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Abstract. River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural 

runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water 

pollution. Artificial neural network (ANN) has gained popularity in water quality forecasting. This study aimed at 

assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and 

electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 

monthly values for the input variables and output variable from 2009–2013 which were split into training and testing 

datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE 

values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of 

dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The 

dissolved oxygen values follow seasonal trend with low values during dry periods.   

Keywords: artificial intelligence technique, feed-forward propagation, pollution monitoring, water quality. 

 
Introduction  

River Nzoia is the largest river in the Kenyan portion of 

Lake Victoria basin. The river receives both point and 

non-point sources of pollution from agricultural runoff 

and other diffuse sources, agro-based industries and 

municipal wastes. The major industries include Nzoia and 

Mumias sugar factories and Pan African paper mills. 

These industries contribute to the deterioration of water 

quality in River Nzoia (Abira, 2008; Kanda et al., 2015).  

Dissolved oxygen (DO) is one of the most important 

parameters in surface waters as it indicates the level of 

pollution. River Nzoia had low DO levels due to effluent 

discharges from Mumias and Pan African paper mills 

especially during low flows when dilution effect was 

minimal (Kanda et al., 2015). The concentration of 

dissolved oxygen reflects the equilibrium, or its lack of, 

between oxygen producing processes and oxygen 

consuming processes and depends on many factors such 

as temperature, salinity, oxygen depletion, sources of 

oxygen and other water quality parameters (Ahmed, 

2014).  

Various models have been used in the simulation 

and prediction of dissolved oxygen in surface waters. 

Despite its relevance in decision making, few studies 

have been conducted on the use of models to predict 

water quality in River Nzoia. Most modelling studies in 

Nzoia catchment have concentrated on flood prediction 

such as Nyadawa et al. (2010) using Geospatial Stream 

Flow Model (Geo-SFM) and Ngaina et al. (2014), using 

Probability Distributed Moisture (PDM) model. 

The limited water quality modelling studies in 

Nzoia catchment could be attributed to unavailability or 

limited data which are required for detailed water quality 

modelling studies (Kanda, 2014). A study by Kanda et al. 

(2015), found MIKE 11 model to be satisfactory in 

simulating DO and biochemical oxygen demand of River 

Nzoia. However, most water quality models have more 

calibration parameters which make their use difficult in 

situations like Kenya where water quality data is 

unavailable or limited for most of the rivers as according 

to Najah et al. (2011), limited water quality data and the 

high cost of water quality monitoring often pose serious 

problems for process-based modelling approaches. 

Moreover, according to Chau (2006), many water models 

require knowledge on model manipulation through real 

physical observations, mathematical description of water 

movement or water quality, discretization of governing 

equations, solution schemes for the equations and output 

analysis which many modellers do not possess thereby 

possibly producing inferior design and cause under-

utilization, or even total failure, of these models. 

Artificial intelligence is a technique with a flexible 

mathematical structure that is capable of identifying 

complex non-linear relationships between input and 

output data when compared with other classical 

modelling techniques (Najah et al., 2011). Chau (2006), 

reviewed the integration of artificial intelligence 

technologies (knowledge–based system, genetic 

algorithm, artificial neural network, and fuzzy inference 

system) into water quality modelling. In recent years, 

Artificial neural networks (ANN) have found a number of 

applications in the area of water quality modelling (Khalil 

et al., 2012) mostly in the fields of water quality 

prediction (Kisi, Murat, 2011). According to Chau 

(2006), the greatest advantage of ANN’s over other 

modelling techniques is their capability to model 

complex, non-linear processes without having to assume 

the form of the relationship between input and output 
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variables. ANN can be used to predict water quality 

variables in areas where there are missing values and thus 

help in pollution monitoring (Diamantopoulou et al., 

2005). Pollution monitoring in developing countries is 

hindered by unavailability of funds and thus there is need 

for the development of simple models which use few and 

easily available inputs.  

This study aimed at predicting DO using easily 

available data which included pH, turbidity, temperature 

and electrical conductivity (EC) with the help of ANN. 

The choice of these input variables was based on their 

availability and thus could be relevant in pollution 

monitoring and control, and also based on the 

relationship among the inputs and DO. Turbidity is an 

indicator of stream pollution and also has an influence on 

DO possibly due to increased light absorbency which 

lead to increased temperature levels (Emamgholizadeh et 

al., 2014). Csábrági et al. (2015) found pH as an effective 

parameter in the prediction of DO in the Hungarian 

section of River Danube while temperature had the 

highest impact in the Serbian section (Antanasijević et 

al., 2014). EC is an indicator of the dissolved solids in the 

stream which can be in the form of nitrates, ammonium, 

among others which are indicators of water pollution 

(Prathumratana et al., 2008). The land use of Nzoia 

catchment is mainly agricultural with intensive 

application of fertilizers for sugarcane production 

(Omwoma et al., 2012) and thus these nutrients can leach 

to the stream as nitrates or phosphorus which can be 

sources of dissolved ions as detected by EC. Kisi and 

Murat (2011), found that a combination of discharge, 

temperature, pH and EC gave good predictions of DO. 

These studies, therefore, suggest that the input parameters 

of temperature, pH, turbidity and EC could be used in the 

prediction of water quality parameters in rivers threatened 

with pollution.  

Meterials and Methods  

Study Area and Datasets 

River Nzoia is in the western region of Kenya in the Lake 

Victoria basin. It has a catchment area of approximately 

12,900 km
2
 and a length of 334 km up to its outfall at 

Lake Victoria. It lies within the south-eastern part of Mt 

Elgon and the western slopes of the Cherangani Hills. 

The study area is the middle section of River Nzoia 

between Webuye and Mumias towns (a distance of about 

55 km). It lies between latitudes 00º
 
35.157' N and 00º 

22.165' N and longitudes 34º 48.411' E and 34º 28.962' E 

(Fig. 1).The elevation decreases gradually from 1459 m 

at Webuye to about 1297 m above sea level at Mumias 

town with an average slope of about 0.29%. The study 

area has a catchment of 1,942 km
2
.  

 

Fig. 1. Map of study area showing sampling points and land use  
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The predominant type of land use (Fig.1) is rain-fed 

herbaceous crops mainly sugarcane plantations owned by 

the out-growers of the two major sugar industries of 

Mumias and Nzoia Sugar. The irrigated herbaceous crops 

are found around the sugar factories forming the nucleus 

of the sugarcane farms owned by the sugar factories. The 

river section receives effluents from treated municipal 

wastewater from Mumias, Bungoma and Webuye towns. 

It also receives treated industrial wastewater from Pan 

African Paper mills in Webuye, Nzoia Sugar Company in 

Bungoma and Mumias Sugar Company in Mumias town.  

The monthly data which was used in the study were 

from 2009 to 2013 obtained from Water Resources 

Management Authority (WRMA) regional office in 

Kakamega. This consisted of 113 data sets of DO, 

turbidity, temperature, pH and EC. WRMA measures 

DO, pH, EC and temperature in-situ using portable 

meters. The description of the sampling points is 

illustrated in Table 1. The data was split manually into 

training (80%) and testing (20%) by adjusting the default 

70% to 30% since more data is necessary for training. 

This translates to 90 and 23 data sets for training and 

testing respectively.  

Table 1. Description of the sampling points  

Sampling point Chainage, km Description  

Webuye Bridge (S1)  0 Upstream boundary. It is the upstream of effluent discharge point for Pan paper 

mills and Webuye municipal wastewater treatment plant.  

S2 3 Downstream of discharge from Pan paper mills and Webuye municipal wastewater 

treatment plant.  

S3  31 Nzoia Sugar factory discharge their industrial effluents to R. Nzoia via R. Kuywa. 

S4 54 Upstream of Mumias Sugar factory and downstream of R. Khalaba which carries 

pollutants from Bungoma wastewater treatment plant.  

Mumias Bridge (S5) 55 Downstream boundary. Downstream of Mumias Sugar factory.  

 

The statistical parameters for the input and output 

data are shown in Table 2.  

Table 2. Summary of input and output parameters 

 

Temperature, 

°C 

pH Turbidity, 

NTU 

EC, 

µS/cm 

DO, 

mg/l 

Mean 23.34 7.38 229.24 179.27 4.58 

Min 14 5.03 2.66 60.8 2.1 

Max 29.3 9.48 960 1095 7.5 

SD 2.44 0.63 242.32 164.77 1.14 

 

ANN Architecture and Training  

Determination of appropriate network architecture is one 

of the most important, but also one of the most difficult, 

tasks in the model building process (Sarda, Sadgir, 2015). 

Multilayer Perceptron (MLP) which is the most common 

form of feed-forward back-propagation (BP) model 

architecture (Maier et al., 2010) was chosen for this 

study. The basic and the most commonly used ANN 

architecture consists of an input layer, hidden layer and 

an output layer, where each of the layers consists of a 

number of interconnected neurons (Chau, 2006; 
Antanasijević et al., 2014). The number of input layers is 

normally determined by trial and error method but a one- 

hidden layered network is the most common (Palani et 

al., 2008). In the ANN structure, each node in the input 

and hidden layers receives input values, processes it, and 

passes it to the next layer using weights (W) and bias 

value (B) and uses its own transfer function (linear, 

sigmoid or the hyperbolic tangent function) to create an 

output value (Csábrági et al., 2015). In this case the 

MLP-BP architecture allows for information flows from 

the input layer to the output layer via the hidden layer 

(Heydari et al., 2013). The BP involves two steps where 

the effect of the input is passed forward through the 

network to reach the output layer and after the error is 

computed, a second step starts backward through the 

network and errors at the output layer are propagated 

back toward the input layer with the weights being 

modified (Emamgholizadeh et al., 2014). In the forward 

phase the weighted sum of the input components is 

calculated as in Equation 1 (Vicente et al., 2012).  

               
 
   ,  (1) 

 

where: uj is the input components, wij denotes the weight 

between the jth neuron and the ith neuron in the 

preceding layer, xi denotes the output of the ith neuron in 

the preceding layer, and biasj denote the weight between 

the jth neuron and the bias neuron in the preceding layer.  

 

The number of neurons in the input and output layer 

depends on the number of input and output variables 

respectively (Sengorur et al., 2015). The number of input 

neurons varied from 1 to 4 representing the input 

parameters that affect the DO while the output layer has 

one neuron representing DO. The number of neurons in 

the hidden layer was varied until an optimum 

performance is achieved for each input combination(s). 

The number of neurons ranged from 22 to 28. The 

training termination criterion was set based on the 

performance of a low mean square error of 0.001 or 

maximum epochs of 1000. The network structure adopted 

in this study is illustrated in Fig. 2.  
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 Fig. 2. ANN structure adopted for the study 

 

Model Evaluation 

The model performance was assessed using root mean 

square error (RMSE) and R
2
.  
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Where: X is the observed value of DO, Y is the simulated 

value of DO, and n is the total number of observations. 

The lower the RMSE the better the model performance. 

The goodness of fit of the model was assessed using the 

coefficient of determination, R
2
.  
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Results and Discussion  

In order to select the most suitable input or input 

combination of the model, correlation analysis was 

carried out between the input and output and the results 

are as indicated in Table 3.  

 

Table 3. Pearson correlation coefficients 

 

 

Temperature pH Turbidity EC 

Temperature 1 

   pH 0.144 1 

  Turbidity -0.162 -0.204 1 

 
EC 0.274 0.390 -0.283 1 

DO -0.178 -0.079 0.284 -0.220 

 

Turbidity with the highest correlation to DO (Table 

3) was selected as the first input and trained in the 

network until a satisfactory performance was achieved. 

Then the input with second highest correlation (EC) was 

added to the turbidity model and network trained to 

satisfactory performance. A third model was developed 

which included turbidity, EC and temperature and the 

fourth model comprised all the four inputs. The results 

are shown in Table 4.  
 

Table 4. Evaluation statistics  

 

SN Model 

Training Testing Overall 

RMSE R2 RMSE R2 R2 RMSE 

1 Turbidity  0.34 0.85 0.42 0.87 0.81 0.51 

2 Turbidity +EC 0.53 0.87 0.56 0.79 0.83 0.48 

3 Turbidity +EC + Temperature 0.46 0.86 0.68 0.89 0.85 0.46 

4 Turbidity +EC + Temperature + pH 0.38 0.94 0.59 0.90 0.88 0.40 

From the results in Table 4, the RMSE values 

ranged from 0.34 mg/l to 0.68 mg/l and R
2
 ranged from 

0.79 to 0.94 which indicate a satisfactory performance. 

According to the number of times the observations are 

greater than the mean error as discussed by Ritter and 

 uñoz-Carpena (2013), models 1, 2, 3 and 4 can be 

classified as good. The evaluation statistics indicated in 

 Table 4 concurs with those found by Salami and 

Ehteshami (2015) where R
2
 of 0.82, 0.85 and 0.92 for 

chloride, alkalinity and hardness respectively were 

obtained for prediction of dissolved oxygen. However, 

the RMSE values in Table 4 are slightly higher than those 

found by Zhang et al. (2010) since their inputs of              
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temperature, BOD and ammonium had higher 

correlations with DO. The overall best fit plots i.e. using 

all the data are illustrated in Fig. 4 to 7. 

The values of DO follow seasonal rainfall trend. 

Western region of Kenya experiences two rainy seasons 

from April/May–July/August (long rains) and October–

November (short rains). DO is highest during the wet 

seasons and lowest during the dry season which normally 

occur from December/January to March/April (Fig. 3). 

 

 

Fig. 3: Observed and simulated monthly DO concentrations at 

Webuye 

Analysis of variance (ANOVA) between the DO 

values for dry months of December–March and wet 

months (April–August) showed significant variation (p < 

0.05). During the dry months when the stream discharge 

is low, the value of DO is low which indicates that the 

river is susceptible to pollution during this time. During 

the wet periods, dilution mechanism enhance the self-

purification mechanism of the river and thus the DO 

levels are high (Kanda, 2014). A study by Kanda et al. 

(2015) found that the DO decreased downstream from 

Webuye to Mumias which indicated the significant effect 

of the industrial effluent and municipal wastewater 

discharges from the towns situated in the river section 

between Webuye and Mumias. This was particularly 

important during low flows when the stream discharge is 

low. 

From the results indicated in Fig. 4 to 7, it can be 

deduced that the ANN models developed from the readily 

available inputs of temperature, pH, electrical 

conductivity and turbidity can be used in prediction of 

DO in River Nzoia. The model can be reliably applied in 

pollution monitoring and control since the RSME values 

were less than 15% of the mean values of DO and also 

considering that the inputs have very weak relationship 

with the output as illustrated in Table 3. From pollution 

monitoring perspective, the ANN models developed for 

River Nzoia seems to be a good alternative tool in 

forecasting when DO measurements are unavailable.  

 

 
Fig. 4. Regression plot model 1 

 

Fig. 5. Regression plot model 2 

 

Fig. 6. Regression plot model 3 

 

Fig. 7. Regression plot model 4 
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Conclusion  

ANN is a popular forecasting tool in water quality 

studies. This study sought to determine the ability of feed 

forward back propagation artificial neural network in the 

prediction of DO in River Nzoia. This was accomplished 

using readily available input data of temperature, EC, 

turbidity and pH. The results indicated that the model 

combination of all the four inputs and the one which only 

excluded pH had good performance in predicting the DO 

for the river. For a country like Kenya where river water 

quality monitoring is hampered by insufficient funds, 

models such as ANN can be a good alternative to 

traditional process-based modelling which may require 

detailed data. DO is an important parameter in 

determining the pollution status of the river and therefore, 

the model developed in the study can be used to monitor 

the pollution levels in the river due to industrial effluent, 
municipal wastewater and agricultural runoff in Nzoia 

catchment.  
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