh and Z(R)∗ = Z(R)−{0},
then | V (Γ(R)) |= prh − 1. which establishes (i).
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(ii) To establish (ii), note that the product of every pair of zero divisors of the
form (0, u1, · · · , uh) and (0, v1, · · · , vh) is (0, 0, · · · , 0) so that every pair
of vertices in Γ(R) are adjacent. Hence Γ(R) is complete.

(iii) This is clear since by (ii), Γ(R) is a complete graph having prh−1 vertices.

(iv) Diam(Γ(R)) = sup{d(x, y)|x, y ∈ Z(R)∗}. Since Z(R)∗ = Z(R) − {0},
and for all distinct x, y ∈ Z(R)− {0}, xy = 0, we have that d(x, y) = 1.
So, sup{d(x, y)} = 1 ∀x, y ∈ Γ(R). This implies that diam(Γ(R)) = 1.

(v) A complete graph Γ(R) with n vertices is denoted as Kn. When r = 1, h =
1 and p = 2, 3, n = (prh−1) ≤ 2. So girth(Γ(R)) = ∞. Otherwise, ∀ n =
(prh−1) > 2, it is well known from [1] that girth(Γ(R)) ≤ 2diam(Γ(R))+
1. Since diam(Γ(R)) = 1, the result readily follows.

(vi) Let S be the set of vertices of minimal degree. Clearly S = Φ, thus
b(Γ(R)) = ∞.

(vii) | V (Γ(R)) |= prh − 1. So let ui ∈ Γ(R) be a vertex such that ui.uj =
0; ∀ i, j, thus each vertex is adjacent to every other vertex except itself
for avoidance of loops. Therefore, the number of vertices adjacent to ui
is (prh − 1)− 1. So, ∆(Γ(R)) = prh − 2.

(viii) The minimum number of colors that can be assigned to each vertex
relates to the maximum degree of each vertex in Γ(R). Therefore it can
be established that χ(Γ(R)) ≤ prh − 1.

Lemma 2. Let R be the ring described by construction II and Γ(R) be
its zero divisors graph. Then,

(i) | V (Γ(R)) |= p(h+1)r − 1.

(ii) Γ(R) is complete.

(iii) Γ(R) = Kp(h+1)r−1.

(iv) diam(Γ(R)) = 1.

(v) girth(Γ(R)) =

{

∞, if r=1 and p=2,3
3, elsewhere

(vi) b(Γ(R)) = ∞.
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(vii) ∆(Γ(R)) = p(h+1)r − 2.

Proof. (i) By the construction II, x ∈ Z(R)∗ if and only if x is in the
form (0, r1, r2, · · · , rh). Now let x = (0, r1, r2, · · · , rh) not in Z(R) be
an element in R, then x is invertible and indeed x−1 is (s◦, s1, · · · , sh)
such that s◦ = r−1

◦ and si = −rir
−2
◦ for 1 ≤ i ≤ h. Since | R |=|

R◦ || U |= p(h+2)r, | Z(R) |= p(h+1)r and Z(R)∗ = Z(R) − {0}, then
| V (Γ(R)) |= p(h+1)r − 1.

(ii) For all x, y ∈ Z(R)∗, xy = 0 so, Γ(R) is complete.

(iii) Clearly follows from (ii).

(iv) It is can be seen that x, y ∈ Z(R)∗, d(x, y) = 1 so, Sup{d(x, y)} = 1 for
all x, y ∈ Γ(R). Therefore the result follows immediately.

(v) When R = 1, h = 0 and p = 2 or 3, Γ(R) = K3 then n = (p(h+1)r −
1) ≤ 2 and hence Γ(R) has no cycles so girth(Γ(R)) = ∞. Otherwise,
∀ r, h ≥ 1, n = (p(h+1)r − 1) > 2 so the completeness of Γ(R) implies
that girth(Γ(R)) = 2diam(Γ(R)) + 1 = 3, since diam(Γ(R)) = 1.

(vi) Since the set of vertices of minimal degree in Γ(R) is empty, i.e, the mini-
mum degree of each vertex is zero. Therefore, it follows that b(Γ(R)) = ∞.

(vii) Let ui ∈ Z(R) be a vertex such that ui.uj = 0 ∀ i, j ∈ N. Each ver-
tex being adjacent to any other vertex except its self for avoidance of a
loop, the vertices adjacent to ui are p(h+1)r − 1 in number. Therefore,
∆(Γ(R)) = p(h+1)r − 2.

Proposition 1. If R is the ring of construction I or II then the graph
Γ(R) is triangular if :

(i) R = Z2 ⊕ Z2 ⊕ Z2.

(ii) R = F4 ⊕ F4.

(iii) R = Z4 ⊕ Z2.

Proof. A zero divisor graph Γ(R) is triangular if Γ(R) = K3. Let R be a ring
given by the constructions I and II, then Γ(R) = Kprh−1 or Γ(R) = Kp(h+1)r−1

respectively for the rings of characteristic p and p2. It suffices to find the values
of p, r and h for which phr − 1 or p(h+1)r − 1 equals to 3. Now let R be of
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characteristic p = 2, then Γ(R) = K3 when r = 1 and h = 2 or vice versa.
When R is of characteristic p2, the graph is triangular when p = 2 , r = 1 and
h = 1.

5. The Adjacency and Incidence Matrices of Γ(R)

Example 1. Let R be the ring of construction I such that p = 2 ,k = 1 ,
r = 1 and h = 1. So, R = Z2 ⊕ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, (Z(R))∗ =
{(0, 1)}.

The matrix [A11] of Γ(R) is given by [A11] =
[

0
]

.
Clearly, (i) [A11] is of order 1× 1, (ii) det | [A11] |= 0, (iii) [A11] = [A11]

T thus
symmetric, (iv) Q([A11]) = 0, a zero form. Moreover, the incidence matrix
[D11] corresponding to Γ(R) is same as [A11]

Example 2. When p = 2 , h = 2 and r = 1,

R = Z2 ⊕ Z2 ⊕ Z2

= {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},

(Z(R))∗ = {(0, 1, 0), (0, 0, 1), (0, 1, 1)}. [A33] =





0 1 1
1 0 1
1 1 0



.

Evidently, (i) tr([A33]) = 0 , (ii) [A33] = [A33]
T so [A33] is symmetric,

(iii) rank([A33]) = 3, (iv) det | [A33] |= 2,
(v) the eigenvalues of [A33] are 2 and −1 of multiplicity 2.
(vi) Q([A33]) = Q(x1, x2, x3) = 0x21 + 0x22 + 0x23 + 2x1x2 + 2x1x3 + 2x2x3 =
2x1x2 + 2x1x3 + 2x2x3.

The incidence matrix [D33] corresponding to Γ(R) is [D33] =





1 1 1
1 1 1
1 1 1





(i) det | [D33] |= 0, (ii) tr([D33]) = 3, (iii) rank([D33]) = 1, (iv) the
eigenvalues of [D33] are 3 and 0 of multiplicity 3, (v) the quadratic form
Q([D33]) = Q(x1, x2, x3) = x21 + x22 + x23 + 2x1x2 + 2x1x3 + 2x2x3.

Proposition 2. Let R be the ring given by construction I and [Aij ], [Dij ]
be the adjacency and incidence matrices respectively for its Γ(R), then;

(i) tr([Aij]) = 0 and tr([Dij ]) = prh − 1 ∀ i, j ∈ N.

(ii) [Dij ] and [Aij ] are symmetric.
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(iii) The order of [Aij]= order of [Dij ] = (prh − 1)× (prh − 1).

(iv) rank([Aij]) = prh − 1 and rank([Dij ]) = 1.

(v) The det | [Dij ] |= 0 and the det | [Aij ] |=

{

prh − 2, for an odd prh − 1;
2− prh, for an even prh − 1.

where prh − 1 is the number of vertices of Γ(R).

(vi) The eigenvalues of [Aij ] =

{

prh − 2, or
−1, of multiplicity prh − 2.

The eigenvalues of [Dij ] =

{

prh − 1, or
0, of multiplicity prh − 2.

Proof. (i) Let A = [Aij ] of order prh − 1 be the adjacency matrix of
R = Fp ⊕ · · · ⊕ Fp.

It is well known that, tr(A) =
∑prh−1

i,i Aij . Since Γ(R) is simple with
no self loop allowed for any vertex vi, i = 1, 2, · · · , h, the diagonal en-

tries are all zeros thus,
∑prh−1

i,i Aij = 0 ⇒ tr([Aij ]) = 0. Similarly ,

tr([Dij ]) =
∑prh−1

i,i Dij ; where Dij′s are the diagonal entries of [Dij ]. By

the connectedness of Γ(R), Dij = 1 for there exist an edge between ith

and jth vertices ∀ i, j = 1, 2, · · · , h.

Therefore,
∑prh−1

i=j Dij = prh − 1.

(ii) It can easily be seen that [Aij ] = [Aij ]
T and [Dij ] = [Dij ]

T which estab-
lishes symmetry of [Aij ] and [Dij ].

(iii) From Lemma 1, the order | (Z(R))∗ | is prh − 1 which corresponds to the
number of vertices in Γ(R). It follows that for any prime integer p, the
order of [Aij ] and [Dij ] is (p

rh − 1)× (prh − 1).

(iv) Upon carrying out an elementary row reductions for the adjacency ma-

trix [Aij ] =

















0 1 · · · · 1
1 0 1 · · · 1
... 1

. . . ·
...

·
... · · ·

. . . 1
1 1 · · · 1 0

















and for the incidence matrix [Dij ] =







1 · · · 1
...

. . .
...

1 . . . 1






we end up with reduced row echelon form of matrices
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1 0 · · · · · · 0

0 1 0 · · ·
...

... 0
. . . 0

...
...

... 0
. . . 0

0 0 · · · 0 1



















for [Aij ] and











1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











for [Dij ].

For the rank of [Aij ], let V = {v1, v2, · · · , vprh−1} be the set of linearly

independent vectors such that v1 =

















1
0
...
...
0

















, v2 =















0
1
0
...
0















, · · · ,vprh−1 =















0
0
...
0
1















. Clearly, the set V spans the whole matrix space. Hence the rank

of [Aij ] is prh − 1. For [Dij ], the only row which is non-zero is the first
row. Hence, the rank of [Dij ] is 1.

(v) For the incidence matrix, it is clear that the elements in the rows are
the same elements in the column. All the matrix minors have a deter-
minant of 0, therefore | [Dij ] |= 0. For the adjacency matrix [Aij ] =
















0 1 · · · · 1
1 0 1 · · · 1
... 1

. . . · · ·
...

·
... · · ·

. . . 1
1 1 · · · 1 0

















, on conducting row operations, we obtain an up-

per triangular matrix of the form
















1 1 · · · · 0
0 1 1 · · · 1
... 0

. . . · 2

·
... · · ·

. . . ·
0 · · · · 0 prh − 2

















. Expanding the determinant along the first

row, we obtain prh−2 for an odd prh−1 and 2−prh when prh−1 is even.

(vi) Clearly, the equations | [Aij ]−λI |= 0 and | [Dij ]−λI |= 0 yields the char-
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acteristic polynomial equations for [Aij ] and [Dij ] respectively. The solu-
tions for these equations gives the eigenvalues for the respective matrices.
Now, for any i, j ∈ N the characteristic polynomial for the adjacency [Aij ]

is given by p(λ) = λprh−1
−(prh−1)λprh−3−(prh−2)λprh−5−· · ·−1 = 0. Let

the eigenvalues of [Aij ] be λ1, · · · , λprh−1. Denote the characteristic poly-
nomial of [Aij ] by p(λ). Since the eigenvalues of [Aij ] are the zeros of p(λ),
this implies that p(λ) can be factorised as p(λ) = (λ−λ1) · · · (λ−λprh−1).
Consider the constant term of p(λ), c◦. The constant term of p(λ)
is given by p(0), which can be calculated in two ways; firstly, p(0) =

(0− λ1) · · · (0− λprh−1) = (−1)p
rh−1λ1 · · ·λprh−1. Secondly,

p(0) =| 0I − [Aij ] |=| −A |= (−1)p
rh−1 | [Aij ] | . Therefore,c◦ =

(−1)p
rh−1λ1 · · · λprh−1 = (−1)p

rh−1 | [Aij ] |, and so λ1 · · ·λprh−1 =| [Aij ] |

. Consider the coefficient of λprh−1. This coefficient can be calculated by
expanding | λI − [Aij ] | . This is achieved by multiplying the elements in
positions 1j1 , 2j2 , · · · , p

rh − 1j
prh−1

for each permutation j1, · · · , jprh−1

of 1, · · · , prh− 1. If the permutation is odd, the product is also multiplied
by −1 then all these prh − 1 are added to produce the determinant. One
of these products is (λ − a11) · · · (λ − a(prh−1)(prh−1)). Every other possi-

ble product can contain at most prh − 2 elements on the diagonal of the
matrix and so will contain at most prh − 2 λ

′s.
For [Dij ], the characteristic polynomial equation

p(λ) = λprh−1 − (prh − 1)λprh−2 = 0.

⇒ λprh−2(λ− (prh − 1)) = 0 ⇒ λ = prh − 1 or 0 of multiplicity prh − 2.

Proposition 3. Let R be a ring of the construction II and Z(R) be the
set of zero divisors of R. If [Aij ] and [Dij ] are the adjacency and incidence
matrices respectively for Γ(R) then,

(i) [Aij ] = [Aij ]
T and [Dij ] = [Dij ]

T .

(ii) tr([Aij ]) = 0 and tr([Dij]) = p(h+1)r − 1.

(iii) | Dij |= 0 and | Aij |=

{

p(h+1)r − 2, when p(h+1)r − 1 is odd;

2− p(h+1)r, when p(h+1)r − 1 is even.

(iv) rank([Aij]) = p(h+1)r − 1 and rank([Dij ]) = 1.
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(v) The eigenvalues of [Aij ] =

{

p(h+1)r − 2, or

-1, of multiplicity p(h+1)r − 2.

and the eigenvalues of [Dij ] =

{

p(h+1)r − 1, or

0, of multiplicity p(h+1)r − 2.

(vi) Order of [Aij ] = (p(h+1)r − 1)× (p(h+1)r − 1) = order of [Dij ].

Proof. (i),(ii),(iii), (iv) and (v) are similar to proofs of proposition 2 with
some little modifications.

(vi) Since Z(R)∗ = Z(R) − {0} and | Γ(R) |= p(h+1)r − 1, it is already seen
that the number of vertices of Γ(R) corresponds to the number of rows
and columns for the [Aij ] and [Dij ] matrices. Therefore the order of [Aij ]
and [Dij ] is (p

(h+1)r − 1)× (p(h+1)r − 1).

Corollary 4. If [Aij ] be the adjacency matrix corresponding to Γ(R) then
the quadratic form of [Aij ] is linear.

Proof. Since the quadratic form of [Aij ], Q(x1, x2, · · · , xh) = Q(x) and Aij

are the entries of the n×n matrix. Now for i = j, aij are the coefficients of x2i .
We know that, tr([Aij ]) = 0 thus x2i are all 0. Thus we obtain an equation of the
form Q([Aij ])(x1, x2, · · · , xph−1) = 2xi(xi+1+xi+2+ · · ·+xph−1)+2xi+1(xi+2+
xi+3 + · · · + xph−1) + 2xi+2(xi+3 + xi+4 + · · · + xph−1) + · · · + 2xph−2xph−1),
which is a polynomial of maximum degree 1 hence linear.

Theorem 5. If [Aij ] and [Dij ] are the adjacency and incidence matrices
respectively for Γ(R) of classes of rings constructed, then the following state-
ments are true;

(i) The quadratic form Q([Aij ]) of the adjacency matrix is indefinite.

(ii) The quadratic form Q([Dij ]) of the incidence matrix is positive semi-
definite.

Proof. (i) Intuitively from the constructed quadratic forms, Q([Aij ]) > 0
for some x and Q([Aij ]) < 0 for other values of x. So, by definition of
indefiniteness, Q([Aij ]) is indefinite.

(ii) For positive semi-definiteness , consider D = S′S where S is a square
symmetric matrix of order prh − 1 or p(h+1)r − 1. Let v 6= 0 be a vector
in D,S then v′Dv = vS′Sv. But vS′Sv is a sum of squares and therefore
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vS′Sv = 0 if and only if Sv = 0. Thus there exist at least one non-null v
such that v′Dv = 0. This shows that [Dij ] is positive semi definite.

6. The Adjacency Matrices [Aij]’s as Transformations

Definition 6. Let [Aij ] be an (prh − 1) × p(rh−1) matrix. The null

space of [Aij ] denoted by N([Aij ]) is the set of vectors in R
prh−1 defined by

N(A) = {x : Ax = 0, x ∈ R
prh−1}.

Proposition 4. Let A = [Aij ] be the (prh − 1) × (prh − 1) adjacency
matrix of the ring of construction I , the null space of A, N(A) is the set of all
(prh − 1)-dimensional column vector x such that Ax = 0 and the Nullity of A
is 0.

Proof. For any p, h and r = 1, the matrix [Aij ] =

















0 1 · · · · 1
1 0 1 · · · 1
... 1

. . . · · ·
...

·
... · · ·

. . . 1
1 1 · · · 1 0

















can be reduced by an elementary row reduction to echelon form. The augmented

form of matrix [Aij ], [A | 0 ] is equivalent to



















1 0 · · · · · · 0

0 1 0 · · ·
...

... 0
. . . 0

...
...

... 0
. . . 0

0 0 · · · 0 1



















. Now, the

solutions for the systems are;
x1 = x2 = x3 = · · · = xprh−1 = 0. From the system, it can be seen that the

solution space is the set









































x1
x2
x3
...

xprh−1









































=









































0
0
0
...
0









































. Clearly, N([Aij ]) =

{0}. Also, from the dimension Theorem, the nullity of [Aij ] is (p
rh−1)− (prh−

1) = 0.
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Definition 7. If [Aij ] is a (prh − 1) × (prh − 1) adjacency matrix, the
row space of [Aij ] is the span{v1, v2, · · · , vprh−1} and the rows of [Aij ] can be

regarded as vectors v1, v2, · · · , vprh−1 ∈ R
prh−1.

Proposition 5. The row space of (prh − 1)× (prh − 1) adjacency matrix

[Aij ] of the ring R of construction I is the subspace of Rprh−1 spanned by rows
of [Aij ]. The dimension for the the row space of the adjacency matrix is prh−1.

Proof. From the elementary row operation on [Aij ], we obtain



















1 0 · · · · · · 0

0 1 0 · · ·
...

... 0
. . . 0

...
...

... 0
. . . 0

0 0 · · · 0 1



















.

The row vectors with the leading 1′s forms the basis for the row space of [Aij ].
The vectors in the row space of [Aij ] are

(

0 1 1 · · · 1
)

1
,
(

1 0 1 · · · 1
)

2
, · · · ,

(

1 1 1 · · · 0
)

prh−1
.

Therefore,

Row space of [Aij ]

=
{(

0 1 1 · · · 1
)

,
(

1 0 1 · · · 1
)

, · · · ,
(

1 1 1 · · · 0
)}

.

From this, it is clear that the dimension for the row space of [Aij ] is p
rh−1.

Definition 8. The column space of a (prh−1)×(prh−1) adjacency matrix

[Aij ] of construction I is the subspace of Rprh−1 spanned by columns of [Aij ].

Remark 2. The column space of [Aij ] coincides with the row space of
[Aij ]

T . Since [Aij ]
T = [Aij ], the dimension for the row space of the adjacency

matrix equals the dimension of the column space.

Proposition 6. The kernel of the linear transformation T : Rprh−1 →
R
prh−1 is the set of all x ∈ R

prh−1 such that Tx = 0 ∈ R
prh−1. The range of T

is the set of all y ∈ R
prh−1 such that y = T (x) for all x ∈ R

prh−1.

Proof. Finding the kernel of T amounts to finding the null space of [Aij ].
So, we solve the system Ax = 0. The rest follows from proposition 4. The range
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of T can be obtained from the column space of [Aij ]. It is a subspace of Rprh−1.
We therefore choose the original column of the matrix to form the basis for the

range=





























0
1
...
1











,











1
0
1
...











, · · · ,











1
1
...
0





























.

Corollary 9. Let [Aij ] be the adjacency matrix of Γ(R) of the ring in
construction I . Given the transformation T such that Tx = [Aij ]x then;

(i) the Dimension for the row space of [Aij ] = dimensioncolumnspaceof [Aij] =
prh − 1

(ii) the Nullity of [Aij ] = 0.

(iii) the Range of T is prh − 1.

(iv) the Range([Aij ]) +Nullity ([Aij ]) = prh − 1.

Remark 3. The adjacency matrix [Aij ] as transformations in construction
II is similar to construction I.

To this end, we present the following general results:

Theorem 10. Let R be the ring of constructions I and II and [Aij ] and
[Dij ] be the adjacency and incidence matrices respectively for Γ(R) then:

(i) [Aij ] and [Dij ] are both symmetric.

(ii) order of

[Aij ] = order [Dij ] =

{

(prh − 1)× (prh − 1), for char(R)=p

(p(h+1)r − 1)× (p(h+1)r − 1), for char(R)=p2.

(iii) rank([Aij ]) = trace([Aij ]) =

{

prh − 1, for char(R)=p

p(h+1)r − 1, for char(R)=p2.

(iv) rank([Dij]) = 1 when char(R) are both p and p2.

(v) The eigenvalues of

[Aij ] =

{

prh − 2 or − 1 of multiplicity prh − 2, for char(R)=p

p(h+1)r − 2 or − 1 of multiplicity p(h+1)r − 2, for char(R)=p2.
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(vi) The eigenvalues of

[Dij ] =

{

prh − 1 or 0 of multiplicity prh − 2, for char(R)=p

p(h+1)r − 1 or 0 of multiplicity p(h+1)r − 2, for char(R)=p2.

(vii) | [Aij ] |=

{

prh−2 and 2−prh for odd respective even orders, when char(R)=p

p(h+1)r−2 and 2−p(h+1)r for odd respective even orders, when char(R)=p2.

(viii) | [Dij ] |= 0 for char(R) = p and p2.

(ix) trace([Aij ]) = 0 when char(R) = p and p2.

(x) The dimension of the row space and the column spaces for the adjacency
matrices are prh − 1 and p(h+1)r − 1 respectively for constructions I and
II.

(xi) The N([Aij ]) of the adjacency matrices is {0}.

Proof. Follows from the results of constructions I and II as captured in the
previous propositions.
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