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ABSTRACT

The classification of Smooth Geometric Manifolds still remains an open problem. The

concept of almost contact Riemannian manifolds provides neat descriptions and distinc-

tions between classes of odd and even dimensional manifolds and their geometries. Among

the classes that have been extensively studied in the past are the Hermitian, Symplectic,

Khalerian, Complex, Contact and Almost Contact manifolds which have applications in

M-Theory and supergravity among other areas. The differential geometry of contact and

almost contact manifolds and hence their applications can be studied via certain invariant

components: the structure tensors, connections, the metrics and the maps. The study of

almost contacts 1, 2, 3-manifolds has been explored before to an extent. However, little

known is the existence and the geometry of an almost contact 4-structure. In this thesis,

we have constructed a class of almost contact structures which is related to almost con-

tact 3-structure carried on a smooth Riemannian metric manifold (M, gM) of dimension

(5n + 4): gcd (2, n) = 1. Starting with the almost contact metric manifold (N4n+3, gN)

endowed with structure tensors (φi, ξj, ηk) of types (1,1),(1,0),(0,1) respectively, for all

i, j, k = 1, 2, 3, we have showed that there exists an almost contact structure (φ4, ξ4, η4) on

(N4n+3 ⊗ Rd) ≈M5n+4; gcd(4, d) = 1 and d|(2n+ 1) constructed as a linear combinations

of the first three structures on (N4n+3, gN). We have studied the geometric properties of

the tensors of the constructed almost contact structure, the properties of the characteristic

vector fields of the two manifolds M5n+4 and N4n+3 and the relationship between them via

an α-rotated submersion Π : (N4n+3 ⊗ Rd) ↪→ (N4n+3) and the metrics gM respective gN .

This provides new forms of Gauss-Weingartens’ equations, Gauss-Codazzi equations and

the Ricci equations incorporating the submersion other than the First and Second Funda-

mental coefficients only. We have observed that the almost contact structure (φ4, ξ4, η4)

is constructible if and only if it is carried on the hidden compartment of the manifold

M5n+4 ∼= (N4n+3 ⊗ Rd) which is related to the manifold N4n+3. The results of this study

establish a strong basis upon which the study of almost contact structures can be extended

to more than 4-structures. Moreover, the fact that the vector field {ξi : i = 1, · · · , 4} ob-

tained is killing gives rise to integral geodesic curves which allow for smooth interpolation

between two high-dimensional points with application in computer vision where smooth

animations can be constructed by travelling along the geodesics between two images. These

manifolds can thus be applied in the exploration of M-theory and supergravity.
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CHAPTER ONE

INTRODUCTION

1.1 Background of study

Contact geometry was revealed in 1896 by a research carried out by Sophus Lie on partial

differential equations and since then, it has been used as an important tool to study odd-

dimensional manifolds as an analogy of symplectic geometry in even-dimensional manifold.

The subject has intrinsically shown to be underlying many physical phenomena and closely

associated to many other mathematical structures. For example, the Gibbs’ work on ther-

modynamics, Hygens’ work on geometric optics and in Hamiltonian Dynamics were both

revolving around it. Moreover, contact and almost contact structures have relations with

fluid mechanics, Riemannian geometry, Low Dimensional Topology and provide interesting

classes of subelliptic operators, Geiges [15]. Due to the significant applications of contact

and almost contact geometry, research in this line has been active.

Borman et’al [6] have shown that any closed odd-dimensional manifold with almost

contact structures usually admits at least a contact structure. They proved the existence

of overtwisted contact structures and classified them for all dimensions. Their classification

was however not extended to almost contact manifolds. Sergey [31] Provided a slight

extension of the work in [6] by considering an almost contact structures characterized by

N-prolonged connection. It was noted that the metric structures studied were normal so

that Nφ ⊕ 2(dη ◦ φ)⊗ ξ = 0. These structures later turned out to be Sasakian. Eliashberg

[12] introduced a dichotomy of d-dimensional contact manifold: d = 3 into tight and

overtwisted manifolds and established a parametric h-principle for overtwisted ones. He

found that any almost contact homotopy class on a closed 3- dimensional manifold contains

a unique upto isotopy, overtwisted contact structures.

Great achievement in the problem of classification of contact structures on a closed

manifolds was achieved in the 5-dimensional case by Etnyre [13]. The research established
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the existence of contact structures on any 5- dimensional manifold, but in any homotopic

class of almost contact structures for manifolds of dimensions > 5 the results are scarce.

The study of almost contact manifolds was first introduced by Gray [16] in 1959, by defining

an odd-dimensional manifolds whose structure group of tangent bundle can be reduced

to U(n) × 1. Some general properties of contact structures including the non-vanishing

property of the volume form were established. Later, in 1960, Sasaki [29] introduced an

equivalent definition of almost contact manifolds. In his research Sasaki found out some

results that he took to Hatekayama [19] who proved cases when the structure of the group

of any differentiable manifold M2n+1 reduceds U(n) × 1, so the M2n+1 is considered a

manifold with almost contact structure.

Geiges [15] studied contact structures on (n− 1) connected (2n+ 1)-dimensional man-

ifolds and showed that contact structures exist on simply connected 5-dimensional mani-

folds by applying results on contact surgery that was later extended by Borman et’al [6].

However, little has been done about the contact structures in high-dimensional manifolds.

Differentiable manifolds with contact and almost contact structures were classically clas-

sified rather from a topological point of view (see [5, 16]). The study of the geometry

of tangent bundle was investigated by Sasaki [29] . Using the Riemannian metric on a

manifold M, Sasaki defined a Riemannian metric g1 on the tangent space TM of the man-

ifold M. This construction was grounded on the natural splitting which takes place due to

the existence of Levi-civita connections of the tangent bundle TM of the manifold M into

the direct sum of vertical and horizontal distribution, the fibres of these distributions are

isomorphic to the fibres of distribution TM. According to Sergey [31] the odd analogy of

the tangent bundle is a distribution of the almost contact structure (φ, ξ, η), similarly to

the bundle TM, the bundle due to a connection over the distribution compartmentalizes

into the direct sum of the vertical and horizontal distribution.

Adara [2] has studied almost k-contact structure, pointing out an isoparametric func-

tion which can be associated in this framework, by generalizing a similar construction

initiated by Mihai and Rosca [27]. From Adaras’ constructions, an almost k-contact man-
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ifold is found to be (n+ k+ nk)-dimensional manifold M with k-almost contact structures

(φ1, ξ1, η1), ..., (φk, ξk, ηk) such that,

φi ◦ φj = −δijIΓTM + ηi ⊗ ξj +
∑
l=1

k
εijlφl,

and ηi(ξj) = δij. Accordingly, given the almost contact 3-structure (φi, ξi, ηi), defined on

M2n+1 × R by Adara [1], there are three almost complex structures Ji such that

i = 1, 2, 3 associated to each of the almost contact structures. It can be verified that

Jk = JiJj = −JjJi an anticommutativity condition of the structures. Therefore, M2n+1×R

has an almost quarternionic structure and hence its dimension is a multiple of 4. Thus the

dimension of an almost contact 3-structure is of the form 4n+ 3 Blair [7]. Tachibana and

Yu [33] had initially used this idea to show that there cannot exist a fourth almost contact

structure (φ4, ξ4, η4) with ηi(ξ4) = η4(ξi) = 0 for all i = 1, 2, 3 and satisfying the anti-

commutativity conditions with the first three structures: (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3)

and the associated complex structures. To see this, Blair [7]demonstrated that if J4 is

the almost complex structure on M2n+1 × R constructed using (φ4, ξ4, η4), then pairing

J4 with each of J1, J2, J3 yields J4Ji = −JiJ4 such that i = 1, 2, 3. This contradicts

J3J4 = J1J2J4 = −J1J4J2 = J4J1J2 = J4J3 which is the conventional condition. In

this thesis, we show that if an almost contact 3-structure is given, then there exists a

structure (φ4, ξ4, η4) that depends on the first three structures. The constructibility of this

fourth structure disapproves Tachibana and Yu’s conjecture. We have further explored the

geometry of the manifold carrying (φ4, ξ4, η4).

1.2 Basic Definitions

The definitions given below are standard and can be obtained from the references. They

shall be used frequently in the document.

Definition 1.2.1. A manifold M is a topological space with a maximal atlas or maximal

smooth structure.

Definition 1.2.2. Atlas of a Manifold is a collection of charts whose domain cover

the manifold.
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Definition 1.2.3. Fibre bundle is a manifold that looks locally like a product of two

manifolds, but is not necessarily a product globally.

Definition 1.2.4. A smooth manifold (M,U) is a topological manifold M equipped with

a smooth structure U.

Definition 1.2.5. Riemannian manifold is a manifold on which one has defined a

specific symmetric and positive definite(or non-singular) 2-covariant tensor field, known as

metric tensor.

Definition 1.2.6. Tangent space is the set of all derivations of a smooth manifold at a

point p.

Definition 1.2.7. Tangent bundle is the union of all tangent spaces to M denoted TM .

Definition 1.2.8. Geodesic Curve is the shortest curve connecting two points on a

surface.

Definition 1.2.9. Isometry is a mapping of a portion of a manifold M to a portion of a

manifold N, if the length of any curve on N is the same as length of its pre-image on M.

Definition 1.2.10. Killing vector A vector field X is called a killing vector field if the

1-parameter group of infinitesimal transformations generated by X is a group of isometries.

Equivalently, LXg = 0 Blair [7].

Definition 1.2.11. Diffeomorphism A smooth map f between M and N such that

f : M → N is called a diffeomorphism if f is bijective and f inverse is also smooth.

Definition 1.2.12. Kernel The kernel of f : M → N denoted Ker(f) measures the

degree to which the homomorphism f fails to be injective.

1.3 Statement of the problem

The discovery of almost contact Riemannian manifolds has contributed immensely to ad-

vancement of both Geometry and Algebraic Geometry. Due to the unique properties of
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the tensors associated with any almost contact structure, their geometry has resulted to

more advanced applications of the ambient manifolds in Mathematics, Computer Science

and Engineering. For example, the vector bundle TM of an almost contact manifold M

contains nonparallel vector fields ξ; which are killing vectors giving rise to geodesic curves

on the vertical distribution of the manifold hence, if applied in computer analysis, allows

for smooth interpolation between 2-dimensional points feasible in getting smooth anima-

tions. On the other hand, the first and second fundamental coefficients M,N,L are useful

for determining the nature of curves based on their curvatures k, usually provided by

Codazzi-Mainardi equations and applicable in the classification of curves. However, the

manifolds considered in such cases are usually restricted to Euclidean space. For a general

metric manifold, the classification is sufficient when submersions are considered between

the ambient manifold and submanifolds. This has not been done before for an odd di-

mensional manifold carrying more than 2 almost contact structures. The study of almost

contact 1,2,3-manifolds has been explored before by a number of Geometers to an extent

(see for example [5],[20],[27],[28]). However, little known is whether there exists an almost

contact 4-structure on any odd dimensional manifold M. In fact, given 2 almost contact

structures, Kuo [20] proposed a necessary condition for a third almost contact structure

to exist on N4n+3 but did not provide the sufficiency hence the validity of the structure

by proving the structure tensor properties. Moreover Tachibana and Yu [33] conjectured

the non-existence of a fourth almost contact structure on any odd dimensional manifold

and satisfying the anti-commutativity condition. This research provides a proof of the

sufficiency for existence of a third almost contact structure and further constructs a fourth

almost contact structure (φ4, ξ4, η4) on the manifold M5n+4 ∼= (N4n+3 ⊗ Rd); d|(2n + 1)

and gcd(2, n) = 1. Finally, the study explores the geometry of the submersion between the

manifold carrying 4 structures and the one carrying 3 structures giving rise to new forms

of Gauss, Weingarten, Codazzi and Ricci equations.
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1.4 Objectives of study

1.4.1 Main Objective

To study certain geometric aspects of a class of almost contact structures on a smooth

metric manifold.

1.4.2 Specific Objectives

(i) To construct a fourth almost contact structure (φ4, ξ4, η4) on (N4n+3⊗Rd) ∼= M5n+4

from (φi, ξi, ηi) for i = 1, 2, 3 on N4n+3, where the gcd; (4, d) = 1, (2, n) = 1 and

d|(2n+ 1).

(ii) To determine the geometric properties of the tensors, the Reeb vector fields and the

metrics of the constructed almost contact structure (φ4, ξ4, η4).

(iii) To determine new forms of Gauss-Weingarten, Gauss-Codazzi and Ricci equations

via a submersion between the two manifolds: M5n+4 and N4n+3.

1.5 Methods of study

The methods adopted for this study involved the following stages:

(i) We performed a cursory combinatorial analysis on the three almost contact structures

(φi, ξi, ηi) i = 1, 2, 3 and determined a finite number of such combinations giving rise

to a fourth almost contact structure. This method involved inductive algorithms.

(ii) We employed the standard structural criterion on almost contact structure as

postulated in Blairs’ Theorem [7] on Contact and almost Contact geometry.

(iii) We used the fundamental form procedures involving α-rotated submersions

F : M5n+4 ↪→ N4n+3 ⊗ R to investigate and characterize the structural relationships

between the manifolds.
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1.6 Significance of the study

These classes of manifolds have application in computer, graphics and augment reality

given the need to associate pictures that is texture to coordinates for example CT scans.

Riemannian metric on a manifold allows distances and angles to be measured. In view

of Riemannian metric, if the data space is geodesic, the space would allow for smooth

interpolation between two high-dimensional points: this may have applications in computer

vision, where smooth animation between images can be constructed by travelling along

geodesics between the two images. This may also redefine a potential to revolutionize

machine learning technique such as dimension reduction and clustering by providing a

more accurate measure of distance in data spaces than Euclidean distance prevalent. The

results of this study also establish a strong basis upon which the study of almost contact

structure can be extended to more than 4-structures.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Riemannian Geometry

Adara [1] explored the geometry of lightlike submanifolds in metallic semi-Riemannian

manifold M and proved that the metric induced on M of Riemannian type is always a

Riemannian one, however in semi-Riemannian manifolds the metric induced by the semi-

Riemannian metric on the ambient manifold is not always non-degenerate. This result

provided an important class of submanifolds referred to as lightlike submanifolds, due to

the degeneracy of the induced metric on lightlike submanifolds, the tools which are used to

investigate the geometry of submanifolds in Riemannian case are not applicable in semi-

Riemannian case and so the classical theory fails while defining any induced object on

a lightlike submanifolds. Hakan [18] studied Lagragian submanifolds of Normal almost

contact manifolds from Sasakian and Kenmotsu manifolds onto Riemannian manifolds

by showing that the horizontal distribution of a Lagragian submanifolds from a Sasakian

manifold onto a Riemannian manifold admitting vertical Reeb vector field is integrable

but the one admitting horizontal Reeb vector field is not, therefore the horizontal distri-

bution of such submanifolds is integrable when the total manifold is Kenmotsu. Bayram

and Mehmet [4] studied conformal semi-invariant submersion from Hermitian manifolds

onto Riemannian manifolds by investigating the geometric foliations which come from the

definition of a conformal submersion and showed that there are certain product structures

on the total space of a conformal semi-invariant submersion. They finally checked the har-

monicity properties of the submersions to find out the necessary and sufficient conditions

for conformal semi-invariant submersion to be totally geodesic. The main method that

was appropriate for this study was comparing the two manifolds and transfering certain

structures from one manifold to another manifold by defining appropriate maps between

them. Their studies however did not consider providing the Gauss, Weingarten, Codazzi
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and Ricci equations having the invariants of the submanifolds studied.

Tshikuna [37] studied almost contact metric submersions and the relationship between

the properties of total space, the base space and the fibres by showing that the super-

minimality of the fibres is a tool in the transference of the structure from the ground to

the total space. Later in the study on superminimality fibres in an almost contact metric

submersion, Tshikuna proved that the superminimality of fibres plays an important role

in the integrability of the horizontal distribution for almost contact metric submersions.

Mehmet [26] studied submanifolds of Riemannian product manifold and generalized the

geometry of invariant submanifolds of a Riemannian product manifold to the geometry of

semi-invariant submanifolds of a Riemannian product manifold and considered necessary

conditions and sufficient conditions given for semi-invariant submanifolds to be D-geodesic

(D⊥ geodesic) and mixed geodesic submanifold. Senlin and Yilong [30] later updated Mat-

sumoto’s Theorem and proved that (M1, g1) and (M2, g2) are pseudo-umblical submanifolds

of (M ′
1, g
′
1) and (M ′

2, g
′
2) respectively, if (M, g) is an invariant pseudo-umblical submanifold

of (M ′
1×M ′

2, g
′
1× g′2). They also demonstrated that M is isometric to the production of its

two totally geodesic submanifolds (M1, g1) and (M2, g2) which are submanifolds of (M ′
1, g
′
1)

and (M ′
2, g
′
2) respectively.

The index of a metric plays significant roles in differential geometry as it generates va-

riety of vector fields such as space-like, time-like and light-like fields, with the help of these

vector fields one can establish interesting properties on ε-Sasakian manifolds which was

introduced by Duggal and Bejancu [10]. In order to resolve the difficulties that rise during

studying lightlike submanifolds Duggal and Bejancu [10] introduced non-degenerate distri-

bution called screen distribution to construct a lightlike transversal vector bundle which

does not intersect to its lightlike tangent bundle. It is well known that a suitable choice of

screen distribution gives rise to many substantial characterization in lightlike geometry[10].

Different kinds of geometric structures such as almost product, almost contact, almost

paracontact among others allow to get rich results while studying on submanifolds. It was

observed that, Riemannian manifolds with metallic structures are some of the most studied
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topics in differential geometry Duggal and Bejancu [10]. Matsumoto [23] replaced the struc-

ture vector field ξ by −ξ in an almost paracontact manifold and associated a Lorentzian

metric with the resulting structure and called it Lorentzian almost paracontact manifolds.

On the other hand, in a Lorentzian almost paracontact manifold given by Matsumoto [23],

the semi-Riemannian metric has only index 1 and the structure vector field (ξ) is always

timelike. Hence, association of a semi-Riemannian metric not necessarily Lorentzian with

an almost paracontact structure called indefinite almost paracontact metric structure on

ε-almost paracontact structure, where the structure vector field (ξ) is spacelike or timelike

are ε = 1 or ε = −1 respectively. It can be noted that the geometry of a submanifold

(M, g) of a Riemannian product manifold (M ′
1 ×M ′

2, g
′
1 × g′2) has been studied by many

geometers. Particularly, Matsumoto [24] who proved that (M, g) is a locally Riemnnian

product manifold of Riemannian manifolds (M1, g1) and (M2, g2) if (M, g) is an invariant

submanifold of a Riemannian product (M ′
1×M ′

2, g
′
1× g′2). The problem of classification of

manifolds via their geometry is thus still open.

2.2 Almost Complex Manifolds

An even dimensional manifold M with a tensor field J of type (1, 1), that is (M,J) is

called an almost complex manifold if J2 = −1 Blair [7]. The structure J is integrable if it

can induce a complex Manifold. By the Newlander-Nirenberg Theorem (see Wan[39]), J is

integrable if and only if the Nijenhuis tensor vanishes that is:

N(J)(X, Y ) = J [JX, Y ] +J [X, JY ]− [JX, JY ] + [X, Y ] = 0 Blair [7]. In 4-dimension, one

can construct many compact almost complex manifolds without any complex structure.

However, up to now it has been difficult to find a single higher dimensional manifold with

almost complex structures but no complex structure. Wan [39] studied the curvature and

integrability condition of an almost complex structure where it was observed that one can

construct an almost complex structure on 6-sphere by using quaternions but this almost

complex structure is not integrable; it is still an outstanding problem to determine the

complex structure on 6-sphere. Indeed 6-sphere is a touchstone to understand the complex
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structures of higher dimensional manifold Wan [39].

Evidently, classes of complex and almost complex manifolds have elicited a great deal

of research in the recent times. Bryant [8] in a follow up research concerning Chern’s study

of almost complex structures on the 6-sphere aimed at the idea of exploiting the special

properties of its well known almost complex structure J invariant under the exceptional

group G2 revealed that it was not possible to determine whether a 6-sphere has an in-

tegrable almost complex structure J. The results however did prove a significant identity

that resolves the question for an interesting class of almost complex structure J on 6-sphere

Bryant [8]. This showed that the symmetric group of almost complex structure J preserves

both a metric g and 2-form ω on 6-sphere. These intrinsic properties of (M,J); M = S6

can be extended to high dimensional almost contact structures; a concept that began more

than sixty years ago when Ehresmann introduced in differential geometry, the notion of

almost complex structures on a differentiable manifold of even dimensions Mekri [25].

Le Brun [21] had proved that there is no complex structure on 6-sphere that is com-

patible with metric g while Chern’s identity can be interpreted to mean that there is no

complex structure on 6-sphere that is compatible with 2-form ω. It turns out that these

two cases are quite different, the condition of compatibility with metric g is a system of 12

point-wise algebraic equations on an almost complex structure J and as Le Brun’s analysis

shows that integrability conditions for such an almost complex structure J forms an invo-

lutive system whose general local solution depends on three holomorphic functions of three

complex variables. In contrast, the condition of compatibility with ω is a system of only 6

point wise algebraic conditions on an almost complex structure J, while Chern’s identity

shows that the integrability conditions for such almost complex structures do not form an

involutive system. Indeed, his computation uncovers the non vanishing torsion that proves

its non-involutivity.

A hyper complex structure on real vector space V is a triple (I, J,K) of complex struc-

tures on V satisfying the equation IJ = K. One important difference between com-

plex and hyper complex geometry is the existence of special connection ∇ such that;
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∇I = ∇J = ∇K = 0, Dominic [9]. Complex and hyper complex manifolds can be de-

scribed clearly in terms of G-structures on manifolds. For instance, suppose P is the

principal frame bundle of M that is the GL(n,R) the bundle fibre over X in M is the group

of isomorphisms TXM ∼= R4n, for a lie subgroup G of GL(n,R), a G-structure Q on M is

a principal sub-bundle of P with structure group G. The bundle Q admits a torsion-free

connection if and only if there is a torsion-free linear connection ∇ on M with ∇I = 0,

where I is integrable Dominic [9]. Naturally there exists a structural relationship between

the complex structure J and the almost contact structure (φ, ξ, η), the connection ∇ on

M induces another connection ∇′ on (φ, ξ, η) such that an extension remains uncovered in

complex geometry.

2.3 Contact and Almost Contact Manifolds

Contact and almost contact manifolds are two classes of odd dimensional manifolds ex-

hibiting closest structural relationships. The contact manifolds are those classes whose

volume forms do not vanish while the almost contact are both contact and also satisfy

three additional algebraic tensor properties on their structures. That is :

φ2 = −I+η⊗ξ, η(ξ) = 1, η◦φ = 0. They are fundamentally important as they have found

celebrated applications in many areas of Mathematics, Science, Engineering and Computer

Science. For instance, the interpretation of the principle of super-gravity has been made

possible by using certain unique metric tensors embedded on almost contact structure. For

this reason, research concerning the geometry of contact and almost contact manifolds has

been continually advanced by a number of Geometers (see for instance [2, 3, 5, 11] e.t.c).

Todd [36] considered almost contact structures on G2-manifolds and characterized them

via the properties of the cosymplectic objects. The research narrowed down to the possible

classes of manifolds in which the almost contact metric structure could lie and showed that

the closed G2-manifold admits almost contact metric 3-structure by constructing explicitly

and characterizing when the almost contact metric 3-structure is cosymplectic. It was

observed that 3-cosymplectic manifolds also known as hyper-cosymplectic manifolds were

12



not considered by Todd’s study. Indeed, we still do not know which odd dimensional

manifolds support such structures. In a related work, Borman et’al [6] were concerned

about the classification and existence of overtwisted contact structures in all dimensions.

Their study was mooted from the background that there were no known general results

concerning extensions of contact structures in dimension > 3. Since contact and almost

contact structures are related, Borman et’al[6] were able to show that any closed, odd

dimensional manifold with an almost contact structure admits a contact structure. In

fact, the idea mostly revealed in their findings is that it is possible to study the geometric

properties of a structure via the geometry of another structure epimorphic to it.

Galaev and Gokhman [14] studied the first integral of dynamical system with integrable

linear connection and proved that an almost normal contact metric structures is a Sasakian

structure. Accordingly, the Sasakian manifolds after their discovery by Sasaki[29] became

very popular among the reseachers of almost contact metric spaces for the following reasons:

there exists a big number of interesting and deep examples of Sasakian structures, also the

Sasakian manifolds have very important and natural properties that overlap other almost

contact structures, for example, normality of their metric connections and the satisfaction

of the fundamental h-principle. Dually, the almost K̈hlerian spaces inherit many important

structural properties of Sasakian spaces, this turns out to be very essential in cases when an

almost contact metric space cannot in principle be a Sasakian space. 3-Sasakian structures

have also appeared in supergravity and M-theory among other areas.

Puhle [28] studied almost contact metric 5 dimensional-manifold carrying one structure

embedded with connection with torsion and proved that there exists a metric connection

on the 5-dimensional almost contact metric manifolds compatible with almost contact

structure. The findings were that the space of torsion tensor of a metric connection splits

into ten U(2)-irreducible subspaces W1,W2, ...,W10. Therefore, one can find 210 classes of

almost contact metric structure in 5-dimensional manifold according to the components of

torsion tensors. This work also considered the normality property, that is Nφ + 2dη ⊗ ξ = 0

hence the integrability property of the manifold considered. Matzeu and Munteanu [22]
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studied vector cross products and almost contact structures and constructed almost contact

metric structure induced by a 2-fold vector cross product on some classes of manifolds with

G2 structures. Chinea and Gonzales [11] in their work of classification of almost contact

metric manifolds showed that their classification was achieved via the study of covariant

derivative of the fundamental two form. Indeed, a space having the same symmetries as

the covariant derivative of the fundamental two form was written and then this space was

decomposed into twelve U(n)× 1 irreducible components C1, C2, ..., C12. Then there were

212 invariant subspaces, each corresponding to a class of almost contact metric manifolds.

They showed that there is a global 2-form and properties of the covariant derivative of this

2-form yielded 212 classes of almost contact metric manifolds (see [3], [11]).

The existence of contact structures on closed odd dimensional manifolds is still ques-

tionable, however, Gromove [17] in the study of stable mapping of foliation into manifolds

showed that contact structures on an open manifold obey an h-principle. Conventionally

for (Md, X) for d-odd a co-orientable contact manifold, then the tangent bundle of the

manifold M can be expressed as: TM = X ⊕ R and thus the structure group of the tan-

gent bundle reduces to U(n). Such a reduction of the structure group is called an almost

contact structure on the manifold M. Thus a contact structure on M induces an almost

contact structure. If M is an open manifold Gromove proved that the inclusion of the

space of co-oriented contact structure on M into the space of almost contact structures

on M is a weak homotopy property, Gromove [17]. The fundamental existence question

in contact geometry concerns whether or not almost contact structures always come from

contact structures. According to Gromove [17], for open manifold, it has been shown that

all almost contact structures are homotopic to contact structures, but on closed mani-

folds much less is known. There had been a complete answer in dimensions 1 and 3; the

1-dimensional results are trivial and in 3-dimensional case, almost contact structures are

equivalent to plane fields. All oriented and close 3-dimensional manifolds admit almost

contact structures. Hence, every plane field is homotopic to a contact structure, but on

closed manifolds much less is known, Gromov [17]. Later, Sasaki [29] studied differential
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manifolds with structures which are closely associated to almost contact structures and

introduced a geometric structure related to almost contact structure. This geometry be-

came known as Sasaki Geometry and has been studied extensively ever since, giving rise

to fundamental geometric relationships among manifolds. Moreover, almost contact man-

ifolds were earlier introduced by Gray [16] and described as an odd-dimensional manifold

whose structure group of tangent bundle can be reducible to U(n)× 1.

In 1970, Kuo [20] studied the almost contact 3-structure and found out that a product

of a manifold with almost contact 3-structure and a straight line results to quarternionic

structure. The work gave better findings as compared to the classical perspectives concern-

ing contact structures. Kuo demonstrated the existence of a metric compatible with almost

contact manifolds. The results were extended to more than 1 structure by redefining the

notion of Sasaki[29] and introduced manifolds with Sasakian 3-structures which were also

studied independently by other scholars(see [32], [33], [38]). Almost contact manifolds with

3-structures were introduced in order to give a structure of contact type that is similar to

an almost quarternionic structure in the same way an almost contact structure is similar

to an almost complex structure. Kuo [20] further showed that the 3-Sasakian geometry

has some interesting topological implications. Using earlier results of Tachibana about

the harmonic forms on compact Sasakian space(see Tachibana [34]), Kuo showed that odd

Betti numbers up to the middle dimensions must be divisible by 4. In 1969, Takahashi [35]

studied Sasakian manifold with pseudo-Riemannian metric and introduced an almost con-

tact manifold equipped with associated metric. He studied Sasakian manifolds equipped

with associated indefinite metric. These indefinite almost contact metric manifolds and in-

definite Sasakian manifolds are also known as ε-Sasakian almost contact metric manifolds

and ε-Sasakian manifolds respectively.

From the aforementioned literature, it is worth noting that the study of almost con-

tact 1,2,3-manifolds has been explored before by a number of Geometers to an extent (see

for example [5],[20],[27],[28]). However, little known is the presence of an almost contact

4-structure on any odd dimensional manifold M5n+4. In fact given 2 almost contact struc-
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tures, Kuo [20] proposed a third almost contact structure on M4n+3 but did not ascertain

the validity of the structure by proving the structure tensor properties. Moreover Tachibana

and Yu [33] conjectured the non-existence of a fourth almost contact structure on any odd

dimensional manifold and satisfying the anti-commutativity condition. This research pro-

vides a proof of the existence of the third almost contact structure and further constructs

a fourth almost contact structure (φ4, ξ4, η4) on the manifold M5n+4 ∼= (N4n+3 ⊗ Rd);

d|(2n + 1) and gcd(2, n) = 1. Finally, the study explores the geometry of the submersion

between the manifold carrying 4 structures and the one carrying 3 structures giving rise

to new forms of Gauss, Weingarten, Codazzi and Ricci equations.
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CHAPTER THREE

GEOMETRY OF A FOURTH ALMOST CONTACT STRUCTURE
DEVELOPED FROM THE THREE ALMOST CONTACT STRUCTURES

3.1 Fundamental Principles

In this section we provide a survey of some preliminary results useful in the body of the

work: Suppose M is a (2n + 1)-dimensional differentiable manifold, (φ, ξ, η) is a field of

endomorphisms of the tangent spaces TM as a (1,1)-tensor field, a vector field and a 1-form

on M respectively. If the triple (φ, ξ, η) satisfies the three conditions:

φ2(Yi) = −(Yi) + η(Yi)ξ (3.1)

η(ξ) = 1 (3.2)

η ◦ φ = 0 (3.3)

for any Yi ∈ Γ(TM), i ∈ N and non-singular vector ξ then the triple above is called an

almost contact structure and M is called an almost contact manifold (c.f [36]).

An almost contact structure has many similarities to an almost complex one. Thus

every almost contact structure has got an associated almost complex structure and their

construction can be done through Ji’s, the almost complex structures. Suppose a differen-

tiable manifold admits almost contact 3-structure (φi, ξi, ηi), for all i = 1, 2, 3 satisfying:

ηi(ξj) = ηj(ξi) = 0

φiξj = −φjξi = ξk

ηi ◦ φj = −ηj ◦ φi = ηk

φiφj − ξi ⊗ ηj = −φjφi + ξj ⊗ ηi = φk

for all exhaustive permutations (i, j, k) of (1, 2, 3), then there exists three almost complex

structures J1, J2, J3 associated with each almost contact structures (c.f [20]). It is upon

this foundation that our fourth almost contact structure will be constructed.

The next Theorem is a classification result:
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Theorem 3.1.1. An almost contact metric manifold with (M,φ, ξ, η, g) is:

(i) Contact if Φ = dη such that the volume form does not vanish.

(ii) K-contact if Φ = dη and ξ is killing.

(iii) Quasi-Sasakian if dΦ = 0 and M is normal.

(iv) Sasakian if Φ = dη and M is normal.

(V) Kenmotsu if (∇Y1φY2) = −η(Y2)η(Y1)− g(Y1, φY2)ξ.

(Vi) Cosymplectic if dφ = 0, dη = 0 and Φ(Y1, Y2) = g(φY1, Y2).

where, Y1, Y2 ∈ Γ(TM), d the exterior differential operator and Φ a 2-form.[3]

The parameters of the theorem 3.1.1 are the considerations upon which recent classifi-

cation of manifolds have been based.

Now, given M, the (2n + 1)-dimensional manifold described above, carrying almost

contact 1-structure. Then, the following results which hold on M will be usefull in the

sequel:

Proposition 3.1.1. Given a 1-structure (φ, ξ, η) on M, the almost contact manifold, then

the following conditions hold:

φ(ξ) = 0 (3.4)

η ◦ φ = 0 (3.5)

rank(φ) = 2n (3.6)

Proof. Let ξ ∈ TM be a non-singular vector field, then, given the prescribed φ, η, then

φ2(ξ) = −ξ + η(ξ)ξ

= −ξ + 1.ξ

φ2(ξ) = 0 (3.7)
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and

0 = φ2(φ(ξ))

= −φ(ξ) + η(φ(ξ))ξ (3.8)

so we have

φ(ξ) = η(φ(ξ))ξ (3.9)

From equation 3.7, it is clear that φ(ξ) = 0 or φ(ξ) is a non-zero vector field whose image

is zero. To the contrary, let φ(ξ) be a vector field: 0 6= φ(ξ) : φ(ξ) −→ 0. In this case

η(φ(ξ)) is not zero. If η(φ(ξ)) = 0, then φ(ξ) = 0 in equation 3.9 which is a contradiction

to the assumption. By equation 3.9

φ2(ξ) = φ(φ(ξ)) = φ(η(φ(ξ))ξ) = η(φ(ξ)).φ(ξ) = η(φ(ξ)).η(φ(ξ)).ξ = η(φ(ξ))2.ξ

and we have a nontrivial φ2(ξ) because η(φ(ξ)) and ξ are non-zero. But this contradicts to

the fact that φ2(ξ) = 0. Therefore we conclude that φ(ξ) = 0 and equation 3.4 is proved.

Next, we have φ2(Y1) = −Y1 + η(Y1)ξ, we get:

φ3(Y1) = φ(φ2(Y1)) = φ(−Y1 + η(Y1)ξ) = φ(−Y1) + φ(η(Y1)ξ) = −φY1 + φ(η(Y1)ξ)

for any vector Y1. On the other hand, we write φ3(Y1) as:

φ3(Y1) = φ2(φ(Y1)) = −φ(Y1) + η(φ(Y1))ξ

then,

η(φ(Y1))ξ = φ3(Y1) + φ(Y1) = −φ(Y1) + η(φ(Y1))ξ + φ(Y1) = η(φ(Y1))ξ = 0

From previous result 3.7, we have: φ(ξ) = 0. Therefore, η ◦ φ = 0: Y1 ∈M .

Finally, let rank(φ) = 2n. Since φ(ξ) = 0, it is clear that φ has dimension less than

or equal to 2n. Suppose there is another vector Y1 of M such that φ(Y1) = 0. Then

φ2(Y1) = φ(φ(Y1)) = −Y1 + η(Y1)ξ implies that Y1 = η(Y1)ξ.

Assuming that the manifold M is paracompact so that it allows a Riemannian metric

tensor f ′ and a Riemannian metric f , then denoting and defining the convoluted tensor f as:
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f : f(Y1, Y2) = f ′(φ2(Y1), φ2(Y2))+η(Y1)η(Y2) = f [−Y1 +η(Y1)ξ,−Y2 +η(Y2)ξ]+η(Y1)η(Y2)

implies that the relationship between the two tensors can be concretized. This implies that

the primitive metric g can be expressed in terms of the said tensors. It is then clear that

the next results holds:

Lemma 3.1.1. Let Y1, Y2 ∈ TM and

f : f(Y1, Y2) = f ′(φ2(Y1), φ2(Y2)) + η(Y1)η(Y2) = f [−Y1 + η(Y1)ξ,−Y2 + η(Y2)ξ] + η(Y1)η(Y2)

then,

f = η(Y1) (3.10)

for every vector field Y1 ∈M .

Proof. Let Y2 = ξ. Then, by definition of f ,

f : f(Y1, ξ) = f ′(φ2(Y1), φ2(ξ)) + η(Y1)η(ξ) = η(Y1).

and the result follows.

Proposition 3.1.2. The almost contact manifold M above admits a primitive Riemannian

metric tensor field g expressible in terms of f and with the property:

g : g(φ(Y1), φ(Y2)) = g(Y1, Y2)− η(Y1)η(Y2) (3.11)

Proof. Let f be given and g be expressed as

g(Y1, Y2) = 1
2
(f(Y1, Y2) + f(φY1, φY2) + η(Y1)η(Y2)) with the same Riemannian metric f as

f : f(Y1, ξ) = η(Y1). We rewrite g(φ(Y1), φ(Y2)) as

f : f(φY1, φY2) =
1

2
(f(φY1, φY2) + f(φ2Y1, φ

2Y2) + η(φY1)η(φY2)).

Since η ◦ φ = 0,

g : g(φY1, φY2) =
1

2
(f(φY1, φY2) + f(−Y1 + η(Y1)ξ,−Y2 + η(Y2)ξ))

=
1

2
(f(φY1, φY2) + f(Y1, Y2)− η(Y2)f(Y1, ξ)− η(Y1)(f(ξ, Y2)) + η(Y1)η(Y2)f(ξ, ξ))
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=
1

2
(f(φY1, φY2) + f(Y1, Y2)− η(Y2)η(Y1)− η(Y1)η(Y2) + η(Y1)η(Y2))

=
1

2
(f(φY1, φY2) + f(Y1, Y2)− η(Y2)η(Y1))

= g(Y1, Y2)− η(Y1)η(Y2)

Remark 1. Since η ◦ φ = 0,

g : g(φY1, Y2) = g(φ2Y1, φY2) + η(φ(Y1))η(Y2)

= g(φ2Y1, φY2)

= g(−Y1 + η(Y1)ξ, φY2)

= g(−Y1, φY2) + η(Y1)g(ξ, φY2)

= −g(Y1, φY2)

because g(ξ, φY2) = g(φξ, φ2Y2) + η(ξ)η(φY2) = 0. Hence, φ is a skew-symmetric tensor

field with respect to the metric g. That is,

g(φY1, Y2) + g(Y1, φY2) = 0.

because g(ξ, φY2) = g(φξ, φ2Y2) + η(ξ)η(φY2) = 0.

Hence, φ is a symmetric tensor field. In fact it is a skew-symmetric. That is

[g(φY1, Y2) + g(Y1, φY2)] = 0. (3.12)

If M admits the aggregate (φ, ξ, η, g) and the conditions 3.1, 3.2, 3.3, then we say that

M has an almost contact metric structure (φ, ξ, η, g) and (M,φ, ξ, η, g) is called an almost

contact metric manifold.

3.2 The Construction of the fourth structure (φ4, ξ4, η4) on M5n+4 ∼= N4n+3 ⊗Rd

The following result is necessary for the feasibility of a third structure.
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Theorem 3.2.1. Let φ1, φ2 ∈ T(1,1), ξ1, ξ2 ∈ TM and η1, η2 ∈ TM∗. Suppose (φ1, ξ1, η1)

and (φ2, ξ2, η2) are both almost contact structures obeying:

φ1φ2 + φ2φ1 = η1 ⊗ ξ2 + η2 ⊗ ξ1

φ1ξ2 + φ2ξ1 = 0

η1 ◦ φ2 + η2 ◦ φ1 = 0

η2(ξ1) = 0

η1(ξ2) = 0

then the sets (φ1, ξ1, η1) and (φ2, ξ2, η2) are said to admit an additional structure.

We provide the proof to establish sufficiency:

Proof. Considering the possible combinations of the aggregates: set

φ3 = φ1φ2 − η2 ⊗ ξ1 = −φ2φ1 + η1 ⊗ ξ2, η3 = η1 ◦ φ2 = −η2 ◦ φ1 and ξ3 = φ1ξ2 = −φ2ξ1.

We can verify that the structure (φ3, ξ3, η3) defines an almost contact 3-structure.

Assume that X ∈ TM , then X ∈ M4n+3 which is a smooth manifold and so if φ3 is

properly choosen then φ2
3 = −X + η3⊗ ξ3 holds. Now we need to show that η3(ξ3) = 1 and

η3 ◦ φ3 = 0 in order for (φ3, ξ3, η3) to qualify to be an almost contact structure on M4n+3.

First, we show that η3(ξ3) = 1.

Let, η3 = −η2 ◦ φ1 and ξ3 = φ1ξ2, η3(ξ3) = −η2 ◦ φ1(ξ3) = −η2(φ1(ξ3))

But,

φ1(ξ3) = φ1(φ1ξ2) = φ2
1(ξ2). (3.13)

We have that φ2
1 = −I + η1 ⊗ ξ1, substituting this in the equation 3.13 we have:

φ2
1(ξ2) = −ξ2 + η1(ξ2)ξ1

= −ξ2 + 0

= −ξ2

So we have:

−η2(φ1ξ3) = −η2(−ξ2) = η2ξ2 = 1.
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Thus,

η3(ξ3) = 1.

Next, we show that: φ3ξ3 = 0

Let, ξ3 = −φ2ξ1,

then

φ3ξ3 = φ3(−φ2ξ1) = φ3(−φ2(X)ξ1) (3.14)

Also, φ3 = φ1φ2 − η2 ⊗ ξ1, substituting this in the equation 3.14 we get:

φ3ξ3 = φ1φ2(X)− η2(X)ξ1(−φ2(X)ξ1) (3.15)

Simplifying the equation 3.15 we have:

= −φ1(φ2
2(X)ξ1)− 0

= −φ1(φ2
2(ξ1))

But,

φ2
2(ξ1) = −ξ1 + η2 ⊗ ξ1

= −φ1[−ξ1 + η2 ⊗ ξ1]

= −φ1[−ξ1 + η2(X)ξ1]

= −φ1[−ξ1 + η2(ξ2)ξ1] : X = ξ2

= −φ1[−ξ1 + ξ1]

= 0.

Also, assuming that X = ξ1, then we have,

= −φ1[−ξ1 + η2(ξ1)ξ1]

= φ1ξ1

= 0.

Hence, φ3ξ3 = 0, as required.

Finally, we show that, η3 ◦ φ3 = 0
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Now, η3 ◦ φ3(X) = η3(φ3(X))

Let, φ3 = φ1φ2 − η2ξ1. Then, for η3 = η1 ◦ φ2 = −η2 ◦ φ1 and X ∈ TM.

η3(φ3(X)) = η3(φ1φ2(X)− η2(X)ξ1)

= −η2 ◦ φ1(φ1φ2(X)− η2(X)ξ1)

= −η2 ◦ φ1(φ1(φ2(X)) + η2(X)ξ1(η2 ◦ φ1)

= −η2(φ2
1(φ2(X)) + η2(X)(η2(φ1ξ1))

= −η2(φ2
1(φ2(X)) + 0

= −η2[−φ2(X)− η1(φ2(X))ξ1]

= η2φ2(X)− η1(φ2(X))η2(ξ1)

= η2 ◦ φ2(X)− η1(φ2(X)).0

= 0− 0

= 0.

Therefore, η3 ◦ φ3 = 0. Hence, any two manifold-structures (φ1, ξ1, η1) and (φ2, ξ2, η2)

define essentially the same almost contact 3-structure. In this sense, we say that such

almost contact structures (φi, ξi, ηi), for all (i = 1, 2, 3) defined on M is an almost contact

3-structure.

Following the results of Tachibana and Yu [33], in our construction, starting with almost

contact 3-structures, we construct a new structure (φ4, ξ4, η4) such that

ηi(ξ4) 6= η4(ξi) 6= 0, i = 1, 2, 3, necessarily. The dimension of the manifold carrying the

almost contact 4-structures (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3), (φ4, ξ4, η4) must be of the

form 5n+ 4; gcd(2, n) = 1: The following results are useful in our construction:

Theorem 3.2.2. Let Md be a d-dimensional almost contact manifold such that d divides

2n + 1. Then, there exist local and global coordinates (x1, ...., xn, y1, ...., yn, f) with respect

to which η4 = dfi −
∑4

i=1 yidxi) in Md.

Proof. Let U be some coordinate neighborhood, subset of Md. Choose an open-ball in U

transverse to ξi such that dηi is even dimensional and hence symmetrically symplectic in
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U. Then, there exist some global coordinates (x1, ...., xn, y1, ...., yn, f) such that

dη4 =
∑
dxi ∧ dyi : i = 1, .., 4. Now d(η4 +

∑4
i=1 yidxi) = 0 so that η4 +

∑4
i=1 yidxi = df4

for some functions f4. Clearly, η ∧ (dη)n = df4 ∧ dx1 ∧ ...∧ dxn ∧ dy1 ∧ ...∧ dyn 6= 0. Hence,

the volume form does not vanish in U . Therefore df4 is independent of (dxi, dyi) and thus

we consider xi, yi and f4 as a coordinate system.

Remark 2. The results of theorem 3.2.2 shows that the volume form of an almost contact

manifold does not vanish.

Proposition 3.2.1. Let (M5n+4, (φi, ξi, ηi)); i = 1, 2, 3 be an almost contact 4-structure.

Let f : M5n+4 −→ N4n+3 ⊗ Rd : d|2n+ 1. Assume that there exists an aggregate

[Ji] : i = 1, 2, 3 of almost complex structures given by:

J1

(
X, f

d

dt

)
=
(
φ1X − fξ1, η1(X)

d

dt

)
, J2

(
X, f

d

dt

)
=
(
φ2X − fξ2, η2(X)

d

dt

)
(3.16)

J3

(
X, f

d

dt

)
=
(
φ3X − fξ3, η3(X)

d

dt

)
where X ∈ Γ(TM) and f ∈ C∞(N4n+3 ⊗ R). Let Ji; i = 1, .., , 3 be integrable, that is

[Ji, Ji] = 0 so that (φi, ξi, ηi) is hypernormal. Suppose there exist another almost complex

structure J4 such that J4

(
X, f d

dt

)
=
(
φ4X − fξ4, η4(X) d

dt

)
and [Ji, Ji] = 0, then (φ4, ξ4, η4)

is an almost contact structure. Moreover if J3J4 = J1J2J4 = −J1J4J2 = J4J1J2 = J4J3,

then (φ4, ξ4, η4) defines an almost contact structure whose field of endomorphism satisfies

the anticommutativity condition with the other three.

Proof. The proof follows from the proof of Theorem 3.2.1.

We now qualify our construction as follows:

Let (φ1, ξ1, η1), (φ2, ξ2, η2), (φ3, ξ3, η3) be almost contact 3-structures on M5n+4. From

Theorem 3.2.1, we see that:

φ1φ2 + φ2φ1 = η1 ⊗ ξ2 + η2 ⊗ ξ1 = 0 φ1ξ2 + φ2ξ1 = 0 (3.17)

so that φ1 = φ2φ3 − η3 ⊗ ξ2 = −φ3φ2 + η2 ⊗ ξ3, φ2 = φ3φ1 − η1 ⊗ ξ3 = −φ1φ3 + η3 ⊗ ξ1

and φ3 = φ1φ2 − η2 ⊗ ξ1 = −φ2φ1 + η1 ⊗ ξ2. Similar descriptions can be given for ξi and
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ηi according to the same result. We need to construct (φ4, ξ4, η4) such that each of the

respective tensors is expressed in terms of the first three above.

With obvious identifications, we see that ∃ some endomorphism constructible from

φ1, φ2, φ3; which are pairwise anticommutative and thus:

φ1φ2 + φ2φ1 + φ1φ3 + φ3φ1 + φ2φ3 + φ3φ2 = η1 ⊗ ξ2 + η2 ⊗ ξ1+

η1 ⊗ ξ3 + η3 ⊗ ξ1 + η2 ⊗ ξ3 + η3 ⊗ ξ2 = 0 (3.18)

From 3.18, by exhausting the permutations of all the possible combinations, we have pos-

sible constructions for φ4, as:

φ4 = φ1φ2 + φ2φ3 + φ3φ1 −
(
η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3

)
= −

(
φ2φ1 + φ3φ2 + φ1φ3

)
+ η1 ⊗ ξ2 + η2 ⊗ ξ3 + η3 ⊗ ξ1 (3.19)

Similarly,

ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1 = −
(
φ2ξ1 + φ3ξ2 + φ1ξ3

)
(3.20)

But

η1 ◦ φ2 + η2 ◦ φ1 + η1 ◦ φ3 + η3 ◦ φ1 + η2 ◦ φ3 + η3 ◦ φ2 = 0,

and ηi(ξj) = ηj(ξi) = 0; i 6= j, ηi(ξi) = 1, ηi(φi) = 0 ∀i = 1, 2, 3. So we need an appropriate

η4 from the construction such that the aggregate (φ4, ξ4, η4) is an almost contact structure.

By inspection, we can immediately see that

η4 =
1

3

(
η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1

)
= −1

3

(
η2 ◦ φ1 + η3 ◦ φ2 + η1 ◦ φ3

)
(3.21)

Theorem 3.2.3. Let M5n+4 ∼= N4n+3 ⊗ Rd be given. Assume that the hyper-Khalerian

condition on almost cosymplectic structures Ji results to some J4 given by the proposition

3.2.1, then there exists the aggregate (φ4, ξ4, η4) on M5n+4 ∼= N4n+3⊗Rd and embedded on

the hidden compartment.
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Proof. Recall that ξ1 = φ2ξ3−φ3ξ2, ξ2 = φ3ξ1−φ1ξ3, ξ3 = φ1ξ2−φ2ξ1. Let φ2
4 = −I+η4⊗ξ4,

we show that η4(ξ4) = 1, φ4ξ4 = 0 and η4 ◦ φ4 = 0 as follows:

η4(ξ4) =
1

3

(
η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1

)(
φ1ξ2 + φ2ξ3 + φ3ξ1

)
=

1

3

(
{η1(φ2ξ1) + η1(φ2ξ2) + η1(φ2ξ3)}+ {η2(φ3ξ1) + η2(φ3ξ2) + η2(φ3ξ3)}+

{η3(φ1ξ1) + η3(φ1ξ2) + η3(φ1ξ3)}
)

=
1

3

(
− η1ξ3 + η1ξ1 + η2ξ2 − η2ξ1 + η3ξ3 − η3ξ2

)
=

1

3
(3) = 1 (3.22)

Next,

φ4ξ4 =
(
φ1φ2 + φ2φ3 + φ3φ1 −

(
η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3

))(
ξ1 + ξ2 + ξ3

)
=
(
φ1φ2ξ1 + φ1φ2ξ2 + φ1φ2ξ3 + φ2φ3ξ1 + φ2φ3ξ2 + φ2φ3ξ3 + φ3φ1ξ1 + φ3φ1ξ2

+ φ3φ1ξ3

)
−
(
η2

3∑
i=1

(ξi)⊗ ξ1 + η3

3∑
i=1

(ξi)⊗ ξ2 + η1

3∑
i=1

(ξi)⊗ ξ3

)
=
(
− φ1ξ3 − φ2ξ1 − φ3ξ2

)
−
( 3∑
i=1

(ξi)
)

=
( 3∑
i=1

(ξi)
)
−
( 3∑
i=1

(ξi)
)

= 0 (3.23)

Finally,

η4 ◦ φ4 =
1

3

(
η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1

)(
φ4

)
=

1

3

((
η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1

)(
φ4

))
=

1

3

{(
η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1

)(
φ1φ2 + φ2φ3 + φ3φ1

)
−(

η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1

)(
η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3

)}
=

1

3

{
η1(φ2φ2φ3) + η2(φ3φ3φ1) + η1(φ1φ1φ2)

}
− 1

3

{
η1φ2(η2 ⊗ ξ1) + η1φ2(η3 ⊗ ξ2)+

η1φ2(η1 ⊗ ξ3) + η2φ3(η2 ⊗ ξ1) + η2φ3(η3 ⊗ ξ2) + η2φ3(η1 ⊗ ξ3) + η3φ1(η2 ⊗ ξ1)+

η3φ1(η3 ⊗ ξ2) + η3φ1(η1 ⊗ ξ3)
}

(3.24)

Applying a vector field ξi ∈ {ξ1, ξ2, ξ3} to equation 3.24, consider ξ2 say, we have:

1

3

{
η1(φ2φ2φ3ξ2) + η2(φ3φ3φ1ξ2) + η1(φ1φ1φ2ξ2)

}
− 1

3

{
η1φ2(η2(ξ2)⊗ ξ1) + η1φ2(η3(ξ2)⊗ ξ2)

+ η1φ2(η1(ξ2)⊗ ξ3) + η2φ3(η2(ξ2)⊗ ξ1) + η2φ3(η3(ξ2)⊗ ξ2) + η2φ3(η1(ξ2)⊗ ξ3)

+ η3φ1(η2(ξ2)⊗ ξ1) + η3φ1(η3(ξ2)⊗ ξ2) + η3φ1(η1(ξ2)⊗ ξ3)
}

=
1

3

(
η1φ2(−φ2ξ1)

)
− 1

3

(
η1(φ2ξ1) + η2(φ3ξ1) + η3(φ1ξ1)

)
=

1

3

(
η1(φ2ξ3)

)
− 1

3

(
− η1ξ3 + η2ξ2)

)
=

1

3

(
η1ξ1 − η2ξ2

)
= 0 (3.25)
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Hence, the three structures, (φ1, ξ1, η1), (φ2, ξ2, η2) and (φ3, ξ3, η3) defines essentially an

almost contact 4-structure (φ4, ξ4, η4).

Theorem 3.2.4. Let R5n+4 for n is odd be the (5n + 4)-dimensional Euclidean space.

Consider
{
xi, yi, z

}
, 1 ≤ i ≤ 5n+ 4 as coordinates of R5n+4 and define with respect to the

natural field of frames a tensor field φ4 ∈ TM ⊕ TM∗ :

φ4 = (
3∑
i=1

(Xi∂/∂xi + Yi∂/∂yi) + Z∂/∂z)

=
3∑
i=1

(−1)i(Yi∂/∂xi −Xi∂/∂yi) +
3∑
i=1

(−1)iYiyi∂/∂z

Then the differential 1-form η4 = −1
3
(η2 ◦ φ1 + η3 ◦ φ2 + η1 ◦ φ3) takes the form:

η4 =
1

2
(∂z −

n∑
i=1

yi∂xi)

Additionally, the vector field ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1 becomes:

ξ4 = 2(∂/∂z)

It is now easy to check that: φ2
4 = −I + η4 ⊗ ξ4, η4(ξ4) = 1, η4 ◦ φ4 = 0 and φ4ξ4 = 0 and

rank of φ4 = 5n+ 2 for n is odd.

Finally, let σ = 2α where α = 5n + 2 for n is even, the metric gM on R5n+4 will be given

by:

gM = η4 ⊗ η4 +
1

4

{
−

σ/2∑
i=1

(∂xi ⊗ ∂xi + ∂yi ⊗ ∂yi) +
n∑

i=σ/2+1

(∂xi ⊗ ∂xi + ∂yi ⊗ ∂yi)
}

with respect to the natural frame. Clearly, gM is Riemannian metric with index σ and

(φ4, η4, ξ4, gM) is normal in R5n+4. The connection ∇ on R5n+4 is involutive.

Proof. Follows from the proof given in Theorem 3.2.3 with some modification.

Corollary 1. Let (M5n+4, gM) ∼= (N4n+3 ⊗ Rd, gN) be the metric manifold, containing

almost contact three structures (φi, ξi, ηi) for all i = 1, 2, 3 where φi are the three (1, 1)

tensors, ξi the three vector fields and ηi the three 1-forms respectively whose constructions

are given by Theorem 3.2.3. For an odd integer n, (M5n+4, gM) contains an almost contact
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structure (φ4, ξ4, η4) constructible from (φi, ξi, ηi) for all i = 1, 2, 3 whose tensors are given

below by:

φ4 =
∑

i=1,2,3,j=1,2,3

(φiφj)−
∑

i=1,2,3,j=1,2,3

(ηj ⊗ ξi)

=
∑

i=1,2,3,j=1,2,3

− (φjφi) +
∑

i=1,2,3,j=1,2,3

(ηi ⊗ ξj)

ξ4 =
∑

i=1,2,3,j=1,2,3

(φiξj) =
∑

i=1,2,3,j=1,2,3

− (φjξi)

η4 =
1

3
(

∑
i=1,2,3,j=1,2,3

(ηi ◦ φj)) =
1

3
(

∑
i=1,2,3,j=1,2,3

− (ηj ◦ φi)) (3.26)

Moreover, ηi(ξ4) = η4(ξi) = 1, for all i = 1, 2, 3.

Theorem 3.2.5. From the construction of the almost contact metric structure (φ4, ξ4, η4, gM),

given by the corollary 1 follows that, the computation of the Nijenhuis tensor associated

with our tensors gives:

N(1)(Y1, Y2) = [φ4, φ4](Y1, Y2) + 2dη4(Y1, Y2)ξ4 (3.27)

N(2)(Y1, Y2) = (Lφ4Y1η4)(Y2)− (Lφ4Y2η4)(Y1) (3.28)

N(3)(Y1, Y2) = (Lξ4φ4)(Y1) (3.29)

N(4)(Y1, Y2) = (Lξ4η4)(Y1) (3.30)

(3.31)

We will proof equation 3.27 and the proof of 3.28, 3.29, 3.30 and 3.31 follow.

Proof. Let Y1, Y2 ∈ T (M5n+4) and assume Y1 = X, Y2 = Y then we have:

2dη4 = Xη4(Y )− Y η4(X)− η4[X, Y ]

= Xg(ξ4, Y )− Y g(ξ4, X)− g(ξ4[X, Y ])

= g(∇Xξ4, Y ) + g(ξ4,∇XY )− g(∇Y ξ4, X)− g(ξ4,∇XY −∇YX)

= g(ξ4,∇XY −∇YX −∇XY +∇YX)

= g(ξ4, 0)

= 0.
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[φ4, φ4](X, Y ) = φ2
4[X, Y ]− φ4[φ4X, Y ]− φ4[X,φ4Y ] + [φ4X,φ4Y ]

= −[X, Y ] + η4([X, Y ])ξ4 − φ4[φ4X, Y ]− φ4[X,φ4Y ] + [φ4X,φ4Y ]

= −[X, Y ] + g(ξ4, [X, Y ])ξ4 − φ4[φ4X, Y ]− φ4[X,φ4Y ] + [φ4X,φ4Y ]

= −[X, Y ] + g(ξ4[X, Y ])ξ4 − φ4(∇φ4XY −∇Y φ4X − φ4∇YX)

− φ4(∇Xφ4Y + φ4∇XY −∇φ4Y −∇φ4YX) + (∇φ4Xφ4)Y

+ φ4∇φ4XY − (∇φ4Y φ4)X − φ4∇φ4YX

= −[X, Y ] + g(ξ4, [X, Y ])ξ4 − φ4∇φ4XY + φ2
4∇YX

− φ2
4∇XY + φ4∇φ4XY − φ4∇φ4YX

= −[X, Y ]− g(ξ4, [X, Y ])ξ4 −∇YX + η4(∇YX)ξ4

+ ∇XY − η4(∇XY )ξ4

= −∇XY +∇YX +∇XY −∇YX + g(ξ4,∇XY −∇YX −∇XY )ξ4

= 0

So

N(1)(Y1, Y2) = [φ4, φ4](Y1, Y2) + 2dη4(Y1, Y2)ξ4 = 0.

(3.32)

Appropriately, N(2)(Y1, Y2) = 0, N(3)(Y1, Y2) = 0 and N(4)(Y1, Y2) = 0. Hence the almost

contact metric structure (φ4, ξ4, η4, gM) is normal.

Proposition 3.2.2. The almost contact metric structure (φ4, ξ4, η4) satisfies the condition:

(∇Xφ4)Y = gM(X, Y )ξ4 − η4(Y )X∀X, Y ∈ T (M5n+4) (3.33)

Proof. Clearly, φ4 = φ1φ2 + φ2φ3 + φ3φ1 − (η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3),

ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1,

η4 = 1
3
(η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1)

Substituting these in the equation 3.33 and considering that ∇xξ4 = −φ4X, Y = ξ4, we
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have

(∇Xφ4)Y = ∇X(φ1φ2 + φ2φ3 + φ3φ1 − (η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3))Y

= gM(X, Y )(φ1ξ2 + φ2ξ3 + φ3ξ1)

− (
1

3
(η1 ◦ φ2 + η2 ◦ φ3 + η3 ◦ φ1))(X, Y )

where gM is a metric on M5n+4

(∇Xφ4)Y = ∇Xφ1φ2Y +∇Xφ2φ3Y +∇Xφ3φ1Y

− ∇XY η2 ⊗ ξ1 −∇XY η3 ⊗ ξ2 −∇XY η1 ⊗ ξ3

= gM(X, Y )φ1ξ2 + gM(X, Y )φ2ξ3 + gM(X, Y )φ3ξ1

− 1

3
η1 ◦ φ2XY −

1

3
η2 ◦ φ3XY −

1

3
η3 ◦ φ3XY

= −φ4φ1φ2 − φ4φ2φ3 − φ4φ2φ1

+ φ4η2 ⊗ ξ1 + φ4η3 ⊗ ξ2 + φ4η1 ⊗ ξ3

= gM(X, ξ4)φ1ξ2 + gM(X, ξ4)φ2ξ3 + gM(X, ξ4)φ3ξ1

− 1

3
η1φ2ξ4(X)− 1

3
η2φ3ξ4(X)− 1

3
η3φ1ξ4(X)

= 0.

Hence the required condition is satisfied.

Remark 3. From the results of proposition 3.2.2, we have observed that the aggregate(φ4, ξ4, η4)

is a fourth Sasakian structure.

3.3 Geometry of Metric gM of Tangent bundle T (M5n+4)

Proposition 3.3.1. Let gI ,gII ,gIII ,gN be the positive definite metrics associated to the

structures (φ1, ξ1, η1),....,(φ4, ξ4, η4) respectively in the differentiable manifold M of almost

contact 4-structure. Then there exists another metric gM of the structure such that if

Y, Z ∈ T (M5n+4) then for all i = 1, 2, 3, 4.

gM(Y, Z) =
1

5

{
gN(Y, Z) +

∑
i=1

4
gN(φi(Y ), φi(Z)) + ηi(Y ) + ηi(Z)

}
(3.34)
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Proof. Let gI be the associated metric (φ1, ξ1, η1) then is easy to see that gII ,gIII ,gN can

be defined as

gII(Y, Z) = gI(Y − η2(Y )ξ2, Z − η2(Z)ξ2) + η2(Y )η2(Z)

gIII(Y, Z) = gII(Y − η3(Y )ξ3, Z − η3(Z)ξ3) + η3(Y )η3(Z)

gN(Y, Z) = gIII(Y − η4(Y )ξ4, Z − η4(Z)ξ4) + η4(Y )η4(Z) (3.35)

it follows

5gM(Y, Z) = gN(Y, Z) +
4∑
i=1

gN(φi(Y ), φi(Z)) + ηi(Y ) + ηi(Z) (3.36)

From which

gM(Y, Z) =
1

5

{
gN(Y, Z) +

∑
i=1

4
gN(φi(Y ), φi(Z)) + ηi(Y ) + ηi(Z)

}
(3.37)

The equations 3.35, 3.36 and 3.37 hold for any vector in T (M5n+4).

3.4 The Reeb Vector Field
{
ξ1, ξ2, ξ3, ξ4

}
A nonparallel vector X on the manifold (M, gM) is regarded as killing if LXgM = 0. This

condition can equivalently be given by: ξij + ξji = 0, the classical killing equation for

covariant components ξi = gijξ
j of the vector field X. Thus generally, a field X ∈ (M, gM)

is the killing vector field provided the angles between the field X and tangent vectors to

every (oriented) geodesic in (M, gM) are constant or vanishing along this geodesic. From

the construction, we have: ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1 = −φ2ξ1 − φ3ξ2 − φ1ξ3 and the next

results hold;

Proposition 3.4.1. Let D be the vertical distribution of T (M5n+4) and ξ4 ∈ D given by

ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1 . Then ξ4 is infinitesimal translation.

Proof. Assume that every integral curve of any two ξ′4s and ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1 is

geodesic in (M5n+4, gM), we immediately have Lξ4gM (ξ4X) = 0 : X ∈ M5n+4. This means
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that ξ4 is killing and result follows. Dually let X ∈M5n+4 be arbitrary smooth vector field

then the:

0 = Lξ4gM (ξ4X)

= ξ4.gM(ξ4, X)− gM([ξ4, ξ4], X)− gM(ξ4, [ξ4, X])

= gM(∇ξ4ξ4, X) + gM(ξ4,∇ξ4 , X)− gM(ξ4, [ξ4, X])

= gM(∇ξ4ξ4, X) + gM(ξ4,∇Xξ4)

= gM(∇ξ4ξ4, X) +
1

2
X.gM(ξ4, ξ4)

= 0.

Hence the required result

Proposition 3.4.2. Let ξ4 = φ1ξ2 + φ2ξ3 + φ3ξ1 be Reeb vector field on (M, gM). Since ξ4

is an infinitesimal translation, it is killing and thus:

(i) ξ4 is a Jacobian vector field along the geodesic f(t) : t ∈ R in (M, gM).

(ii) if h(t) = 1
2
gM(ξ4(f(t)), ξ4(f(t))) where f(t) is geodesic on (M, gM) then:

f ′′(t) = gM(∇f ′(t)ξ4,∇f ′(t)ξ4)− gM(R(ξ4, f
′(t))f ′(t), ξ4)

(iii) If x is the critical point of the length gM(ξ4, ξ4)
1
2 of the field ξ4 and gM(ξ4, ξ4) 6= 0 then

the integral trajection of ξ4 passing through the point x is geodesic in (M5n+4, gM)

Proof. (i) Let R be the Ricci curvature on (M, gM) and ∇ the usual Levi-civita connec-

tion. Suppose f(t) : t ∈ R is a geodesic curve of ξ4 in (M, gM) then Lξ4gM (ξ4, X) = 0,

for all X ∈ Γ(TM). But in terms of R and ∇, we have that

∇2
f ′(t)ξ4 +R(ξ4, f

′(t))f ′(t) = 0 (3.38)

where f ′(t) is the derivative of f(t) : t ∈ R. By equation 3.38, we conclude that ξ4 is

Jacobi along f(t)
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(ii) The proof of (ii) follows from (i) and the calculation:

h′(t) =
1

2
∇f ′(t)gM(ξ4, ξ4)

= gM(∇f ′(t)ξ4, ξ4)

= gM(∇2
f ′(t)ξ4,∇f ′(t)ξ4)− gM(R(ξ4, f

′(t)f ′(t), ξ4))

(iii) The proof of (iii) follows from the proof provided in (ii) for x ∈ Γ(TM).

Proposition 3.4.3. Let ξ4 ∈ ΓT (M5n+4), since ξ4 ∈ D and TM = D ⊕ H, the vectors

ξ1, ξ2, ξ3, ξ4 are killing vector fields and thus:

(∇ξ4η4)X + (∇Xη4)ξ4 = 0.

(3.39)

for X ∈ TM5n+4.

Proof. Since we have, ∇Xη4 = φ4X and ∇ξ4η4 = φ4ξ4 then we can easily see that:

φ4ξ4 + φ4X = 0

implying that:

φ4ξ4 = −φ4X.

Substituting this to φ4 we get:

φ1φ2ξ4 + φ2φ3ξ4 + φ3φ1ξ4 − η2 ⊗ ξ1ξ4 − η3 ⊗ ξ2ξ4 − η1 ⊗ ξ3ξ4 (3.40)

= −(−φ1φ2X − φ2φ3X − φ3φ1X + η2 ⊗ ξ1X + η3 ⊗ ξ2X + η1 ⊗ ξ3X) (3.41)

Take ξ4 = X = ξ4 and substitute in the equation 3.40 we get:

Equation: 3.40 = 3.41 = 0 as required. Hence, ξ4 is a killing vector field.

Proposition 3.4.4. Let (M5n+4, φ4, ξ4, η4, gM) be the d-dimensional Riemannian manifold.

There is a field say V in M5n+4 commuting with φ4 such that:

(∇Xφ4)Y = η4(Y )V X − gM(V X, Y )ξ4

(3.42)
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∀X, Y ∈ M5n+4 and ∇-Levi-civita connection. Moreover, the integral curves of ξ4 are

geodesics.

Proof. Let X, Y ∈ T (M5n+4) be given and ξ4 ∈ D. Then

(∇Xφ4)Y = η4(Y )V X − gM(V X, Y )ξ4 (3.43)

Replacing Y with ξ4 in equation 3.43 and applying φ4 we get:

φ4V = ∇ξ4 (3.44)

From equation 3.44 we get:

∇ξ4ξ4 = φ4V ξ4 = V φ4ξ4 = 0.

Moreover, N (2)(X, Y ) = 0 implies that:

dη4(φ4X, Y ) = dη4(φ4Y,X)

Thus the linear transformation V on M is symmetric and since ∇ξ4ξ4 = 0, and thus the

integral curves of ξ4 are geodesics.

3.5 Geometric Relationship between (M5n+4, gM) and (N4n+3, gN)

From the previous section, we denote by gM the metric compatible with

M5n+4 ∼= N4n+3 ⊗ Rd defined by:

gM(X, Y ) =
1

5

{
gN(X, Y ) +

4∑
i=1

gN(φi(X), φi(Y )) + ηi(X) + ηi(Y )
}

(3.45)

where, M is a 5n + 4 dimensional manifold and by gN the metric compatible with N4n+3

defined by:

gN(X, Y ) = gIII(X − η4(X)ξ4, Y − η4(Y )ξ4) + η4(X)η4(Y )∀X, Y ∈M. (3.46)

Submersions from a manifold to another are useful for comparing geometric structures

between them. A differentiable map F : (M, gM) → (N, gN) between the Riemannian
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manifolds (M, gM) and (N, gN) is called isometric immersion (submanifold) if F∗ is injective

and

gN(F∗X,F∗Y ) = gM(X, Y ) (3.47)

for X, Y ∈ TM and F∗ a derivative map.

A smooth map F : (M, gM)→ (N, gN) is called a submersion if F∗ is onto and satisfies

equation 3.47, for vector fields X and Y tangent to the horizontal space (kerF∗)
⊥.

Let F : (M5n+4, gM)→ (N4n+3, gN) be a smooth map between Riemannian manifolds such

that 0 < rankF < min(5n+ 4, 4n+ 3) for odd n, where the dimension of M = 5n+ 4 and

dimension of N = 4n+ 3, then the kernel of the space F ∗ is denoted by kerF∗. Consider

the orthogonal complementary space H = (kerF∗)
⊥ to kerF∗. Then, the tangent bundle

of M5n+4 has the following decomposition:

T (M5n+4) = KerF∗ ⊕H

Similarly, we consider the complementary orthogonal space (rangeF∗)
⊥ to range F∗ in the

tangent bundle T (N4n+3 × R). Since, rankF < min(5n+ 4, 4n+ 3), we always have that

(rangeF∗)
⊥ 6= 0. Thus T (N4n+3 × R) has the following decomposition:

T (N4n+3 × R) = (rangeF∗)⊕ (rangeF∗)
⊥.

The set of equations that describe the relationships between invariant quantities on the

empirical submanifolds and the base manifold when the Riemannian connection is used,

are expressed by the Gauss’ formulae, Weingartens’ formulae and the equations of Gauss,

Codazzi and Ricci. In this section we extend these equations to Riemannian submersions

between M5n+4 and N4n+3.

To do this, we recall the pullback connection along a map and assume that

‖F∗‖2 = rankF . Then we define Gauss formula for the map using the second fundamental

form of Riemannian map. We also obtain Weingarten formula for the map using the linear

connection ∇F⊥ in (F∗(TM))⊥. From the formula of Gauss-Weingarten, we extend to

Gauss, Ricci and Codazzi equations for submersions. This results may be useful in the

sequel.
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Proposition 3.5.1. Let F : (M5n+4, gM) → (N4n+3, gN) be a submersion between M5n+4

and N4n+3 then the following will equivalently hold:

(i) F is Riemannian at p1 ∈ TM and thus at every p ∈M .

(ii) Πp1 is a projection.

(iii) Π
′
p1

is a projection.

Proof. Since (M5n+4, gM) and (N4n+3, gN) are compatible with gM with respect to gN , the

map F : M → N is Riemannian if there exists the adjoint map ∗F∗ of F∗ characterized by:

gM(X, ∗F∗p1Y ) = gN(F∗p1 , Y )

for some X ∈ Tp1M and Y ∈ TF (p1)N and p1 ∈M . Additionally, F is smooth between the

manifolds M and N, thus we can define linear transformation:

Πp1 : Tp1M → Tp1M ; Πp1 = ∗F∗p1 ◦ F∗p1

Π
′

p1
: Tp2N → Tp2N ; Π

′

p1
= F∗p1 ◦ ∗F∗p1 .

Hence, Πp1 ◦Πp1 = Πp1 and Π
′
p1
◦Π

′
p1

= Π
′
p1

. So both Πp1 and Π
′
p1

are projections and the

results above is completely characterized.

3.6 Gauss-Weingarten Formulae for α-Rotated Submersion between M5n+4

and N4n+3

Definition 3.6.1. For a smooth map F : (M5n+4, gM) −→ (N4n+3, gN). Let F � Π where

Π is any given projection on Γ(M5n+4), then for any α ∈ M5n+4, we have Π = αF and

call Π, the α-rotated submersion.

Let Π : M → N be the α-rotated submersion between (M5n+4, gM) and (N4n+3, gN).

Let p2 = Π(p1) for p1 ∈M . Suppose
N

∇ is a Levi-Civita connection on N4n+3, for

X ∈ Γ(TM) and V ∈ Γ(TN), we have:

N

∇X(V ◦ Π) = ∇N
Π∗XV (3.48)
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where Π−1TN defines the pullback bundle having fibres (Π−1TN)p = TΠ(p)N for p ∈ M .

Hom(TM,Π−1TN) has a connection ∇ induced from the Levi-Civita connection ∇M and

the pullback connection. The second fundamental form of Π is given by:

(∇Π∗)(X, Y ) =
N

∇Π
XΠ∗(Y )− Π∗(∇M

X Y ) (3.49)

X, Y ∈ ΓT (M5n+4). This form is symmetric. In addition (∇Π∗)(X, Y ) ∈ Γ((kerΠ∗)
⊥),

for X, Y ∈ ΓT (M5n+4), hence it lacks components in range Π∗. The following results thus

hold.

Proposition 3.6.1. Let Π : M → N be the Riemannian α-rotated described above. Then,

gN((∇Π∗)(X, Y ), (Π∗(Z))) = 0∀X, Y, Z ∈ Γ(kerΠ⊥∗ ) (3.50)

Proof. Clearly, (∇Π∗)(X, Y ) ∈ Γ((rangeΠ∗)
⊥) ∈ Γ((kerΠ∗)

⊥), for X, Y, Z ∈ TM . Hence,

given any point p ∈M5n+4, we can write:

N

∇Π
XΠ∗(Y )(p) = Π∗(∇M

X Y )(p) + (∇Π∗)(X, Y )(p)∀X, Y ∈ Γ(kerΠ∗)
⊥ (3.51)

where
N

∇Π
XΠ∗(Y ) ∈ TΠ(p)N , Π∗(∇M

X Y )(p) ∈ Π∗p(TpM)

and (∇Π∗)(X, Y )(p) ∈ (Π∗p(TpM))⊥.

Next, Let Π : M5n+4 → N4n+3 be a Riemannian submersion. We define T and A by:

AEF = H∇M
HEVF + V∇M

HEHF (3.52)

TEF = H∇M
VEVF + V∇M

VEHF (3.53)

where E,F ∈ (M5n+4) and ∇M is the levi-civita connection on gM such that F = 1
α

Π and

E = 1
α′

Π ∀α, α′ ∈M5n+4.

From T (M5n+4) = kerΠ∗⊕H, we see that, ΠE = TVE and AE = AHE, hence T and A are

vertical and horizontal respectively. Now T satisfies,

TUW = TWU∀U,W ∈ Γ(kerΠ∗).
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Again, from equation 3.52 and 3.53 we have:

∇M
V W = TVW +

¬
∇VW (3.54)

∇M
V X = H∇M

V X + TVX (3.55)

∇M
X V = AXV + V∇M

X V (3.56)

∇M
X Y = H∇M

X Y +AXY (3.57)

(3.58)

for all X, Y ∈ Γ((kerΠ∗)
⊥) and V,W ∈ Γ(kerΠ∗) where

¬
∇ = V∇M

V W . Let ∇N denote

both the levi-civita connection of (gN) and its pullback along Π. Then ∇Π⊥ linear on

(Π∗(TM))⊥ and ∇Π⊥gN = 0.

Proposition 3.6.2. Let Π : M5n+4 → N4n+3 be an α-rotated submersion. Then the map

defined and denoted by SV as:

∇N
Π∗XV = −SV Π∗X +∇Π⊥

X V (3.59)

where SV Π∗X is the tangential component of ∇N
Π∗XV is symmetric linear transformation.

Proof. It has been gotten from the pullback connection of ∇N , thus at p1 ∈M5n+4, we see

that:

∇N
Π∗XV (p1) ∈ TΠ(p1)N , SV Π∗X(p1) ∈ Π∗p1(Tp1M) and∇Π⊥

X V (p1) ∈ (Π∗p1(Tp1M))⊥. Clearly

SV Π∗X is biliniear in V and Π∗X and SV Π∗X at p1 depend on Vp1 and Π∗p1Xp1 . Computing

directly, we get:

gN(SV Π∗X,Π∗Y ) = gN(V, (∇Π∗)(X, Y )) (3.60)

for X, Y ∈ Γ(kerΠ∗)
⊥ and V ∈ Γ(rangeΠ∗)

⊥. Since (∇Π∗) is symmetric, it follows that

SV is a symmetric transformation of range Π∗.

Remark 4. : The equations 3.51 is Gauss formula and equations 3.55, 3.56, 3.57 and 3.58

are weingarten equations for Π : M5n+4 → N4n+3

Figure 3.1 shows that α-rotated submersion between M5n+4 and N4n+3 ⊗Rd. The shaded

regions are mapped isometrically to each other by Π and the unshaded regions are inde-

pendent of each other.

39



 

 

 

 

 

 

 

 

 

 

             

                   

 

 

         

            
             

 
 

                 
              

 
 
     

Figure 3.1: An α-rotated submersion between M and N

3.7 Gauss and Codazzi equations of submersion F between M5n+4 and N4n+3

Let F : M5n+4 → N4n+3 the α- rotated submersion described in the previous section.

Consider a linear transformation given and define by:

Πλ
∗p1 : (kerΠ∗)

⊥(p1), gMp1((kerΠ∗)
⊥(p1))→ (rangeΠ∗(p2), gNp2(rangeΠ∗p2). The adjoint of

Πλ
∗ is denoted by ∗Πλ

∗ and by ∗Π∗p1 the adjoint of Π∗p1 . Now

Π∗p1 : (Tp1M, gMp1)→ (Tp2N, gNp2). Then the linear transformation:

(∗Π∗p1)λ : rangeΠ∗(p2)→ (kerΠ∗)
⊥(p1) defined by (∗Π∗P1)

λY = ∗Π∗p1Y such that

Y ∈ Γ(rangeΠ∗p1), p2 = Π(p1) is an epimorphism and (Πλ
∗p1)

−1 = (∗Π∗p1)λ = ∗(Πλ
∗p1).

Now suppose α ∈M5n+4 is given and Π is the α-rotated submersion described, then there

exists some meromorphism { which is isometrically mapped to Π that is { � Π, we use

this { in the sequel:

Recall Gauss and Weingarten formulas 3.51 and 3.59 respectively. From them we have the
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Ricci curvature in terms of { as:

RN({∗ξi, {∗ξj){∗Z = −S(∇{∗)(Y,Z){∗X + S(∇{∗)(X,Z){∗Y

+ {∗(R
M(X, Y )Z) + (∇X(∇{∗))(Y, Z)

− (∇Y (∇{∗))(X,Z)∀i 6= j. (3.61)

∀X, Y, Z ∈ Γ(ker{∗)⊥ where RM , RN represent the curvature tensors of ∇M and ∇N

respectively the metric connection on M and N. Moreover, (∇X(∇{∗))(Y, Z) is defined by:

∇X(∇{∗)(Y, Z) = ∇{⊥X (∇{∗)(Y, Z)− (∇{∗)(Y,∇M
X Z) (3.62)

From equation 3.61, for any vector J ∈ Γ((ker{∗)⊥), we have:

gN(RN({∗X, {∗Y ){∗Z, {∗J) = gM(RM(X, Y )Z, J)

+ gN((∇{∗)(X,Z), (∇{∗)(Y, J))

− gN((∇{∗)(Y, Z), (∇{∗)(X, J)) (3.63)

Taking the Γ(range{⊥∗ ) in equation 3.61 we:

(RN({∗X, {∗Y ){∗Z)⊥ = (∇X(∇{∗))(Y, Z)− (∇Y (∇{∗))(X,Z) (3.64)

The equations 3.63 and 3.64 are the Gauss and Codazzi equations respectively for

{ : M5n+4 → N4n+3 ⊗ Rd.

Next, Let X, Y ∈ TM and V ⊥ ∈ Γ(range{∗), the curvature tensor field R{⊥ of the sub-

bundle (range{∗)⊥ is defined by:

R{⊥({∗(X), {∗(Y ))V = ∇{⊥X ∇{⊥Y V −∇{⊥Y ∇{⊥X V −∇[X,Y ]
{⊥ (3.65)

Then using Gauss-Weingarten equation 3.61, we obtain:

RN({∗(X), {∗(Y ))V = R{⊥({∗(X), {∗(Y ))V − {∗(∇M
X ∗ {∗(SV {∗(Y )))

+ S∇{⊥
X V {∗(Y ) + {∗(∇M

Y ∗ {∗(SV {∗(X)))

− S∇{⊥
X V {∗(X)− (∇{∗)(X, ∗{∗(SV {∗(Y )))

+ (∇{∗)(Y, ∗{∗(SV {∗(X)))− SV {∗([X, Y ]) (3.66)
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where,

{∗([X, Y ]) =
N

∇{X{∗(Y )−
N

∇{Y {∗(X).

Indeed for some {∗(Z) ∈ Γ(range{∗), we have:

gN(RN({∗(X), {∗(Y ))V, {∗(Z)) = gN((
∼
∇Y S)V {∗(X), {∗(Z))

− gN((
∼
∇XS)V {∗(Y ), {∗(Z)) (3.67)

where,

(
∼
∇XS)V {∗(Y ) = {∗(∇M

X ∗ {∗(SV {∗(Y )))− S∇{⊥
X V
{∗(Y )− SV {

N

∇{X{∗(Y )

where { denotes the projection meromorphism on the range {∗. Dually, forW ∈ Γ(range{⊥∗ ),

we obtain,

gN(RN({∗(X), {∗(Y ))V,W ) = gN(R{⊥({∗(X), {∗(Y ))V,W )− gN((∇{∗)(X, ∗{∗(SV {∗(Y ))),W )

+ gN((∇{∗)(Y, ∗{∗(SV {∗(X))),W ) (3.68)

Using Gauss-Weingarten equation 3.61 , we obtain:

gN((∇{∗)(X, ∗{∗(SV {∗(Y ))),W ) = gN(SW{∗(X), SV {∗(Y )) (3.69)

Since SV is self adjoint, we get:

gN((∇{∗)(X, ∗{∗(SV {∗(Y ))),W ) = gN(SV SW{∗(X), {∗(Y )) (3.70)

using equation 3.69 and 3.70 we arrive at:

gN(RN({∗(X), {∗(Y ))V,W ) = gN(RN({∗(X), {∗(Y ))⊥V,W )

+ gN([SW , SV ]{∗(X), {∗(Y )) (3.71)

where [SW , SV ] = SWSV −SV SW . The last equation 3.71 is the Ricci equation for α-rotated

submersion Π : M5n+4 → N4n+3 ⊗ Rd
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CHAPTER FOUR

SUMMARY OF FINDINGS, CONCLUSION AND RECOMMENDATIONS

4.1 Summary of Findings

The study was set up with an objective of characterizing certain geometric aspects of a class

of almost contact structures on smooth metric manifold. This has been done in a number of

steps by considering the specific geometric aspects. Starting from the background that Kuo

[20] had proposed the existence of a third almost contact structure on a general smooth

manifold N4n+3, we provided a proof to the supposition in order to validate its existence

by showing that: φ2
3 = −I + η3⊗ ξ3, η3(ξ3) = 1, η3 ◦φ3 = 0. The aggregate (φ3, ξ3, η3) was

expressed on a linear combination of the first two structures: (φ1, ξ1, η1) and (φ2, ξ2, η2).

We then constructed the almost contact 4-structure (φ4, ξ4, η4) expressed as permutation

of linear combination of the first 3-structures on (N4n+3 ⊗ Rd). These tensors were found

to be of the form:

φ4 =
∑

i=1,2,3,j=1,2,3

(φiφj)−
∑

i=1,2,3,j=1,2,3

(ηj ⊗ ξi)

=
∑

i=1,2,3,j=1,2,3

− (φjφi) +
∑

i=1,2,3,j=1,2,3

(ηi ⊗ ξj)

ξ4 =
∑

i=1,2,3,j=1,2,3

(φiξj) =
∑

i=1,2,3,j=1,2,3

− (φjξi)

η4 =
1

3
(

∑
i=1,2,3,j=1,2,3

(ηi ◦ φj)) =
1

3
(

∑
i=1,2,3,j=1,2,3

− (ηj ◦ φi)) (4.1)

Then using an α-rotated submersion Π : M5n+4 −→ N4n+3⊗Rd : d|2n+ 1 we were able to

study the geometric relationships between the two manifolds via the submanifolds giving

rise to a new form of Gauss, Weingarten, Gauss-Codazzi and Ricci equation incorporating

the submersion.
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4.2 Conclusion

In conclusion we mention that the objectives were all fully achieved. Indeed we established

that there exists an intrinsic relationship between the manifolds M5n+4 and N4n+3 ⊗ Rd

since (φ4, ξ4, η4) is embedded on Rd. Furthermore the Reeb vectors obtained were killing

giving rise to geodesic curves defined on M5n+4.

4.3 Recommendation

The classification and study of geometry of high dimensional manifolds still remains open.

We recommend an attempt of the following for further research.

1. The spacelike hypersurface on (M5n+4, gM).

2. The existence of more than 4 almost contact structures on Md where d > 5n+ 4 for

an odd n.

3. The principles of open book decomposition on (M5n+4, gM).
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