• Login
    View Item 
    •   DSpace Home
    • University Journals/ Articles
    • Gold Collection
    • View Item
    •   DSpace Home
    • University Journals/ Articles
    • Gold Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Above-ground carbon stocks and its functional relationship with tree species diversity: the case of Kakamega and North Nandi Forests, Kenya

    Thumbnail
    View/Open
    s41598-023-47871-6.pdf (1.698Mb)
    Date
    2023-11-27
    Author
    Obonyo, Ouko Amose
    Agevi, Humphrey
    Tsingalia, Mugatsia Harrison
    Metadata
    Show full item record
    Abstract
    Estimating aboveground carbon (AGC) dynamics and tree diversity functionality relationships is critical in understanding the role of vegetation in implementing climate change mitigation strategies and promoting sustainable forest management. This study aimed to evaluate AGC stocks and their functional relationship with tree species diversity in Kakamega and North Nandi Forests, Kenya. A nested approach was adopted in sampling aboveground vegetation for biomass estimation in least disturbed, transformed, and disturbed sites. Tree biomass was estimated using an allometric equation based on tree diameter, tree height, and wood density. The biomass was then converted to carbon stocks using the carbon conversion factor. One-way ANOVA was used to determine the variation in carbon and tree diversity between forests and forest types. The correlation between tree diversity and AGC was evaluated. It was established that Kakamega Forest had the highest AGC (157.93 ± 26.91tha−1). The least disturbed areas had the highest AGC (65.96 ± 8.56tha−1). Additionally, Shannon diversity revealed a higher tree species diversity in Kakamega Forest (H′ = 1.82 ± 0.95). There was a significant positive correlation between AGC and tree species diversity (r = 0.62, p < 0.05). Kakamega and North Nandi forests vary in their AGC, and that tree species diversity positively influences the AGC of the two forests.
    URI
    https://doi.org/10.1038/s41598-023-47871-6
    https://www.nature.com/articles/s41598-023-47871-6
    http://ir-library.mmust.ac.ke:8080/xmlui/handle/123456789/2409
    Collections
    • Gold Collection [969]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV