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ABSTRACT

This paper surveys the essential concepts of bases, continuity, and homeomorphism within the
context of Hausdorff topology. We examine the characterization of Hausdorff spaces through various
types of bases, including minimal generative bases, which serve to illuminate the intrinsic properties
of these spaces. The interplay between bases and morphisms is explored, emphasizing how morphisms
facilitate continuity of mappings between Hausdorff spaces and their quotient images. We investigate
the implications of these relationships for determining homeomorphisms, establishing conditions
under which two Hausdorff spaces can be deemed equivalent. Key results include the construction
of quotient images using equivalence relations, as well as criteria for continuity and homeomorphism
that are uniquely suited to Hausdorff spaces. The findings on bases also demonstrate that a topological
space X is Hausdorff if and only if there exists a minimal generative base BM for X such that for any
subfamily B′

M of BM that is also a base for X, every element of BM can be expressed as a union
of elements from B′

M . This result provides an important tool for studying the properties of Hausdorff
spaces and their relationships with other topological spaces.
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1 Introduction

The study of Hausdorff spaces, named after Felix Hausdorff [7], has been a subject of great attention for quite some time,
generating interesting results over the years. For instance, Fell [5] determined some topology associated with Hausdorff
topology for the closed subsets of a locally compact non Hausdorff space. Graves [6] considered the completeness of
a Hausdorff space and revealed that the property of completeness carries over to certain spaces of functions whose
functional value lie in a complete space (X, τ). Beginning with the neighborhood Uπσ(F ) of (X, τ) consisting of all
functions of G in τ such that G(qi) is in V σ(F (qi)) for each qi in π with a proper definition of the relation > for the complete
space. Using the neighborhoods Wα(F ), it is shown that certain sub-spaces of (X, τ) are also complete. Further, the
study showed that if (X, τ) is a topological space, then the space of all continuous functions f is complete and if (X, τ)
has associated itself with a system of neighborhoods, then the space (X, τ) of all uniformly continuous functions of (X, τ )
is complete.

Arens and Kelly[2] conducted a research on Characterizations of the space of continuous functions over a compact
Hausdorff space. Accordingly, the first characterization proceeded by an investigation of the extreme points of the unit
sphere Σ of the adjoint and space B∗ of the Banach space B which was constructed . Indeed, if B is the class of
continuous real-valued functions over a compact Hausdorff space X, then the ∥f∥ =supx∈X |f(x)|. The Reisz-Markoff
Saks representation [10] for linear continuous functionals on C can be used to prove the class of extreme point of Σ and
can be divided into two disjoint closed sets, each of which is homeomorphic to X using the weak topology in B∗

Bing[3]connected countable Hausdorff spaces with countably many points. Urysohns gave an example of a connected
Hausdorff space with only countably many points. Bing [3] used an example that the points of the space are rational points
in the plane on or above the x-axis. That is if (a, b) is such a point and ϵ > 0, (a+b)+(r + 0) then either | r−(a+6/3, /2 |< ϵ

or | r−(ab/3| > 2) |< ϵ is a neighborhood. To construct geometrically a neighborhood with center (a, b), Bing [3] considered
an equilateral triangle with base on the x-axis and apex at (a, b). If b = 0 and regard (a, b)as the triangle then (a, b) plus
all rational points on the x−axis whose distances from a base vertex of the triangle are less than ϵ and is a neighborhood
with (a, b). The space therefore satisfies the Hausdorff axiom and it has a property that for each neighborhood there is a
point common to their closures and therefore the space is connected.

Ronse and Mohamed [11] used a new approach to discretize Hausdorff spaces such that the discretization of a
compact Hausdorff distance is minimal. A mathematical description of Hausdorff discretizing sets which are related to
the discretization by dilation was considered by Heijmans and Toet [8] in the cover of discretization studied by Andres [1].
Andres worked on the Hausdorff distance between a compact set and its maximal Hausdorff discretization. From this study
its clear that the latter converges (for the Hausdorff metric) to the compact set when the spacing of the discrete grid tends
to zero.

Ercan [4] attempted to give a better understanding of characterization of completely Hausdorff spaces. A topological
space is said to completely Hausdorff [13] if for every x, y ∈ X and x ̸= y, then there exists a continuous function
f : X → R such that f(x) ̸= f(y). It was shown by Ercan [4] that a topological space is completely Hausdorff if and only
if every compact subspace is Cb . A subspace Y of X is said to be Cb embedded if every bounded continuous function
f : Y → R has a continuous extension f : X → R. Since every compact subspace of X is Cb embedded then X is
compactly embedded. This therefore shows that the completeness of Hausdorff spaces and compactly embedded spaces
brings out the notion of equivalence for Hausdorff spaces.

Despite the fact that studies concerning Hausdorff topological spaces is elaborate, the general construction and
characterization of all classes Hausdorff spaces remain open. We therefore provide a survey of Bases, Continuity and
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Homeomorphism in Hausdorff Topology. We consider classes of minimal generative bases and sub-bases and use their
rich algebraic properties to generalize the patterns in Hausdorff spaces and their quotient images.

2 Quotient Images, Continuity, Homeomorphism in Hausdorff Topology

The following definition shall be useful in the sequel:

Definition 2.1. A quotient map is a surjective continuous map between topological spaces that respects equivalence
relation defined on one of the spaces. A topological space Y is a quotient image of X if there exists a surjection f : X → Y

such that V ⊂ C is open if and only it’s pre-image f−1(V ) is open in X.

2.1 Construction of Quotient Maps/Images

In order to construct a quotient map, we need to define an equivalence relation. Let (R, d) be the metric topological space
with the Euclidean topology d and consider an interval [0, 1] ⊂ (R, d). Two points x, y can induce an equivalence relation
as x ∼ y if x = y or if both are irrational. Now given two spaces, (X, τ) and (Y, ρ), the spaces are considered equivalent if
there exist two distinct points x ∈ X and y ∈ Y inducing the relation equivalence.

Proposition 2.1. Let [0, 1] ⊂ (R, d) be given and let X be the set of all equivalence classes with a topology generated
by the set U = [(1/2)− ϵ, (1/2) + ϵ] with ϵ > 0. Define a map f : [0, x] → X; f(x) = [x] in [0, 1] whereas [x] denotes
the equivalence class containing x. It is clear that the map is surjective as the equivalence class in X is also in [0, 1].

f(x) ∼ f(y) if and only if x ∼ y. Thus f respects the equivalence relation.

Proof. Let U ⊂ X and u ∈ U such that u = [ 1
2
− ϵ, 1

2
+ ϵ]. Consider a surjection f with f : [0, 1] → X. Since [0, x] ⊂ [0, 1],

then, f [0, 1] = [x] thus

f : [0, 1] → X
⋂
u∈U

u.

It is also clear that f(0, 1) = (0, u) whenever x ∈ [0, 1]∀u ∈ X. Hence f(u) = u ∈ U (1)

Pre-multiplying equation (1) by f−1 gives: f−1(f(u)) = f−1(u) implying that x = f−1(u) ∈ [0, 1] and therefore
f : [0, 1] → X. From this it is clear that [0, 1]⧸kerf ∼= ImX. The images of X via f−1 lie in [0, 1] and they are a
representation of quotient images in the pre-image. This means that ker f ={0}.

Finally we need to show that f is continuous. Let U be an open subset of X. We need to show that f−1(u) is an open
subset of [0, 1]. Since the topology generated by the set U = {[(1/2) − ϵ, (1/2) + ϵ]}, it is enough to show that f−1(U) is
open for such a {u}

Let x ∈ f−1(U). If f(x) belongs to U it would imply that [x] intersects U . Thus there exists ϵ > 0 such that [(1/2) −
ϵ, (1/2) + ϵ] intersects U. Since it is already known that [x] is an equivalence class then there exists a point y ∈ [x] such
that | y − 1/2 |< ϵ and also since f maps y to [x] , then we have f(y) ∈ U. Thus for any point x ∈ f−1(u) there exists an
ϵ > 0 such that the interval (x− ϵ, x+ ϵ) is contained in f−1(U) implying that f−1(u) is open and therefore continuous.
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Example 2.1. Let (R, d) be the metric topological space with the Euclidean topology d such that d(x, y) < r ∀r ∈ R+ if and
only if x ∼ y. This partitions R into equivalence classes that are balls of radius r centred at each point in R. The quotient
space obtained here consists of all these balls as points and we endow it with a metric induced.

If r = 1. Then for any two points x, y in R, we get

[0] = {0}, [x] = y : d(x, y) < 1, [R⧹{x}] = y : d(x, y) ⩾ 1

as the only equivalence classes.

Definition 2.2. A topological space (X, τ ) is called a T1 space if it satisfies the T1−Axiom.

Proposition 2.2. Let (X, τ ) be a T1 space. Then for every pair x, y of distinct points of X there exist subsets G, H of X
such that x ∈ G and x /∈ H, y ∈ H and y /∈ G. But G ∩H ̸= Φ.

Proof. Let (X, τ) be T1 and p ∈ X. We need to show that {p} is closed. Hence, we must show that {p}c is open.
Let q ∈ {p}c. So q ̸= p. Since (X, τ ) is T1 there exists an open set Gq containing q but not p. That is, q ∈ Gq but q ̸= p.

Now,

{p}c = ∪{q ∈ X : q ̸= x}.

So,
{q} ∈ Gq ⊆ {p}c ∀q ̸= p.

Thus
∪{q} ⊆ ∪qGq ⊆ {p}c.

Therefore {p}c = ∪qGq which is an open set for it is a union of open sets. Thus {p}c is open. That is, {p} is closed.

Conversely, let {p} be closed, for each p ∈ X, the space (X, τ) is T1. Also, let p, q ∈ X and p ̸= q. Then, {p}c is open,
containing q but not p. On the other hand {q}c is an open set containing q but not p. Thus, (X, τ ) is T1.

Definition 2.3. A topological space (X, τ ) is said to be a T2 -space or an Hausdorff space if for each pair of distinct points
p, q ∈ X; p ̸= q there exist G,H such that p ∈ G, q ∈ H and G ∩H = Φ.

Definition 2.4. (X, τ ) is said to be normal if for every pair of the disjoint closed sets E and F , there exists open sets G1

and G2 such that E ⊂ G1 and F ⊂ G2 and G1 ∩G2 = Φ.

Next, we present some results on continuity of maps between topological spaces.

Definition 2.5. Let (X, τ ) and (Y, ψ) be topological spaces and f : X → Y be a function. Let p be any fixed point in X.
We say that f is τ −ψ continuous or continuous at the point p if each open set H ∈ U containing f(p) there is an open set
containing p such that f(u) ⊆ H. That is, U ⊆ f−1(H).
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Proposition 2.3. Let (X, τ ) and (Y, ψ) be topological spaces and let f : X → Y be a function. Let B be base for ψ and S
be a sub-base for ψ. Then the following statements are equivalent:

(i) f is (τ − ψ) continuous.

(ii) f−1(B) ∈ τ for each β ∈ B

(iii) f−1(S) ∈ τ for each s ∈ S

Proof. (i) ⇒ (ii)

Assume that (i) holds, then by definition of continuity of f , the basis B ⊂ ψ since ψ is open. Thus any β ∈ B ⇒ β ∈ U .
Since f is continuous f−1(β) ∈ τ which is (ii).

(i) ⇒ (iii)

Since S ⊂ ψ , each s ∈ S belongs to ψ thus by (i) f−1(s) ∈ τ for each s ∈ S which is (iii).
Conversely (iii) ⇒ (ii)

By (iii)f−1(s) ∈ τ for each s ∈ S. Let H ∈ ψ. Since S is a sub-base of ψ which can be written as

H = ∪i(Si1 ∩ Si2 ∩ ..... ∩ Sini
: ni ∈ N) ⇒ f−1(H) = f−1(∪i(Sin ∩ ...... ∩ Sini

)).

Each f−1(Sik ∈ τ ). Thus, f−1(H) ∈ τ which proves (i).

Proposition 2.4. Let (X, τ) and (Y, ψ) be topological spaces and let f : X → Y be a function. Then the following
statements are equivalent:

(i) f is τ − ψ continuous

(ii) f(A) ⊆ f(A) for every subset A of X

(iii) f−1(B) ⊆ f−1(B) for every subset B of Y.

Proof. For every closed subset F of Y , f−1(F ) is a closed subset of X.
Now assume that (i) ⇒ (ii) and f(A) is a closed subset of Y . So by (i) it follows that f−1(f(A)) is a closed subset of X
containing A

∴ f−1(f(A)) ⊇ A from the condition that suppose M ⊇ A⇒M ⊇ A⇒ A ⊆ f−1((f(A)) where M = f(A)).

Thus
f(A) ⊆ f(f−1(f(A)) = f(A) which proves (ii).

(ii) ⇒ (iii)

By (ii), f((A) ⊆ f(A). Let A = f−1(B). Substituting in (ii), we get f(f−1(B) ⊆ f(f−1(B)) ⊆ B(f(f−1(B) ⊆ (B).

Therefore, f−1{f(f−1(B)} ⊆ f−1(B). Now f−1(f(f−1(B))) ⊇ f−1(B) then f−1(B) ⊆ f−1(B) which is (iii).
Finally, (iii) ⇒ (i)

By (iii) f−1(B) ⊆ f−1(B) for every B ∈ Y . To prove (i), let B be any closed subset of Y to show that f−1(B) is closed in
(X, τ). Therefore, B = B and f−1(B) ⊆ f−1(B). But f−1(B) ⊇ f−1(B) always.
Thus f−1(B) ⊇ f−1(B). That is, f−1(B) is a closed subset of (X, τ ) which proves (i)
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Proposition 2.5. Let (X, τ ) and (Y, ψ) be topological spaces and f : X → Y be such that:

(i) f is a bijection.

(ii) f is (τ − ψ) continuous.

(iii) f is also continuous

Then f is called a homeomorphism from the topological space (X, τ ) to (Y, ψ) and f−1 is a homeomorphism from the
topological space (Y, ψ) to (X, τ ) and the two spaces (X, τ ) and (Y, ψ) are said to be homeomorphic written (X, τ) ∼ (Y, ψ)

The open set properties using bases give rise to countability property in Hausdorff topology.

Definition 2.6. Let (X, τ ) be a topological space and p ∈ X. A family Bp of open sets containing p is called a local base
at p if for each open set G containing p there is a member βp ∈ Bp such that p ∈ Bp ⊆ G.

Now a topological space (X, τ) is said to be first countable if it satisfies the following axiom of countability:
At each point p ∈ X there is at most countable family Bp of open sets containing p, that is, β ∈ B ∈ G.
In other words, each point p ∈ X is associated with an atmost countable local basis.

Example 2.2.

1) Take any metric space (X, ρ). Let p ∈ X. Take Bp = {N (P : 1/n), n ∈ N}. Bpis countable.
If G is open and p ∈ G, then there exists a member β ∈ Bp such that x ∈ βp ∈ G

∴ (X, ρ) is a first countable space.

2) Take X and the discrete topology τ = P (X). Each {p} is open ∀p ∈ X. Take Bp = {{p}}. So Bp is at most countable.
For each open G containing p, we have p ∈ {{p}} ∈ G. Therefore, (X,P (xX)) is first countable.

Definition 2.7. A topological space (X, τ ) is said to be second countable if it has an at most countable base.

Example 2.3. (R, τ ) where τ = d the usual topology on R is second countable.
Reason: {N (q : 1/n) : q ∈ Q} is an open at most countable neighbourhood.

Proposition 2.6. Let X be a connected Topological space. Then X is connected if its Hausdorff but the converse is not
true.

Proof. Assume that X is not a connected Topological space. If x ∈ X, then we have a neighbourhood Nx(x, r1) and
Ny(y, r2) such that x ∈ Nx(x, r1) and y ∈ Ny(y, r2).
From the definition of connectedness, if we have two open sets U and V then U ∩ V = Φ.
This implies that Nx(x, r1)

⋂
Ny(y, r2) = Φ implying that separation holds which is a contradiction. Hence it is a connected

space.
Alternatively, suppose x ∈ X and suppose that X is not connected. Consider X = x, y, z and θ = (x, y)(y, z) such that θ
is the base of the topology τ meaning that θ ∈ τ and hence (x, y) ∪ (y, z) ∈ τ . This implies that x, y, z covers the entire
space in τ This a contradiction and hence the space is connected.

Conversely, suppose X is a Hausdorff Topological space. There are two distinct points x and y such that x, y ∈ X; there
exists two open sets G and H such that x ∈ U and y ∈ V and U ∩ V = Φ. This a contradiction for connectedness since a
connected space, the space cannot be split into two disjoint. Hence the converse does not hold
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Definition 2.8. A first countable Hausdorff spaceX is a topological space whereby each point has a countable neighborhood
and the space also obeys the separation axiom. That is every two distinct points have two disjoint open neighborhoods.

Lemma 2.1. Let X be a first countable Hausdorff space. Then X is a T1 space. In other words every singleton set is
closed.

Proof. Let X be a first countable Hausdorff space and let x ∈ X where x is an arbitrary point. We want to show that for
every two distinct points say x, y ∈ X there exists open sets U, V ; x ∈ U and y ∈ V such that x /∈ V and y /∈ U .

Since X is first countable, for each point x ∈ X there exists a countable neighborhood basis Bx = {Un}∞n=1 at x where Bn

is an open set containing the arbitrary point x. Similarly for each point y ∈ X there exists a countable neighborhood basis
By = {Vn}∞n=1 at y where Bn is an open set containing the arbitrary point y. Since Bn is an open set containing x and y
then there is a neighborhood N of x such that Bn ⊂ N ∀ n ∈ N . Now consider the singleton sets of {x} and {y}. Defining
the two open sequences of open sets we will have;

1. For each n, let Un = X \ {y} ∪ {x}

2. For each n, let Vn = X \ {x} ∪ {y}

Its clear from above that each Un contains x but not y and same thing happens to Vn. We want to show that the two
sequences are of open sets.

Since X is a Hausdorff space, then for every two distinct points x, y ∈ X there exist two open disjoint sets U, V ; x ∈ U and
y ∈ V such that U ∩ V = Φ. Let x, y ∈ Bn and U ∩ V = Φ. This implies that X \ {x} ∩ V = U ∩ V = Φ : ∀x, y ∈ X, and
X \ {y} ∩ U = U ∩ V = Φ : ∀x, y ∈ X.

Since X \ {x} is the set of union of points that do not intersect Vy it then follows that X \ {x} is open. Similarly X \ {y} is
the set of union of points that do not intersect Ux it then follows that X \ {y} is open.

Also since U contains x but not y and V contains y but not x for all x, y ∈ X, then x is T1space. Therefore we have shown
that for any point x in the first countable Hausdorff space the singleton set {x} and {y} are closed and hence satisfying the
T1 separation axiom.

Theorem 1. Every Hausdorff space is a T1 space, but the converse is not true.

Proof. To prove that every Hausdorff space is a T1 space, we start by recalling the definitions of these topological
properties. A topological space X is termed a Hausdorff space (or T2) if, for any two distinct points x and y in X,
there exist disjoint neighborhoods U of x and V of y. On the other hand, a space is called a T1 space if for any two distinct
points x and y, there exists a neighborhood of x that does not include y (and vice versa).

Now, let us assume X is a Hausdorff space and consider any two distinct points x and y in X. By the definition
of a Hausdorff space, we can find neighborhoods U of x and V of y such that U ∩ V = Φ. This implies that y cannot
be contained in the neighborhood U of x. Consequently, we have established that every neighborhood of x excludes y.
Similarly, since the neighborhoods are disjoint, x cannot be included in the neighborhood V of y. Thus, every neighborhood
of y excludes x. Therefore, we conclude that X satisfies the T1 separation condition.

Next, we demonstrate that the converse is not true by providing a counterexample. Consider the Sierpiński space,
which consists of two points, {a, b}, with the topology {Φ, {b}, {a, b}}. In this topology, the singleton set {b} is a neighborhood
of b that does not contain a, thus satisfying the T1 condition. However, there are no disjoint neighborhoods around the
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points a and b; any open set that includes a must also include b. This means that the space does not satisfy the Hausdorff
condition.

In conclusion, while every Hausdorff space is indeed a T1 space due to the ability to separate points with disjoint
neighborhoods, the converse fails, as illustrated by the Sierpiński space, which is T1 but not Hausdorff.

Lemma 2.2. Let (X, τ) be a Topological space and (Y, φ) be a Hausdorff space. If A is a non-empty subset of X; then
f : X → Y is continuous.

Proof. If f : X → Y is continuous, we expect that f is an injection and there exists an open subset A ⊂ X such that
f(A) ⊂ Y . Also {f−1(y) : y ∈ Y }
subsetA.

Since X is Hausdorff, Let A = Nx(x, r) where x ∈ X. If there exists G ⊆ X : x ∈ Nx ⊆ G. Then A is

Lemma 2.3. Let X be a first countable Hausdorff space. Each minimal base B ∈ X is closed and can be embedded.

3 On Some Classes of Bases in Hausdorff Topology

3.1 Global Bases

Definition 3.1. Let (X, τ ) be a topological space. A sub-family B of τ is called a base or basis for the topology τ if each
open set G of X (ie G ∈ τ ) can be expressed as a union of members of B. In other words for each G ∈ τ and x ∈ G, there
exists some β ∈ B such that x ∈ B ⊂ G.

From the definition 3.1 above, we have two statements which are equivalent:

(i) Let G be a union of members of B : ie G = ∪Bi : Bi ∈ B, i ∈ N.

(ii) Let x ∈ G. Then x ∈ Bi for some i and Bi ⊂ G that is x ∈ Bi ⊂ G which is a statement.

Remark 3.1. If B is a base for the topology τ of X, then B is itself a part of τ ie members of the base B are themselves
open sets and subsets of (X, τ).

Proposition 3.1. Not every collection of subsets of X can serve as a base for a topology on X

Proof. Consider X = {a, b, c} and θ = {{a, b}, {b, c}}. Claim that θ serves as a base for a topology τ on X then θ ∈ τ.

Hence {a, b} ∪ {b, c} ∈ τ and consequently {a, b} ∩ {b, c} = {b} ∈ τ. Thus this intersection {b} must be expressed as a
union of members from θ, which is impossible. Thus θ cannot serve as a base for a topology on X.

Proposition 3.2. Let X be a non void set and B be a collection of subsets of X. The following statements are equivalent:
If B is a base for a topology on X, then B satisfies the following properties:

(i) {
⋃
β : β ∈ B} = X

(ii) If β1 and β2 are members of B, then β1 ∩ β2 is a union of members of B
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Proof. Assume that B serves as a base for a topology τ on X. Then B ∈ τ, so every G ∈ τ is a union of members of B.
Now X is a member of τ, thus X = {

⋃
β : β ∈ B} and this proves (i).

Next, let β1 and β2 ∈ B. So β1, β2 ∈ τ for B ∈ τ. Therefore, β1 ∩ β2 ∈ τ and B is a base for τ . Hence, β1 ∩ β2 = a union of
members of B which proves property (ii)

Proposition 3.3. Let (X, ρ) be a metric space, for each p ∈ X, ϵ > 0 and let N (p : ϵ) be the set {x ∈ X : ρ(x, p) < ϵ}. Let
B be a collection of all such sets N (p : ϵ). Then B is a base for the metric topology on X.

Proof. Now
⋂
{β : β ∈ B} = ∪{N (p : ϵ) : p ∈ X, ϵ > 0} ⊂ X.

Conversely, if x ∈ X and ϵ > 0, then x ∈ N (x : ϵ) ⊂ ∪{N (p : ϵ) : p ∈ X, ϵ > 0} =∪{β : β ∈ B} ⇒ X ⊂ {β : β ∈ B}. Thus
X = {β : β ∈ B}
So the family B satisfies the requirement (i) to qualify to be a base.

To prove(ii):
Take any two members of B, say N1(p : r1) and N2(q : r2) where p, q ∈ X and r1, r2 > 0 and its real.
If N1 ∩N2 = Φ, then this is a void union of members of B. Otherwise let N1 ∩N2 = Φ and let x ∈ N1(p : ϵ) ∩N2(q : r2)

So x ∈ N1 and x ∈ N2. Therefore, ρ(x : p) < r1 and ρ(x : q) < r2 ⇒ r1 − ρ(x : p) = δ1 > 0 and r2 − ρ(x : q) = δ2 > 0.

Let δ = min[δ1, δ2] ⇒ δ > 0, we claim that N (x : δ) ⊂ N1(p : r1),N2(q : r2)

We first prove that N (x : δ) ⊂ N1(p : r1). Let y ∈ N (x : δ) that is, ρ(y : x) < δ

∴ ρ(y : p) ⩽ ρ(y : x) + ρ(x : p)[ Triangle inequality in a metric space]
< ρ+ ρ(x : p)

⩽ +ρ(x : p) = r1.
Therefore, ρ(y : p) < r1 ie y ∈ N1(p : r1). Thus y ∈ N (x : δ) ⇒ y ∈ N1(p : r1) i.e. N (x : δ) ⊂ N1(p : r1).

We can similarly show that N (x : δ) ⊂ N2(q : r2). Thus N1 ∩ N2 is a union of members of B which proves part (2) of(ii).
Thus B is a base for a topology τ on X.

Definition 3.2. Let (X, τ) be a topological space. A family S ⊂ τ is called a sub-base for the topology τ if the collection
of all finite intersection of members of S forms a base for τ
Thus every open set G ∈ τ is a union of a finite intersection of members of S ie

G = ∪(S1 ∩ S2 ∩ .... ∩ Sn)

Proposition 3.4. Any nonvoid collection of subsets of a nonvoid set X serves as a sub-base for a unique topology called
the topology generated by a. This topology is also the intersection of all the topologies on X that contain a.

Proof. Let B be the collection of all finite intersections of members of a. We show that β is a base for a topology on X.
Consider the void intersection of members of a. The latter is X thus X ∈ β and Φ ∈ β.

∴ ∪{B : B ∈ β} = X.
Next, let B1 and B2 ∈ β, then by definition of β

B1 = S1 ∩ ... ∩ Sni : Si ∈ a

B2 = S1 ∩ ... ∩ Sni : Si ∈ a
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Thus B1 ∩B2 = (S1 ∩ ... ∩ Sn) ∩ (S′
1 ∩ .... ∩ S′

n) ∈ β

∴ β is base for a topology on x. This topology is generated by a and a is a sub base for τ .
Next, denote this topology by τ(a). We need to show that τ(a) is the intersection of all topologies on X which contains the
given collection a.
Let τα : α ∈ Ω be the collection of all topologies on X containing a. Clearly this collection is non void for p(x), the discrete
topology contains a.
Now ∩τα is a topology on X which contains a. So τ(a) is a topology containing a.

∴ τ(a) ⊇ ∩τα : α ∈ Ω (i)

To show the reverse inclusion : τ(a) ⊆ ∩τ − α : α ∈ Ω (ii)

Let G ∈ τ(a) ⇒ G = i ∪ (Si ∩ S′
i) : Si, S

′
i ∈ a ⊂ τα∀α ∈ Ω

Since Si ∩ S′
i ∈ τα ⇒ ∪(Si ∩ S′

i) ∈ τα i.e. G ∈ ∩τα : α ∈ Ω

Thus G ∈ τ(a) ⇒ G ∈ τα : α ∈ Ω which proves (ii). Hence, τ(a) = ∩{τα : τα ⊆ a}

Example 3.1. Let X = {a, b, c, d}, Z = {{a}{a, b}, {b, c}}. Find the topology generated by Z

Proof. First we find the set of all finite intersections of members of a. This gives the basis:
{X, {a}, {a, b}, {b, c}, {b}} = β.

Now, taking arbitrary union of members of β. This gives the topology generated by Z , that is τ(Z).
τ(a) = {X,Φ, {a}, {b}, {a, b}, {b, c}, {a, b, c}}

3.2 Minimal Generative Bases and Sub-bases of First Countable Topological Spaces

We introduce the notion of minimal generative local bases and use them to characterize some classes of quotient images
a kin to first countable Hausdorff topological spaces.

Definition 3.3. A topological space (X, τ) on a base B which induces reducible conditions on general space, is called a
minimal generative base.

Example 3.2. Consider the well known real line R induced with a set B = {(x,−x) : x ∈ R}. Here we can consider
arbitrary open sets, obtained from B with: B = {(x,−x) ∪ Φ : x ∈ R} and

⋃
Gx = B:

x =

 1
n
0 < x < 1;

n a > 1

−x =

−1
n

1 < x < 0;

−n x < 1

We can associate the set B above with a topology T = {Φ, (x,−x)}

Lemma 3.1. Let X be a Quotient image space and BM a family of open sets. Then we say that BM is the minimal
generative base for the topology of X if:

i BM covers X
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ii If A,B ∈ BM then there exists a subfamily {Bi : i ∈ N} of BM such that A ∩B =
⋃

i∈NBi

iii If a subfamily {Bi∈N | i ∈ N} ⊂ BM substantiates
⋃

i∈NBi ∈ BM then, there exist i◦ ∈ N such that
⋃

i∈NBi = Bi◦

Example 3.3. . Let BM = {(−x, x) ∪ Φ;∀x ∈ R} and τ = {(x,−x),Φ,R}. Then
⋃
BM = BM ∪ τ = R. For any subsets

A,B ∈ BM ;A ⊂ B or B ⊂ A. Now assume that A ⊂ B. Then there exists a subfamily {Bi : Bi ⊂ A, i ∈ N} such A is
a refinement of A ⊂ B so that A ∩ B = A =

⋃
{Bi : Bi ⊂ A, i ∈ N}. If this sub family qualifies BM to be a base, then

BM =
⋃
{Bi : i ∈ N} because clearly

⋃
{Bi : i ∈ N ∈ BM and BM ⊂

⋃
{Bi : i ∈ N}. Thus the base BM satisfies the

conditions of the previous lemma 3.1)

In the next result, we demonstrate the hereditary condition for global bases to be minimal generative.

Theorem 2. Let X be a set and BM a family of non-empty subsets of X. Then BM is the minimal generative base for a
topology of X if and only if:

i BM covers X; that is X =
⋃

M∈NBM

ii If A,B ∈ BM , then there exists a subfamily {Bi : i ∈ N} of BM such that A ∩B =
⋃

i∈NBi.

iii If a subfamily {Bi : i ∈ I} of BM satisfies
⋃

i∈BBi then there exists io ∈ N such that
⋃

i∈NBi = Bi0

Proof. Suppose BM is a minimal generative base for a topology in the space X. Then the conditions (i) and condition (ii)
of 2 have to hold. Assume a subfamily BM1 = {Bi : i ∈ N} of BM satisfies

⋃
i∈NBi ∈ BM but

⋃
i∈NBi ̸= B for each

B ⊂ BM .

Therefore, there exists a subset B′ ∈ BM \ Bi such that
⋃

i∈NBi = B′. That implies that BM ∈ B′ is a base for the
topological space X. This is a contradiction and thus condition (iii) holds. Conditions (i) and (ii) states that BM is a base
for a topological space X which is true from above.
If a subfamily B′

M of BM is a base of the topological space X, then for every subset B ∈ BM , there exists a subfamily
{Bi : i ∈ N} ofB′

M such that
⋃

i∈NBi = Bi0 . In relation to condition (iii), there exists i0 ∈ N such that
⋃

i∈NBi = Bi0 .
Hence B = Bi0 ∈ B′

M = BM . Therefore, BM is minimal generative base for topological space X.

Definition 3.4. Let X be a topological space and BM a family of non-empty subsets of X. Then for each subset B ∈ BM ,

i if there exists a subfamily {Bi : i ∈ N} of BM such that B /∈ {Bi : i ∈ N} and
⋃

i∈NBi = B then B is known as a
union reducible element with respect to BM ;

ii If there exists a subfamily Bi : i ∈ N of BM such that B /∈ {Bi : i ∈ N} and,
⋂

i∈NBi = B then B is known as an
intersection reducible element with respect to B.

Remark 3.2. A minimal generative local base for a first continuous topological space may fail to have a union reducible
candidate and still poses the intersection reducible elements. This property has been applied before. See for example
in [12] to qualify the minimality of an arbitrary base say BN with a well known countable set which is a topological space
with respect to a respected topology τ. Indeed the classification into reducibility using sub-bases usually defined over the
intersections of union of bases all over for a consideration of only intersection reducibility for local minimal generative bases
considered for the quotient of first countable Hausdorff topological spaces
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Next we characterize the necessary and sufficient conditions for minimal generative sub-bases.

Definition 3.5. Let S be a sub-base for a topological space X for any subfamily S′ of S. If S′ is a sub-base for the
topological space X, then S′ = S.

The following example helps us to illustrate the definition 3.5 ;

Example 3.4. Let X =R \ Z and S = {(a, a+ 1) : a ∈ Z}. Then, S is a partition of R \ Z. This therefore implies that S is a
minimal generative sub-base for a topology of R \ Z.

Proposition 3.5. Let X be a set and S a family of non-empty subsets of X. If S is a minimal generative sub-base for a
topology of X, then there doesn’t exist a finite intersection reducible element in the minimal generative sub-base S.

Proof. By definition 3.4 above, we need to show that if a finite subfamily {Si : i ∈ N}of S satisfies
⋂

i∈N Si ∈ S, then there
exists i0 ∈ N such that

⋂
i∈N Si =Si0 . Now assume that a finite subfamily S = {Si | i ∈ N} of S satisfies

⋂
i∈N Si ∈ S, but⋂

i∈N Si ∈ I ̸= S then for each subset S ∈ S. Therefore there exists a subset S′ ∈ S \ S1such that
⋂

i∈N Si = S′. Thus
this implies that S ∈ {S}′ is a sub-base for the topology of X of which is a contradiction. Therefore, the minimal generative
sub-base S doesn’t contain the finite intersection reducible elements.

From the following proposition, it is evident that a minimal generative sub-base is a minimal generative base with all
finite intersection reducible elements removed. according to the following proposition.

Proposition 3.6. Let X be a topological space and BM be a minimal base for the Topological Space. If there are no finite
intersection reducible elements in BM , then BM is a minimal generative sub-base for the Topological Space X.

Proof. Clearly, BM can be viewed as a sub-base for the topological spaceX. Suppose a subfamily l of BM is a sub-base
for the topological space X. According to the definition of base and sub-base, BM is a sub-base, BM is a minimal base
generated by SM . Then for each subset B ∈ BM , there exists a finite subfamily {Sii ∈ I} of SM such that

⋂
i∈N Si =

B ∈ BM . There exists i0 ∈ I such that
⋂

i∈N Si = Si0 , because the minimal base BM does not have finite intersection
reducible elements. Thus, B = Si0 ∈ SM , which means SM = BM . Therefore, BM is a minimal generative sub-base for
the topological space X

Proposition 3.7. Suppose X is a set and is a Y topological space. Then if f : X → Y is a surjection map and SM is a
minimal generative sub-base for the topological space Y , the f−1(SM ) = {f−1(S) : S ∈ SM}. is a minimal sub-base for a
topology on X

Proof. Given that SM is a minimal generative sub-base of the topological space Y, then Y =
⋃
SM and we X =⋃

f−1(SM ). Hence, f−1(SM ) is a sub-base for the topology τ on X. Suppose f−1(SM ) is not a minimal generative
sub-base for the topological space (X, τ), then there exists a S0 ∈ SM such that f−1(SM ) \ f−1(S0 is a sub-base for the
topological space (X, τ). Given that SM \ (S0), is not a sub-base for the topological space Y , then there exists an open
subset V of Y and y ∈ V such that for any finite family FM ⊂ SM \ (S0), y

⋂
FM ⊂ V does not hold. Take x ∈ f−1(y).

Because f−1(V ) is open in the topological space (X, τ) and f−1(SM ){f−1(S0) is a sub-base for (X, τ), there exists a
finite family FM ⊂ SM \ S0 such that x ∈

⋂
{f−1(F ) : F ∈ FM} ⊂ f−1(V ). Hence, y ∈

⋂
{F : F ∈ FM} =

⋂
FM ⊂ V.

Thus, f−1(SM ) is a minimal generative sub-base for a topology on X
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Based on proposition 3.7, we obtain the following remark.

Remark 3.3. Let Y be a quotient space of a topological spaces X and let f : X → Y be a quotient mapping. If a covering
SM is a minimal generative sub-base for the quotient space Y, then f−1(SM ) = {f−1(S) : S ∈ SM} is a minimal generative
sub-base for the topological space X

Proposition 3.8. Let X and Y be topological spaces and a mapping be f : X → Y open and 1-1. If a covering SM

is a minimal generative sub-base for the topological space X, then f(SM ) = {f(S) : S ∈ SM} is a minimal generative
sub-base for the subspace f(X) of Y

Proof. It’s obvious that, f(SM ) = {f(S) : S ∈ SM} is a cover of f(X). Because the mapping f : X → Y is open and a
sub-base for the topological space X, f(FM ) is a sub-base for the topological space f(X). We now show that, f(SM ) is
minimal generative base. Now lets suppose that f(SM ) not minimal generative sub-base for f(X). Therefore there exists
S0 ∈ SM such that {f(S) : S ∈ SM \ {S0}} is a sub-base for f(X). Since SM is a minimal generative sub-base for the
topological space X,SM \ {S0} is a sub-base for the topological space X. Therefore, there exists an open subset V0 of
X and x ∈ V0 such that for any finite family FM ⊂ SM \ {S0},

⋂
FM ⊆ V0 if x ∈

⋂
FM . Now since the mapping is open,

f(V0) is an open subset of f(X). And since f is 1-1, f(
⋂
FM ) ⊆ f(V0) for any finite family FM ⊂ SM \ S0 with x ∈

⋂
FM

Thus,
⋂
{f(F ) : F ∈ FM} ⊆ f(V0) for any finite family FM ⊂ SM \ {S0} with x ∈

⋂
FM . This is a contradiction that

f(SM ) \ {f(S0)} is a sub-base for f(x)

Next some propositions have been presented as mapping properties.

Proposition 3.9. Let {Xy} : y ∈ Γ be a family of topological spaces. Then for each index such that y ∈ Γ, ∃πy : πy∈ΓX →
Xy is a projective mapping and for each index y ∈ Γ, SMy in that a minimal generative sub-base for topological space X,
then SM = {π−1

y (Sy) : Sy ⊂ SMy ∈ Γ} is a minimal generative sub-base for the product space πy∈ΓXy.

Proof. It is clear that SM = {π−1
y (Sy) : Sy ⊂ SMy ∈ Γ} is a sub-base for the product space

∏
y∈ΓXy. Suppose SM is not

a sub-base of the product space πy∈ΓXy, there exist a y0 ∈ Γ and Sy0 ∈ SMy0
such that SM \ {π−1y0 (S0)} is a sub-base

of the product space
∏

y∈ΓXy. Hence, SMy0
\ {Sy0} is a sub-base of the space Xy0 . This is a contradiction that SMy0

is a
minimal generative sub-base for Xy0

Proposition 3.10. If {Xy} : y ∈ Γ be a family of pairwise disjoint topological spaces. For each index y ∈ Γ, if SMy is a
minimal generative sub-base for a topological space (Xy, τy), then SM = {Sy : Sy ∈ SMy , y ∈ Γ} is a minimal generative
sub-base for the sum of the spaces {Xy}yΓ}

Proof. If (⊕, Xy) is the sum of the spaces {Xy}y∈Γ, let BMy = {
⋂

S∈Γ Sy : S′
My

} that is a finite subfamily of SMy denote
the base generated by SM1 . It can be seen that BM = {By : By ∈ BMy,y∈Γ} is a base generated by SM . For each open
set U ∈ τ and each point x ∈ U, then there exists an index y ∈ Γ such that x ∈ X. This therefore follows that x ∈ U ∩Xy

and there exists a subset
⋂
Sy∈SMy

Sy ∈ BMy ⊂ BM such that x ∈
⋂
Sy. Then x ∈ Sy∈SMSy ⊂ U ∩Xy. Therefore there

exists a subset
⋂
Sy∈SMy

Sy ⊂ BM such that x ∈
⋂
Sy∈SMy

Sy ∈ BMy ⊂ BM such that x ∈
⋂
Sy∈SMy

Sy ⊂ U ∩ Xy

is open in Xy, x ∈
⋂

Sy∈SMy

Sy ⊂ U meaning that BM is a base for the topological space (⊕y∈Γ, Xy, τ). Thus, SM is a

sub-base for the topological space (⊕y∈Γ, Xy, τ) Now suppose SM is not a minimal generative sub-base for the topological
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space ⊕y∈ΓXy, τ. Then there exists y0 ∈ Γ and Sy0 ∈ SMy0
such that SM \ (Sy0) is a sub-base of the topological space

⊕y∈ΓXy, τ. Hence, SMy \{Sy} is a sub-base ofXyo . This is a contradiction and hence SM is a minimal generative sub-base
for the Topological Space ⊕y∈ΓXy, τ.

Let X be a Topological Space and Y be a subset of X which is a Topological subspace of X. If SM is a minimal generative
sub-base for the topological space X, then SM − y is a sub-base for the topological subspace Y. But SM − y may not be a
minimal generative sub-base for the subspace. The following example is used to illustrate this point.

Example 3.5. Let a ∈ X and X = {a1, a2, · · · a9}

SM = {{a1, a2, a4, a5}, {a2, a3, a5, a6}, {a4, a5, a7, a8}, {a5, a6, a8, a9}}

be a sub-base for a topological space X. It is easy to see that SM is a minimal generative sub-base for the topological
space X. Take Y = {a1, a2, a4, a5, a7}. According to the definition of a topological sub-space, we conclude that SM − y =

{{a1, a2, a4, a5}, {a2, a5}, {a4, a5, a7}, {a5}} is a sub-base for the subspace Y. However, SM −y is not a minimal generative
sub-base for the subspace Y, because {a5} is a finite intersection reducible elements with respect to SMy .

3.3 More Results on First Countable Hausdorff Spaces

We call a topological space X a first countable Hausdorff space if and only if each point in X has a unique minimal open
neighborhood. Moreover, for the first countable Hausdorff space there exist a base BM such that BM is composed of all
the minimal open neighborhoods of each point in X. With no doubt BM is the unique minimal base for the quotient space
X. By proposition 3.6 a minimal generative sub-base can be obtained from a minimal generative base.

Proposition 3.11. For any first countable Hausdorff space, the minimal generative sub-base is not unique We can illustrate
this the following using example;

Example 3.6. Consider X = {a1, a2, a3, a4}

SM = {{a1, a2}, {a2, a3}, {a3, a4}, {a1, a4}, {a2, a4}, {a1, a3}}

be a sub-base for the Topological Space X(τ).

From the topological space (X, τ), the following Minimal generative sub-bases can be derived.

FMS1 = {{a1, a2}, {a3, a4}, {a2, a4}, {a1, a3}}
FMS2 = {{a2, a3}, {a1, a4}, {a3, a4}, {a1, a4}}
FMS3 = {{a1, a2}, {a2, a3}, {a3, a4}, {a1, a4}}

Remark 3.4. Let X be a topological space. If BM is a base for the topological space X and SM is a sub-base for the
topological space X. Nτ (x) = NBM (x)NSM (X) can be derived according to the definitions of base and sub-bases. In
addition, if (X, τ) is a first countable Hausdorff space, then Nτ (x)=

⋂
{U | x ∈ U ∈ τ} is the unique minimal open

neighbourhood of each point x ∈ X. . Now denote Nτ (x) by N(x) and let SM = {N(X) | x ∈ X} which is the unique
minimal generative base for the first countable Hausdorff space being a partition
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By our previous example, there exists an intersection reducible elements in a minimal generative base. As a special case,
if a minimal generative base is a partition, then there is no any intersection reducible element. Hence when a minimal
generative base is a partition, then there is a discrete topological space. To help us get a better understanding of a minimal
generative base of first Countable space that is a partition a proposition has been provided.

Proposition 3.12. Let X be a first countable Hausdorff space. For two points x, y ∈ X, define xRy if N(X) =N(y). Then
the natural quotient space X \R is a discrete space if and only if the minimal generative base BM is a partition for the first
countable Hausdorff space X

Proof. Suppose X \R be quotient mapping that is also natural and Suppose X \R is a discrete space, then for each point
x ∈ X, {[x]} is a singleton in X \ R and p−1([x]) is open in X. Thus N(X ⊂ p1([x]). For each point y ∈ p−1([x]), xRy

shows that N(x) = N(y) that is y ∈ N(x). Then p−1([x]) ⊂ N(x), so p−1([x]) = N(x). Thus for any two minimal open
neighbourhoods N(x), N(y) ∈ BM and N(x) ̸= N(y) if N(x) ∩ N(y) ̸= 0, then there exists a point a ∈ X such that
a ∈ N(x) ∩ N(y). That is a ∈ N(x) and a ∈ N(y). So a ∈ p−1([x]) and a ∈ p−1([y]) that is xRaans yRa. Then xRy

because R is an equivalence relation, which means N(x) = N(y). Therefore, for any elements N(x), N(y) ∈ BM , we
have that N(x) = N(y) or N(x) ∩N(y) = ∅ that is ,BM is a partition
Because BM is a partition, N(x)= N(y) if N(X) ∩ N(y) = ∅. Then for each point y ∈ N(x), N(X) = N(y), that is
xRy. Thus, y ∈ p−1([x]) which implies that N(x) ⊂ p−1([x]). If yinp−1([x]), then xRy which means N(X) = N(y). So
p−1([x]) ⊂ N(X). Therefore, p−1([x])= N(x) is open in X. Since p is a quotient mapping that is also natural, then {[x]} is
open in X \R. Hence X \R is a discrete space

Next we present results about locally connected spaces and locally pathwise connected spaces

Proposition 3.13. Let X be a first countable Hausdorff space:

i A spaceX is said to be locally connected space if and only if each point x ∈ X, there is a minimal open neighborhood
of the point x that is a connected set

ii A space X is said to be locally pathwise connected space if and only if for each point x ∈ X, then the minimal open
neighborhood of the point x is also pathwise connected set

Proof. (i) Let X be a locally connected space. Then for each neighbourhood U of x such that x ∈ X, there exists a
connected neighborhood V such that x ∈ V ⊂ U . This implies that the minimal open neighborhood of the point x is
a connected set. Let x ∈ X, then the minimal open neighborhood N(x) of the point x is a connected set. For each
neighborhood U of the point x,N(x) ⊂ U. Thus, X is a locally connected space.
The proof for (ii) is similar to (i)

For our first countable Hausdorff space, based on the uniqueness of minimal base, two results about sub-base and
minimal generative sub-base are presented.

Lemma 3.2. Let τ, τ ′ be two topologies on X such that X is a first countable Hausdorff space and Nτ (x)= Nτ ′(x) for all
x ∈ X, then τ = τ ′

Proposition 3.14. Let (X, τ) be first countable Hausdorff space. A covering SM is a sub-base for the first countable
Hausdorff space if the following conditions hold:
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i SM is a sub-base for a topological space X, each point in x has the minimal open neighborhood.

ii NSM (X)= N(x) for each Point x ∈ X

Proof. Suppose SM is a sub-base for a topological space (X, τ ′ and (X, τ ′) is a first countable space, since each point x
in the topological space (X, τ ′) has the minimal open neighborhood, then NSM (x) for each point x ∈ X and (Xτ) is first
countable Hausdorff space, by lemma 3.3, τ = τ ′. Hence, SM is a sub-base for the first countable Hausdorff space (X, τ).

Suppose SM is a generative sub-base for the first countable Hausdorff space (X, τ). Then each point in x in the first
countable Hausdorff space (X, τ) has the minimal open neighbourhood. Hence for each point x ∈ X , NSM (X) = N(x)

for each point x ∈ X

Proposition 3.15. Let SM be sub-base for first countable Hausdorff space (X, τ). SM is a minimal generative sub-base
for the first countable Hausdorff space (X, τ) if and only if for any covering S′

M ⊂ SM , if and only if the following conditions
hold, then SM = SM ′.

i If S′
M is a sub-base for a topological space X, then each point in x in the topological space X has the minimal open

neighbourhood

ii NS′
M
(x) = N(x) for each point x ∈ X

Proof. Let a covering SM ′ ⊂ SM be a sub-base for the first countable Hausdorff space (X ∈ τ). Then by proposition 3.13,
conditions (i) and (ii) hold. Thus SM ′= SM . Hence SM is a minimal generative sub-base for (X, τ). Now suppose SM is a
minimal generative sub-base for the first countable Hausdorff space (X, τ, ) then for any covering SM ′ ⊂ SM , if Conditions
(i) and (ii) hold, by proposition 3.13 then SM is a sub-base for the first countable Hausdorff space (X, τ). Thus, S′

M = SM

since SM is a minimal generative sub-base for the first countable Hausdorff space (X, τ).

Proposition 3.16. Let X be a first countable Hausdorff space and SM be a family of open sets of X. Then SM is a minimal
generative sub-base for the topology of X if and only if:

i SM is a sub-base for the first countable Hausdorff space X;

ii If a subfamily {Si | i ∈ I}of SM satisfies
⋂

i∈I Si ∈ SM ,then there exists i ∈ I such that
⋂

i∈I Si = Si0

Proof. Let SM be a minimal generative sub-base for the first countable Hausdorff space. Suppose we assume a subfamily
SM1 = {Si | i ∈ I} of SM satisfies

⋂
i∈I Si ∈ SM , but

⋂
i∈I Si /∈ SM1 i.e ∩i∈ISi ∈ SM\SM1 . Then there exists a subset

S′ ∈ SM\SM1 such that ∩i∈ISi = S′. Then for each point x ∈ S′,

NSM = ∩
{
S ∈ SM

∣∣x ∈ S

}
=
(
∩
{
S ∈ SM\S′

∣∣∣x ∈ S
})

∩ S′

=(∩{S ∈ SM\S′
∣∣∣x ∈ S}) ∩ (∩i∈ISi)

= ∩
{
S ∈ SM\S′∣∣x ∈ S}

=NSM\{S′}(x)
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Thus for each point x ∈ X, NSM (x) = NSM\{S′}(x). We can also say that, SM\{S′} is a sub-base for the first countable
Hausdorff space (X, τ ′). According to proposition 3.13, SM\S′ is a sub-base for the first countable Hausdorff space (X, t)

which is a contradiction.

We now prove that a generative sub-base SM is minimal. Let S′
M of SM be a subfamily of a sub-base for the first countable

Hausdorff space (X, τ), but S′
M ̸= SM . Then there exists an open set S′ ∈ SM such that S′ /∈ S′

M . For any subfamily

{Si

∣∣∣∣i ∈ I} of SM\S′, ∩i ∈ ISi ̸= S′. Thus, there exist a point x ∈ S′ such that NS′
M
(x) ̸= NSM (x). This is a contradiction

and thus S′
M = SM . By the definition of minimal generative sub-base, SM is a minimal generative sub-base for the first

countable Hausdorff space (X, τ).

Proposition 3.17. Suppose SM is a sub-base for a Topological Space (X, τ) and Y a Topological Space, for two points
x1, x2 ∈ X, lets define x1Rx2 = NSM (x2. A mapping ρ : X → X/R is a natural quotient mapping. Now suppose a
mapping g : X/R→ Y is a bijection. If a mapping f : X → Y satisfies f = g ◦ p, then the following holds:

.i For each subsets S ∈ SM , x1 ∈ S implies x2 ∈ S for any points x1, x2 ∈ X satisfying f(x1) = f(x2

ii. For any subset S1, S2 ∈ SM , f(S1 ∩ S2) = f(S1) ∩ f(S2);

iii. f(NSM (x)) = ∩{f(S) : x ∈ S ∈ SM} for each point x ∈ X;

iv. For each subset S ∈ SM , f
−1(f(S)) = S;

v. f−1(f(NSM (x)) = NSM (x) for each point x ∈ X.

Proof. (i) We first prove that f(x1) = f(x2 means that NSM (x1) = NSM (x2) for any points x1, x2 ∈ X because
f = g ◦ p and f(x1) = f(x2) implying that g(p(x1)) = g ◦ p(x1) = g ◦ p(x2).
Therefore p(x1) = p(x2) means that g(p(x1)) = g ◦ p(x1) = g(p(x2)). Finally, for each subset S ∈ SM , x1 ∈ S

implies x1 ∈ SM (x1 ⊂ S. NSM (x1) = NSM (x2) since f(x1) = f(x2). This implies that NSM (x1) ⊂ S. That is
x2 ∈ S.

(ii) We prove that f(S1)∩f(S2) = Φ if S1∩S2 = Φ. Assume by contradiction that f(S1)∩f(S2) ̸= Φ. There then exists a
point y ∈ Y such that f(S1)∩ f(S2) that is y ∈ f(S1) and y ∈ f(S2). Let there exists two points x1 ∈ S1 and x2 ∈ S2

such that f(x1) = f(x2) = y. By (i), x2 ∈ S1. Then x2 ∈ S1 ∩ S2. Which is a contradiction. Thus, f(S1) ∩ f(S2 = Φ.

Next, we show that if S1 ∩ S2 ̸= Φ, then f(S1 ∩ S2) = f(S1) ∩ f(S2. It’s obvious that, f(S1 ∩ S2) ⊂ f(S1) ∩ f(S2).
For each point y ∈ f(S1) ∩ f(S2), there exists two points x1 ∈ S1 and x2 ∈ S2 such that f(x1)=f(x2)=y. By (3.17),
x2 ∈ S1. Then x2 ∈ S1 ∩ S2, which means y = f(x2) ∈ f(S1 ∩ S2). So f(S1) ∩ f(S2) ⊂ f(S1 ∩ S2). That is
f(S1 ∩ S2)=f(S1) ∩ f(S2)

(iii) For (iii) the proof is similar to (ii) .

(iv) It is clear that S ⊂ f−1(f(S)) is always true. For each point x ∈ f−1(f(S) ⊂ S. That is f−1(f(S)) = S.

(v) The proof for (v) is similar to (iv).

Lemma 3.3. Let X be a Topological Space and R an equivalence relation. If the mapping p : X → X/R is assumed to be
a natural quotient mapping, then a mapping g of a quotient space X/R to a Topological Space Y is continuous if and only
if the composition g ◦ p is continuous.
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Proposition 3.18. Let SM be a sub-base for first countable Hausdorff space (X, τx) and Y a Topological space. For two
points x1, x2 ∈ X, define x1Rx2 if NSM (x1) = NSM (x2). Let a mapping be defined as p : X → X/R a natural quotient
mapping. Let a mapping g : X/R → Y be a continuous bijection. If a mapping f : X → Y is an open mapping satisfying
f = g ◦p and SM is a minimal generative sub-base for the first countable Hausdorff space (X, τx), then f(SM ) is a minimal
generative sub-base for first countable Hausdorff space (Y, τy).

Proof. Since g is a continuous bijection, then by lemma 3.3, f is an open and continuous surjection and (Y, τy) is countable
space. It is clear that, f(SM ) is a covering of Y.
By Proposition 3.17 (iii), f(NSM (x)) = ∩{f(S)|x ∈ S ∈ SM} = ∩f(S) ∈ f(SM ) = N(SM )(f(x)) for each point x ∈ X.

Because SM is a minimal sub-base for the first countable Hausdorff space, then, NSM (x) = N(x) for each point x ∈ X

and NSM (x) is open in (X, τx). Then Nf(SM )(f(x)) = f(NSM (x)) is open in (Y, τy) because f is an open mapping. It
is obvious that NfSM (x) is the minimal set containing f(x) for each point x ∈ X. Thus NfSM (f(x)) is the minimal open
neighborhood of f(x). Also, Nf(SM

(f(x)) = f(NSM (x) = f(N(x)) = N(f(x)) for each point x ∈ X. Thus, f(SM ) is a
sub-base for the described topological space (Y, τy).

For any covering f(S′
M ) ⊂ f(f), suppose each point space Y generated by f(S′

M ) has the minimal open neighbourhood
and Nf(S′

M
(y) = N(y) for each y ∈ Y. Then S′

M is a sub-base for the first countable Hausdorff space (X, τx). If otherwise,
there exist points x, x′ ∈ X such that the minimal open neighborhood of x doesn’t exist or NSM (x′) ̸= SM (x′). It is easy to
see that there exist two points y, y′ ∈ Y such that y = f(x) and y′ = f(x′). From these proof, we are able to obtain that the
minimal open neighborhood of y does not exist or Nf(SM )(y′) ̸= N(y′). This is a contradiction. So FMS

′ is a sub-base for
the first countable Hausdorff space (X, τx). Because SM is a minimal generative sub-base for the first countable Hausdorff
space (X, τx), by definition 3.5, FMS

′ = SM . Thus, f(FMS
′) = f(SM ). By proposition 3.13 , a minimal generative

sub-base for the first countable space is (Y, τy).

4 Conclusion

This paper characterized the properties of topological spaces using the properties of bases and various maps with
restriction to Hausdorff topology.
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