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Abstract

In this paper, the norm attaining operators in Fréchet spaces are considered. These operators
are characterized based on their density, normality, linearity and compactness. It is shown that
the image is dense for a normal and injective operator in a Fréchet space, as well as its inverse
given that the operator is self-adjoint. A norm attaining operator in a Fréchet space is also
shown to be normal if its adjoint also attains its norm in the Fréchet space, and the condition
under which the norm attainability and the normality of an operator in a Fréchet space coincides
is given. Furthermore, a norm attaining operator between Fréchet spaces is linear and bounded
as well as its inverse. If a norm attaining, normal and dense operator is of finite rank, then it is
compact. The study of norm attaining operators is applicable in algorithm concentration as seen
in describing sphere packing.
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1 Introduction

In honor of Maurice Fréchet, special topological vector spaces are known as Fréchet spaces. The
idea of Fréchet spaces generalizes the concepts of Hilbert spaces (complete inner product (or pre-
Hilbert) spaces) and Banach spaces (normed vector spaces that are complete with regard to the
metric produced by the norm), both of which are crucial concepts in operator theory [1],[2]. Oftenly,
investigations on norm attaining operators are done in Banach spaces. However, it is usually
more natural and convenient to put considerations in appropriate Fréchet function space instead
of Banach function space since a Fréchet space has additional properties including local convexity
and metrizability.

By supplying the necessary conditions for the expansion of a topological space by the sequential
closure operator to be a Fréchet space as well as a sufficient condition for a topological space
to simply expand to be Fréchet, Woo Chorl [3] enriched sequential convergence structures and
characterized Fréchet spaces. Vogt [4] examined the relationship between Fréchet spaces and Banach
spaces. The concept of a Banach space is well-known [5]. Therefore, this study focused on Fréchet
spaces as ambient spaces of every Banach space hence generalizing Banach spaces.

Banach spaces provide for a variety of structures, including topological, geometrical, and algebraic
ones. According to [6], these might be thought of as topological, metric, or linear spaces. The norm
topology, which is caused by the metric produced by the norm, is one of the natural topologies that
are admissible in Fréchet spaces. The weak topology is the weakest topology and shares the same
continuous linear functions as the norm topology [cf. [7]].

Suppose that B is a bounded closed convex subset of a Banach space Y with y ∈ B, where
ry (B) < d (B) with

ry (B) = sup {‖y − z‖ : z ∈ B} ∀y, z ∈ B

d (B) = sup {‖y − z‖ : y, z ∈ B}

Consequently, Y is considered to have a normal structure. In other words, Banach space B has
normal structure if there is a point p in each closed bounded convex set K in B that has at least
one point such that sup {‖p− x‖ : x ∈ K} is less than the diameter of K [8].

Fréchet spaces admit several operators including sequential closure operators and norm attaining
operators. However, the study of norm attaining operators provides certain familiarity with the
geometric aspects of the Radon-Nikodym property, like the dentability. As a result, characterization
of norm attaining operators has been done, primarily on the denseness property.

According to Bishop-Phelps theorem [9], the collection of norm-attaining functionals on a Banach
space is dense in the dual. However, in the complex situation, it is possible for a closed, convex,
and bounded subset of a Banach space, C, to exist such that the set of functionals whose maximum
modulus is achieved on C is not dense in the dual [10].

Some isometric conditions on X for which the set of norm attaining operators from X to Y are
dense in the space of all operators between these Banach spaces were provided by Lindestrauss [11].
Specifically, consider X and Y as two Banach spaces. If NA (X,Y ) is dense in L (X,Y ) for any
Banach space Y , then a Banach space X is said to have propertyA. Additionally, if NA (X,Y )
is dense in L (X,Y ) for any Banach space X, then a Banach space Y is said to have propertyB.
According to Lindestrauss [[11], proposition 4], if B (C0, X) contains a non-compact operator and
X is strictly convex, then X does not possess propertyB. The research continued, in regard to the
general question posed by Bishop and Phelps [12]. It was demonstrated that for some space Y , the
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norm attaining operators in B
(

L1 [0, 1] , Y
)

are not dense because there are no extreme points in
the closed unit ball of L1 [0, 1]. However, Johnson [13] confirmed the Radon-Nikodym property’s
close link to extreme point structure in relation to the denseness of norm attaining operators for
strictly convex Banach spaces Y . The study also attempted to address the unresolved issue of the
density of the norm attaining operators in B

(

L1 [0, 1] , Y
)

in the Banach space Y .

It has been demonstrated that an operator of a particular class can be approximated by an operator
of the same class that attains a norm. According to Johnson [14], similar conclusions for the idea of
norm attaining operators taking into account an operator between compact Hausdorff spaces have
also been developed.

Venku [15] provided necessary and sufficient conditions for a limited operator formed between
complex Hilbert spaces to be completely norm attaining. The structure of such operators in the
case of self-adjoint and normal operators was also examined separately.

Okelo [16] gave the characterizations of both the power and non-power operators considering
the Banach space setting. They considered norm-attainability for inner derivation, generalized
derivations and general elementary operators [17]. However, the generalizations still remained open
in Fréchet spaces.

From the foregoing, having such generalizations in Fréchet spaces remained of interest. Additionally,
it was intriguing to characterize the density of norm attaining operators in norm attaining operator
classes other than L1 [0, 1]. Are there any additional characteristics for characterizing norm attaining
operators besides density, too? This unanswered question served as a clear impetus for the investigation
on the characterization of norm attaining operators. The following fundamental ideas were crucial
for conducting the research.

1.1 Basic Concepts

Definition 1.1 ([18], Definition 1.10.2). A vector space over a scalar field F is a set V that satisfies
vector addition and scalar multiplication. A vector space is also called a linear space. The elements
of a vector space are called vectors. The trivial vector is V = 0.

Definition 1.2 ([19], Definition 3.1.1). Assume that X is a vector space with all vectors x, y
contained within it, and that F is a scalar field with all scalars c contained within it. A function
‖ · ‖ : X → ℜ satisfying

1. non-negativity: 0 ≤ ‖x‖ < ∞

2. homogeneity: ‖cx‖ = |c|‖x‖ and

3. triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

is said to be a seminorm on X and is a norm if it also satisfies
4. uniqueness (zero axiom) : ‖x‖ = 0 iff x = 0.

Definition 1.3 ([20], Definition 2.0). Assume that V is a vector space with a defined norm. Then,
V is referred to as a normed space, also known as a Pre-Banach space. A metric d (v, w) = ‖v−w‖
is inherently linked to a normed space V and it is often referred to as the translation invariant. The
normed space V is referred to as a Banach space if it is complete with the corresponding metric.

Definition 1.4 ([21], Definition 1.4). Given a complex vector space V , a complex-valued function
〈, 〉 : V × V → C of two variables on V is an inner product if

1. 〈x, y〉 = ¯〈y, x〉
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2. 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉

3. 〈x, y + y′〉 = 〈x, y〉+ 〈x, y′〉

4. 〈x, x〉 ≥ 0

5. 〈αx, y〉 = α 〈x, y〉

6. 〈x, αy〉 = ᾱ 〈x, y〉

V equipped with such a 〈, 〉 is a pre-Hilbert space. And a complete pre-Hilbert space, say H, that
is,

limn,m→∞ 〈xn − xm, xn − xm〉 = 0∀xn ∈ H∀n ∈ N,m ∈ R

⇒ ∃x ∈ H : limn→∞ 〈x− xn, x− xn〉 = 0

is a Hilbert space.

Definition 1.5 ([22], Definition 1.1). Let d : Y × X → E′ be a map that meets the conditions
listed below:

1. d(x, y) ≥ 0 for each pair x, y

2. d(x, y) = 0 iff x = y

3. d(x, y) = d(y, x)∀x, y (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z)∀x, y, z (triangle inequality)

The map d : Y ×X → E′ is referred to as a metric (or distance function) on the set Y . The distance
between x and y, denoted by d(x, y) is known as the metric and the set Y endowed with d, denoted
by (Y, d), is known as the metric space.

Definition 1.6 ([22], Definition 2.2). Let (Y, d) be a metric space. Given a topology τ(d) ∈ Y such
that τ(d) is determined by d, the topological space (Y, τ(d)) is referred to as a metrizable space if
τ(d) ∈ Y is such that τ(d) is determined by d .

Definition 1.7 ([22], Definition 2.3). (Y, τ(d)) is said to be completely metrizable if the metric
space (Y, d) such that d induces τ is complete.

Definition 1.8 ([21], Definition 2.5). A local basis (0-neighborhood basis) at u ∈ U is made up of
open balls centered at U, {v ∈ U : d (u, v) < r}.

Definition 1.9 ([4], Definition 1.3). If a space has a basis of absolutely convex neighborhoods of
zero, it is said to be locally convex.

Definition 1.10 ([4],[21], Definition 1.5). A complete topological vector space with absolutely
convex neighborhoods of zero is known as a Fréchet space.

Definition 1.11 ([15], Definition 1.9). Let H1 and H2 be vector spaces. A linear operator T : H1 →
H2 for all x ∈ H1, is said to be bounded if there exists an integer c > 0 such that ‖Tx‖ ≤ c‖x‖.

Definition 1.12 ([14], Definition 2.2). Let x0 be a unit vector in X. For Banach spaces X and Y ,
if a bounded linear operator T : X → Y exhibits the property
‖Tx0‖ = ‖T‖ = sup‖Tx‖ : x ∈ Xand‖x‖ ≤ 1, it is referred to as a norm attaining operator.

Definition 1.13 ([23], Definition 2.5). A topological space denoted by (X, τ) is a non-empty set X
together with the collection τ of subsets of X(referred to as open sets) that satisfies the following
conditions:

1. The empty set Φ and the whole space X are members of τ(i.e, are open sets).

2. The union of any collection of open sets is itself an open set.

3. The intersection of any finite collection of open sets is itself an open set.

Definition 1.14 ([13], Definition 2.6). Let Y be a Banach space that is strictly convex. Then, in
the space of all linear operators from L1 [0, 1], the norm attaining operators mapping L1 [0, 1] to Y
are dense if and only if Y possesses the Radon-Nikodym property.

51



Bernice et al.; JAMCS, 37(9): 48-58, 2022; Article no.JAMCS.92903

2 Research Methods

2.1 Bishop-Phelps Property

Let C be a convex, closed, and bounded subset of X and X be a Banach space. According to [9],
C is said to satisfy the Bishop-Phelps property if for any Banach space Y , the set of operators
T ∈ L(X,Y ) such that the function x → ‖Tx‖ attains its maximum in C is dense in L(X,Y ).

A Banach space X clearly possesses propertyA if and only if its unit ball BX possesses Bishop-
Phelps property. If every convex, closed, and bounded subset of a Banach space X possesses the
Bishop-Phelps property (BPp), then X is said to have this property.

In order to characterize the density of norm attaining operators with respect to the topology of the
norm, Bishop-Phelps property was helpful.

2.2 Radon-Nikodym Property

Let G : Σ → X be a µ-continuous vector measure with g ∈ L1 (µ,X) such that G(E) = REgdµ for
all E ∈ Σ. Then, X has the Radon-Nikodym property according to (Ω,Σ, µ) [24].

A subset is said to have the Radon-Nikodym property if every non-empty subset of a Banach space
X is dentable, or if every subset of C has slices of any diameter. According to Phelps’ results, the
Radon-Nikodym property, which is expressed in terms of measure theory, holds for any non-empty
bounded subset of a Banach space X [19].

Recall: The norm attaining operators mapping L1 [0, 1] to Y are dense in the space of all linear
operators from L1 [0, 1] to Y if and only if Y possesses the Radon-Nikodym property and is strictly
convex [13].

Lemma 2.1 ([24], Theorem 3.2.3). (The Radon-Nikodym Theorem) Let λ be a real measure on M
and µ be a positive measure with a σ-finite range. There is only one g in L1 (µ) such that dλa = gdµ.
g ≥ 0a.e [µ] if λ is a finite positive measure.

Proof. Suppose gk ∈ L1 (µ) , k = 1, 2... and dλa = g1dµ = g2dµ. Then for any arbitrary h, we have
hdµ = 0 where h = g1 − g2. But then

∫

h≥0
hdµ = 0 and it follows that h ≤ 0a.e [µ]. It is similarly

proven that h ≥ 0a.e [µ]. Thus h = 0 in L1∞ (µ), that is, g1 = g2 in L1 (µ).

Lemma 2.2 ([19] , Theorem 5). Let C ⊂ X be a Radon-Nikodym set that is non-empty, bounded,
closed, and absolutely convex. Then, for any Banach space Y , a Gδ-dense set in L (X,Y ) exists in
the subset of operators T ∈ L (X,Y ) such that supx∈C‖Tx‖ is achieved.

In order to characterize the operators that attain their norms in consideration of their densities
with regard to each finite measure space, the Radon-Nikodym property was useful.
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3 Results and Discussion

3.1 Density of Norm Attaining Operators in Fréchet Spaces

Proposition 3.1. A bounded linear operator T attain its maximum if and only if the unit ball
possesses the Bishop-Phelps property.

Proof. The proof is given for the sufficiency part. Take into consideration a Fréchet space E’s
convex, closed, and bounded subset B. From the hypothesis, the unit ball B has Bishop-Phelps
property. It naturally follows that the set of operators T ∈ L(E,F ) is dense in L(E,F ) for the
topology norm for every space Fréchet F . This suggests that the unit ball B is where the function
f → ‖Tf‖ : f ∈ E attains its maximum.

Theorem 3.1. Let T ∈ B(F ) for every Fréchet space F , be normal and injective. Then Im(T ) is
dense.

Proof. For any operator T ∈ B(F ), kerT ∗ = (ImT )⊥. Since T ∗ is restricted to the image of T, T ∗

is injective and therefore, kerT = kerT ∗T . But, T is also normal. This implies that

kerT = kerT ∗T = kerTT ∗

= kerT ∗ = (ImT )⊥

It then follows that T is injective if and only if the orthogonal complement of the image is trivial,
which implies that T has dense image.

Lemma 3.2. Assume that operator T is self-adjoint. If T ∈ NA(E,F ) and NA(E,F ) is dense in
L(E,F ), then T ∗ ∈ NA(E,F ) for any Fréchet space E and Fréchet space F .

Proof. The proof immediately follows from the fact that a densely defined linear operator that
maps a Fréchet space onto itself and is invariant under the unary operation of taking the adjoint is
self-adjoint.

Theorem 3.3. A Fréchet space for some L ∈ Sc[X] is defined as (X, cL). Give an example of
cL : P (X) → P (X). It is claimed that cL is norm attaining if there is a unit vector x ∈ X such
that ‖cLx‖ = ‖cL‖. The set of operators in P (X) is hence dense in P (X).

The following remark will be necessary for the proof.

Remark 3.1. Every sequentially continuous linear operator between topological vector spaces is a
bounded operator.

Proof. The remark above indicates that cL is bounded. Now, if X is a normed vector space (a
special type of a Fréchet space), then cL is bounded by definition if and only if some M > 0 exists
such that for any x ∈ X, ‖cLx‖P (X) ≤ M‖x‖P (X). This implies that the operator norm M exists
for cL. That is to say, ‖cL‖ = M . Additionally, it follows that x ∈ X is a unit vector. In other
words, ‖x‖ = 1. Therefore,

‖cLx‖P (X)‖ ≤ M‖x‖P (X)

= ‖cL‖‖x‖P (X)

= ‖cL‖P (X)

Because of this, cL is attaining the norm. The set of norm attaining operators from P (X) is hence
dense in L[P (X), P (X)] if P (X) possesses the Radon-Nikodym property.

In addition to density, the normality, linearity, and compactness properties are used to characterize
norm attaining operators in Fréchet spaces.
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3.2 Normality of Norm Attaining Operators in Fréchet Spaces

Proposition 3.2. Assume that F is a Fréchet space and that T, T ∗ ∈ AN(F ). Consequently,
T ∈ B(F ) is normal.

Proof. Assume that T ∈ B(F ) and T ∗ ∈ AN(F ) are both normal. It must be demonstrated that
T ∈ AN(F ). The fact that T ∗ ∈ AN(F ) if and only if TT ∗ ∈ AN(F ) is well known. Additionally,
the fact that T ∈ B(F ) is normal implies that T ∗T = TT ∗. Consequently, T ∗T ∈ AN(F ) which
also suggests that T ∈ AN(F ).

Theorem 3.4. For a self-adjoint operator T , the norm attainability and the normality of T
coincides.

Proof. Given that T is a self-adjoint operator, it must be demonstrated that T is also normal if T
is norm attaining. Let E be a Fréchet space and T be a norm-attaining operator so that T ∈ B(E).
If E possesses the Radon-Nikodym property and is strictly convex, then T ∈ NA(E) is dense in E.
It follows that T is self-adjoint. Therefore, according to Proposition 3.2, if T ∈ NA(E), then also
T ∗ ∈ NA(E), indicating that TT ∗ = T ∗T ∈ NA(E) (Lemma 3.2). Therefore, T is normal.

3.3 Linearity of Norm Attaining Operators in Fréchet Spaces

Theorem 3.5. A norm-attaining operator between the Fréchet spaces E and F is defined as T ∈
NA(E,F ). As a result, T is linear and bounded.

Proof. Let T attain its norm. Then a unit vector f0 exists in E such that ‖Tf0‖ = ‖T‖. The
rewritten version of this is ‖Tf0‖ = ‖T‖‖f0‖ = ‖T‖.1 = 1‖T‖. It follows that T is bounded because
the coefficient of ‖T‖ is a real number. Now that T is bounded and norm-attaining, its linearity
follows naturally.

Conversely, assume that T is bounded and linear. For any real (or complex) number λ > 0,
‖T (f0)‖ ≤ λ‖f0‖, ∀f0 ∈ E. But, ‖f0‖ = 1. Consequently, ‖T (f0)‖ ≤ λ. According to the equality,
λ must equal sup‖T (f0)‖. Finally, it can be seen that given the unit vector f0 in E, ‖Tf0‖ ≤ λ =
‖T‖ = sup‖T‖ and so T attains its norm.

Theorem 3.6. Assume that T : E → F is onto and one-to-one such that T−1 exists. If and only
if T is linear, then T−1 is linear.

Proof. Let e, f ∈ E and g, h ∈ F . From the hypothesis, T is bijective. Therefore, T (f) = g and
T (e) = h. T−1 : F → E is then defined by

T−1(g) = fandT−1(h) = e (3.1)

so that TT−1 = I, T−1T = I. Suppose that T is linear. Then for all e, f ∈ E,

T (e+ f) = T (e) + T (f)and, T (cf) = cT (f)∀f ∈ Eandc ∈ K. (3.2)

Substituting 3.1 into 3.2,

T (T−1(h) + T−1(g)) = T (T−1(h)) + T (T−1(g))

⇒ TT−1(h+ g) = TT−1(h) + TT−1(g). (3.3)

But TT−1 = I = T−1T . Therefore, 3.3 can be re-written as

T−1T (h+ g) = T−1T (h) + T−1T (g)

⇒ T−1(T (h) + T (g)) = T−1(T (h)) + T−1(T (g)). (3.4)
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Again, T (cf) = cT (f) will be such that

Tc(T−1(g)) = cT (T−1(g))

= cTT−1(g)

= cT−1T (g)(sinceTT−1 = I = T−1T )

⇒ T−1c(T (g)) = cT−1(T (g)).

Hence, T−1 is linear.

3.4 Compactness of Norm Attaining Operators in Fréchet Spaces

The following lemma is a useful tool for the proof of the proposition that follows. It is stated
without its proof.

Lemma 3.7. Every closed, bounded subset of Fk is compact.

Proposition 3.3. Let T ∈ B(E,F ) be a norm attaining operator of finite rank for Fréchet spaces
E and F . T is then compact.

Proof. From the hypothesis, T is of finite rank. Therefore, there exists a finite dimensional space,
say G = ImT . Suppose that a sequence en is bounded in E. It follows that the sequence Ten is
bounded in G and by Lemma 3.7, there must be a convergent subsequence in this sequence. T is
hence compact.

Theorem 3.8. Let T ∈ L(E,F ) be a compact operator for Fréchet spaces E and F . T then attains
its norm if [kerT ]⊥ ⊂ NA(E).

Proof. According to James’ theorem, E/kerT must be reflexive since
[kerT ]⊥ ⊂ NA(E). Now, T factors through E/kerT . In other words, a mapping
S : E/kerT → ImT ∈ F exists such that E/kerT ∼= ImT , and T = S ◦ δ. It is evident that
‖S‖ = ‖T‖. From the hypothesis, T is compact. As a result, the sequence Ten is bounded in F
and contains a convergent subsequence for any bounded sequence en ∈ E. Due to the fact that
T factors via E/kerT , en will converge through E/kerT in such a way that Senr

is bounded in
ImT, ∀enr

∈ E/kerT . Since Senr
will have a convergent subsequence according to Lemma 3.7, S

is implied to be compact whenever T is. Then, according to Proposition 3.3, S attains its norm.
As a result, the adjoint S∗ also attains its norm. In other words, there is a f∗ ∈ SF∗ such that
‖S∗f∗‖ = ‖T‖. The functional e∗ = T ∗f∗ = [δ∗S∗](f∗) ∈ E∗ now disappears on kerT , meaning
that e∗ = T ∗f∗ ⇒ Te∗ = f∗. But, kerT := {e∗ : Te∗ = 0 6= f∗}. So, e∗ ∈ [kerT ]⊥ ⊂ NA(E). This
suggests the existence of e ∈ SE in such a way that

|e∗(e)| = ‖e∗‖

= ‖[δ∗S∗](f∗)‖

= ‖δ∗(S∗f∗)‖

= ‖S‖

where δ∗ embeds isometrically. Consequently, ‖T‖ = |[T ∗f∗](e)| = |f∗(Te)| and so
‖Te‖ = ‖T‖.

Lemma 3.9. Let T ∈ B(E,F ). The dimension of E or the dimension of F must be finite for T to
be compact.

Proof. If the dimension of E is finite, then the rank of T is finite because r(T ) ≤ dim(E). However,
it is obvious that the dimension of ImT ⊂ F must be finite if the dimension of F is finite. The
conclusion so comes from the demonstration of Proposition 3.3 in either scenario.
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The following proposition is necessary for the proof of the theorem that follows. It is stated without
proof.

Proposition 3.4. Given a normed space E and a sequence of bounded, finite rank operators Tn

that converge to T ∈ B(E,F ), T is compact for the Fréchet space F .

Theorem 3.10. If T ∈ B(F ) and F is a Fréchet space, then the compactness of T ∗ implies the
compactness of T , and vice versa.

Proof. Assume that T is compact. Then, a set of finite operators Tn exists such that ‖Tn−T‖ → 0.
However, r(T ) = r(T ∗). As a result, every operator T ∗

n possess a finite rank, and since
‖T ∗‖ = ‖T‖, ‖T ∗

n−T ∗‖ = ‖Tn−T‖ → 0, respectively. It follows that T ∗ is compact from Proposition
3.4. Conversely, if T ∗ is compact, then T is compact because of this result and from the fact that
(T ∗)∗ = T .

The implications established thus far are now addressed, and the prospect of undoing them is
discussed.

Theorem 3.11. Let T ∈ B(E,F ) be a bounded linear operator for Fréchet spaces E and F .
Consider the following properties:

1. T is norm attaining.

2. If and only if T is self adjoint and NA(E,F ) is dense in L(E,F ), T ∗ is norm attaining.

3. T is normal.

4. ImT is dense.

5. [kerT ]⊥ ⊂ NA(E).

6. T is compact.

7. T ∗ is compact.

8. Dim(E) or Dim(F ) is finite.

The implications are as follows:

1 ⇔ 2 ⇔ 3 ⇐ 4 ⇔ 5 ⇐ 6 ⇔ 7 ⇐ 8

Proof. From Lemma 3.2, it is immediate that 1 ⇒ 2, and also that 2 ⇒ 1. Proposition 3.2 and
Theorem 3.4 give the implication 2 ⇔ 3. The implication 4 ⇒ 3 is immediate from Theorem
3.1, however, its converse need not be true. Next, it is only shown that 4 ⇒ 5 since its reverse
implication is obvious. Now, by 4, ImT ∈ NA(E,F ) implying that its orthogonal complement is
trivial, by Theorem 3.1. But,

(ImT )⊥ = kerT

⇒ kerT * NA(E,F )

⇒ [kerT ]⊥ ⊂ NA(E,F ).

Lastly, the implications 5 ⇐ 6 ⇔ 7 ⇐ 8 follow immediately from Theorem 3.8, Theorem 3.10 and
Lemma 3.9 respectively. However, the reverse implications 5 ⇒ 6 and 7 ⇒ 8 need not be true.

The following observations are made from Theorem 3.11:
Observations

• All the other properties imply 1;

• All other properties, including 1 imply 3;

• 1 ⇒ 3 and 3 ⇒ 1. Therefore, the norm attainability and normality of T coincides given that
T is self adjoint (which is Theorem 3.4).
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4 Conclusions

a In the subsection (3.1), the density of norm attaining operators has been discussed whhereby, it
has been shown that if an operator is normal and injective in a Fréchet space, then its image
is dense. Also, it has been shown that the adjoint of a dense operator in a Fréchet space is
also dense provided that the operator is self-adjoint.

b In the subsection (3.2), it has been shown that a norm attaining operator in a Fréchet space is
normal if its adjoint also attains its norm in the Fréchet space. Also, the condition under
which the norm attainability and the normality of an operator in a Fréchet space coincides
has been shown.

c In the subsection (3.3), it has been shown that a norm attaining operator between Fréchet spaces
is linear and bounded as well as its inverse.

d In the subsection (3.4), the compactness of an operator of finite rank has been discussed.

However, the characterization of norm attaining operators in Fréchet spaces is not limited to the
density, normality, linearity and compactness properties. One can therefore, consider nuclearity
property and check whether there is a relationship between nuclearity of norm attaining operators
in Fréchet spaces and in other spaces.
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