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ABSTRACT 

 Thermodynamic properties of the multiband high critical temperature superconductors have 

been describedpreviously with simple standard BCS expressions corresponding to� and � bands, 

but the microscopic mechanisms that allow superconductivity to persist at high temperatures 

remain unknown. Studies on two band superconductors have previously been described through 

one band model; this approach has not adequately addressed cases of inter-band scattering for 

superconductors at high temperature. Research reverted to canonical two band BCS Hamiltonian 

containing a fermi surface of p- and d- bands, followed byBogoliubov-Valatin 

transformationequations, to obtain transition temperature, energy gap and specific heat forMgB2 

superconductor. A detailed study of phonon-mediated attraction and coulomb repulsion was 

proposed to act differently on energy band states and stabilizing superconductor phase for 

MgB2..The results were comparedto the approach of a sum of two independent bands using 

Bardeen, Cooper and Schrieffer like π- and α- model expressions for the specific heat, entropy 

and free energy to the solution of Bogoliubov-Valatin transformation for strongly correlated 

electrons. The research lead todevelopment of electron-phonon interaction model Hamiltonian 

for superconducting MgB2and its energy, obtaining transition temperature TCfor MgB2 

superconducting and expression for variation of thermodynamic properties of high TC 

superconductors in two-band model system.The researchdemonstrated the physical meaning of 

the sum over the contribution of the two bands, where band parameters tend to agree with the 

previous determinations ofband structure calculations and experiments. Informationwas found on 

the thermodynamic transition by presenting an empirical two bands that fits the experimental 

data over the whole range of temperature to high TC. A perturbed Hamiltonian was developed 

from the Bogoliubov-Valatin transformations equations, where thermodynamic variables were 

derived. Kaleidagraph and Mathcad software were used to calculate values of statistical 

thermodynamics of high TC variables for high temperature superconductors, which included 

specific heat capacity = 0.0192729906 eV/K, calculated TC = 47.667720441K, ground state 

energy = 0.4111340888 eV, total energy = 0.7670001738 eV and entropy  = 3.3245572813 eV/k 

used in data processing and analysis. 
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exhibits zero DC electric resistance to current flow below certain transition temperature Tc. 

Specific Heat; 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Superconductivity is the property of some materials (metal, metallic alloys and ceramic oxides, 

etc.) characterized by an abrupt and complete disappearance of resistance to direct electrical 

current when the materials are cooledbelow a certain temperature known as the critical or 

transition temperature TC,of the material. Superconductivity is zero direct current electrical 

resistance and materials exhibiting this phenomenon are called superconductors. Since its 

discovery by(Onnes, 1911)superconductivity has found many applications in technology which 

are found in nuclear magnetic resonance, tomography, magnetic sensors (magnetometer), digital 

signal and data processing (geological survey), superconducting magnetic levitated train, 

superconducting magnet used to detonate mines, superconducting cables, superconducting 

magnetic energy storage(SMES) etc. 

 

However,these applications of superconductivity have been constrained by the need to maintain 

their low temperature with refrigerant liquid helium. Consequently, physicist and material 

scientist have been working relentlessly to improve the temperature nature of this phenomenon 

and obtain superconductivity at high temperatures. (Mathias, Geballe, & Corenzwit, 

1950)Pioneered the search for the high TC superconductors in transition metal alloys and 

compounds. This lead to independent discovery of superconductivity in thin films of the A12 

compound Nb3Ge at 23K. Superconductivity has been discovered in several other classes of 

materials such as the cheveral phases, heavy fermion systems, organic superconductors and more 

recently diborides. The cheveral phases AxMO6X8 are mostly tenary transition metals 
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chalcogenides where X is Sulphur (S) selenium (Se) also A and M can be any element. 

According to (Allan, 2013)The study of heavy fermion system led to discovery of 

CeCu2Si2systems. Heavy Fermion system often exhibit two ordering transitions, a 

superconducting transition at TC and antiferromagnetic ordering transitionat Neel temperature 

In 1986, Bednorz and Muller, reported observation of superconductivity with TC =30K in the 

tenary (La1-xBax)2CuO4 otherwise known us 214 compounds. Before the end of 1986, 

superconductivity at up 57K in La-Ba-Cu-O under pressure and improved stichometry was 

reported. It was found that TC of La-Ba-Cu-O increases with pressure at unprecedented rate. The 

search for new high temperature superconductors has proceeded by following simple trends in 

the periodic table which provide insight into the correct theoretical model for the 

superconductors in the light of this tremendous progressmade in raising transition temperature of 

the copper oxide superconductors, it’s natural to know how high the TC can be increased in other 

classes of materials. The discovery of superconductivity with TC = 39K in Magnesium diboride 

(MgB2) by (Akimitsu, 2001) caused excitement in the solid-state physics because it introduced a 

new simple binary intermetallic superconductor with a record high superconducting TCfor non-

oxide and non C60based compound. 

 

The first classes of high temperature superconductors were discovered in 1986 by Bednorz and 

Mueller. Althoughthey were awarded Nobelprize in physics in 1986, the microscopic 

mechanisms that allow superconductivity to persist at such high temperatures remainedunknown. 

Wideexplanations have been offered but it’s now generally accepted that as in conventional 

superconductors, the superconducting state is caused by the formation of cooper pairs, with 

opposite spin. The cuprates phase diagram have universal features independent of the chosen 
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compound whose parent compound is the Mott insulator. In holedoped superconductors, the 

antiferromagnetic state associated with the Mott insulator according to (Bednorz & Mueller, 

1986), persists over small ranges of relatively high temperature where the superconducting state 

emerges as a dopant concentration increases and the antiferromagnetic state disappears. The 

superconducting state persists over wide range of dopant concentration and the material is said to 

be optimally doped when it achieves its maximum TC below or above that dopant concentration 

andis said to be under or over doped respectively.(Bednorz & Mueller, 1986) showed that critical 

temperature decreases in case of MgB2 due to Al or C doping which was mainly explained as due 

to a simple effect of band filling. Further, the doping independent π-gap in C-doped MgB2 can be 

understood as due to a compensation of band filling and inter-band scattering effects. 

 

MgB2 has large coherence length, high critical current densities and field;therefore, it may be a 

preferable one as the best superconductors in the present scientific world. Superconductivity has 

several technical applications and is under active study around the world hence need for the 

research. (Choi, Roundy, Sun, & Cohen, 2002) and (Bednorz & Mueller, 1986) discovered high 

temperature superconductors that could work under high temperatures. High critical temperature 

superconductors are characterized by 1-2-3 compounds, perovskite crystal structure, which is a 

calcium titanium oxide mineral composed of calcium with directional dependent, oxides of Cu+ 

and other elements. Major development has been made in discoveries of higher temperatures 

superconductors as well as progress in the theory of superconductivity. American physicists John 

Bardeen, Leon Cooper and Schrieffer (BCS) on superconductivity madeadvancements in 1957 

where boson like behavior of electron pairs were investigated, a passing electron attracts the 

lattice, causing a slight ripple in its path, which was known as BCS theory and won them a Nobel 
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Prize in 1972.  Bardeen, Cooper and Schrieffer theory explained superconductivity at 

temperatures close to absolute zero for elements and sample alloys. However, according to 

(Akimitsu, 2001) discovered BCS theory has become inadequate to fully explain how 

superconductivity occurs at higher temperatures and with different superconductor. More 

advancement hasbeen made in improving the area by predicting and engineering new types of 

superconductors, in 1980s carbon-based superconductors were found to have good magnetic 

properties and high critical temperatures with mechanical properties. 

 

According to (Bednorz & Mueller, 1986) and (Keimer, Kiverlson, Norman, & Uchida, 2015), 

discovery of high TC superconductivity at relatively high temperaturehas appealed attention in 

theoretical and applied condensed matter physics. The compounds have been called the first 

superconductor with two energy bands at the Fermi surface in two dimensional bands with Inter-

band scattering between them being negligible. In exploring the mechanism of superconductivity 

in MgB2 compound, it was crucial to determine the symmetry of superconducting order 

parameter which governs the behavior of quassiparticle excitation. According to (Mourachkine, 

2004)When exposed to neutron irradiation, such samples exhibit considerably reduced critical 

temperature, while the two bands persist even at very low critical temperatures.extensively 

studied thermodynamic properties of anisotropic superconductors in the weak coupling regime, 

BCS model was extendedshowing the specific heat jump at critical temperaturewas reduced as 

compared to the isotropic case.  

 

For two-band weakly coupled superconductors, the specific heat was calculated and the main 

prediction was that at TCthe relative jump in the electronic specific heat, (CSC–CN)/CN, where 
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(Cscrefers to superconducting state and CNrefers to normal conducting state) is reduced as 

compared to the universal BCS value of 1.43(Bednorz & Mueller, 1986). On the other hand, for 

an isotropic strongly coupled superconductor the relative specific heat jump is larger than 1.43. 

The combined effect of strong coupling and multiband anisotropy on the specific heat was 

studied earlier by(Legget, 2006) where the results of the first principles calculations of the 

electron-phonon interaction in MgB2 were used. However, the effect of inter-band impurity 

scattering was not considered. The results are applied to MgB2 using the first principles band-

structure results or Pauli exclusion principle that dictates a number of electrons in a band 

structure for the electronic spectra and electron-phonon interaction by extending our preceding 

approach. The superconducting energy band, the free energy, the entropy and the heat capacity 

for varying nonmagnetic inter-band scattering rates will be considered within the framework 

Bogoliubov-Valatin canonical transformation equation (Bogoliuboy & Valatin, 1958). The 

expression for the thermodynamic potential on the extremal trajectory corresponding to solutions 

of the Bogoliubov-Valatin transformation equations will be compared with sum of contributions 

of σ- and π-bands, taking into consideration that the total thermodynamic potential has physical 

meaning. 

 

1.2 Statement of the problem 

Studies on two band superconductors by electron spectrum between effective band systems in 

MgB2exhibited characteristics whose theoretical results werecompared to experimental 

data,(Schriefer, 2013). Experimental results in MgB2 indicated existence of a d-wave and p-wave 

superconducting band gap, such pairing in heavy fermions is not yet established and specific 

superconducting thermodynamic properties are not clearly stated; (Allan, 2013). Properties of the 
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two-band superconductors at high critical temperature have been described by simple sum of the 

standard BCS corresponding to α- and π- bands, but the microscopic mechanisms that allow 

superconductivity to persist at such high temperatures remains unknown. Measurements for 

components of complex superconductivity of MgB2 film, a function of frequency for different 

temperatures was done and results compared with conventional superconductors which 

werefound to be inconsistent with BCS calculations due to additional absorption,(Kaindl, et al., 

2001).Other authors were limited to using electron-phonon interactions between effective bands 

and a recommendation made for more study to be done(Sethna, 2012).The current research 

reverted to canonical two bands BCS Hamiltonian containing a fermi surface of p- and d- bands 

with inter-band coupling followed by Bogoliubov-Valatin transformation equations.  A detailed 

study of phonon-mediated attraction and coulomb repulsion was proposed to act differently on 

energy band states and stabilizing superconductor phase by applying Bogoliubov-Valatin 

transformation equation to get analytical equations, whose results were compared to the plane 

wave BCS pseudo potential method based on electron-phonon interactions in obtaining 

thermodynamic properties of MgB2. 

 

1.3. Objectives of the study 

1.3.1General objective 

To determine thermodynamic properties of high TC superconductors in two band model using 

electron-phonon interactions between effective two bands system. 

1.3.2 Specific Objectives 

(i)    To develop electron-phonon interaction model Hamiltonianfor superconducting MgB2. 

(ii)To obtain transition temperature, TCequation for MgB2 superconducting system. 
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(iii) To obtain expression for variation of thermodynamic properties entropy, transition 

temperature, specific heat capacity Somerfield coefficient and electronic specific heat with 

temperature. 

1.4Significance of the study 

Superconductivity promotes activities that cover the science and technology of superconductors 

and their applications. Area of interest ranges from small scale application, such as ultra-

sensitive radiation detectors, sensors, analog and digital circuit systems. Also, large scale 

applications such as high field magnets and electrical power generating storage and transmission. 

The development and enhancement of the properties of superconductor materials suitable for the 

use of these applications is also of great concern.Magnesium Diboride (MgB2) has been found to 

have its superconductivity at Tc= 39K(Tinkham, 2004). According to Tinkham, intermetallic 

MgB2 has the highest critical temperature at ambient pressure among all superconductors with 

exception of cuprates. It has large coherence length, high critical densities and field therefore, it 

is a preferably one of the best superconductors in the present scientific world. 

 

1.5Scope of the study. 

The study exploredMgB2 theoretically using Bogoliubov-VolatinCanonical transformations for 

both an isotropic one-band model with different superconducting bands at Fermi surface. This 

lead to expressing variation of thermodynamic properties of high TC superconductors in two 

band model using electron-phonon interactions between effective bands in two bands system in 

MgB2. In addition, superconductivity of MgB2 was studied, by mentioning experiments to 

motivate theoretical ideas, support or contradict theoretical predictions and systematic 

discussions. The study used the knowledge of standard material from electrodynamics, 
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thermodynamics and second quantization formalization of creation and annihilation operators in 

construction of electron-phonon interaction model Hamiltonian of the system of MgB2.The study 

then appliedfirst-principles calculations with the Coulomb repulsion to obtain variation of 

thermodynamic properties with temperature in MgB2 and other objectives. 

1.6Assumption and Limitation. 

 Inter-band scattering is expected to modify TCand density of states strongly for MgB2. This will 

help to calculate TC, the gap functions and the superconducting density of states by analyzing 

nonlinear equations for various values of inter-band nonmagnetic scattering rates. These results 

demonstrated the self-energy effects arising due to the sizable electron-phonon interactions in 

MgB2 with characteristic phonon frequencies. 

1.7 Dissemination of the results 

This research will be of great use to theorists and experimentalists, who intend to contribute to 

this rapidly growing area of Condensed Matter Physics. The results of this work will be 

disseminated through seminars, publications in local and international journals and oral 

presentations of this thesis before the board of School of Graduate Studies in Masinde Muliro 

University of Science and Technology. 
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       CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

(Bednorz & Mueller, 1986) studied the mechanisms that allow pairing in the cuprate 

superconductors at high TC and did not get clear consensus. They came up with qualitative 

results for DC SQUIDS measurements, with d-wave pairing states being dominant in the 

cuprates. 

(Bednorz & Mueller, 1986)also discovered and studied the cuprates first class of high 

temperature superconductors and were awarded the Nobel Prize in physics, but the microscopic 

mechanism that allows superconductivity to persist at high temperatures remained undefined. 

The high transition temperature of 40K in two-band superconductivity was the unexpected 

phenomenon in MgB2 which attracted increasing attention. At present, it appears that theMgB2 is 

among superconductors with substantiated theoretical and experimental evidence for two-band 

superconductivity. Two band superconductivitieshave been investigated theoretically after the 

formulation of BCS theory.  

 

Suhl, (Hensen, Mueller, Riek, & Scharnberg, 1997)who suggested a model for transition metals 

considering overlapping s-and and d-bands andproposed an extension of the BCS theory for 

multiple bands that lead to a review of theoretical treatment of the critical temperature TC of 

multiband superconductors being found.MgB2 appeared to be the first system to which multi-

band superconductivity has independently been evidenced by several experimental techniques 

like Raman spectroscopy, heat capacity, tunneling spectroscopy and penetration depth 

measurements with the analysis of the critical field. The theoretical justification for two 
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bandsuperconductivity in MgB2 has been given from the electronic structure calculations that 

found that the Fermi surface contained quasi-cylindrical sheets corresponding to nearly two-

dimensional bands. A three-dimensional network of the Fermi surface isattributed to the bands 

andhas been demonstrated that the optical bond stretching   E2g phonon couple strongly to the 

holes at the top of σ-bands while the three-dimensional π-electrons couple only weakly to the 

phonons. The different coupling of the σ- and π- bands lead to the superconducting gaps different 

in character and size. Using the linear response theory, (Akimitsu, 2001), it is possible to 

calculate the electron-phonon coupling from Bogliubov and Valatin canonical transformations 

equation. The superconducting gaps obtained in this method are in very good agreement with the 

experiments. 

 

There have been several studies to detect the MgB2 gap. The isotope effect of boron has 

suggested that MgB2 is a BCS-type superconductor and the high TCis realized through strong 

electron-phonon coupling with light boron mass. (Poole C P Jr, 2000) and (Akimitsu, 2001) 

Studies have shown two different superconducting gaps, a gap much smaller than the expected 

BCS value and another is comparable to the BCS given by 2Δ=3.53KBTC.as ratio is estimated to 

be Δmin/Δmax≈ 0.3 − 0.4 using several experiments. The two-gap model is seen to consistently 

describe the optical conductivity and thermodynamic properties of MgB2, however, there is no 

general agreement whether MgB2 is an s-wave BCS type superconductor or not. In conventional 

s-wave superconductors, there is no quassi particle   excitation at low energies and the 

thermodynamic and transport coefficients decay exponentially at low temperatures. 

Measurements show that low temperature dependence of penetration depth of MgB2behavior 

disagree with BCS calculations caused by an additional absorption. Also, additional theoretical 
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calculations of (Mathias, Geballe, & Corenzwit, 1950) show that the penetration depth is well 

described by two band models as the measured components of complex conductivity of MgB2 

film whichhas a function of frequency for different temperatures. Their results were compared 

with conventional superconductors and concluded that they were inconsistent with BCS results, 

which was caused by additional absorption. 

 

2.2 Properties of superconductivity. 

 

Superconductors have peculiar properties which are distinguished from normal conducting state 

by electromagnetic, thermodynamic, Isotope effect, tunneling effect among others. 

 

2.2.1 The electromagnetic properties 

According to (Keimer, Kiverlson, Norman, & Uchida, 2015)  showed that similar to the 

electromagnetic properties such as Gibbs free energy, entropy and electronic specific heat of a 

metal, they also change sharply at the transition temperature for superconductivity. 

In a magnetic field, the Gibbs free energy of a system is given by 

���, �, �� = � − �� − �
            �2.10� 

Where U is the internal energy, S is the entropy, M is the magnetization, P is the pressure and T 

is the absolute temperature. When internal energyis fixed then  

!� = �!� − �!
                �2.11� 

In normal metal, Gn is independent of H, then  

!�� = −��!�               �2.12� 

In a superconductor 

 

!�" = −�!� − �−
�!
                      �2.13� 
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 Entropy in the superconducting state is always less than the entropy in the normal 

state.(Tinkham, 2004) observed that the transition to the superconducting state is accompanied 

by a sight jump in the specific heat. The transition from the superconducting state to normal state 

is second order in zero magnetic field at Tc=T. this means that there is no discontinuity at TC in 

either entropy or thermal hysteresis, but there is a sharp discontinuity in the heat capacity. (Poole 

C P Jr, 2000)The specific heat in the normal state varies linearly with temperature T, while 

specific heat in the superconducting state initially shoots above normal state Cn, and drops below 

it before finally Vanishing exponentially as 0T . Theoretically, it is found that the specific 

heat below TC, Cs is given by (Poole C P Jr, 2000) as 

#" ≈ $%& ' −∆)*�+ �2.14� 

where   is the energy gap. This dependence indicates the existence of an energy gap in the 

energy spectrum separating the exited state from the ground state. The presence of an energy gap 

in the spectrum of the quassi-particles has been observed directly in various other ways. The 

presence of the energy gap of order TC explains the absence of thermoelectric effect as 

postulated theoretically. 

2.2.2 Isotope effect 

 

Isotope effect according to (Keimer, Kiverlson, Norman, & Uchida, 2015), it is a property of 

superconductivity that helps in understanding the roles of phonons in superconductivity. At zero 

temperature, the critical field and transition temperature TC vary with the isotopic molar mass of 

the material as 

�� ∝ �-*�2.15� 
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Where M is the ionic mass of the material,  is the isotope effect exponent. The isotope effect is 

given as 

/ = 012�012� �2.16� 

This is for single component system. For multicomponent system, the total isotope effect 

exponent is the sum of the individual atoms with mass M 

4 /��
= 4 012�012��

�2.17� 

It has been found that 5.045.0  for many superconductors. The discovery of isotope effect 

indicates the importance of electron-phonon interaction which provides the basis for the 

microscopic theory. 

2.2.3 Tunneling and Josephson Effect 

 

We considered two metals separated by an insulator that acts as a barrier to flow of conduction 

electrons from one metal to another. If the barrier is sufficiently thin, ie less than 10 Angstroms, 

there is a significant probability that an electron which impinges on the barrier will flow from 

one metal to the other, which is referred to as tunneling effect. 

If both metals are superconductors, according to (Tinkham, 2004) two types of particles may 

tunnel; single quassi-particle and paired superconductor pair. Tunneling of single quassi-particle 

has been used to measure the energy gap in the superconducting state. Tunneling of 

superconducting particles is called Josephson Tunneling, it exhibits unusual quantum effect that 

has been exploited in a variety of quantum devices. The effects of superconductive pair tunneling 

include 
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2.2.3.1DC Josephson effect. 

 

A direct current flows a cross the junction in the absence of an electric or magnetic field. The 

current J, of the superconducting pair according to (Keimer, Kiverlson, Norman, & Uchida, 

2015)depends on the phase difference   given us 

	 = 	�6728 = 	672�9: − 9;��2.18� 

Where Jo is the maximum zero voltage current that can be passed by the junction. With no 

applied voltage, a dc current will flow across the junction with the value of J according to the 

phase difference  12   . 

2.2.3.2 AC Josephson effect 

When the current supplied by an external source exceeds the critical value Ic of a 

superconductor, it causes a voltage V to appear across the junction (Keimer, Kiverlson, Norman, 

& Uchida, 2015). Thus the current of normal electrons In starts flowing through the Josephson 

junction. This leads to resistively shunted model of the Josephson junction (RSJ) which is 

considered as a circuit made up of Josephson junction itself and normal resistance connected in 

parallel. The total current is then the sum of the normal current and the super current. Where R is 

the normal state resistance of the junction. The presence of the voltage V across the weak link 

suggests that cooper pair energies in superconductors on either sides of the junction E1 and E2are 

related by  

�; − �: = 2$=                    �2.19� 

Hence the second fundamental relation of Josephson with frequency is 

? = 2$ℏ ABC: − CD:�2.20� 

This is a fascinating property of Josephson junction. 
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The frequency of the AC voltage depends on the amount by which the current through the 

junction exceeds the critical value. The first experimental observation of the Josephson radiation 

was reported in 2006.(Martins, 2006). 

 

2.2.4 Electromagnetic properties 

Electromagnetic properties of superconductors were first observed experimentally by (Martins, 

2006), showed the disappearance of electrical resistance of some metals i.e. mercury, lead, tin etc 

and alloys in small range of temperature around critical temperature TC, characteristic of the 

material. Critical temperatures for typical superconductors range from 4.15K for mercury to 

3.9K for tin, 7.2K and 9.2K for lead and niobium respectively. This is particularly clear in 

experiments with persistent current in superconducting rings as a result of zero resistance leading 

to infinite conductivity. This current was observed to flow withunmeasurable decay up to 105 

years. Good conductors have resistivity at a temperature of several degrees kelvin of the order of 

106Ωcm. 

(Choi, Roundy, Sun, & Cohen, 2002), In 2002 Meissner and Ochenfield discovered a scenario of 

perfect diamagnetism, where the magnetic field operated only at a depth 500 Angstroms and 

is excluded from the body of the material. Due to vanishing of the electrical resistance, the 

electrical field is zero within the material, therefore as to the Maxwell equation where C1 is the 

current. Hence  

∇F� = −1#;
0�0G �2.21� 

The magnetic field is frozen, but it is expelled. This implies that the superconductivity will be 

destroyed by a critical field HC such that 

HI��D� + 
D:8� = H���D��2.22� 
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Where  cns Tf ,  are the densities for free energy at superconducting phase at zero magnetic field 

and in the normal phase. The behavior of the critical magnetic field with the temperature was 

found empirically to be a parabolic and by Tuyn’s law: 


D��� ≈ �0� K1 − L ��DM:N �2.23� 

According to (Martins, 2006), the critical field at zero temperature is of order of hundred guass 

for type I (soft) superconductor and for hard or type II superconductors, stays up to the value of 

105 gauss. Above Hcl, the magnetic flux penetrates into the bulk of the material in the form of 

Vortices (after Abrikosov Vortices) and the penetration is complete at H=Hc1>Hc2, where Hc2 is 

the upper critical field. Where HC1 and HC2 is the critical field in type I and type II 

superconductors respectively 

 

2.3. MODELS OF SUPERCONDUCTIVITY. 

2.3.1. Phenomenological Model 

In superconductivity,finite fraction of electrons forms a condensate or macro-electrons 

(superfluid) capable of motion. The condensation at zero temperature is complete overall 

volume, but when increasing the temperature part, the condensate evaporates and forms a weakly 

interacting normal fluid liquid where at the critical temperature, all the condensate disappears, 

(Bednorz & Mueller, 1986) 

 

2.3.2. Gorter-Casimir Model 

Was first formulated in 1934 by Gorter and Casmir according to (Kaindl, et al., 2001) and 

consists of a simple anasatz for the free energy of the superconductor. Where x represent the 
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fraction of electrons in the normal fluid and 1-x the ones in the superfluid. Gorter and Casmir 

assumed the following expression for the energy of the electrons 

O�%, �� = √%H���� + �1 − %�H"����2.24� 

With 

H���� = − Q:
2 �:, H"��� = −/ = −1R� �2.25� 

In free energy for the elections in a normal metal is fn and fs will give the condensation energy 

associated with the superfluid. To minimizing the free energy with respect to x, we find the 

fraction of normal electrons at temperature T as 

 

% = 116 Q:
/: �S�2.26� 

At x=1, the critical temperature Tc is 

 

1 = 116 Q:
/: �S 

�S = 16/:
Q:  

T�S = U/:
Q: 

�: = 4/Q �2.27� 

Therefore, the fraction of electron at temperature T is 

 

% = L ��DMS �2.28� 



 

18 

 

The corresponding value of the free energy is 

where the free energy gap= condensation energy

 
The specific heat in the normal phase is 

 

#� = −� 0:H����0�: = Q�                                  �2.29� 

Where as in the superconducting phase, it is 

 

#" = 3Q�D L ��DMV �2.30� 

It shows a jump in specific heat and the ratio of the two specific heats at transition is 3. 

 

2.3.3. London theory 

 Phenomenological description for basic facts of superconductivity is by proposing a scheme 

base on two fluid model concepts with superfluid and normal fluid densities ns and nn that is 

associated with velocities Vs and Vn where the densities satisfy the following expressions as 

according to(Poole C P Jr, 2000) , 

 

2� + 2" = 2                                   �2.31� 

n is the average number per volume and  the current densities. This gives the London equation as 

bellow. 

 

∆F	" = − 2"$:
WX �                                           �2.32� 
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2.3.4. Ginzburgh-Landau theory 

Formulation of theory of superconductivity by introducing a complex wave function as an order 

parameterwas done in 1950, by Ginzburgh and Landau. The wave function is related to the 

superfluid density by 

 

2" = |Z�[�|:�2.33� 

where r defined as the position of the particle. 

(Hensen, Mueller, Riek, & Scharnberg, 1997)They further postulated a difference of free energy 

between the normal and superconducting phase of the form 

 

H"��� − H���� = \ !V �[� ' 12W∗ Z∗�[�|∇ + 7^$∗|:∇�[� + _���|ψ�[�|:  + 12 /��|Z|S�+ �2.34� 

 

where m* and e* are the effective mass and charge that turned out to be 2e and 2m respectively 

in microscopic theory. 

 

|Z|: = − _���/��� �2.35� 

And free energy density becomes 

 

H"��� − H���� = −_:���2/���: = −
D:���8� �2.36� 

Recalling that in London theory as per(Hensen, Mueller, Riek, & Scharnberg, 1997) 
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2" = |Z|: ≈ 1ab:��� �2.37� 

We find that 

 

ab:���ab:��D� = 12 _���/��� �2.38� 

Combining the above equations, we get 

 

2 ∝ ��� = −
�:4� ab:���ab:�0� 

and 

2:/��� = −
�:4� ab:���abS�0� �2.39� 

Solving the equation of motion at zero EM field, we obtain the lowest order in free energy that 

 

14W∗|Z���| ∇:H − H = 0                                   �2.40� 

 

We see that as   CTTforT   

c��� = 1
D���ab��� �2.41� 

The ratio of the two-characteristic length defines the Ginzburgh-Landau parameter 

 

R = a���c��� �2.42� 
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The Ginzburgh-Landau theory was able to explain the intermediate state of superconductors in 

which the superconducting and normal domains coexist in the presence of critical magnetic field. 

H ≈ He�2.43� 

2.3.5. The microscopic model 

The microscopic model of superconductors, formulated in 1957 by Bardeen, Cooper and 

Schrieffer now known as the BCS theory gave a successful of most of the basic features of the 

superconducting state. The theory was initiated on the idea that the carriers of electric current in 

a superconductor are bound in pairs of electrons. This bound pairs are formed when the electron-

electron phonon mediated interaction is attractive and dominates the screened coulomb 

interaction of the electron.(Schriefer, 2013) 

The expression for the superconducting transition temperature, TC is 

)f� = 1.14ℏ?g$%& L− 1h�0�=M �2.44� 

where N(0) is the electron density of states, V is the net attractive potential between the electrons 

and D  is the Debye frequency. 

 

2.4. Magnesium diboride (MgB2) and its properties 

Magnesium diboride is a superconductor bounded material which was first synthesized in 1953 

but its superconducting properties were discovered later. The discovery of superconductivity in 

MgB2 with a TC at 39K sparked great interest with respect to fundamental physics and practical 

application of the material. This recent discovery of high temperature superconductor has many 

similarities with the conventional superconductor with TC 0-30 K which is understoodon the 

basis of the theory proposed in 1957 by Bardeen, Cooper and Schrieffer known as BCS theory of 

superconductivity. Magnesium diboride is an inexpensive and simple superconductor. Its critical 
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temperature of 39K is the highest among convectional superconductors and also higher than 

other cuprates high TC, where pairing driving force other than phonons have been speculated. Its 

formation has a hexagonal crystal structure with space group 6mm with boron atoms 

forminggraphitelike sheets separated with hexagonal layers of Mg atoms. The boron atoms form 

honeycombed layers with the magnesium atoms located above the Centre of hexagonal between 

the boron planes. (Mathias, Geballe, & Corenzwit, 1950)Specific heat together with tunneling 

spectroscopy measurements as well nuclear magnetic resonance shows MgB2 as an s-wave 

superconductor. The phonon density of states of MgB2has been obtained by inelastic neutron 

scattering. Most experiments on MgB2 such as the presence of isotope effect, Tc pressure 

dependence indicate that the superconductivity of MgB2points towards phonon-mediated BCS 

electron pairing. The fermi surface of MgB2 consists of four sheets: two 3D sheets from the 

� bonding and antibonding and two nearly cylindrical sheets from 2D sigma bonding. 

Experiments such as point contact spectroscopy, specific heat measurement, scanning tunneling 

and Raman spectroscopy as per and (Keimer, Kiverlson, Norman, & Uchida, 2015) clearly 

explains the existence of two distinct superconducting gap with small gaps. Both gaps close near 

the bulk transition temperature Tc=39K and two distinct superconducting gaps, MgB2 serves as 

an important test case for density functional theory (DFT) for superconductors. For simple BCS 

metal the critical temperature decreases under pressure due to the reduced electron-phonon 

coupling. For magnesium-diboride the transition temperature also decreases with pressure up to 

the highest pressure studied. Though the Tc decreases with pressure, the superconducting of 

MgB2is up to 40 GPa. Thermal expansion demonstrates the out of plane Mg-B bonds are much 

weaker than in plane Mg-Mg bonds. 
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When the band structure calculations are done, it clearly reveals that, while strong B-B covalent 

bonding is retained, Mg is easily ionized with its two electrons fully donated to B-derived 

conduction band. We may assume that the superconductivity in MgB2 is essentially due to the 

metallic nature of the 2D sheets of boron and the high vibrational frequencies of light boron 

atoms lead to high TC of this compound.(Martins, 2006)The coherence length at zero 

temperature, ξ(0), of the diboride superconductor in the high TC material is small comparable 

with interatomic distance with an average value of about 0.49 Angstrom. It was concluded that 

MgB2 is an extreme type II superconductor with Ginzburgh- Landau parameter K=23. The 

observed isotope effect is reduced substantially from BCS value of 0.5. In MgB2 TC is sensitive 

toBoron isotopic substitution while Mg isotope does not make significant change in TC. 

According to (Hinks et al1956) Tc is higher by 1K for Mg10B2 compared to Mg11B2. The Boron 

isotope coefficient  B  is significant and Mg isotope coefficient of  Mg  is very small but still 

non-zero. Altogether total isotope coefficient is 0.32 for MgB2 with high Debye temperature of 

750K.Optical measurements and specific heat measurement for MgB2 estimated 6.2
2 0 


CBTK

which deviates from the BCS value of 3.53. 

 

MgB2 material is a solid metallic superconductor and made of very light and cheap materials. Its 

metal has no high contact resistance between the grain boundaries thereby eliminating the weak 

link problem that avoided the widespread commercialization of temperature cuprate 

superconductors. For the case of the cuprates, MgB2 is considered to be having lower anisotropy, 

larger coherence length, transparency of the grain boundaries to current flow makes it good 

candidate for application according to (Keimer, Kiverlson, Norman, & Uchida, 2015). MgB2 has 

higher prospects of operating temperature with higher device speed than the present electronics 
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based on Nb. Moreover, higher critical current densities can be achieved in magnetic field by 

oxygen alloying and irradiation shows increase in current density values. The discovery of MgB2 

superconductivity has spurred the search for other related MgB2 superconductors. 

 

Figure 1.2 Structure containing B layers separated by hexagonal packed layers of Mg for MgB 
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Table 2.1: List of Superconducting parameters of MgB2. Data review by(Keimer, Kiverlson, 

Norman, & Uchida, 2015) 

 

 

 

2.5. Existence Of Two-Band Energy Gaps In MgB2 

 

A number of experiments contain data with theoretical arguments thatfavor two gap model 

superconductivity in MgB2. Research  on the anisotropic superconducting MgB2 with a 

combination of scanning tunneling microscopy together with spectroscopy reveal two distinct 
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energy gaps of 2.3 meV and 7.1 meV according to (Kaindl, et al., 2001). The recent experiments 

include tunneling spectroscopy, High Resolution Photoemission Spectroscopy (HRPS), Far-Infra 

red transmission (FIRT) with specific heat treatment points towards the existence of two distinct 

gaps. Several theoretical researcheshave used the two-band model to investigate the 

superconductivity in high TC superconductors. Fifty years ago Mathias and Walker worked 

together and predicted the existence of multi gap superconductivity, with a disparity of the 

pairing interactions in different bands such as p and d bands in transition metals, lead to different 

order parameters with enhancement of the critical temperature. Thescenario was also predicted 

theoretically by (Akimitsu, 2001)in explaining the magnitude of Tc and to establish the 

importance of Fermi surface dependent on superconductivity in MgB2.Also employed two band 

models to study isotope effect of high Tc superconductors. 

 

(Bednorz & Mueller, 1986) worked on two band model with superconducting oxide to study 

isotope effect. He employed use of multi- band superconductors in the case of large disparity of 

the electron-phonon interaction for different surface sheets. In other cases, such approach has 

been applied to study the cuprate high Tc superconductivity. First principal approaches showed 

the  Fermi surface of MgB2 consisting of 2D cylindrical sheets that arise from sigma antibonding 

states of Boron Pxy orbitals and 3D tabula networks arising from pi bands and anti-bonding states 

of Pz orbitals. In this theoretical framework, two different energy gaps exists, the small one being 

an induced gap with 3D bands and the large one associated with the superconducting 2D bands. 
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2.6. Theory Of Superconductivity In MgB2 

 

Courtesy:  Berkeley Lab News, August 2002  

Magnesium diboride (MgB2) superconducts at 39K, which is the highest known transition 

temperatures (TC) of any non cuprate superconductor with two superconducting energy 

gap(Choi, Roundy, Sun, & Cohen, 2002). Theorists at Lawrence Berkeley National Laboratory 

and the University of California at Berkeley, calculated the properties of this superconductor 

from first principles and revealed the secrets of its anomalous behavior.In the August 15, 2002 

issue of Nature, reported MgB2's odd features arise from two separate populations of electrons -- 

nicknamed "red" and "blue" -- that form different kinds of bonds among the material's atoms. As 

well as explaining conflicting observations, their calculations led to predictions subsequently 

borne out by experiment. Further, they suggest the possibility of creating radically new materials 

with analogous electronic structure.Bottles of powdered MgB2 have been sitting on the chemical 

laboratory shelf since the 1950s, but not until January of 2001 did Japanese researchers announce 

their discovery that it was a relatively high-temperature superconductor. Like high-Tc 

superconductors made of cuprate ceramics, MgB2 is a layered material; while undoped cuprates 

are insulators at ordinary temperatures, however, MgB2 is always a metal. 

"Structurally, magnesium diboride is almost as simple as pencil lead, graphite," says Louie. "It 

consists of hexagonal honey-combed planes of boron atoms separated by planes of magnesium 

atoms, with the magnesium centered above and below the boron hexagons." 

The simple atomic structure would prove the key to understanding MgB2. But in the hundreds of 

papers produced in the first rush to examine the new superconductor, experimenters using 
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different techniques found many different, unusual, and sometimes conflicting properties."It was 

like the blind men looking at the elephant," Cohen remarks. "Everybody who looked at MgB2 

saw a different picture. Some said the superconducting energy gap was this; others said it was 

that; still others found anomalies in measurements of specific heat."It quickly became apparent 

that theories developed to explain superconductivity in the layered, high-Tc cuprates would not 

be helpful in understanding MgB2. Instead, Louie and Cohen and their colleagues used the well-

established Bardeen-Cooper-Schrieffer (BCS) theory to examine the fundamental properties of 

MgB2, an effort made possible by a technique Choi developed to solve the BCS equations for 

materials with complex electronic structure(Tinkham, 2004) 

In BCS theory, it is revealed that the electrons overcome their mutual repulsion in forming pairs 

that move through the material. The vital to the pair formation are the quantized vibrations of the 

crystal lattice, called phonons. If you think of a lattice of positive ions, we picture them 'pulling' 

the electrons together into pairs, as vibration moves them toward passing electrons," says Cohen. 

What was puzzling was that, in BCS theory, the coupling to the lattice required to form an 

electron pair should be equivalent to the coupling of a single electron emitting and reabsorbing a 

phonon, giving rise to an enhanced electron mass. But in MgB2 these two values were apparently 

different -- a clue that more than one kind of electron might be involved in pairing. So the 

theorists began with basic considerations of MgB2's elemental constituents and layered structure. 

"To understand the importance of crystal structure to MgB2's electronic states, compare it to 

graphite," Louie suggests, (Choi, Roundy, Sun, & Cohen, 2002). The hexagonal planes for 

graphite, where each carbon atom has four valence electrons bonded to three others and 

occupying all available planar bonding states, the sigma bonds; the remaining electron moves 
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into orbitals above and below the plane, forming pi bonds.MgB2has strong sigma bonds in the 

planes but weak pi bonds between them, but boron atoms have fewer electrons than carbon 

atoms, hence not all the sigma bonds in the boron planes are occupied. Because not all the sigma 

bonds are filled, lattice vibration in the boron planes has stronger effect, which results in the 

formation of strong electron pairs confined to the planes.The Partially occupied sigma bonds 

driving superconductivity in a layered structure is the new concepts that appeared from the 

theoretical research," says Louie. "Our other major finding was that not all the boron electrons 

were needed in strong pair formation to achieve high Tc. 

According to (Allan, 2013)Stated differently, electrons on different parts of the Fermi surface 

form pairs with different binding energies. The theorists' graph of MgB2's extraordinary Fermi 

surface a way of visualizing the highest-energy states its electrons can occupy clearly shows the 

two populations of electrons and the different energies needed to break their superconducting 

pairs  a graph that incidentally gives rise to the nicknames "red" and "blue" electrons.Four 

distinctive kinds of sheets make up the Fermi surface. Two form nested cylinders: these map 

differently oriented sigma bonds and are colored orange and red to indicate the large amount of 

energy needed to break these superconducting pairs -- a large superconducting "gap," ranging 

from 6.4 to 7.2 thousandths of an electron volt (meV) at 4 degrees Kelvin.Two other sheets of 

the Fermi surface form "webbed tunnels" and represent the pi-bonded electrons; they are colored 

green and blue to indicate the low energy (1.2meV to 3.7 meV) required to break 

superconducting pairs of these electrons at 4 degrees K, constituting a separate superconducting 

gap. 
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As per (Kaindl, et al., 2001)This two pair of electrons are coupled and with temperature increase, 

the superconducting gaps for "red" and "blue" pairs rapidly converge, until at about 39K both 

vanish, with this temperature, the pairs are broken hence material loses superconductivity.The 

theoretical calculations for superconducting gaps and their temperature dependence for the 

electrons made it possible for interpretation of the experimental measurements, including those 

from electron photoemission, neutron analyses scanning tunneling microscopy, optical studies, 

heat capacity and infrared studies.Cohen(Choi, Roundy, Sun, & Cohen, 2002) performed their 

first-principles calculations on supercomputers at the Department of Energy's National Energy 

Research Scientific Computing Center (NERSC) based at Berkeley Lab and first shared them 

with the condensed-matter community last fall. 

Yet BCS theory contemplated the possibility of materials with multiple superconducting energy 

gaps early on, and the discovery of MgB2 raises the possibility that others could be made. Louie 

and Cohen have long studied the electronic properties of unusual materials incorporating boron, 

carbon, and nitrogen. MgB2 offers a new model for layered materials capable of high-

temperature superconductivity. 

2.7 Coherence length and London penetration depth in superconductivity 

From various theoretical and experimental researches of superconductivity, (Choi, Roundy, Sun, 

& Cohen, 2002)they found two characteristic lengths, the London penetration depth and the 

coherence length. The London penetration depth means the exponentially decaying magnetic 

field on the superconducting surface. It is also related to the density of superconducting electrons 

in a given material. The exclusion of magnetic fields from the interior of the superconductor is 

called the Meissner effect. An independent characteristic length is called the coherence length 
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which is related to the Fermi velocity for the given material and the energy band associated with 

the condensation to the superconducting state. It has to do with the fact that the superconducting 

electron density cannot change quickly; there is a minimum length over which a given change 

can be made, lest it destroy the superconducting state. For example, a transition from the 

superconducting state to a normal state will have a transition layer of finite thickness which is 

related to the coherence length. Experimental studies of various superconductors have led to the 

following calculated values for these two types of characteristic lengths. 

 

Table 2.2. Distribution for ratio of Coherence length to London depth of different materials. 

(Kaindl, et al., 2001) 

Material 

Coherence length 

(nm)  

London penetration depth 

(nm) 

Ratio 

 

Sn 231 35 0.151 

Al 1610 16 0.002 

Pb 84 37 0.44 

Cd 761 109 0.14 

Nb 38 40 1.05 

The maximum distance up to which the states of pair electrons are correlated to produce 

superconductivity is called coherence length (Tinkham, 2004). Superconductivity is due to the 

mutual interaction and correlation of the behavior of electrons which extends over a considerable 

distance.  The paired electrons can be many thousands of atomic spacing of 10-6m apart, pointing 

to the long-range nature of the correlation. The properties of a superconductor depend on the 
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correlation of electrons within a volume called a coherence volume.  It is because the large 

number of electrons in such a volume act together in superconductivity that the transition is 

extremely sharp; otherwise statistical fluctuation would cause broadening. Since the electron 

states responsible for superconductivity lie within KBTC of the Fermi surface, by uncertainty 

principle, their lifetime s  is h sc and hence if 
F  is the electron velocity at the Fermi-

surface, the wave function must extend over a distance  

ij = ℏkl)f�D = ℏkl2∆ �2.45� 

where∆ is the energy gap, 

A more refined form of this equation is 

ij = 2ℏkl�∆ �2.46� 

According to (Schriefer, 2013) , at absolute zero, the ratio of  o  and London’s penetration 

length for metals varies from 1 to 100.In a normal metal, the free electron wave function can be 

described as a traveling wave. 

Every time a normal electron is scattered, its wave vector k will change, and hence, as the 

electron travels through the metal, its wave function will undergo many random changes of 

phase.  Knowledge of the phase of the wave function at one point does not help to predict the 

phase at any other point. A superconducting pair can also be considered to have a wave function 

which contains a similar phase term, except that now k is the effective combined wave vector of 

the two electrons. However, because the pair cannot be scattered, the phase difference between 

r1 and r2 will be K.(r2- r1), where r1 and r2 and momentum positions, called the phase coherence. 

Consider a body with a hole such as a ring, placed in a magnetic field. Reducing the temperature 

below Tc will lead to magnetic flux being trapped in the hole even when the field is withdrawn. 
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This is because the magnetic field lines cannot pass through the surrounding superconducting 

material hence remaining where they are. London predicted the trapped flux must be quantized 

i.e, the flux must be an integral multiple of a fundamental quantum of flux. According to (Allan, 

2013) he showed that this quantization of flux is a consequence of the phase relationships of the 

wave function of the electrons in the presence of the magnetic field; his argument relied on an 

analysis of the effect of the magnetic vector potential on the wave function. Consider a 

superconducting ring of inner radius R which has some magnetic flux  , trapped inside it. This 

flux is obviously produced by persistent current which are circulating on the inner surface of the 

ring. There must be phase coherence at any point on the inner circumference no matter how 

many times the pairs circulate, and at any point, the phase must remain constant. Hence the line 

integral of the phase around the inner circumference must be an integer   2n  . 

 

2.8Order Parameter 

According to (Sethna, 2012), refers to the wave function of the superconducting states and most 

important parameter in superconducting state. Superconducting state is a quantum state occurring 

on microscopic state. This is the reason why, the superconducting state is characterized by a 

single wave function ψr,any wave function has an amplitude and phase represented according to 

(Keisuke & Daisuke, 2012) 

Ψn = |Ψn|$%& 79�[��2.47� 

whereѲ�[� is the phase. 

Order parameter has the following properties. 

-It has a complex scale which is continuous in real space. 
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-Its single valued function at any point,Z�n�∗ Z�n�can only have one value where  Z�n�∗ is the 

complex conjugate of  Z�n� 
-In the absence of magnetic field ψ ≠0at T <TC  andZ = 0 at T > TC 

−Z = 0 outside a superconductor. 

-The order parameter is usually normalized such that Z�n�∗ Z�n� gives the number density of 

cooper pairs at point r. 

2.9 Density of state and single particle tunneling. 

Detailed experimental information on the excitation spectrum in a superconductor can be 

obtained from single particle tunneling between a superconductor and either normal metal or the 

superconductor as according to (Mourachkine, 2004). He assumed that density of states D(E) in 

the normal state is approximately constant close to the fermi energy. He restricted himself to 

single-electron tunneling, pair tunneling which lead to the Jesephson effect. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This chapter gives an account for the theoretical methods used to obtain thermodynamic relations 

of superconducting MgB2. The data generation and analysis are also highlighted and assumptions 

and approximations are stated. 

 

3.2 DERIVATIONS OF THERMODYNAMIC RELATIONS 

 

Statistical mechanics formalism was used to determine thermodynamic properties of high 

TCsuperconductors in the regime for the case of MgB2. In the case of weak anisotropy, we 

extended the BCS model and showed the specific heat jump at TC as compared to isotropic case 

as according to(Hensen, Mueller, Riek, & Scharnberg, 1997). The electron-phonon interactions 

between effective bands was measured with specific heat, leading to expression for variation of 

density of state and temperature, variation of order parameter and transition temperature,  could 

be calculated. 

This physics research was theoretical and expressions for quantities that lead to derived 

quantities were developed. Simplification of equation and generation of data calculations 

analyzed using Mathcad software for graphical tabulations and discussion. 

 

The following approacheswere adopted in achieving the objectives. Methodologywas formulated 

with generalized description of the thermodynamics of two bandssuperconductivity by taking 

into account impurity scattering for magnetic and nonmagnetic properties.  The research took the 

model of two-band approach by combining the Hp,Hd, and Hpd whose results were applied to 
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MgB2using thefirst principles band-structure for the electron phonon interactions using quantum 

field theory to study effective attractive interactions between electrons. 

The definition of operators was done by incorporating a set of creation and annihilation 

operators, with each operator referring to a particular state in representing electrons and cooper 

pair in the d-band and p-band layers. Operating order values, average order values and quassi-

particles associated with p- and d- bands respectively were developed. 

3.3 APPROXIMATIONS AND ASSUMPTIONS 

 

Using the electron pairing model, a model Hamiltonian for two band model was developed by 

assuming non-interacting normal electrons and non-interacting cooper pairs. The Hamiltonian 

was subjected toMeanfield approximation which studies the behavior of high dimensional 

random models, through approximating and averaging over degrees of freedom. This resulted to 

formation of averaged Hamiltonian that is superfluid and quadratic for two band MgB2 

superconductor. The averaged Hamiltonian was subjected to Bogoliubov-Valatin Transformation 

equations, which is original canonical linear transformation to get a quassiparticle Hamiltonian. 

Bogoliubov-Valatin transformations, transforms old operators to new operators from 

1stquantisation to 2ndquantisation that obey the commutation rules and diagonalize it to new 

Hamiltonian. 

 

Interaction energy was developed using the normalized wave function by performing bra-ket 

vacuum state operation, followed by factorization then normalization. The average energy was 

multiplied by the thermal activation factor to get the total energy of system of MgB2. The thermal 

activation factor does not change energy value but only relates it with temperature. From the 
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energy expression, an expression for specific heat capacity, Somerfield coefficient, entropy, 

transition temperature and density of state with relation to temperature were developed. 

 

The superconductivity thermal and magnetic properties for varying nonmagnetic inter-band 

scattering rates were calculated within the framework of two band model. It was found that, 

relations for thermodynamic potential on external trajectory corresponding to solutions of 

equations had the form of sum of contributions of σ- and π- band. 

Secondly, a comparison was performed on the phenomenological two band model and applied 

Mathcad software program developed for the model toextract the gaps and the values from the 

results. Good agreement of the two-band model with data was realized for the temperature 

dependence for total energy, specific heat capacity, entropy, and Somerfield coefficient and 

transition temperature. A conclusion was made that the model approach can be taken as a handy 

tool to analyze thermodynamic properties of high TC superconductivity. 

A theoretical approach of thermodynamics of density of states for superconductors in two band 

models was developed. The developed model was used to get to objectives and define expression 

for thermodynamic properties of high TC superconductors in two band model using electron-

phonon interactions between effective band in two gap system.Numerical results for the density 

of states and various thermodynamic quantities as a function of inter-band impurity scattering 

ratewere computed. 

3.4 SOFTWARES USED. 

The Mathcard 2000 Professional software was used in simplifications of equations derived and 

generation of data.  
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CHAPTER FOUR 

THEORETICAL DERIVATIONS 

4.1 Thermodynamic Properties of High TC Superconductors. 

In electron phonon interaction, quantum field theory is needed to outline conventional 

superconductors and induction of effective attractive interactions between electrons. Isotopic 

effect in conventional superconductors’ works only if superconductivity is purely due to 

electrons, when that happens, the transition temperature TCis considered independent on the mass 

of the nucleons. Experiments as according to(Onnes, 1911), show that the transition temperature 

TC depends strongly on the mass of the nucleons present, which hints that superconductivity is 

related to lattice motions which are phonons. Electrons will attract other electrons via lattice 

distortions which is called phonon mediated attractions between electrons. Theoretically the 

attractions are induced when two electrons exchange a virtue phonon which can be shown 

vigorously in quantum field theory. Electrons are fermions and we cannot have more than one 

electron in a quantum state, hence we do not have condensate state for fermions which requires 

many particles to stay on the ground state. However, fermions can form Bose Einstein 

condensate (BEC) state but do not condensate, a pair of fermions is a composite boson which is 

condensate and the fermions pair is known us a cooper pair whose theory of superconductivity is 

known as BCS theory that discusses repulsive interactions of electrons with charge. 

 

The model Hamiltonian is in the conclusion of BCS theory in Fermi liquid that as long as there 

are some attractive interactions, the Fermi liquid state will become unstable below some TC. The 

pairing mechanism in heavy Fermions is not yet established properly and this is one of the 
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challenges in condensed matter physics (Allan, 2013). Even the specific superconducting 

properties are not clearly known (Keisuke & Daisuke, 2012) 

 

4.2 Defining Operators 

We shall incorporate the entire set of creation and annihilation operators with each operator 

referring to a particular state. The following are representations for electrons and cooper pairs in 

d-band and p-band layers. 

k: Block value, where –k is defined to always have the opposite spin to k: ie if      

 kthenk ,  and vice versa. 


k

C : Creation of d-band and p-band electron and cooper pair at state k with spin up. 


k

C : Creation of d-band and p-band electron and cooper pair at state k with spin down. 

k
C : Annihilation of d-band and p-band electron and cooper pair at k state with spin up. 

k
C :Annihilation of d-band and p-band electron and cooper pair at k state with spin down. 





kk CC : Operator order value. 

 



kk CC : Operator average order value. 





 dd
CC :Quassi particle associated with d-bands. 





 pp
CC : Quassi particle associated with p-band.  

 : Fermi level spin up. 

 : Fermi level spin down. 

4.3 Model Hamiltonian for two band model isotope. 

Using the electron pairing model, J, Bardeen, L.N Cooper, and J.R Schrieffer (BCS), developed 

two fluid models for superconductivity in 1957 earning them Nobel Prize in physics. The model 
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assumed non-interacting normal electrons, non-interacting cooper pairs and correctly predicted 

much of the experimental observations.We introduced two types of Bogoliubov quassi particles 

associated with the two p and d bands of the normal pairing mechanism in each of the two 

separate bands as well as inter-band pairing between cooper pairs formed in different bands. 

According to BCS theory, a system admits a precursor phase of cooper pair droplets that 

undergoes a phase locking transition at critical temperature. We Considered a canonical two 

band Hamiltonian that contain a Fermi surface of p and d bands for effective Hamiltonian, which 

is BCS reduced Hamiltonian whose formulation is described for our system of Magnesium 

Diboride. We defined operators 
kC  as creation operator for single electron state, operator kC  as 

destruction operator for single electron state, Vddand Vpp as pairing interaction,Vpd pairing 

interchange between the two bands p and d and k as particle energy for attractive pairing 

strength. We also considered two types of quassi particles,  
 pp

CC  and 
 dd

CC  associated 

with the two p and d bands respectively. The normal phonon pairing mechanism in each of the 

two separate bands as well as inter-band pairing between cooper pairs was formed at different 

bands, giving effective Hamiltonian below as adopted by (Sethna, 2012). 


 = 
p + 
q + 
��r�4.10� 

Where Hd and Hp are the BCS effective Hamiltonian for the respective d and p bands and Hint 

denotes interactive energy between the p and d bands with combined form of inter-band 

interaction.

  

 12.4

11.4

1

1

1

11

1

11

1

1

,







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


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






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





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

 
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Hd denotes free electron and interaction energy in d band, Hp denotes the free electron and 

interaction energy in p band 

 Where the first term in equation (4.11) denotes energy of free electrons in d-band, second term 

denotes the interaction energy of cooper pairs in same layer in d-band of MgB2, the third term 

denotes the energy of free electrons in d-band, while equation (4.12) firstterm denotes energy of 

free electrons in p-band, second term denotes the interaction energy of cooper pairs in same layer 

in p-band of MgB2, the third term denotes the energy of free electrons in p-band. 

In the present work, according to (Bogoliubov, 1947)Bogoliubov-Valatinhas been used as 

mathematical tool for investigation of superconducting transition temperature, density of state, 

electronic specific heat and order parameter taking interlayer interaction between MgB2.In 

equation (4.11) and(4.12), psds and  are the kinetic energies of  p and d bands, measured to 

relative Fermi level with spin (s)   or , where k is the block value and 11
dkkpkk

VandV  are 

the inter-band phonon mediated interaction matrices respectively. 

   13.411111

,

int











   kkkkkkkk

kk
dpkkh CCCCCCCCVH .          

Hhint denote the interaction between the p and d bands.and is the combined form for inter-band 

interaction with phonon mediated matrix element Vdpk. 

This interaction is part of the electron interaction, here;we have ignored all other types of 

interaction. This turns out to be a good approximation because this interaction is the key which 

induces the pairs while all other interactions have effective energies, i.e hopping effective 

energies. 
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4.4 Mean Field Approximation 

In BEC, we introduce order parameter  C ,where the pair of electrons forms the BEC state, so 

that the order parameter can be written as  





k
kk

CC where condensed phase 0 



 kk
CC

hence;

   

 15.4)(

14.4

11111111 





























kkkkkkkk

kkkkkkkk

CCCCCCCC

CCCCCCCC

The physical meaning of equation (4.14)is the operator 




 kk
CC with average value  



 kk
CC and 

operator fluctuates around this average value with fluctuations being   









 kkkk

CCCC .The 

same operation happens to equation (4.15).  We let the fluctuations of the operator be small, the 

last term in the formulas becomes small. We now defined pdX
 and 


pdX  as 

 16.4



  pdkk

XCC  

 17.4pdkk
XCC    

respectively and we let equation (4.16) and (4.17) be used to define and formulate the fluctuation 

term as below, 

       18.4. 1

1

1

1

1

*

,

pdkkpd

kk

pdpdpdpdkkpd

kk

pddkk
XCCXXXXVXXV  

 
 

The fluctuation term was generated by substituting equations (4.14), (4.15), (4.16) and (4.17) 

into equation (4.18) to get equation (4.19). 

     

      19.4. 11

1

1

11

1

1

,

factorsmallveryXCCXCCXXXV

XCCXXCCXVCCCCVH

pdkkpdkkpdpdpdpdkk

pdkkpdpdkkpd

kk
pdkkkkkk

kk
pdkknFluctuatio



























 
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We write the interaction terms of the values 

pdpd XandX   as fluctuations 

the last term of equation (4.19)
    








1

111

kk
kkkkkk

XCCXCCV
is fluctuations times 

fluctuations,  hence the last part is smallest hence ignored. 

We introduced gap parameters for p and d bands respectively. 

 21.4

)20.4(

1

1

*

















 

kkddkkdd

kkdkk
k

ddkdd

CCVCC

CCVXV

 

 

 






k

ppkkpp

k

kppkpp

XV

XV

23.4

22.4

1

1

 

Hence equation (4.11) and (4.12) are subjected to fluctuation term in equation (4.19) and gap 

parameters in equation (4.20),(4.21) and (4.22) to get equation (4.24) and (4.25) 

 24.4
1

1 







  











k

kkddkkddkk
ks

dsd CCCCCCH   

Similarly weredefined equation (4.12) to get equation (4.25) 

hence 

   25.411  











 
k

kkpp

k
kkppksksksksksp CCCCCCCCH   

 Then the Hamiltonian of the two band system reduces to 

   26.4 












 

p
pppp

p
pppp

p
pppppppk

p

o CCCCCCCCVH   

   27.4 












 

d
dddd

d
dddd

d
dddddddk

d

o CCCCCCCCVH   

   28.411111

,

int











   kkkkkkkk

kk
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Where p and dare momentum labels in the d- andp-bands respectively with energies  

,dp and  is the common chemical potential. Each band has its proper pairing interaction Vpp 

and Vdd, while the pair interchange between the two bands is assured by Vpdterm. 

 We have assumed Vpd=Vdp and we redefined equation (4.13) as Hpd 

 29.41221  











 
d

dd
p

pp
p

pp
d

ddpd CCCCCCCCH  

Final Hamiltonian isa superfluid quadratic Hamiltonian, which is summation for equations 

(4.27),(4.28) and (4.29). 

   
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









 

p
pppp

p
pppp

p
pppppppk

CCCCCCCCuVH  

   












 

d
dddd

d
dddd

d
dddddddk

CCCCCCCCuV  

 30.41221  
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 
d

dd
p

pp
p

pp
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CCCCCCCC  
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4.5Bogoliubov-ValatinTransformations 

Is the original Canonical linear transformations to diagonalise quadratic Hamiltonian in 

superfluid was introduced by(Bogoliubov, 1947), and later extended by both Bogoliubov and 

Valatin, (Valatin, 1958)and (Bogoliuboy & Valatin, 1958)to theory of Fermi surface in 

superconductivity. The applications of BV transformations were done to both bosonic and 

fermionic versions in approximating BCS Hamiltonian in quadratic form and diagonalizing the 

results. In describing non interacting gas of quassi particles, BV transformations course is very 

standard in modern condensed matter physics where quadratic Hamiltonian can be solved exactly 

by basically studying the spectrum of the system of electrons. Bogoliubov-Valatin 

transformations,(Bogoliuboy & Valatin, 1958) were introduced in variation principles for 

simplicity in reproducing results of the BCS theory of electron interaction with an easy extension 

to the case of electrons interacting with phonons, (Sergio et al.,(2008).  

Equation (4.31) is the adoptedsuperfluid quadratic Hamiltonian for MgB2 system which is 

diagonalized to obtain the elements of Hamiltonian that corresponds to stationary states when the 

system is in equilibrium by making use of the Bogoliubov-Valatin. We describe the 

superconducting states at T>0, wedevelop independently Bogoliubov and Valatinequations now 

known as Bogoliubov-Valatin Canonical transformation equations whose description is more 

appropriate as follows; 

Since the model is dealing with large number of particles, the fluctuation about the average of 






k
C

k
C would be small. We redefine C number operator as

k
C to conform to B.V status 
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Now for interaction term  











 
d

dd
p

pp
p

pp
d

dd
CCCCCCCC 1221 in 

equation (4.30),we substitute equation (4.32) into equation (4.30) to get equation (4.33) 
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We ignored the last term on the right hand side of equation (4.33) because it’s small due to large 

number of particles therefore ignored. 
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Subjectequation (4.34) to a constraint defined in equation (4.35) 

 34.4.average
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We define the parameter 
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The same operation is done on second part of equation (4.31), for Hd by substituting equation 

(4.32) to get

 

   37.4 
















 





  

d
dddd

d kkk
dd

d
dddddd CCCCC

k
CCCCCH



 

47 

 

Lastly the same operation of substituting of equation (4.32)into the first part of equation (4.30) 

for Hp 
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The total Hamiltonian after the above operations becomes bilinear form, hence diagonisable. 
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Noting that the operators in equation (4.40) appear in bilinear form, they can be written in a 

diagonal form by appropriate transformations using C operators as shown in Bogoliubov and 

Valatin. We define C operators to B.V terms as in equation (4.41).
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Where   satisfy the following commutation rules 
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We also defined quassi particles 
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CCandCCCCCC ,, separately to conform 

to B.V diagonalised expression as bellow according to Bogoliubov and Valatin, (1969) 
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.                                                                                                                                        
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Similarly 

 46.4.2

2






































kkk
v

k
u

kkk
u

kkk
v

kkk
v

k
u

kk
u

kk
v

kk
u

kk
u

k
C

k
C





.                                                                                                                                                 

 47.4.
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We now substitute these values in equations, (4.41), (4.45),(4.46),(4.47) and (4.48) into equation 

(4.38) of  the Hamiltonian, considering the first term we have to get equation (4.49)
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When the coefficients of 


kk
and

kk
  vanish in the terms, equation (4.49) is diagonalised 

to give equation (4.50) 
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Collecting like terms, equation (4.50) becomes equation (4.51) 
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We now substitute these values in equations (4.41), (4.45),(4.46),(4.47) and (4.48) into equation 

(4.39) of  the Hamiltonian, considering the first term we get equation (4.52)
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When the coefficients of  
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  vanish in the terms, equation (4.51) is diagonised 

to give equation (4.52)  
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 Like terms were collected from equation (4.52) to give equation (4.53) 
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We now substitute values in equations (4.40), (4.44),(4.45),(4.46) and (4.47) into equation (4.36) 

of  the Hamiltonian, considering the first term we have to get equation (4.54)
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The same operation is done to equation (4.54) by vanishing coefficient to give diagonised  

equation (4.55)
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on collecting like terms, in equation (4.55), it becomes equation (4.56) below. 
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Putting all terms together in equations (4.50),(4.51) and (4.52) and when the coefficients of 
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and
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  vanish with the terms, the model Hamiltonian for magnesium diBoride 

for phonon-mediated attraction and coulomb repulsion becomes equation (4.57) 
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The operators  obey the bosonic commutation relationships as per equation (4.59) below 
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 Hence equation (4.57) reduces to equation (4.60)
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 Then model Hamiltonian in (4.60) is the diagonalized equation by Bogoliubov-Valatin 

transformation equations. According to (Rapando, Khanna, & Mong'are, 2016),when we 

considered the particle spin up as k and spin down as –k, then scattered spin states will be 

represented by k and –k for spin up and spin down respectively. By neglecting higher order 

terms, number operators and off diagonal terms, the diagonalised terms of Hamiltonian becomes 

equation (4.60) 

4.6Interaction energy 

We now calculate the average energy that is required during the interaction using the normalized 

wave function   
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Where the vacuum state is represented by 0  has three distinct spaces i.e 10,0,00
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By doing expansion on terms in the equation and performing the bra-ket operator on each term in 

the bra-ket, followed by factorization, we set equation (4.61) for normalization case by rewriting 

it as 
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Equation (4.62) can be expanded and simplified as below 
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The vacuum state represented by 0  has three distinct spaces i.e 10,0,00
kkk  

Hence we rewrite equation (4.63)as 
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Noting that 01,00,10   and , then equation (4.64) is simplified to 
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Noting that 1000000 11  kkkkkk  

Then equation (4.67) is simplified to 
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Assuming that the kinetic energy at vacuum state for p-band, d-band and interaction term pd 

between bands are equal, then;  

 71.4pddp  
 

then
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Equation (4.73) is the energy of state for two band model, the case of magnesium diboride where

gE is the total ground state energy. It differs from energy of one band model due the additional 



k

pd terms of energy showing the lowest energy achieved in the p and d bands at vacuum 

state, indicating formation of the bands at lowest energy in the system. 

pd
energy in p and d bands 




kkk

vu 2

interactive potential between the p and d bands
 


kk

uv2

enhanced coulomb energy between bosons as they interact 

 

The two band model possess lower energy at vacuum state compared to one band model 

superconductor, hence bosons can be formed at lowest energy of magnesium diboride. 

In relating the above energy with temperature, we multiply equation (4.73) with thermal 

activation factor equation (4.74) that does not change energy value but only relates it with 

temperature, to get equation (4.75) where 100KBT is due to two band nature of MgB2. 
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 74.4
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 75.4
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Therefore the energy of the system of magnesium diBoride is given as in equation (4.76) 
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1.7 Specific heat capacity. 

 

 The formulawas derived for finding specific heat capacity for magnesium diBoride system for 

interaction of electrons in the two bands from the generalized standard equation (4.77). 

 77.4
dT

dE
C n

V   

 β was introduced 

   78.4100/22

Bkkkkkpd Kuvvu    

Equation (4.78) is substituted into equation (4.75) to get equation (4.79). 

   79.422 T
kkkkkpdn euvvuE





   

The let 
T

t



 

Therefore    80.422 t

kkkkkpdn euvvuE   
 

t

gn eEE 
 

 81.4
2TdT

dt 
  

Hence dT
T

dt
2


  

Then 
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 82.4
2

dt
T

dT



  

Substituting equation (4.79) into equation (4.77), we get equation (4.83) 
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 
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
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






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




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We now substituted the values of  t and β into equation (4.77) 

     84.4
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2

222
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B
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V
Bkkkkkpde
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uvvu
C









 

 

The equation (4.84) is the specific heat formula.  

4.8Somerfield coefficient and entropy 

We now solve for Somerfield coefficient γ which is derived from the specific heat formula 

T

CV  

 
 

Te
T

TK

uvvu

kkkkkpd uvvuB

kkkkkpd

/
100 22

2

222


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

 




 

     85.4
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B
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TK

uvvu 







 

  

Entropy is derived from equation (4.84), given as 

 86.4
T

dT
CS V  
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   
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dT
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     87.4
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dTe
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S

TKuvvu

B
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
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We let 
   88.4

100

22

TK

uvvu
t

B

kkkkkpd 



 

 89.4
100

22

TK

uvvu

dT

dt

B

kkkkkpd 



 

Which means when you make dT the subject of the formulae 

 

 90.4
100

22

2

dt
uvvu

TK
dT

kkkkkpd

B


 

 

Therefore entropy equation is got by substituting equation (4.90) into equation (4.87) to get 

equation (4.91) 

     91.4
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When simplified 
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From relation in equation (4.88) 

We note that 
   94.4100

22

tK
T

uvvu
B

kkkkkpd 
 
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     95.4dtteKdtetkS t

B

t

B  

Integration by parts, where we let 

U=t and ,dvdtet  we get 
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dtetedtte

vduuvudv
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ttt
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Equation (4.97) represents entropy in two band model. 

 

4.9.Transition temperature TC 

To calculate the transition temperature, equation (4.97) is reduced to equation (4.98) as bellow 

by first letting the value of T=TC, and use of derived equation for specific heat capacity (4.84) 

and energy of the system (4.76) together with Boltzeman’s constant KB 
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Which means that 
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On further simplification 

   99.4
100

22

B

kkkkkpd

C
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uvvu
T



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Equation (4.99) represents the transition temperature TC 

This finding is non-ceramic with great prospects of practical solutions being cooled by liquid 

nitrogen as opposed to conventional superconducting materials having been cooled by more 

expensive liquid helium. We can note that ceramic superconductors are not easy to process due 

to their brittleness. Brittleness property has limited wide applications like in hospitals for 

superconducting magnets used in magnetic resonance imaging (MRI) apparatus that helps in 

generation of large magnetic field necessary for exciting and then atomic image  nuclei in body 

tissues. This will lead to wires with high efficient superconducting magnets and low-loss electric 

power transmission lines with advanced devices like Josephson junctions in SQUIDS      

(superconducting quantum interference devices) 
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According to (Kibe et al 2005) the superconducting electron system is considered as being in one 

condensed phase and the scattered pairs of electrons are in one s-state singlet pairing and s-state 

triplet pairing, where electrons are paired so as to minimize the ground state energy. 

Where the pairing superconductors’ states are considered to be both singlet and triplet, the state 

is expressed in terms of new operators. This is then diagonalized to obtain the elements of the 

Hamiltonian that corresponds to stationary states where the system is in equilibrium making use 

of Bogoliubov-Volatin transformations to transform the equation. It is understood that certain 

types of interactions can lead to massive quassi-particles such that the resulting effective masses 

of electrons may reach values between100 and 1000 times the mass of free electrons. The 

effective Hamiltonian is diagonalized using the Bogoliubov-Volatin transformations and 

thermodynamic properties of such heavy fermion system are calculated. The total energy is 

found to increase with increase in temperature while entropy also changes continuously through 

the transition temperature TC, where the entropy of the system decreases with temperature as is 

conventionally the case. The Hamiltonian H of the system will contain the kinetic energy term, 

the interaction term due singlet and triplet pairing as according to(Rapando, Khanna, & 

Mong'are, 2016). To get the quasiparticles of the heavy-Fermion superconducting state, the 

Hamiltonian H, will be diagonalized using the Bogoliubov-Volatin canonical 

transformations(Bogoliubov, 1947). The energy of the system, the specific heat C, the entropy S 

and the transition temperature TC were calculated. This result is compared to available 

information in the literature. 
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Bogoliubov-Volatin canonical transformations were useful in finding solutions of BCS theory in 

homogeneous system. It’s an isomorphism of either the canonical commutation relations algebra 

or canonical ant-commutation relation algebra, this induces auto equivalence on the respective 

representations. The model used it to diagonalize Hamiltonians which yield stationary solutions 

corresponding to Schrodinger equation that corresponds to transformation of the state function. 

Operator eigen values were calculated with the diagonalized Hamiltonians with corresponding 

transformations of the state function.   

 

4.11. Density of State and Temperature. 

The general equation for density of state for the system is given as below according to(Martins, 

2006) 

     101.4
dE

Ed
ED nn

nn   

Where  EDn  is the volume occupied by states and 

 102.4
B

F
F

K

E
T   

Where; EF is the Fermi energy 

             KB is Boltzman constant 

             TF is the Fermi temperature 

 
K

n
C

ED
1

1  for one-dimension density of states, 

   0

22

2

EEC
ED

nk

n 



for two-dimensional density of states, 

 
 2

0

33

4

EEC
ED

nK

n 



for three-dimensional density of states. 
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In condensed matter physics, the density of states of a system describes the number of states that 

are available to be occupied by the system at each energy level. It is represented as a distribution 

by a probability density function and is generally an average over the space and time domains of 

the various states occupied by the system.(Tinkham, 2004) 

The distribution function for the  EF, 

     103.4.nnn dEEgEEfU   

Where u= EF when T=0 and μ is the internal energy. 

Therefore 

 

Substituting equation of  f(En) into equation of μ, we get 
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Equation (4.108) is the expression for variation of density of state Dn and temperature T, for high 

TC superconductors in two band models. 
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CHAPTER FIVE 

RESULTS, ANALYSIS AND DISCUSSION 

 

5.1 Numerical Calculations and Results 

Various physical properties of MgB2 can be studied through numerical equations for a given 

system of results. Numerical evaluation for ground state energy, specific heat, entropy and TC 

values for MgB2 two band superconductor were calculated. 

the Considered; 

Energy gap range at vacuum state   eV5.78.100  table 2.1 (page 26),  

Phonon energy range pd given as 0.00875eV-0.00937eV from table 2.3, page 36  

With calculated values for vkand ukfrom the ground state energy Eg as given in equation (4.73) 

By setting two conditions of Egby setting it to zero, with values of energy gap and phononenergy 

picked within the ranges given above the following equation are gotten; 

04249.200875.0
22  

kkkk

uvvueV
 

042.200937.0
22  

kkkk

uvvueV
 

Calculation for the values of uk and vkwas done 

vk=0.92812eV anduk=0.3723eV 

That satisfies the condition as given in equation (4.44) 

5.2. Ground State Energy 

The ground state energy was calculated as follows as given in equation (4.73), 

Eg = 0.00937eV + 5.616eV(0.37232x0.92812)-(0.928122x0.3723) 

Eg=0.00937eV+5.616eV(0.128644198)-(0.3207017272) 

Eg=0.4111340888eV 

Total energy was calculated as given in equation (4.75) 
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5.3. Specific Heat Capacity Calculations 

Specific heat capacity was calculated as given in equation (4.84) 
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5.4. Calculations for Entropy 

Entropy was calculated from equation (4.97) 
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5.5. Predicted and calculated transition temperature Tc 

As given in equation (4.99), transition temperature was calculated, 

KT

x
T

C

C

667720441.47

00008625.0100

4111340888.0




 

5.1.1 Superconducting order parameter 

Order parameter for MgB2 system within two band model, research found the following 

situations. 

The superconducting parameter for p- and d- bands using the equation bellow 
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Solving the above equation numerically, the study of variation of superconducting order 

parameter 
d

andp 


with temperature corresponding and bands. 
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The behavior of superconducting order parameters corresponding with temperature can be seen, 

the superconducting order parameters for the combined π and σ bands can be studied by taking 
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simple sum of both parameters. By taking the sum of order parameters 


 , one can 

obtain solving the values numerically. A comparison of


with BCS type curve is given. 

Using equation (5.12), the variation of superconducting order parameter against temperature was 

studied using Mathcad software and results tabulated and graph drawn as shown.  

 

Figure 5.1 Variation of superconducting order parameter for p and d bands with 

temperature. 
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The trend of the graphs is nonlinear in decrease in values of superconducting order parameter in 

micro electron Volt with increase in temperature in kelvin up to 39k, where the value of order 

parameter is almost zero but not zero. 

Two graphs coincide at 15K and interchange but maintain the trend. 

From the graph, order parameter exhibits as wave function for superconductivity at quantum 

state on microscopic scale. 

In the absence of magnetic field ψ ≠ 0 at T < TC and  Z = 0 at T > TCand −Z = 0 outside a 

superconductor. 

The order parameter is usually normalized such that Z�n�∗ Z�n� gives the number density of cooper 

pairs at point r. 

5.1.2 Electronic specific heat (Ces) 

The electronic specific heat per atom of a superconductor is determined from the relation 

1. For pi bands 
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Where is the energy of pi band and u is the common chemical potential. 

Substituting  

 pp
CC  and changing the summation over p into an integration by using 

the relation    p

p

dN 0  we obtained 
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Using the above equation after simplification and replacing
TK B

1
 , we obtained 
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Changing the phonon energy variables as dydy pppp  hh  , and using parameters 

in table 2.3 and taking 0 , we obtain 
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For sigma band, we write the expression for specific heat for sigma band 
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The variation of electronic specific heat with temperature (T) for pi and sigma bands is shown 

with good agreement with experimental data.Using equation (5.27) the variation of electronic 

specific heat against temperature was studied using Mathcad software and its results tabulated 

and graph drawn. For electronic specific heat Ces, it is determined from the following relation 

  )28.5(2
1
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
 pp

p

p

p

es CC
NT

C   

Where b is the energy of π- and σ- bands and μ is the common chemical potential. Using 

equation (5.28) and putting   = 1 R��  after simplification, we obtain the following changes 

where changing the variables as dydy pppp  hh  , . Figure 5.2 was gotten. 
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Figure 5.2 Variation of Electronic specific heat with temperature for both p and d bands. 

The variation of electronic specific heat Ces with temperature T for two bands is shown.  

The trend of the graph is nonlinear; there is increase in electronic specific heat Ces with increase 

in temperature. There is a turn in the graph at 35K, with a sharp nonlinear fall in electronic 

specific heat, signifying optimisity of electronic specific heat. 

Theoretical values are higher than experimental for same temperature which can be attributed to 

mean field approximation method of averaging. 

There is a sharp nonlinear fall at 35K in electronic specific heat, signifying optimisity of 

electronic specific heat. 

Graph shows electronic contribution of electrons to heat capacity. 

When a metallic system is heated, not every electron gains energy due to equipartition dictates. 

Not all electrons are thermally excited as temperature increases 
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5.1.3 Density of States,Dn and temperature 

From equation (4.108) 

 

Where;  

Dnis the density of states, 

 T is the temperature, 

U = is the internal energy for one band, 

En =is the energy for the bands, 

KB = Bolzmann constant and 

θD = is Debye temperature. 

Given that Dnis the density of states, then; 

 TC = 39K 

U = Range 3.52x10-19J to 1.136x10-18J 

E = 7.2x10-3eV 

   =7.2x10-3x1.6x10-19 

   =1.152x10-21J 

KB=1.381x10-23J/K 
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From Mathcad software 

Since E ranges from 6.4eV to 7.2eV which translates to arrange energy of 1.024x10-21J and 

1.152x10-21J. 

Where the equation (4.108) is the variation of density of state Dn and temperature T, for high TC 

superconductors in two band models for a system of magnesium diBoride. 

Using equation (4.108) the variation of density of states and temperature was studied using 

Mathcad and the results tabulated and graph drawn. 

For the case of density of states function for the pi band is given by 
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We obtain 
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Changing the summation into integration and after simplification, we obtained 
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Now using the following values of y, x1 for p


and x2 for 
d


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Similarly, the density of state for pi band is obtained as 
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The above expressions of density of states function for pi and sigma bands are similar, their 

behavior has been expressed in the graph. 

Density of states is an important function. It helps in interpretation of several experimental data 

like processes that could occur in crystal but are forbidden because they do not conserve energy. 

Some of them take place to correct the energy imbalance by phonon-assisted processes, which 

will be proportional to  
 0N

N  for 0 , the density of states per atom  N can be defined or 

obtained as 

 
   26.5
02 2

1

2 xy

y

N

N

p

p












 
 

Also, the density of states for σ- band is obtained as 
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The above expressions for density of states function for π-and, σ- are similar hence we have 

evaluated the values with different values of x1 and x2 for π- and σ- bands. The behavior of 

density of states function for both bands is shown in the graph. 
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Figure 5.3 Variation of density of state with temperature. 

The variation of density of state with temperature T for two bands is shown.  

The trend of the graph is nonlinear; there is increase in density of state with increase in 

temperature. 

Variation of density of states function for bothwith temperature for π- (p holes) and σ- (d holes) 

bands agrees with experimental data on point contact spectroscopy, specific heat measurement, 

scanning tunneling and Raman spectroscopy as per(Keimer, Kiverlson, Norman, & Uchida, 

2015) clearly explains the existence of two distinct superconducting gap with small gaps. 
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5.1.4Energy verses temperature 

 

Figure 5.4 Variation of energy verses Temperature. 

 

The trend of the graph is nonlinear, positive gradient with increase in values of energy in Joules 

with increase in values of temperature in Kelvin. 

The graph describes thermal energy between molecules within magnesium diboride system and 

is a measure of change and a property possessed by the system in a short time. While 

temperature describes the average kinetic energy of molecules within magnesium diboridesystem 

and it is a measurable property of the system also known as a state variable. 
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5.3 DISCUSSION 

Method of calculating transition temperature and inter-band coupling parameter isdone. It can be 

seen that the inter-band coupling effect   is in general a function of 
 

, which is the relative 

strength of the attractive coulomb interaction 
 compared to the strength of the inter-band 

electron-phonon interaction X. We have illustrated functional dependency and also shown the 

effect of variation in the electron-phonon inter-band interacting parameter 12 . We found that, by 

allowing the inter-band electron-phonon parameter to take either positive or negative values, we 

obtain good analysis. 

Values for various parameters in equations obtained above can be used to study parameters for 

the MgB2. For superconducting order parameter for MgB2 system within two band models, we 

found the following situations;The superconducting parameter for π- and σ- bands, we use the 

following condition, changing the Variables as dydy ddpp  hh  , , when solved numerical, 

we study the variation of superconductivity order parameters p and d  with temperature 

corresponding to π-and σ- bands. The behavior of superconducting order parameters corresponds 

with temperature as in the shown curve. The superconducting order parameter for combined π- 

and σ- bands can be studied by taking a simple sum of both the parameters. Taking the sum of 

order parameter    one can obtain the values by solving numerically. A comparison of 

order parameter with BCS type curve was shown in the graph. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMENDATION 

6.1 CONCLUSIONS. 

In the search for a suitable method of explaining thermodynamic properties of high 

TCsuperconductors in two band models, we have shown the study of superconducting in MgB2 

by canonical two band BCS Hamiltonian containing Fermi surfaces of p and d bands. The 

envisaged interaction of phonon mediated attraction and coulomb repulsion was proposed to act 

differently on energy band states and stabilizing superconductor phase for MgB2 to unearth the 

mystery of microscopic mechanisms that allow superconductivity to persist at such high 

temperatures. 

Following Bogoliubov -Valatin technique and equation of motion method, we have obtained the 

expressionsfor electron-phonon interaction model Hamiltonian for two band model isotope, 

expression for variation of thermodynamic properties with temperature and expression for 

variation of order parameter and transition temperature TC., which were the objectives of the 

study.Using the values of various parameters for a system MgB2, we have made study of various 

physical properties and wherever possible, compared our results with available experimental 

data. 

The statistical thermodynamics of high TC superconductors in two band model by 

consideringinteraction of phonon mediated attraction and coulomb repulsion it achieved its 

objectives by formulating an effective Hamiltonian given by equation (4.60) as diagonalized 

equation by Bogoliubov-Valatin transformation equations, energy of the system given by (4.76), 

specific heat capacity equation(4.84), entropy given in equation (4.97) and expression for 

transition temperature TC given in equation (4.99).  
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Ground state energy was obtained from the diagonalised Hamiltonian using Bogliubov-volatin 

transformations. Thermodynamic properties of high Tc superconductor namely heat capacity, 

energy, entropy and critical temperature were determined. 

The transition temperature Tc, which is a function of energy could be raised by varying phonon 

energy pd  . 

The calculated values of  

CV=0.0192729906eV/K, 

TC=47.667720441K,  

Eg=0.4111340888eV 

Eg=0.7670001738eV and  

S= 3.3245572813eV/K, are in agreement with results from other authors and predicted higher TC  

for electron- phonon mediated for both p and d bands. 

1. The predicted transition temperature for system MgB2 varied from 39K to 47.667720441K. 

2.The temperature dependent on two superconducting gaps ∆p and ∆d corresponding top and d 

bands for MgB2was found. The two gaps structure is perfectly in agreement with experimental 

observations and values. 

3. The specific heat behavior obtained from our model verses Temperature is in satisfactory 

agreement with experimental results, although the theoretical values are slightly higher than the 

experimental values which are attributed to mean field approximations. 

4. The density of states behavior is similar to BCS weak coupling superconductors corresponding 

p and d bands. There is a marked difference between the two curves. This reveals that 

MgB2superconductors in this respect resembles to that of high TCcuprates but the density of 

states for the system MgB2 is quite high. 
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The main objective and specific objectives were achieved with the results agreeing in principle 

with other authors and researchers. 

6.2. RECOMMENDATIONS 

Our model shows reasonable agreement with available data. The mechanism emerges as a strong 

contender for acceptable two bandmodel for MgB2, non cuprate high-TC superconductor. The 

efforts in determining the pairing mechanism in this system need to continue, for such efforts go 

hand in hand with enhancing future prospects for new HTSC material and novel applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

83 

 

REFERENCES 

Akimitsu, J. (2001). Symposium on Transition Metal Oxides. Sendai, Japan. 

Allan, M. P. (2013). Imaging Cooper Pairing of heavy fermions in CeColn5,. Nature Physics. 

Bednorz, J. G., & Mueller, K. A. (1986). Possible high Tc Superconductivity the Ba-La-Cu-O 

system. Zeitschrift fuer Physik . 

Bogoliubov. (1947). On the theory of superfluidity, J. Phys. (USSR), 11, p. 23 , (Izv. Akad. Nauk 

Ser. Fiz. 11, p. 77 . 

Bogoliuboy, & Valatin. (1958). Canonical transformation for interacting system . 

Choi, H. J., Roundy, D., Sun, H., & Cohen, M. L. (2002). The origin of the anomalous 

superconducting properties of MgB2. Nature, 418(6899, 758-760. 

doi:https://doi.org/10.1038/nature00898 

Hensen, S., Mueller, G., Riek, C. T., & Scharnberg, K. (1997). In plane surface impedence of 

epitaxial films: comparison of experimental data taken at 87 GHz with wave models of 

superconductivity, Physics review B 56:6237. 

Kaindl, A. R., Orenstein J, Carnahan , M. A., Chemla, D. S., Lowndes, D. H., Christen, H. M., . . 

. Paranthaman, M. (2001). Preprint, Far-infrared optical conductivity gap in 

superconducting MgB2 films. 

Keimer, B., Kiverlson, S. A., Norman, M. R., & Uchida, S. (2015). from quantum matter to high-

temperarature superconductivity in copper oxides,. Nature, 518:179-186. 

Keisuke, & Dasuke, Y. (2012). Cooper Pairing of Fermions with un equal masses in Heavy-

Fermion Systems. Journal of the Physical Society of Japan, 81. 

Keisuke, Y., & Daisuke, M. (2012). Cooper Pairing of Fermions with Unequal Masses in Heavy-

Fermion Systems. Journal of the Physical Society of Japan, The Physical Society of 

Japan,, Vol. 81, SB010 . 

Legget, A. J. (2006). What DO we know about high Tc? Nature Physics. 

Martins, P. B. (2006). New topics in superconductivity research,. New York: Nova Science 

publishers. 

Mathias, B. T., Geballe, T. H., & Corenzwit, E. (1950). Superconductivity of Nb3 Sn. Physical 

Review. 

Mourachkine, A. (2004). Room-Temperature Superconductivity. Cambridge. 

Onnes, H. K. (1911). The superconductivity of mercury. Comm. Phys. Lab. Univ. 

Poole C P Jr, C. P. (2000). Academic. Superconductor types, in Handbook of superconductivity, 

pp.71. San Diego: Poole C P Jr (eds.) Press. 

Possible high Tc Superconductivity the Ba-La-Cu-O system. (n.d.). 

Rapando, B. W., Khanna, K. M., & Mong'are, P. A. (2016). The diagonalised T-J Hamiltonian 

and thermodynamic properties of High TC superconductors. American Research journal 

for physics. Volume 2016. 

Schriefer, J. (2013). Superconductivity; Discoveries and Discoveries. Berlin: Spring Overlag. 

Sethna, P. J. (2012). Statistical Mechanics : Entropy , Order parameter and Complexity. Oxford: 

Clarendon Press. 

Tinkham, M. (2004). Introduction to superconductivity,2nd ed Mchill. 



 

84 

 

Valatin, J. (1958). Comments on the theory of superconductivity. Nuovo Cim. 

 

 

 

  



 

85 

 

APPENDICES. 
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Table 2.4: Schematics of experimental methods of preparation for MgB2. (Poole C P Jr, 2000) 
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Table 2.3Values for various parameters for MgB2 system.   (J. Nagamatsuet al 2001 

 


