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ABSTRACT

In this paper, we investigate the generalizations of the concepts from Heine-Borel
Theorem and the Bolzano-Weierstrass Theorem to metric spaces. We show that
the metric space X is compact if every open covering has a finite subcovering. This
abstracts the Heine-Borel property. Indeed, the Heine-Borel Theorem states that closed
bounded subsets of the real line R are compact. In this study, we rephrase compactness
in terms of closed bounded subsets of the real line R, that is, the Bolzano-Weierstrass
theorem. Let X be any closed bounded subset of the real line. Then any sequence
(xn) of the points of X has a subsequence converging to a point of X. We have used
these interesting theorems to characterize compactness in metric spaces.
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1 Introduction
Compactness is a property in metric spaces. A metric space (X, ρ) is said to be totally bounded (or
precompact) if, for every ϵ > 0, the space X can be covered by a finite family of open balls of radius ϵ
[5]. A metric space X is said to be sequentially compact if every sequence (xn)

∞
n=1 of points in X has a

convergent subsequence [6]. This abstracts the Bolzano-Weierstrass property, that is, closed bounded
subsets of the real line are sequentially compact.

If X is a non-void set and E a subset of X; a family {Eα : α ∈ Λ} is said to be a cover for or of E [4].
If
⋃

α∈Λ Eα ⊇ E. If τ is a topology in X and each Eα is open in (X, τ ), then we call {Eα : α ∈ Λ} an
open cover for E; If Λ′ is a non-void subset of Λ and {Eα : α ∈ Λ′} also covers E, then {Eα} : α ∈ Λ′ is
called subcover for E.

Licensed Under Creative Commons Attribution (CC BY-NC)

18



Vol 1(Iss. 1),pp.18-27,2024 African Scientific Annual Review www.asarev.net

Definition 1. Let (X, τ ) be a topological space, we say that (X, τ ) is compact if every open cover of
X contains a finite subcover. If Y is a non-void subset of X, then Y is compact if the subspace (Y, τy)
(where τy is the induced topology in Y) is compact.

Most definitions in this paper can be found in [1], [3] and [2].

2 Compactness in Metric Spaces
We have the following fundamental results characterizing compact metric spaces:

Proposition 1. A metric space is sequentially compact if and only if it has the finite intersection property
for closed sets.

Proof. Suppose that X is sequentially compact. Given a decreasing sequence of closed sets Fn,
choose xn ∈ Fn for each n ∈ N. Then (xn) has a convergent subsequence (xnk

) with xnk
→ x as

k → ∞. Since xnk
∈ Fn for all nk ≥ n and Fn is closed, x ∈ Fn for every n ∈ N, so x ∈

⋂∞
n=1 Fn, and⋂∞

n=1 Fn ̸= ∅. Conversely, suppose that X has the finite intersection property. Let (xn) be a sequence
in X and define

Fn = Tn, Tn = {xk : k > n} .

Then (Fn) is a decreasing sequence of non-empty, closed sets, so there exists

x ∈
∞⋂

n=1

Fn.

Choose a subsequence (xnk
) of (xn) as follows. For k = 1, there exists xn1

∈ T1 such that d (xn1
, x) < 1,

since x ∈ F1 and T1 is dense in F1. Similarly, since x ∈ Fn1 and Tn1 is dense in Fn1 , there exists
xn2 ∈ Tn1 with n2 > n1 such that d (xn2 , x) < 1/2. Continuing in this way (or by induction), given xnk

we
choose xnk+1

∈ Tnk
, where nk+1 > nk, such that d

(
xnk+1

, x
)
< 1/(k + 1). Then xnk

→ x as k → ∞, so
X is sequentially compact.

Proposition 2. A metric space is compact if and only if it is sequentially compact.

Proof. Suppose that X is compact. Let (Fn) be a decreasing sequence of closed nonempty subsets of
X, and let Gn = F c

n.
If
⋃∞

n=1 Gn = X, then {Gn : n ∈ N} is an open cover of X, so it has a finite subcover {Gnk
: k = 1, 2, . . .K}

since X is compact. Let
N = max {nk : k = 1, 2, . . .K} .

Then
⋃N

n=1 Gn = X, so

FN =

N⋂
n=1

Fn =

(
N⋃

n=1

Gn

)c

= ∅,
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contrary to our assumption that every Fn is nonempty. It follows that
⋃∞

n=1 Gn ̸= X and then

∞⋂
n=1

Fn =

( ∞⋃
n=1

Gn

)c

̸= ∅,

meaning that X has the finite intersection property for closed sets, so X is sequentially compact.
Conversely, suppose that X is sequentially compact. Let

{Gα ⊂ X : α ∈ I}

Proposition 3. Let (X, τ) be a topological space and Y be a non-void subset of X. Then Y is compact
if and only if for any open cover {Gα : α ∈ Λ} (of subsets of X) for Y there exists a finite number of
indices α1, . . . αn in Λ such that

Y ⊆
n⋃

i=1

Gαi

Proof. (i) Suppose Y is compact, i.e. (Y, τy) is compact. Let {Gα : α ∈ Λ} be any family of open subsets
of X which cover Y i.e.

Y ⊆
⋃
α∈Λ

Gαi

For each α ∈ Λ, Gx ∩ Y is open in (Y, τY ) and clearly

Y ⊆

(⋃
α∈Λ

Gα

)
∩ Y =

⋃
α∈α

(Gα ∩ Y )

Thus {Gα ∩ Y : α ∈ Λ} is a family of open subsets of (Y, τY ) which covers Y.

But Y is compact. Hence there exist a finite number of indices α1 . . . αn ∈ Λ such that

Y ⊆
n⋃

i=1

(Gαi ∩ Y ) =

(
n⋃

i=1

Gαi

)
∩ Y

i.e. Y ⊆
n⋃

i=1

Gαi

Conversely, let {Gα : α ∈ Λ} be any collection of open subsets of (X, τ) such that⋃
α∈Λ

Gα ⊇ Y (2.1)

By hypothesis, there exists a finite number of indices α1, . . . αn ∈ Λ such that
n⋃

i=1

Gαi
⊇ Y (2.2)
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Since Gα is open in (X, τ). So Gα ∩ Y is open in (Y, τY ) for each α ∈ Λ.
From (1.2) we have

Y

(⋃
α∈Λ

Gα

)
⊇ Y i.e.

⋃
(Gα ∩ y) ⊆ Y

So {Gα ∩ Y : α ∈ Λ} is an open cover for Y and this family consists of subsets of Y. So
⋃

α∈Λ (Gx ∩ Y ) ⊆
Y .
Thus

⋃
α∈Λ (Gα ∩ Y ) = Y and likewise (1.3) gives

n⋃
i=1

(Gαi ∩ Y ) = Y

Thus (Y, τY ) is compact for it is clear that every open cover of T by subsets of Y has a finite subcover.
The second part can be seen more clearly thus:
Let {Eα : α ∈ Λ} be a family of open subsets of Y which covers Y i.e.⋃

α∈Λ

Eα ⊇ Y

Since Eα is open in (Y, τY ) there exist a subset Gα ⊆ X such that Gα is open in (X, τ) and Gα∩Y = Eα.
Therefore, ⋃

α∈Λ

(Gα ∩ Y ) ⊇ Y i.e.(
⋃
α∈Λ

Gα) ∩ Y ⊇ Y

By hypothesis, there exist a finite number of indices α1, . . . , αn in Λ such that

n⋃
i=1

Gαi ⊇ Y

Therefore,
⋃n

i=1(Gαi
∩ Y ) = Y (as seen above) i.e.

⋃n
i=1 Eαi

= Y i.e. (Y, τY ) is compact.

Proposition 4. Let (X, ρ) be a metric space and be compact. Then (X, ρ) is bounded. Thus every
compact metric space is bounded.

Proof. Let ϵ > 0 be arbitrary given. Then {N(x; ε) : x ∈ X} is an open cover for X; Since

X = Ux∈α N(x; ε) for x ∈ N(x; ε) so {X} ⊆ N(x; ε) ⊆ X

Therefore,
⋃n

i=1{X} ⊆
⋃n

i=1 N(x; ε) ⊆ X. Since (X, ρ) is compact, there exist a finite number of points
x1, . . . , xn ∈ X such that {N (xi, ε) : 1 ⩽ i ⩽ n} is a subcover for X, i.e.

X =

n⋃
i=1

N (xi, ϵ)
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Let A = {x1, · · · , xn}. Then A being a finite subset of X, is bounded. In fact,

diam A = sup{ρ(x, y) : x, y ∈ A}

= sup {ρ (λi;xj) : 1 ≤ i, j ≥ n}

Let (x, y) ∈ X. Then x ∈ N (xi; ε) an y ∈ N (xi; ε) for some i, j where 1 ≤ i, j ≤ n. Now

therefore, ρ(x, y) ≤ ρ(x, xi) + ρ(xi, xj) + ρ(xj , y)

< ε+ ρ (xi, xj) + ε.

≤ 2ε+ diam(A)

thereforesup{ρ(x, y) : x, y ∈ X} ≤ 2ε+ diam(A) < +∞︸ ︷︷ ︸
A is bounded

i.e. diam (x) < +∞ i.e. X is bounded.

Corollary 1. If E is a compact subset of a metric space (X, ρ) then E is bounded.

Proof. E is compact implies (E, ρE) is compact which implies E is bounded.

However, bounded subsets of a metric space need not be compact.

Counter Example 1. Let X be a set of infinite cardinality and ρ be the discrete metric in X, i.e.

ρ(x, y) =1 if x, y ∈ X and x ̸= y

0 if x = y

therefore sup{ρ(x, y) : xy ∈ X} = diamX = 1 i.e. X is bounded.
Every singleton set {x} (where x ∈ X) is open in (X, ρ). Indeed, let 0 < ε ≤ 1. Now X ∈ {x} and

N(x; ε) = {x} for y ∈ X and y ̸= x ⇒ ρ(y, x) = 1
so y /∈ N(x; ε)

Thus N(x; ε) ⊆ {x} i.e. x is an interior point of {x}. Thus {x} is open in (X, ρ) for each point of {x} an
interior point since

⋃
x∈X{x} = X so {{x} : x ∈ X} is an open cover for X.

Suppose X is compact. Then there exist a finite number of points x1, . . . , xn such that
⋃n

i=1{xi} = X
i.e. X = {x1, . . . , xn} a contradiction !! since X is of infinite cardinality. Hence the supposition that X is
compact is not valid. Hence X is not compact.

Proposition 5. Compact subsets of a metric space are closed.

Proof. Let E be a compact subset of a metric space (X, ρ). We shall show that Ec(= X −E) is open in
(X, ρ). Let y ∈ EC . So y /∈ E. Let x ∈ E. Then y ̸= x, so ρ(y, x) = εx > 0. Then

N
(
y;

εx
2

)
∩N

(
x;

εx
2

)
= ϕ
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As we vary x over E (keeping y fixed) we get a system of neighborhoods
{
N
(
y; εx

2

)
: x ∈ E

}
all centred

at y and a system of neighborhoods.{
N
(
x;

εx
2

)
: x ∈ E

}
. Now

E =
⋃
x∈E

{x} ⊆
⋃
x∈E

N
(
x;

εx
2

)
.

Thus the family
{
N
(
x; εx

2

)
: x ∈ E

}
is an open cover for E.

Since E is compact, there exists a finite number of points say x1, . . . , xn ∈ E such that

E ⊆
n⋃

i=1

N
(
xi;

εxi

2

)
Consider the subfamily

{
N
(
y; εx

2

)
: 1 ⩽ i ≤ n

}
of {N (y; εx) : x ∈ E}

Let ε = 1
2min {εx1

, εx2
, · · · . . . , εxn

} since n ∈ N and each εx > 0, so ε > 0.Now

N(y; ε) =

n⋂
i=1

N
(
y;

εxi

2

)
(2.3)

Since N
(
y; εxi

2

)
∩N

(
xi;

εxi
2

)
= ϕ for each i = 1, 2, . . . n.

It follows from (1.4) that
N(y; ε) ∩N

(
xi;

εxi

2

)
= ϕ

for each i = 1, . . . n i.e.

N(y : ε) ∩

(⋃
i=1

N
(
xi;

εxi

2

)
= ϕ

)

But E ⊆
n⋃

i=1

N
(
xi;

εxi

2

)
Therefore, N(y; ε) ∩ E = ϕ i.e. N(y; ε) ⊆ Ec. Thus y ∈ Ec and N(y; ε) ⊆ Ec, so y is an interior point of
Ec. Therefore, Ec is open in (X, ρ) i.e. E is closed in (X, ρ).

Corollary 2. Let E be a closed subset of a metric space X and F be a compact subset. Then E ∩ F is
compact subset of X.

Proposition 6. Let E be a compact subset of a metric space X and F be a closed subset of E. Then
F is compact.

Proof. Let {Gα : α ∈ Λ} be an open cover for F. Since F is closed in X,F c is open in X. Adjoin F c to
the collection {Gα : α ∈ Λ} and we obtain the family {Gα : α ∈ Λ} ∪{F c} which clearly covers E. But E
is compact. Hence there exist a finite number of members of the family.

{Gα : α ∈ Λ} ∪ {F c} .
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which is an open subcover for E and hence also an open cover for F (since F ⊂ E). Delete FC from
this finite subcover for E if F c belongs to it and we are thus left with a finite collection of members of
{Gα : α ∈,Λ} which cover F. Thus F is compact.

Corollary 3. Let X be a metric space, E a closed subset of X and F a compact subset of X. Then
E ∩ F is compact.

Proof. F is compact implies F is closed. E is closed, F is closed implies E
⋂
F is closed.

Now E ∩F ⊂ C, a compact set and E ∩F is closed. Thus E ∩F is a closed subset of a compact set F .
Therefore, E ∩ F is compact.

Definition 2. Let (X, ρ) be a metric space and E be a subset of X. Let ε > 0 be a real number. A
subset A of X is called an ε− net for E if

E ⊆
⋃
y∈A

N(y; ε)

The subset E is said to be precompact or totally bounded if for every real ε > 0, E has a finite ε-net.

Proposition 7. Let (X, ρ) be a metric space and E be a precompact subset of X. Then E is bounded.

Proof. E is precompact implies for each real ε > 0, E has a finite ε− net.
E is precompact implies that for each real ε > 0, E has a finite ε-net.
Aε = {x1, · · · , xn} say, where xi ∈ X(i = 1, . . . n)
Therefore, E ⊆

⋃n
i=1 N (xi; ε) Let x, y ∈ E. Then there exist i, j(1 ≤ i, j ≤ n) such that x ∈ N (xi; ε) , y ∈

N (xj ; ε) so ρ(x, y) ≤ ρ (x, xi) + ρ (xi, xj) + ρ (xj , y) < 2ε+ ρ (xi, xj) ≤ 2ε+ diamAε < +∞. (for Aε is
a finite subset of X so dimAε < +∞) Hence sup {ρ(x, y) : x, y ∈ E} ⩽ 2ε+ diamAε < +∞
i.e. E is bounded.
However, boundedness does not imply precompactness.

Counter Example 2. Consider the Hilbert space ℓ2 and let

A =
{
x ∈ ℓ2 : ∥x∥ = 1

}
Clearly A is bounded for if x, y ∈ A, then

||x− y∥ ≤ ∥x∥+ ∥y∥ = 1 + 1 = 2

consider the elements (en)
∞
n=1 defined by

e1 = (1, 0, 0, . . .)

e2 = (0, 1, 0, · · · )
...
en = (0, 0, . . . .0, 1, · · · )
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Since ∥en∥ = 1∀n ∈ N, it is clear that en ∈ A ∀ n ∈ N.

Also if m ̸= n
∥en − en∥2 = ∥en∥2 + ∥em∥2 − ⟨enen⟩ − ⟨em1en⟩

Since m ̸= n ⇒ ⟨em, en⟩ = 0
∴ ∥en − en∥ =

√
2

Take an ε satisfying 0 < ε <
√
2/2.

Let yi, yj be elements such that ∥en − yj || < ε and ∥em − yj∥ < ε.
Then yi ̸= yj Since

yi = yi ⇒ ρ (em, en) ≤ ∥em − en∥ ≤ ρ (em, yj) + ρ (yj , yi) + ρ (yi, en) < ε+ ε = 2ε <
√
2 (2.4)

which is impossible. Since m ̸= n
(
∥en − ln∥ =

√
2 if m ̸= n).

Suppose A is precompact. Then A must have a finite ε − net. Since this finite ε − net cover A and
en ∈ A ∀ n ∈ N . So an infinite number of en must belong to some N(y; ε) for a y belonging to their net.
But this would imply (1.5), which is impossible. Hence the supposition that A is precompact is not
correct. Therefore A is not precompact.
Thus boundedness implies precompactness.

Proposition 8. A is compact implies A is precompact.

Proof. Let ε > 0 be any given real number. Then (if x is entire metric space) the family {N(x; ε) : x ∈ X}
covers A. Since A is compact, there exist a finite number of points x1, . . . xn(say) in X such that

A ⊆
n⋃

l=1

N (xi; ε)

Thus {x1, . . . xn} is a finite ε− net for A. This shows that A is precompact.

Proposition 9. Let (X, ρ) be a metric space and A be a non-void subset of X.
If every sequence of points of A has a convergent subsequence; then A is precompact.

Proof. We have to prove
(every sequence of points of A has a convergent subsequence implies A is precompact).
For this it is sufficient to establish A is not precompact implies there is a sequence (xn) of points of A
which has no convergent subsequence. Suppose A is not precompact. Hence there is a real ε > 0 for
which there is no finite ε− net for A. Choose x1 ∈ A.

Since {x1 } is not a ε− net for A there exits a point x2 ∈ A such that x2 /∈ N(x, ε) i.e. ρ (x1, x2) ≥ ε.

Now {x1, x2} is not an ε-net for A; hence there exist x3 ∈ A such that x3 ̸= x1, x3 ̸= x2 and hence
x3 /∈ N (x1; ε)∪ N (x2; ε) hence ρ (x1, x3) ≥ ε, ρ (x2, x3) ≥ ε (Note also ρ (x1, x2) ≥ ε). Continuing in
this manner we would obtain an infinite sequence (xn) of distinct points of A such that ρ (xi, xj) ⩾ ε
whenever i ̸= j.
(Note that no finite sub-collection of {xn : n ∈ N} can be an ε − net for A since A is not precompact).
Since ρ (xi, xj) ⩾ ε ∀i ̸= i, there does not exist any convergent subsequence of (xn).
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Remark 1. From the above proof it not only follows that if every sequence of points of A has a convergent
subsequence then A is precompact but also that the finite E-net for A (for each real ε > 0) consist of
points of A.

3 Conclusion
Since the concept of compactness plays a central role in functional analysis and indeed in all areas of
analysis it is important for us to obtain some intuition about when sets are or are not compact. The results
in this paper provide a basis for carrying out analysis in metric spaces. We have shown that a metric
space X is compact, that is, every open covering of X has a finite subcovering. Also, every collection of
closed sets in X with the finite intersection property has a nonempty intersection. If F1 ⊇ F2 ⊇ F3 ⊇ . . .
is a decreasing sequence of nonempty closed sets in X, then

⋂∞
n=1 Fn is nonempty. X is sequentially

compact, that is, every sequence in X has a convergent subsequence. finally, X is totally bounded and
complete.
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