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ABSTRACT

In sample surveys separate estimates of a parameter maybe required for sub-populations

into which a population is subdivided without separately sampling from these sub-

populations. Such sub-populations are called domains of study. Most studies have

been carried out on domain estimation using linear cost function. This study there-

fore estimates domains parameters in double sampling for stratification in the pres-

ence of non-response with non-linear cost function which will minimize cost for a

fixed value of variance or minimize variance for fixed cost in the presence of non-

response. The optimum stratum sizes of a given set of non-linear unit costs are

derived using double sampling for stratification. The relative precision of the es-

timators are empirically compared with corresponding existing estimators. Data

simulation will be done and then analysis and evaluation done using R-package.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In most sampling situations information on the variables that defines the domains of

study is not either readily available before the start of survey or units in the domain

may be identified before sampling is done. However, the estimates of parameters

of interest are usually required for subclasses of the population under study which

are domains of study. The exact total domain units in each constituent stratum are

unknown whenever the domains of study are unknown or they are treated as separate

stratum from which a specific sample maybe taken if the domains are known before

sampling. In chapter one of this proposal sections 1.2.1 gives a brief description of

domains, 1.2.2 double sampling for stratification, 1.2.3 optimal allocation in double

sampling for stratification with linear cost function, 1.2.4 optimal allocation with a

non- linear cost function 1.2.5 domain estimation in stratified sampling, 1.2.6 sample

design calibration estimator, 1.2.7 optimal allocation in estimation of domains in

stratified sampling 1.3 statement of the problem, 1.4 objectives of the study and 1.5

significance of the study. Chapter two enumerates some of the related literature and

the available gaps. Finally chapter three gives the methods to be employed in order

to achieve the objectives.

1.2 Background of the study

1.2.1 Domains

Domain is a subgroup of the whole target population of the study for which specific

estimates are needed. In sampling, estimates are made for each of as number of

classes into which the population are subdivided; for instance, the focus may not

only be the unemployment rate of the entire population but also the breakdown
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by age, gender, and education level. Units of domains may sometimes be identified

priori to sampling. In such cases the domains can be treated as separate stratum

from a specific sample maybe taken. Stratification ensures a satisfactory level of

representativeness of the domains in the final sample. These domains are called

planned domains.

The precision threshold and or minimum effective sample sizes are set up for

effective planned domains. The minimum sample sizes required to achieve a relative

margin error of 100.k% for the total Yd (Domain total) of a study variable y over

domain Ud of size Nd given by

nd(min) =
Z2

1−α/2 ·N2
dS

2
yd

K2Y 2
d + Z2

1−α/2NdS2
yd

(1.1)

where S2
yd

is the variance of y over the domain and Z1−α/2 is the percentile value at

100(1−α/2)% of normal distribution with mean 0 and variance 1, K is the relative

margin of error expressed as a proportion while 100.k% is the relative margin of

error expressed as a percentage. The population values Yd and S2
yd

are unknowns

and have to be estimated using data from auxiliary sources.

For unplanned domain for which units cannot be identified prior to sampling, the

need for estimates of certain domains is often evident only after the sampling design

has been decided or after the sampling and field work have been completed. The

sample sizes for sub-populations are random variables since formation of these sub-

populations is unrelated to sampling design. Hence, the size of unplanned domain

cannot be controlled. The random size of the sample builds an additional compo-

nent of variability into the domain estimates.

Consider a random sample S of size n selected without replacement from target

population U , of size N . Let Sd be the part of size nd of the whole sample S which
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falls into a domain Ud(Ud ⊆ U), nd is a random sample which satisfies the following

properties.

E(nd) = nPd

V (nd) = nPd(1− pd) (1.2)

where Pd =
Nd

N
is the relative size of the domain Ud in the population U .

1.2.2 Double sampling for stratification

In double sampling population is first stratified into H strata (classes). The first

sample is a simple random sample of size n′ selected from the whole population.

Units belonging to a particular stratum and categorized into strata, say n′
1, n

′
2, . . . . . . , n

′
h, . . . , n

′
H

such that

n′ =
H∑

h=1

n′
h

In the second phase nh units are selected from n′
h such that

n =
H∑

h=1

nh

. In selecting nh units which are random subsamples of n′
h we select nh such that

nh = Vhn
′
h where 0 < Vh < 1.

The objective of the first sample is to estimate the strata weights and birth of the

second sample is to estimate the strata means ˆ̄yh The estimate of the population

mean is given by

ˆ̄Y =
H∑

h=1

whȳh, wh =
n′
h

n′ , ȳh =
1

nh

nh∑
i=1

yhi

E( ˆ̄Y ) = Ȳ (1.3)

The estimate of the population variance is given by;

V ar( ˆ̄Y ) = V1E2(
ˆ̄Y ) + E1V2(

ˆ̄Y ) . . .

=
N − n′

N

S2

n′ +
H∑

h=1

Wh
S2
h

n′ (
1

Vh

− 1) (1.4)
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The standard way of obtaining the estimate of variance is given by;

V ar( ˆ̄Y ) =
N − 1

N

H∑
h=1

(
n′
h − 1

n′ − 1
− nh − 1

N − 1

)
whS

2
h

nh

+
N − n′

N(n′ − 1)

H∑
h

wh(ˆ̄yh − ˆ̄Y )2 (1.5)

1.2.3 Optimal allocation in double sampling for stratification-Linear cost
function

The objective is to choose n′ and vh so as minimize V (ˆ̄y) for a specified cost. Let c′

be the cost of classification per unit and ch the cost of measuring a unit stratum h.

The cost function is given by

C = c′n′ +
H∑
h1

chnh (1.6)

since nh are random variables we minimize the expected cost for chosen n′ and vh

E(C) = C∗ = c′n′ + n′
H∑
h1

chvhWh (1.7)

and variance is given by

= n′(V +
S2

N
) = (S2 −

H∑
h=1

WhS
2
h) +

H∑
h=1

WhS
2
h

vh
(1.8)

By use of Cauchy Schwartz inequality,

vh = Sh

[
c′

ch(S2 −
∑H

h=1WhS2
h)

] 1
2

(1.9)

By substitution of the optimum vh the minimum variance is found to be

Vmin(
ˆ̄Y ) =

1

C∗

[
H∑

h=1

WhSh

√
Ch + (S2 −

H∑
h=1

WhS
2
h)

1
2

√
c′

]2
− S2

N
(1.10)
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1.2.4 Optimal allocation with non-linear cost function

Optimal sample allocation involves determining the sample size n1, n2, . . . , nH that

minimizes the various characters under the given sampling budget C(where C is the

upper limit on the total cost of the survey). The linear cost function

C = c′n′ +
H∑
h1

chnh

is appropriate when the major cost item is that of taking the measurement on each

unit. If travel costs between units are substantial, empirical and mathematical

studies suggest that the travel costs are better represented by the expression

H∑
h=1

th
√
nh (1.11)

where th is the travel cost incurred in enumerating a sample unit in the hth stratum.

It’s observed that the shortest distance among k randomly scattered points/sampling

units is asymptotically proportional to
√
k for large k

The linear cost function used in stratified sampling in the case of non-response

is given by

ch = ch0nh + ch1nh1 + ch2nh2 (1.12)

For large sample sizes the cost function is given by

C = c0 +
H∑

h=1

ch +
H∑

h=1

th
√
nh (1.13)

where th is travel cost for a unit within the hth stratum.

Assuming the above non-linear cost function

H∑
h=1

th
√
nh + t0 ≤ C

Where t0 is the overhead cost. The restrictions on the sample sizes from various

strata are;

2 ≤ nh ≤ Nh

5



The allocation problem with no non-linear cost function can now be written as

Vmin =
H∑

h=1

W 2
hS

2
hj

nh

(1.14)

subject to
H∑

h=1

th
√
nh + t0 ≤ C

Where

S2
hj

=
1

Nh − 1

Nh∑
h=1

(yhij
− Ȳhi)

2

is the variance of the jth character in the hth stratum

1.2.5 Estimation of domain characteristic/parameters in stratified sam-
pling design

Consider the finite population under study U of size N divided into D domains;

U1, U2, · · · , UD respectively. Domain membership of any population unit is unknown

before sampling. Its assumed the domains are quite large, for a typical dth domain,

ud, several characteristics maybe defined including the domain total.

Domain total

Yud
=
∑
ud

ydk

Domain mean

Ȳud
=

1

Nd

∑
ud

ydk

Domain variance

S2
ud
(Y ) =

1

Nd − 1

∑
k∈ud

(Yd − Ȳud
)2

Domain covariance between two characteristics X and Y

Covud
(X,Y ) =

1

Nd − 1

∑
k∈ud

(xdk − X̄ud
)(ydk − Ȳud

)
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1.2.6 Sample design for calibration estimator

For a stratified random sampling design with H strata and nh elements from Nh in

stratum h; h = 1, 2, . . . , H, the design weights needed for the point estimation are

dk =
Nh

nh

for all k in stratum h, k = 1, 2, . . . , Nh.

Thes design weights Dkl needed for the variance estimation if k ̸= l and both k

and l are in stratum h is

dkl =
Nh

nh

(
Nh − 1

nh − 1

)
using the equation

H∑
h=1

Nh∑
k=1

(
dkdl
dkl

− 1

)
EkEl

V̂p(Ŷd, w) =
H∑

h=1

Nh∑
k=1


(

Nh

nh

)2 (
Nh−1
nh−1

)
− Nh

nh

(
Nh−1
nh−1

)
Nh

nh

(
Nh−1
nh−1

)
EkEl (1.15)

=
H∑

h=1

Nh∑
k=1

Nh

nh

[
Nh − nh

Nh

]
EkEl

=
H∑

h=1

N2
h

nh

[
Nh − nh

Nh

]
EkEl

=
H∑

h=1

N2
h

(
1− f

nh

)
EkEl (1.16)

The variance of the estimator is

Vp(Ŷd, w) = =
H∑

h=1

N2
h

(
1− f

nh

)
Cov(ekel) (1.17)

where Cov(ekel) = σ2
hρ and from the principle of stratified random sampling

σ2 =

(
N − 1

N

)
S2

σ2
h =

(
Nh − 1

Nh

)
S2
h

Cov(ekel) ==

(
Nh − 1

Nh

)
S2
hρ
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1.2.7 Optimal allocation in estimation of domain in stratified sampling

The optimum n(nh optimum) that minimizes the variances of proposed calibration

estimators for a specified costs or that minimizes the cost for a specified variance

can be considered using simple linear sampling cost function of the form

C = c0 +
H∑

h=1

chnh

where c0 is the overhead costs, and ch is the cost per unit of obtaining the necessary

information in the hth stratum. Further, we consider the following allocation forms.

(i) Optimum allocation

Using the cost function C = c0+
∑H

h=1 chnh and the corresponding Lagrangian

as

G =
1

nh

[
H∑

h=1

N2
hS

2
hρ−

H∑
h=1

NhS
2
hρ

]
−

H∑
h=1

Nh

(
Nh − 1

Nh

)
S2
hρ+λ

[
H∑

h=1

chnh + c0 − C

]

By taking the derivatives with respect nh and λ and equating to zero will

finally obtain a solution of nh as

nh,opt =
(C − c0)Sh

√
Nh(Nh−1)
√
ch∑H

h=1 chSh

√
Nh(Nh−1)
√
ch

(1.18)

(ii) Neyman Allocation

If the cost per unit is the same across strata (that is ch = c, h = 1, 2, . . . , H)

then

nh,opt =
(C − c0)Sh

√
Nh(Nh−1)
√
ch

c
∑H

h=1 Sh

√
Nh(Nh − 1)

(iii) Optimum power allocation

Let the loss function be

L =
H∑

h=1

{
1

nh

(
H∑

h=1

N2
hShρ−

H∑
h=1

NhS
2
hρ

)
−

H∑
h=1

NhS
2
hρ

(
Nh − 1

Nh

)
S2
hρ

(
Nh − 1

Nh

)}(
Np

h

Ŷh

)2

8



the corresponding Lagrangian is

GL =
H∑

h=1

{
1

nh

(
H∑

h=1

N2
hShρ−

H∑
h=1

NhS
2
hρ

)
−

H∑
h=1

NhS
2
hρ

(
Nh − 1

Nh

)
S2
hρ

(
Nh − 1

Nh

)}(
Np

h

Ŷh

)2

+λ

{
H∑

h=1

chnh + c0 − C

}

Taking the partial derivatives of GL with respect to nh and λ respectively and

equating to zero and solving for both λ and nh respectively, we obtain

nh,opt =
(C − c0)ShN

p
h

√
Nh(Nh−1)
√
ch∑H

h=1 chShN
p
h

√
Nh(Nh−1)
√
ch

(1.19)

(iii) Neyman power allocation

If the cost per unit is the same across the strata then

nh,opt =
(C − c0)ShN

p
h

√
Nh(Nh − 1)

c
∑H

h=1 ShN
p
h

√
Nh(Nh − 1)

(iv) Squareroot allocation

If the value of the power allocation is set to be one half (ie 0.5) then

nh,opt =
(C − c0)ShNh

√
(Nh−1)
√
ch∑H

h=1 chShNh

√
(Nh−1)
√
ch

(v) Neyman Squareroot allocation

If the cost per unit is the same across the strata and the value of the power is

set to have one half then we obtain

nh,opt =
(C − c0)ShNh

√
(Nh − 1)

c
∑H

h=1 ShNh

√
(Nh − 1)

1.2.8 Non linear cost function

Optimal sample allocation involves determining the sample size n1, n2, . . . , nH that

minimizes the variance of variables characters under the given sampling budget C

9



(where C is the upper limit on the total cost of the survey) within any stratum. The

linear cost function is appropriate when the major item of cost is that of taking the

measurement on each unit.

If travel cost between units in a given stratum are substantial empirical, math-

ematical studies indicate that the costs are better represented by the expression

H∑
h=1

th
√
nh

where th is the travel cost incurred in enumerating a sample unit in the hth stratum.

Beardwood et al., (1959) observed that the distance between k randomly scat-

tered points is proportional to
√
k. Assuming this is non-linear cost function one

should have
H∑

h=1

th
√
nh + t0 ≤ C

where t0 is the overhead cost. The restriction on the sample strata is

2 ≤ nh ≤ Nh

The allocation problem with nonlinear cost function can now be written as

Vmin =
h∑

h=1

W 2
HS

2
hj

nh

subject to
H∑

h=1

th
√
nh + t0 ≤ C

S2
hj

=
1

Nh − 1

Nh∑
h=1

(yhji − Ȳhj)
2

is the variance of the jth character in the hth stratum.

In many practical situations, the travel costs th in the various stratum are

not fixed and maybe considered as random. Let us assume that th where (h =

1, 2, . . . , H) are independently random variables. Let t′ = (t1, t2, . . . , tH) and n′ =

(n1, n2, . . . , nH). Then the function t′
√
n+ t0 will also be normally distributed with

10



mean

E

(
H∑

h=1

th
√
nh + t0

)
=

H∑
h=1

√
nhE(th) + t0 =

H∑
h=1

µh

√
nh + t0

and variance

V

(
H∑

h=1

th
√
nh

)
=

H∑
h=1

nhV (th) =
H∑

h=1

nhσ
2
h

1.3 Statement of the problem

A number of studies have been carried out on domain estimation. In all these stud-

ies the assumption has been that the cost function is linear.However with distances

among a given number of randomly selected study points being asymptotically pro-

portional to the square root of the number of points, the aspect of non-linear cost

function arises. Moreover the inclusion of the travel cost for measuring a unit within

a stratum rules out the assumption of linearity. This study therefore focuses on the

estimation of domain parameters with non-linear cost function(which is the case in

practice)in the presence of non-response with the aim of minimizing variance for a

specified cost or minimizing cost for specified variance.

1.4 Objectives of the Study

To estimate the domain totals, means and variances with non-linear cost function

in the presence of non-response

1.4.1 Specific Objectives

In this research we intend to:

(i) To derive the formula for obtaining optimum stratum sample sizes for a given

set of unit cost of sample using double sampling for stratification with non-

linear cost function in the presence of non-response

(ii) To estimate the domain parameters using double sampling for stratification

with non-linear cost function which minimizes cost for a specified value of

11



variance or minimized variance for a specified value of cost .

(iii) To compare empirically the relative precision of the derived estimators with

existing ones.

1.5 Significance of the Study

In many human surveys domains information is in most cases not obtained from all

the units in the survey. Even if obtained, its expensive to carry out surveys for indi-

vidual domains besides variable of interest. The cost implication may not be linear

as the distances traveled in classifying the domains seems non-linear. The question

of precision with minimum cost and the cost at minimum variance is inevitable. The

study will therefore establish the most precise method of estimating domains and

most effective allocation methods when the cost implications are not linear.

12



CHAPTER 2

LITERATURE REVIEW

2.1 Sample allocation

Tschuprow [20] and Neyman [17] proposed the allocation procedure that minimizes

variance of sample mean under a linear cost function of sample size n =
∑H

h=1 in

stratified random sampling. Neyman [17] used Lagranges multiplier optimization

technique to get optimum sample sizes for a single variable under study.

Beardwood et al. [2] came up with quadratic cost function with measurement

unit cost and traveling cost within a strata. He proposed that the shortest route

among k randomly allocated sampling units in the region is asymptotically propor-

tional to the
√
k for a large k.

Cochran [6] noted that it is difficult to work out an allocation of sample size which

is optimum for all characteristics unless the characteristics are highly correlated and

the variations between the stratum variables is very small. Compromise allocations

is based on such criteria.

Bankier [1] proposed a ”power allocation” as a compromise between Neyman

allocation and equal allocation. According to Bankier, if we let

Ch =
sh
Ȳh

be the stratum coefficient of variation the power allocation is given by

nB
h = n

chX
q
h∑

h chX
q
h

where h = 1, 2, . . . , L, Xh is some measure of size or importance of stratum, h and

q is a turning constant. The power allocation is obtained by minimizing

∑
h

{Xq
hCV (ȳh)}2

13



subject to ∑
h

nh = n

where CV (ȳh) is the coefficient of variation of the stratum sample mean ȳh. If q = 1

and Xh = NhȲh in the Bankier allocation equation leads to Neyman allocation.

Chernyak [4] developed the method of defining optimum sampling fraction among

non respondents with non-linear cost function which minimizes costs for a fixed

value of variance.

Holmberg [13] addressed the compromise allocation in multivariate stratified

sampling problem by taking into consideration the minimization of some of the

variances or coefficients of variations of population parameters and minimization of

some of the efficiency loss which may result due to increase in variance due to the

use of compromise allocation.

Costa et al [7] proposed a compromise allocation based on convex combination

of proportional allocation nh = nWh and equal allocation nh = n
L
, where nh is the

stratum sample size, n sample size, L is the number of strata and Wh = Nh

N
is the

relative size of the of the stratum.

Longford[16]made a systematic study allocation in stratified simple random sam-

pling by introducing ”inferential priorities” Ph for the stratum h and G for the pop-

ulation. In particular he assumed that Ph = N q
h for specified q(0 ≤ q ≤ 2). He

also considered small strata sample size nh in which composite estimators of strata

means Ȳh maybe used.

2.2 Domain estimation

Yates [23] first considered in detail some of the problems associated with the esti-

mation of domain totals, means and proportions in the case of a single stage simple

random sampling. He noted that the variance of an estimator of a domain parame-

ter is increased by the number of domain elements falling in a random sample of a

fixed size, unknown before the start of surveys.
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Hartley [10] gave a derivation of Yates results in multistage sampling. His paper

was one of the first attempt to unify the theory of domain estimation. He provided

theories for a number of sample designs where domain estimation was of interest.

He came up with estimation that did not make use of auxiliary information. He

also considered a case of ratio estimation where the population totals were known

for the domains.

Durbin [9] supported the use of conditional inference to do comparison or choos-

ing the best estimators. To quote him he stated, ”If the sample size is determine by

a random mechanism and one happens to get a large sample, then one knows per-

fectly well that the quantities of interests are measured more accurately than they

would have been if the sample size happened to be small. It seems self evident that

one should use the information available on sample size in the interpretation of the

results. To average over variation in the sample size which seemed to have occurred,

but did not occur, when the sample size is exactly known, seems quite wrong from

the analysis point of view of data actually observed.”Kish [15] considered allocation

of resources when domain of study are of primary interest.

Holf and Smith [12] considered conditional inference and applied it to study

the properties of post stratified estimators in simple random sampling. Rao [18]

introduced the idea of ”recognizable subsets” of the population to formalize the

conditioning process. Recognizable subsets are defined after the sample has been

drawn. In the context of domain estimation, the number of units belonging to a

particular domain is a random variable. Recognizable subsets in this context are

those units in which the sample sizes are fixed within a given domain.

Bethel et al. [3] came up with non-linear cost allocation in estimation of pop-

ulation means of multiple variables under stratified random sampling. Deville and

Sarndal [8] introduced calibration as a tool for re-weighting non response for the

estimation of finite population characteristics like means, ratios and totals. In their

study, they found out that the calibration approach requires the formulation of suit-
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able auxiliary variables. The calibration approach provides a unified treatment in

the use of auxiliary information in the surveys with non response. They observed

that in the presence of a powerful auxiliary information the calibration approach

meets the objective of reducing both sampling error and the non-response error.

Hidiroglou and Patak [11] in their paper on the domain estimation using linear

regression studied the properties of a number of domain estimators of totals in the

presence of auxiliary data. They found out that post stratified ratio (POSTR) and

modified alternate ratio (MODR) estimators performance in terms of unconditional

relative mean squared error efficiency and coverage rate was superior to other domain

estimators like the Horvitz Thompson estimator.

Udofia [21] in his article considered estimation of domains by double sampling

for probabilities proportional to size (PPS) selection method in a population with

known-constituent strata. He considered estimators for domain totals that cut across

all strata with unknown weights and made comparison with corresponding global

estimators.

Torabi[19] proposed an empirical Bayes estimation of domain means under nested

error regression model with measurement errors in co-variates. Varshney et al [22]

came up with a quadratic cost function for a large sample size as

C = c0 +
L∑

h=1

ch +
L∑

h=1

τh
√
nh

where τh is the travel cost for enumerating a unit within the hth stratum.For the

case of non-response, this equation was further simplified to

L∑
h=1

(th0 + th1Wh1)
√
nh +

L∑
h=1

th2

√
un ≤ c0

whereth1 is travel cost for the respondents unit within the hth stratum and uhis the

sub-sample from non-respondents units

Choudhry[14] considered sample allocation issues in the context of estimating

sub-populations(stratum and domain) means as well as the aggregate population
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means under stratified simple random sampling. In his method non-linear program-

ming was used to obtain ’optimal’ sample allocation to strata that maximizes the

total sample sizes subject to a specified tolerances on the coefficient of variation

estimators of the strata and population means. The resulting sample size was used

to determine the sample allocations for the methods of Costa et al [7] based on com-

promised allocation and of Longford[16] specified based on ”inferential properties”.

They also came up with the idea on sample allocation to strata when the relia-

bility requirements for domains cutting across strata are specified. They concluded

that the non-linear programming(NLP) method of sample allocation to strata under

stratified random sampling minimizes the total sample size subject to specified tol-

erances on the coefficient of variation of estimators both the strata and population

means.

Clement et al [5] developed analytical approach for finding the best sampling

design subject to a cost constraint. They considered stratified random sampling

design where elements of the inclusion probabilities are not equal but are in the

same stratum and proposed estimators of the totals for domains of study under

non-response in the context calibration estimators. In their analysis they found

that Neyman allocation provided the optimal stratum sample sizes that minimized

the variance of the proposed calibration estimators.

2.3 Summary

In summary from all these studies its evident that the researchers have confined

themselves to estimation of domains with the assumption that the cost function is

linear. Clement et al [5] and Udofia [21] who recently have led remarkable steps in

the studies on domain estimation, have made assumption that the cost function is

linear. More so Clement et al [5] in developing analytical approach to best sampling

design considered stratified sampling without inclusion of travel cost for measuring

a unit in a stratum which is an important attribute of cost function.This study
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therefore aims at developing double sampling for stratification with a non-linear

cost function as an efficient design in estimating domains in comparison with other

recently developed design methods putting in mind the non-linear and travel costs

components.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

To achieve our objectives the following methods will be employed

3.2 Methods

(1) A model for estimation of domain parameters using double sampling for strat-

ification with non-linear cost function will be derived. In so doing nh is chosen

to minimize variance for a specified cost or minimize cost for specified variance.

To achieve this a non-linear polynomial cost function of the form

C = c′(n′)θ +
H∑

h=1

chnh +
H∑

h=1

th
√
nh

where C is the total cost, c′ is the cost of classification per unit, ch is the cost

of measuring a unit per stratum, th is the travel cost for measuring a unit

within the hth stratum, and nh is the number of sample units selected from

hth stratum.

Using Lagrange’s multiplier optimal allocation equations will be derived with

non-linear cost function with a positive and negative θ and logarithmic non-

linear cost function.

(2) Data collection For the purpose of empirical illustration sample data of 2009

Census from the twelve sub-counties of Kakamega County will be used. Using

the data a population with N=30 First Stage Units (FSU) and H=20 second

stage units will be generated by combining the adjacent 10 units and allocating

them to the respective first stage units. Data will be simulated and used to

obtain numerical estimates using each of the above optimal allocation options.
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(3) The percentage reduction in the expected cost will be computed as well as

the optimum values of sample sizes of different estimators in respect of the

controlled variables.

(4) The results will be empirically compared to obtain the relative performance

of the proposed estimators with corresponding global estimators using bias,

Relative bias, mean square error, the average length of confidence interval,

and the coverage probability of the estimates. The analytical studies will be

carried out using R statistical package.
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WORK PLAN

ACTIVITY PERIOD

1.PREPARATORY STAGE:

(i) Acquisition of research materials September (2014) – January (2015)

(ii) Literature review February (2015)– July (2015)

(iii)Definition of problem August (2015)– September (2015)

(iv) Proposal writing September (2015)– October (2015)

(v) Proposal defense October (2015)

2.OPERATIONAL STAGE:

(i) Research(problem–solving) November (2015)–February (2016)

(ii) Drafting research report March (2016)– September (2016)

(iii) Revising the draft report October (2016)– December (2016)

3.EVALUATION STAGE:

(a) Submission and evaluation of thesis January (2017)– April (2017)

(b) Thesis defense May (2017)
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BUDGET

Year Items/Descriptions Unit
cost(Ksh.)

Total(Ksh.)

Year 1 1. Stationary:10 reams of Foolscaps 500 5000

2. Statistical software; SPSS,Genstat,
SAS

250,000

3. Acquisition of 5 Journals per year 20,000 100,000

4. Attending 3 seminars and Confer-
ences

50,000 150,000

SUBTOTAL 1 - 505,000

Year 2 1. Data processing and analysis: Sta-
tionary:10 reams of Foolscaps

500 5,000

2. Attending seminars/conferences (3) 50,000 150,000

SUBTOTAL 2 - 155, 000

Year 3 1. Thesis preparation and submission:
Stationary:10 reams of Foolscaps

500 5,000

2. Attending seminars/conferences (3) 50,000 150,000

SUBTOTAL 3 - 155,000

GRAND TOTAL - 815,000

25


