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ABSTRACT 

Breast cancer is a top killer illness for women globally, but early and effective screening 

can increase their survival rate. Mammography is the tool used by a radiologist to screen 

for breast cancer, however, a radiologist is susceptible to human observer variability, and 

therefore, reading and interpretation of mammography test results depend on the expertise 

of the radiologist administering the test. To improve the reading and interpretation 

accuracy of the test, researchers’ developed computer-aided extraction descriptors that 

extract discriminant features. These descriptors include the Local Binary Patterns (LBP), 

the Local Ternary Patterns (LTP), and the Local Directional Patterns (LDP), however, they 

have not yet yielded satisfactory results in differentiating breast cancer tumor types. The 

LBP descriptor is inadequately dependable in capturing breast cancer discriminant features 

because it is easily affected by noise. The LTP descriptor uses a fixed threshold value for 

all images in a dataset, making it not invariant to pixel value transformation. It is also not 

practically easy to select an optimum threshold value in real application domains. The LDP 

descriptor relies on top k significant directional responses and ignores the remaining 8-k 

directional responses. Disregarding the remaining directional responses reduces the 

computation efficiency since each pixel in an image carries subtle information. Given the 

limitations identified among the mentioned local texture descriptors, developing an 

effective texture descriptor becomes a viable and challenging research problem. Therefore, 

this study seeks to develop an improved local texture descriptor that considers all 

directional responses and applies an adaptive threshold in encoding image gradient. The 

new Local Directional Ternary Pattern (LDTP) texture descriptor calculates the absolute 

difference between the value of the center pixel and the values of its local neighboring 

pixels for a 3x3 image region. To get edge responses in eight directions, the absolute 

differences are convolved with a kirsch mask, then the pixels are transformed into zeros 

and ones using mini-max normalization. We then passed the normalized values through a 

soft-max function to get the probability of an edge in a certain direction. Then, two 

threshold values are calculated and used to split the probability space into three parts for -

1, 0, +1 bits to generate a ternary pattern. The resultant Local Directional Ternary Pattern 

(LDTP) code is then split into a positive and negative LDTP code. Histograms of negative 

and positive LDTP encoded images are fused to get texture features. We validated the 

LDTP texture descriptor on the Mammographic Image Analysis Society (MIAS) breast 

cancer dataset using Support Vector Machine (SVM) and Artificial Neural Network 

(ANN) classifiers for normal/abnormal and benign/malignant classes. When the LDTP 

texture descriptor was compared against LDP, LTP, and other existing texture descriptors, 

it showed robustness and reliability in encoding an image gradient. The highest 

classification accuracy was attained by the SVM classifier, with 97.32% and 93.93% for 

normal/abnormal and benign/malignant classes, respectively. 



vi 

 

TABLE OF CONTENTS 

DECLARATION ................................................................................................................ ii 

ACKNOWLEDGMENT ................................................................................................... iii 

DEDICATION ....................................................................................................................iv 

ABSTRACT ......................................................................................................................... v 

TABLE OF CONTENTS ...................................................................................................vi 

LIST OF TABLES .......................................................................................................... xiii 

LIST OF FIGURES .........................................................................................................xiv 

LIST OF ABBREVIATIONS AND ACRONYMS .......................................................xvi 

DEFINITION OF OPERATIONAL TERMS ............................................................ xviii 

CHAPTER ONE: INTRODUCTION ............................................................................... 1 

1.1 Background ..................................................................................................................... 1 

1.2 Motivation for Study ....................................................................................................... 5 

1.3 Statement of the Problem ................................................................................................ 6 

1.4 Research Objectives ........................................................................................................ 8 

1.4.1 General Objective ......................................................................................................... 8 

1.4.2 Specific Objectives ....................................................................................................... 8 

1.5 Research Questions ......................................................................................................... 8 

1.6 Significance of the Study ................................................................................................ 9 

1.7 Scope of the Study ........................................................................................................... 9 

1.8 Assumptions in the Study .............................................................................................. 10 

1.9 Limitations of Study ...................................................................................................... 10 

1.10 Thesis Contributions ................................................................................................... 11 



vii 

 

1.11 Thesis Outline ............................................................................................................. 12 

CHAPTER TWO: LITERATURE REVIEW ................................................................ 15 

2.1 Overview ....................................................................................................................... 15 

2.2 Risk Factors Conditioning the Occurrence of Breast Cancer Cells .............................. 15 

2.2.1 Intrinsic Risk Factors ................................................................................................. 16 

2.2.2 Extrinsic Risk Factors ................................................................................................ 19 

2.3 Breast Cancer Screening Tests ...................................................................................... 20 

2.4 Mammographic Signs of Breast Cancer ........................................................................ 27 

2.4.1 Microcalcification ...................................................................................................... 28 

2.4.2 Masses ........................................................................................................................ 30 

2.4.3 Architectural Distortion (AD) .................................................................................... 34 

2.4.4 Bilateral Asymmetry (BA) ......................................................................................... 35 

2.5 Breast Cancer Modelling ............................................................................................... 36 

2.5.1 Shape Models ............................................................................................................. 36 

2.5.2 Texture Models .......................................................................................................... 38 

2.5.3 Hybrid Models ............................................................................................................ 39 

2.6 Breast Cancer CAD System .......................................................................................... 39 

2.7 Breast Cancer Preprocessing Techniques...................................................................... 41 

2.7.1 Mammogram De-noising Techniques ........................................................................ 42 

2.7.2 Mammogram Intensity Enhancement Techniques ..................................................... 45 

2.8 Breast Cancer Segmentation Techniques ...................................................................... 47 

2.8.1 Thresholding Techniques ........................................................................................... 47 

2.8.2 Edge-Based Techniques ............................................................................................. 50 



viii 

 

2.8.3 Region-Based Techniques .......................................................................................... 50 

2.8.4 Cluster-Based Technique ........................................................................................... 52 

2.9 Mammogram Feature Extraction Techniques ............................................................... 53 

2.9.1 Shape-Based Descriptors ............................................................................................ 54 

2.9.2 Texture-Based Descriptors ......................................................................................... 56 

2.9.3 Hybrid-Based Descriptors .......................................................................................... 65 

2.10 Breast Cancer Feature Selection Techniques .............................................................. 66 

2.10.1 Filter Technique ....................................................................................................... 66 

2.10.2 Wrapper Technique .................................................................................................. 69 

2.10.3 Embedded Techniques ............................................................................................. 70 

2.10.4 Hybrid Techniques ................................................................................................... 71 

2.10.5 Comparative Analysis of Feature Selection Techniques .......................................... 72 

2.11 Breast Cancer Classification Techniques .................................................................... 77 

2.11.1 Support Vector Machine .......................................................................................... 79 

2.11.2 K- Nearest Neighbor ................................................................................................ 80 

2.11.3 Artificial Neural Network ........................................................................................ 81 

2.11.4 Linear Discriminant Analysis (LDA) ....................................................................... 82 

2.11.5 Ensemble of Classifiers ............................................................................................ 82 

2.12 Performance Evaluation .............................................................................................. 83 

2.13 Breast Cancer Datasets ................................................................................................ 86 

2.13.1 Digital Database for Screening Mammography (DDSM) ........................................ 87 

2.13.2 Mammographic Image Analysis Society (MIAS) .................................................... 88 

2.13.3 Image Retrieval in Medical Applications (IRMA)................................................... 89 



ix 

 

2.13.4 Breast Cancer Digital Repository (BCDR) .............................................................. 89 

2.13.5 INBreast ................................................................................................................... 90 

2.13.6 Nijmegen Dataset ..................................................................................................... 90 

2.13.7 Banco web LAPIMO dataset .................................................................................... 91 

2.13.8 Mammography Image reading for Radiologists and Computers Learning 

(MIRAcle) dataset ............................................................................................................... 91 

2.14 Breast Cancer Evaluation Protocols ............................................................................ 95 

2.15 Related Work ............................................................................................................. 100 

2.16 Theoretical Framework ............................................................................................. 107 

2.17 Conceptual Framework ............................................................................................. 110 

2.18 Summary ................................................................................................................... 112 

CHAPTER THREE: RESEARCH METHODOLOGY .............................................. 114 

3.1 Overview ..................................................................................................................... 114 

3.2 Research Philosophy ................................................................................................... 114 

3.3 Research Design .......................................................................................................... 116 

3.3.1. Research Approach ................................................................................................. 117 

3.3.2 Research Strategy ..................................................................................................... 117 

3.3.3 Time Horizon ........................................................................................................... 118 

3.3.4 Data Source .............................................................................................................. 119 

3.4 Experimental Setup ..................................................................................................... 121 

3.4.1 Reading a Mammogram Image ................................................................................ 122 

3.4.2 Mammogram Image Preprocessing .......................................................................... 123 

3.4.3 Data Augmentation .................................................................................................. 125 



x 

 

3.4.4 Mammogram Feature Extraction ............................................................................. 128 

3.4.5 Classification ............................................................................................................ 129 

3.4.6. Validation and Evaluation Protocol ........................................................................ 130 

3.5 Review of Research Questions .................................................................................... 131 

3.6 Research Tools and Material ....................................................................................... 131 

3.6.1 MATLAB Installation and Activation procedure .................................................... 132 

3.6.2 MATLAB Image processing App ............................................................................ 134 

3.6.3 MATLAB Classification Learners App ................................................................... 135 

3.6.4 Procedure for downloading the mammogram images from the MIAS dataset ........ 136 

3.7 Ethical Consideration .................................................................................................. 136 

3.8 Summary ..................................................................................................................... 137 

4. CHAPTER FOUR: LDTP TEXTURE DESCRIPTOR ...................................... 138 

4.1 Overview ..................................................................................................................... 138 

4.2 Local Directional Ternary Pattern (LDTP) Texture Descriptor .................................. 138 

4.2.1 Computing directional responses ............................................................................. 139 

4.2.2 Calculating an adaptive threshold ............................................................................ 141 

4.3 Summary ..................................................................................................................... 144 

CHAPTER FIVE: EXPERIMENTAL VALIDATION, RESULTS AND 

DISCUSSION .................................................................................................................. 145 

5.1 Overview ..................................................................................................................... 145 

5.2 Experimental Validation of Local Directional Ternary Pattern (LDTP) .................... 146 

5.2.1 Mammogram Image Acquisition and Reading ........................................................ 146 

5.2.2 Mammogram Preprocessing ..................................................................................... 148 



xi 

 

5.2.3 Data Augmentation .................................................................................................. 149 

5.2.4 Mammogram Feature Extraction using LDTP descriptor ........................................ 150 

5.2.5 Classification ............................................................................................................ 151 

5.2.6 Performance Validation and Evaluation .................................................................. 153 

5.3 Analysis of Results ...................................................................................................... 160 

5.3.1 Performance Analysis of the LDTP descriptor for the Normal/ Abnormal class .... 160 

5.3.2 Performance Analysis of LDTP descriptor for the Benign/Malignant class ............ 161 

5.3.3 Accuracy level Comparison of ANN classifier for LDP, LTP, and LDTP 

descriptors ......................................................................................................................... 161 

5.3.4 Accuracy level Comparison of SVM classifier for LDP, LTP, and LDTP 

descriptors ......................................................................................................................... 162 

5.3.5 Sensitivity and Specificity comparison of SVM and ANN Classifiers for LDTP 

descriptor ........................................................................................................................... 162 

5.3.6 Statistical Significance of the accuracy level achieved by LDTP descriptor ........... 163 

5.3.7 Accuracy level comparison of LDTP descriptor with Existing Local descriptors ... 163 

5.4 Discussion ................................................................................................................... 165 

5.5 Summary ..................................................................................................................... 167 

CHAPTER SIX: CONCLUSION AND FUTURE WORK ......................................... 168 

6.1 Overview ..................................................................................................................... 168 

6.2 Summary of Findings .................................................................................................. 168 

6.3 Achievement of Research Objectives ......................................................................... 169 

6.4 Contribution to Knowledge ......................................................................................... 171 

6.5 Contribution to Practice .............................................................................................. 172 



xii 

 

6.6 Future Work ................................................................................................................ 173 

REFERENCES ................................................................................................................ 175 

APPENDICES ................................................................................................................. 206 

  



xiii 

 

 

LIST OF TABLES 

Table 2. 1: Sensitivity and specificity analysis of imaging tests ................................................. 26 

Table 2. 2: Merits and Demerits of de-noising techniques.......................................................... 44 

Table 2. 3: Mammogram segmentation techniques .................................................................... 53 

Table 2. 4: Pseudocode of a generalized filter algorithm ............................................................ 67 

Table 2. 5: Pseudocode of a generalized wrapper algorithm ...................................................... 69 

Table 2. 6: Pseudocode of a generalized hybrid algorithm ......................................................... 71 

Table 2. 7: Merits and Demerits of feature selection techniques ................................................ 77 

Table 2. 8: Characteristics of breast cancer mammographic datasets ......................................... 93 

Table 3. 1: Image distribution in the MIAS dataset .................................................................. 120 

Table 3. 2: Number of images after data augmentation ............................................................ 127 

Table 3. 3: Review of Research questions ................................................................................ 131 

Table 5. 1: Confusion matrix for N/A classification using ANN classifier .............................. 152 

Table 5. 2: Confusion matrix for N/A classification using SVM classifier .............................. 152 

Table 5. 3: Confusion matrix for B/M classification using ANN classifier .............................. 153 

Table 5. 4: Confusion matrix for B/M classification using SVM classifier .............................. 153 

Table 5. 5: The results of the Wilcoxon test.............................................................................. 159 

Table 5. 6: Accuracy level comparison of LDTP descriptor with existing descriptors ............ 164 

 

  



xiv 

 

 

LIST OF FIGURES 

Figure 2. 1: Microcalcification in the breast ............................................................................... 29 

Figure 2. 2: Mass shapes and margins ......................................................................................... 33 

Figure 2. 3: Architectural distortion of the breast ....................................................................... 34 

Figure 2. 4: Flow Diagram of Breast cancer CAD system .......................................................... 41 

Figure 2. 5: Classification of image de-noising techniques ........................................................ 43 

Figure 2. 6:  Sample LBP code ................................................................................................... 60 

Figure 2. 7: LTP Operator ........................................................................................................... 62 

Figure 2. 8: Kirsch Mask ............................................................................................................. 63 

Figure 2. 9: A sample LDP code using     ............................................................................. 64 

Figure 2. 10: Quinary Code split into four binary code .............................................................. 65 

Figure 2. 11: Theoretical Framework ........................................................................................ 109 

Figure 2. 12: Conceptual Framework ........................................................................................ 111 

Figure 3. 1: Research Onion by Saunders 2012 ........................................................................ 116 

Figure 3. 2: Experimental setup of the research methodology .................................................. 122 

Figure 4. 1: LDTP process ........................................................................................................ 139 

Figure 4. 2:  Normalization process .......................................................................................... 141 

Figure 4. 3: Resultant Ternary Pattern code .............................................................................. 143 



xv 

 

 

 

Figure 5. 1: Sample MIAS images. ........................................................................................... 146 

Figure 5. 2: The process of loading images into the image batch processor app ...................... 147 

Figure 5. 3:  preprocessed Benign, Malignant and Normal images .......................................... 149 

Figure 5. 4: mdb184 malignant image mirrored on x and y-axis .............................................. 150 

Figure 5. 5: LDTP images for Mdb012 benign image .............................................................. 151 

Figure 5. 6: Accuracy levels of SVM and ANN classifiers for LDTP descriptor ..................... 154 

Figure 5. 7: Accuracy comparison of ANN classifier for LDP, LTP, and LDTP ..................... 155 

Figure 5. 8: Accuracy comparison of SVM classifier for LDP, LTP, and LDTP  .................... 156 

Figure 5. 9: Sensitivity measure of SVM and ANN classifiers ................................................ 157 

Figure 5. 10: Specificity measure of SVM and ANN classifiers  ............................................. 158 

 

  



xvi 

 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

AD: Architectural Distortion 

ANN: Artificial Neural Network  

AUC: Area Under Curve 

BA: Bilateral Asymmetry 

BCDR: Breast Cancer Digital Repository 

BI-RADS: Breast Imaging Reporting and Data System 

BRCA: BReast CAncer 

BSE: Breast Self-Examination 

CAD: Computer-Aided Detection 

CBE: Clinical Breast Examination 

CLAHE: Contrast Limited Adaptive Histogram Equalization 

DCIS: Ductal Carcinoma In Situ 

DDSM: Digital Database for Screening Mammography 

GLCM: Gray-Level Co-occurrence Matrix 

IARC: International Agency for Research on Cancer 

IRMA: Image Retrieval in Medical Applications 

KNN: K-Nearest Neighbour 

LBP: Local Binary Pattern 

LDA: Linear Discriminant Analysis 

LDTP: Local Directional Ternary Pattern 

LOOCV: Leave One Out Cross-Validation 



xvii 

 

 

LPOCV: Leave P Out Cross-Validation 

LTP: Local Ternary Pattern 

MCCV: Monte Carlos Cross-Validation 

MIAS: Mammographic Image Analysis Society 

MLC: Machine Learning Classifier 

MLO: Media-Lateral Oblique 

MLP: Multi-Layer Perceptron 

MR1: Magnetic Resonance Imaging 

ROC: Receiver Operating Characteristics 

ROI: Region Of Interest 

SVM: Support Vector Machine 

WHO: World Health Organization 

  



xviii 

 

 

DEFINITION OF OPERATIONAL TERMS 

 

Classification: A data mining function that assigns labels intending to accurately predict 

the target class for each case in the data 

Data Set: A collection of data whose content is a single database table 

Feature Descriptor: An algorithm that takes an image as input and gives out a feature 

vector that encodes interesting information into a series of numbers and acts as a numerical 

fingerprint that can be used to differentiate one feature from another. 

Feature Extraction: A stage in the CAD system used to extract discriminant features 

Mass: A breast abnormality indicator which occupies some space, found in at least two 

different projections defined by a wide range of features that can indicate benign changes 

but can also be a part of malignant change 

Microcalcification: Tiny flecks of calcium typically in the range of 0.lmm- 1.0mm found 

in the soft tissue of the breast that can serve as an early indicator of breast cancer. 

 

 



1 

 

 

CHAPTER ONE 

INTRODUCTION 

1.1 Background  

Cancer is a large group of related illnesses caused by the unrestrained division of body 

cells which spread, crowd out normal cells, and develop into a tumor that is benign or 

malignant [1][2]. Benign tumors develop slowly and do not attack neighboring tissues or 

extend to other parts of the body; therefore, they are cancerous. However, malignant 

tumors are cancerous and since with time they spread to neighboring tissues such as the 

lymph nodes which can cause the failure of major organs. Cancer can begin anywhere in 

the human body; therefore, the name of cancer depends on the affected area. Among 

cancer types, breast cancer is a top killer for women [3]. Although breast cancer can also 

develop in men, however, the highest risk and incidence is in women above 50 years of 

age [4][5] [6][7][8].  

 

Breast cancer occurs because of the abnormal development of breast cells where the cells 

divide faster than healthy cells, accumulate, and form a mass. This cancer can either begin 

within the lobules glands which produce milk, or the milk ducts, which are used to 

transport milk to the nipple.  Though unlikely, breast cancer can begin within the stromal 

tissues, that embody the fatty and fibrous connective tissues of the breast[9].  

Breast cancer is the second most common killer for women, [10]. Bray and Soerjomataram 

[11] reported about 2,088,849 (11.6%) new breast cancer cases and 626,679 (6.6%) breast 
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cancer deaths in [11]. The survival rates of breast cancer patients vary in the world because 

it depends on factors such as age, geographical factors, and race, however, a relative 

survival estimate is 91% at 5 years diagnosis, 86% after 10 years, and 80% after 15 years 

[12]. A report by International Agency for Research on Cancer (IARC) showed that there 

are more deaths in less developed regions than the developed regions because a shift in 

lifestyle is causing an increase in incidence, and also because clinical advances to combat 

the disease are expensive and sometimes unavailable. Because of several contributing 

factors, there has been a general increase in breast cancer cases in recent years. A study 

conducted in 2017 on cancer incidences from 2005 to 2015 showed an increase in breast 

cancer cases by 33%.  Out of which 12.6% of the incidences were because of population 

growth, 16.4% because of an aging population, and 4.1% was because of increasing age-

specific incident rates [13]. According to the Globocan report of 2018, breast cancer 

caused 74072 deaths and 168690 incidences in Africa. The age-standardized incidence rate 

stood at 37.9 per 100,000 people, varying from 6.9 per 100,000 people in Gambia to 69.6 

per 100,000 people in Mauritius. The age-standardized mortality rate stood at 17.2 per 

100,000 people, varying from 4 per 100,000 persons in Gambia to 29.1 per 100,000 

persons in Somalia. 

 

Globocan 2018 statistics estimated breast cancer incidence rate at 40.3 per 100,000 persons 

with a mortality rate of 17.8 per 100000 persons. According to Bray and Soerjomataram 

[11], the annual incidence of breast cancer in Kenya is about 5985 (12.5% of all new 

cancer cases) and the annual mortality is about 2553 (7.7% of all cancer 
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deaths)[11][11][11]. Gakunga et al. [14] predicted that by 2025 the annual incidence of 

breast cancer in Kenya will increase to 8052 persons and there will be annual mortality of 

3448 persons which is an increase of 35% for both incidence and mortality 

rates[14][14][14]. Korir et al. [15] researched cancer incidences among Nairobi women 

between 2004 to 2008 and showed that breast cancer age-standardized incidence rate stood 

at 51.7 per 100,000. The incidence rate is among the highest recorded in the African 

registry. Also, while in developed countries such as the USA, the mean age at breast cancer 

diagnosis is 64.1 years, in  Kenya the mean age at diagnosis is at 51.9 years [16]. 

 

 The alarming trend in the prevalence of breast cancer in Kenya underscores the need to 

develop an evidence-based intervention that can handle this volatile epidemic. The 

growing demand for breast cancer treatments with the nation’s very limited supply 

capacity for diagnosis and treatment poses serious health-care policy challenges to the 

Kenyan government [17]. The problem is that on the demand side, the number of patients 

has been growing and is expected to continue, however, on the supply side, the facilities, 

equipment, and experts available appear not to be growing at a commensurate rate[18]. 

 

Physical and imaging tests are used to screen for breast cancer tumors. The physical 

examinations comprise; Breast Self-Examination (BSE) [19] and Clinical Breast 

Examination (CBE) [20] while the imaging tests comprise; Ultrasound, Magnetic 

Resonance Imaging (MRI), and Mammography. Unlike physical examination tests, 

imaging tests are more reliable since they allow a radiologist to have an internal view of 
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the breast. Among the imaging tests, Mammography is an effective screening test since it 

can recognize the breast cancer cells in their early stages before physical signs develop 

[21]. However, reading and interpretation of a mammography test are performed by a 

radiologist who is susceptible to human observer variability. Therefore, the results depend 

on the expertise of the radiologist administering and reading the mammography test. As a 

measure towards achieving a more accurate reading and interpretation of mammography 

test results, some radiologists resulted to double reading of mammogram test results. 

Nevertheless, this is not a viable solution since it is economically costly and time 

intensive[22][23]. Moreover, dust particles on a mammogram image and breast surgery 

scars on a patient can obstruct a radiologist which can result to false interpretation even if 

double reading was conducted [24]. 

 

Therefore, the adoption of a breast cancer Computer-Aided Detection (CAD) system that 

reads a mammogram image, extracts significant features and predicts a breast cancer tumor 

type independent of a radiologist is a viable solution. The ability of a CAD system to 

preprocess a mammogram image can aid in improving image quality by eliminating noise 

and artifacts found in mammogram images.  

 

Researchers have developed several local texture descriptors for extracting discriminant 

features. The Local Binary Patterns (LBP) descriptor thresholds an image pixel based on 

the value of the central pixel and encodes the image gradient to a binary bit. It is 

computationally simple, enables image analysis in real-time, and can withstand monotonic 
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gray-scale changes. However, it is inadequately reliable in capturing breast cancer 

discriminant features because it is sensitive to noise. The Local Ternary Patterns (LTP) 

descriptor is better at handling noise than LBP because it uses three bits to encode an 

image gradient. However, it uses a fixed threshold defined by the user for all datasets or all 

images in a dataset, therefore it does not make it dynamically suitable for all images in a 

dataset.  The threshold should be dynamically selected. Disregarding the remaining 

directional responses makes it miss discriminant texture features which reduce the 

computation efficiency. 

 

1.2 Motivation for Study 

The current advance in modern medical technologies and the evolvement of diseases has 

led to an increased amount of imaging data requiring analysis and a need to improve 

disease treatment.  One such disease is breast cancer, which is rated as the highest killer 

among women. In  2018, Bray and Soerjomataram [11] reported an estimated 2,088,849  

new breast cancer incidences and a mortality rate of 6.6%. A research conducted among 

Nairobi women between 2004 to 2008 showed that breast cancer accounted for 0.23 of all 

incidences, which is the highest rate so far recorded in the Africa cancer registry  [15]. 

Survival rates for women with breast cancer vary in the world because of differences in the 

age bracket at risk, geographical factors, and race. There is a relative survival estimate of  

91% when diagnosed within 5 years of the occurrence, 86%  when identified after 10 years 

of the occurrence, and 80% when recognized after 15 years of occurrence [12]. Early 

breast cancer screening tools and strategies of identifying risk factors conditioning the 



6 

 

 

occurrence of breast cancer have been put in place, even though there are no efficient 

methods to prevent it because its causes are unidentified. 

 

Existing local texture descriptors are effective in pattern recognition tasks because they can 

withstand position or light variations than global descriptors. However, their performance 

in breast cancer classification has not yet yielded satisfactory results. Sensitivity to noise is 

the principal limitation of the existing local texture descriptors, therefore, making them 

unreliable in capturing breast cancer discriminant features and they also disregard some 

useful information leading to loss of discriminative texture features which reduces the 

computation effectiveness. The need to uncover an effective way of extracting significant 

features in identifying breast cancer tumor and contribute positively towards providing 

better health care to humanity forms the foundation for the work presented. 

 

1.3 Statement of the Problem 

 A mammography test can recognize a breast cancer tumor in its early stages before 

physical indicators develop, and thus it is the recommended imaging test performed by a 

radiologist for breast cancer screening. The reading and interpretation of a mammography 

test results are therefore dependent on the skills and experience of a radiologist. However, 

a radiologist is susceptible to human observer variability and therefore can make a false 

reading and interpretation. To improve the reading and interpretation accuracy of a 

mammography test, some radiologists resorted to double reading of a mammography test 

result which is time-consuming, economically costly and increases recall rate [25], [26]. 
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 The current trend is to use a breast cancer CAD system that extracts significant breast 

cancer features, which are then used to classify the breast cancer tumor. Techniques used 

to extract the local descriptors suggested in literature include; the Local Binary Patterns 

(LBP), the Local Ternary Patterns (LTP), and the Local Directional Patterns (LDP). These 

local descriptors have shown their effectiveness in pattern recognition tasks for face 

recognition, however, they have not yet yielded satisfactory results in breast cancer tumor 

classification. The Local Binary Patterns (LBP) produces binary codes sensitive to noise 

and in some circumstance, they miss the local structure, since they do not consider the 

effect of the central pixel [27][28], consequently, they are insufficiently reliable in 

capturing breast cancer discriminant features. The Local Ternary Patterns (LTP) uses a 

fixed threshold defined by the user for all datasets or all images in a dataset [29] which 

does not make it dynamically appropriate for all images in a dataset. Further, the fixed 

threshold makes it not invariant to grayscale transformation. The Local Directional 

Patterns (LDP) rely on top k significant directional responses and ignores the remaining 8-

k directional responses[30]. Disregarding the remaining directional responses reduces the 

computation efficiency, since each pixel in an image carry subtle information. 

 

Given the limitations identified among local texture descriptors, developing an effective 

local texture descriptor for breast cancer classification becomes a viable and challenging 

research problem. This study, therefore, seeks to develop a new local texture descriptor 
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that considers all directional responses and an adaptive threshold in encoding image 

gradient for breast cancer classification. 

 

1.4 Research Objectives 

1.4.1 General Objective 

This study sought to develop a Local Directional Ternary Pattern texture descriptor that 

considers all directional responses and an adaptive threshold in encoding image gradient 

for breast cancer classification. 

1.4.2 Specific Objectives  

i. To analyze existing techniques on breast cancer detection  

ii. To develop a Local Directional Ternary Pattern texture descriptor that considers all 

directional responses and an adaptive threshold in encoding image gradient. 

iii. To validate the Local Directional Ternary Pattern texture descriptor in breast cancer 

detection. 

1.5 Research Questions 

i. How do the existing techniques detect breast cancer? 

ii. How can a Local Directional Ternary Pattern texture descriptor that considers all 

directional responses and an adaptive threshold when encoding image gradient be 

developed? 
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iii. How valid is the developed Local Directional Ternary Pattern texture descriptor in 

breast cancer detection? 

 

1.6 Significance of the Study  

Breast cancer is amongst the most severe health problems in recent times. A World Health 

Organization (WHO) report of 2018 estimated a breast cancer mortality rate of 15% of all 

cancer types among women. According to a report by Globocan in 2018, Kenya accounted 

for 7.7% of the breast cancer mortality rate, making it the third leading cause of death.  

 

The findings of this study benefit the research community through contribution to 

knowledge by uncovering a new local texture descriptor that considers all directional 

responses and an adaptive threshold in encoding image gradient. The application of the 

developed local texture descriptor highlights an improved way of identifying a breast 

cancer tumor. Also, it contributes to practice by developing an improved approach that aids 

a radiologist to make a more accurate interpretation of mammogram results by eliminating 

observer oversight, which reduces unnecessary biopsies, increases the survival rate of 

women, and provides better health care to humanity. 

 

1.7 Scope of the Study  

Although image tests like Ultrasound, MRI, and Mammography exist, this research 

focused on extracting features captured through mammography because mammography is 

the recommended imaging test for breast cancer screening, since it can identify a breast 
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cancer tumor in its early stages before physical symptoms appear.  Additionally, even 

though global and local features exist in an image, this research focused on local texture 

features which have been proven to be more effective than global features in pattern 

recognition. Several breast cancer datasets exist, however, this research used the 

Mammographic Image Analysis Society (MIAS) dataset. The choice was anchored on a 

thorough literature review that revealed that the MIAS dataset is a reliable source of 

mammographic images. Similarly, because of the number of different permutations of 

classifiers possible, this study used two classifiers; SVM and ANN because they have 

shown high levels of classification accuracy.  

 

1.8 Assumptions in the Study 

This research presumed that significant and reliable features could be extracted by 

considering local texture features because they consider the internal structural properties of 

an image instead of the region and boundary features used by a radiologist.  Also, the tools 

and material used in this research elicited reliable and valid responses. 

 

1.9 Limitations of Study 

The choice of machine learning classifiers was based on information got from the literature 

review and therefore may not have been an effective representative sample in terms of the 

contribution that each classifier would have made in the research. However, to ensure the 

sample was representative, the choice of the machine learning classifiers was from 

different categories of classifiers. Further, validation of the new local texture descriptor 
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was based on binary classification and the performance was evaluated based on the 

presence or absence of breast cancer tumors. Therefore, this research cannot be extended to 

multi-class classification, however, to provide a universal generalization, the results got in 

the study were compared against results got by other researchers. Finally, because of the 

complexities involved and time constraints in obtaining direct patient data, the researcher 

used a publicly available dataset. However, to ensure the sourced dataset was valid, 

complete, and comprehensive, appropriate cross-validation was done. 

 

1.10 Thesis Contributions 

This research made the following contributions:  

 Provided a comprehensive literature review on breast cancer detection as outlined 

in Chapter two of this thesis. 

 Developed a new local texture descriptor that considers all directional responses 

and an adaptive threshold in encoding image gradient as outlined in section 4.2 of 

this thesis 

 Performed experimental validation of the new local texture descriptor using  breast 

cancer data as outlined in section 4.3 of this thesis 

 Showed robustness and effectiveness of the new local texture descriptor by 

evaluating its performance against state of art local descriptors and comparing it  

against existing local  descriptor as outline in section 5.2 of this thesis 
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1.11 Thesis Outline 

The structure of this thesis is summarized below: 

Chapter 1 presented a background detail of breast cancer formation, recent statistics on 

breast cancer mortality and survival rate, breast cancer screening tests existing local texture 

descriptors with their limitations, the motivation of study, the statement of the problem, the 

main and specific objectives of the research, Significance, and Scope of the research, 

Assumptions, and limitations considered in the research, the contribution of thesis and 

thesis outline. 

 

Chapter 2 analyzed the literature associated with the first objective. The chapter presented 

a discussion on risk factors conditioning occurrence of breast cancer cells, screening tests 

for identifying breast cancer, mammographic indicators of breast cancer cells, breast 

cancer modeling approaches, breast cancer CAD system, feature extraction descriptors, 

feature selection methods, classification techniques, breast cancer datasets, and breast 

cancer evaluation protocols. Also, a conceptual and theoretical framework of the research 

was provided. 

  

Chapter 3 addressed the research methodology adopted. It began by demystifying the 

research philosophy adopted and justified the choices taken during the entire research 

process using Saunders's research onion. It also explained in detail the experimental set-up 

followed when developing and validating the LDTP texture descriptor. Further, this 
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chapter presented the research questions, research tools, and material, and a brief 

discussion on ethical considerations mirrored in the research.  

 

Chapter 4 explained the development of the LDTP texture descriptor in encoding an 

image gradient. The chapter explained the process of encoding an image gradient in two 

steps; Computing the edge responses for all the eight directions as explained in section 

4.2.1 and calculating  an adaptive threshold as explained in section 4.2.2 of this thesis.  

 

Chapter 5 elucidated and discussed the experimental validation using the breast cancer 

dataset. The experimental validation was presented based on the experimental setup 

defined in section 3.4. In detail, the chapter outlined the reading of mammogram images 

into the MATLAB environment, mammogram image preprocessing procedure, the process 

of data augmentation, extraction using the developed LDTP texture descriptor, 

classification process using SVM and ANN classifiers, and validation of each of the 

classifiers into Normal/abnormal class and benign/malignant class using the breast cancer 

dataset. The chapter also explained the experimental results achieved by the developed 

LDTP descriptor based on breast cancer data. An analysis of results on the performance of 

LDTP descriptor for normal/abnormal and benign/malignant classes, accuracy levels 

comparisons of LDP, LTP, and LDTP descriptors using ANN and SVM classifiers, 

specificity and sensitivity comparison of SVM and ANN classifier for LDTP descriptor, 

the statistical significance of accuracy level achieved by LDTP descriptor and Accuracy 

level comparison of LDTP descriptor against existing local descriptors was presented. 
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Chapter 6 concluded by highlighting the research findings, the achievement of each 

research objective, the contributions made by this research concerning knowledge and 

practice, and insights for future improvement. 
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2 CHAPTER TWO 

 

LITERATURE REVIEW 

2.1 Overview 

This chapter analyzes literature on principal areas associated with objective one in the 

study of breast cancer detection. The key areas discussed include risk factors conditioning 

occurrence of breast cancer cells, screening tests for identifying breast cancer, 

mammographic indicators for depicting breast cancer, image representation for modeling 

breast cancer tumors, various techniques for preprocessing and segmenting mammographic 

breast images, several techniques for extracting, selecting and classifying breast cancer 

features, breast cancer evaluation protocols, and breast cancer datasets. It also presented a 

review on related studies for breast cancer detection, conceptual and theoretical 

framework. 

 

2.2 Risk Factors Conditioning the Occurrence of Breast Cancer Cells 

A breast cancer risk factor helps to identify women who are susceptible to the disease and 

they need to undergo further analysis. However, the presence of a risk factor in an 

individual does not necessarily ascertain that the cancer is inevitable.  Breast carcinoma 

can also develop in females who have no detectible risk factors. Studies conducted to 

determine factors conditioning the occurrence of breast cancer cells reported that the 

disease is not attributed to one factor, but a combination of several factors.  
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Risk factors that condition the occurrence of breast cancer cells are broadly grouped into 

extrinsic and intrinsic factors. Extrinsic factors are caused by influences outside the human 

body such as environmental conditions and an individual’s lifestyle, whereas intrinsic 

factors are caused by influences inside the human body that occur naturally due to genetic 

makeup and internal structures. 

 

2.2.1 Intrinsic Risk Factors  

A major intrinsic risk factor is being female. Although breast cancer cells can also develop 

among the male gender, females have a higher risk and incidence than males. The 

likelihood of a female human species getting breast cancer is estimated to be 100 times 

more than in males [31] [32] [33]. This is because the female human species have more 

breast tissues than males. Furthermore, the production of the female hormone estrogen in 

the life of a female promotes the development of breast cancer [33].  

 

Aging is another intrinsic risk factor that is inevitable and contributes to 90% of breast 

cancer occurring among older women. As a woman grows older, the risk of developing 

breast cancer cells intensifies and consequently, more breast cancer incidences occur 

among middle-aged and elderly women than in young women. Studies by [4] [5] [6][7][8] 

showed that women between 50-64 years of age are at the highest risk. In 2016 Susan 

Komen [34] analyzed the chances of developing breast cancer by considering age as a 

major factor. She reported that at age 20 the likelihoods are 1 in 1674 women, at age 30 the 

likelihoods are 1 in 225 women, at age 40 the probabilities are 1 in 69 women, at age 50 
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the probabilities are 1 in 44 women, at age 60 the likelihoods are 1 in 29 women and at age 

70 the probabilities are 1 in 26 women. 

 

 Family history is an intrinsic risk factor than contributes to 5-10% chances of breast 

cancer occurring. The risk is more among women who have close female blood relatives 

like a mother, a daughter, or a sister who has the illness [33]. Furthermore, the risk 

increased if the female relative developed cancer before attaining 50 years or developed 

cancer in the two breasts [33]. 

 

 Even though 15 in every 100 women with breast cancer acquired it through family history, 

other times it is a faulty gene linked to breast cancer the was inherited[35]. The human 

body contains Breast Cancer 1 (BRCA 1) and Breast Cancer 2 (BRCA 2) genes that 

protect it against cancer. They correct any damaged Deoxyribonucleic Acid (DNA) during 

cell division. However, when the genes mutate and a faulty version is inherited, then the 

possibility of developing the breast cancer cell is triggered because the altered gene is 

incapable of repairing the damaged cells which later build up to form a tumor. Malone et al 

[36] reported that women with a faulty BRCA1 or BRCA 2 gene have a 60% to 80 % 

chance of developing breast cancer cells in their life. 

 

A woman's reproductive history is also a contributing risk factor for the occurrence of 

breast cancer. A woman’s long exposure to hormones, because of early menstrual [37] or 

late menopauses caused by estrogen produced in the body, raises the probability of having 
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breast cancer.  In a year, those women who begin menstrual periods earlier than average 

have a 5% increased probability of acquiring breast cancer, whereas women who begin 

menopause late have a 2.8%  increased probability of acquiring the disease [38]. Having 

children reduces a woman's exposure to her estrogen which lowers the chances of 

developing the breast cancer cell by 7% [39]. Breastfeeding decreases the chances of 

developing breast cancer cells by 4.3% for every 12 months a woman breastfeeds [39] 

[40].  

 

Another intrinsic factor is high breast density. A woman with a lot of dense breast tissues 

is at a higher risk of developing breast cancer cells than one without [41] [42] [43]. Dense 

breasts have more connective tissues than normal breasts which appear white. Tumors and 

other abnormalities also appear white, making it challenging for a radiologist to spot a 

tumor on a mammogram consequently leading to false interpretation. Furthermore, as the 

density of the breast tissues increases, the sensitivity of a mammogram reduces [44]. In a 

study meant to assess the mammographic density and risks of developing breast cancer 

among women with a family history of breast cancer cases, Duffy et al.  [45] reported a 3% 

increased risk per 10cm
3
 of dense tissue. 

 

The race is also another intrinsic risk factor conditioning the occurrence of the breast 

cancer cell. A study by ban et al. [46] showed a notable difference in occurrences of breast 

cancer cells and mortality rates amongst women in distinct races. The study showed that 

the black population had the highest mortality rate of 18.2% against 12.3% and 14.8% 
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among the white and Hispanic populations, respectively. Even though the slight difference 

in mortality could be because of differential access to health care, genetics, and 

socioeconomic factors for both early diagnosis and treatment, the increase in mortality 

among the black population is because of the high progression level of the disease and 

higher risk of triple-negative phenotype linked to poor prognosis of the disease[47]. In 

another study by Iqbal et al. [48] they attributed the high mortality rate among the black 

population to delayed treatment, misuse of treatment, and underuse of treatment. 

 

2.2.2 Extrinsic Risk Factors  

An extrinsic risk factor for the occurrence of the breast cancer cell is dietary habits. 

Consuming foods rich in fat or enhanced with food preservatives and flavors promote 

neoplastic transformation in the mammary glands, which triggers excessive weight gain 

that could lead to obesity [47].  Excessive weight gain or obesity, especially among 

postmenopausal women, which is linked to an increased chance of breast cancer cells 

occurring. Saxe et al. [49] confirmed that consuming a low-fat diet especially among 

women who have reached menopause significantly decreases the chances of neoplastic 

transformation of the mammary glands and therefore reduces the chances of breast cancer 

cells developing.  

 

 Not being engaged in physical exercise is another extrinsic risk factor conditioning the 

occurrence of the breast cancer cell. Researchers have associated regular physical exercise 

either moderately or intensively to low breast cancer risk. Physical exercises control blood 
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sugars and reduce levels of estrogen, which affects how breast cells grow.  A case-

controlled study by Kobayashi et al. [50] showed that women who engaged in moderate to 

vigorous physical activities reduce their chances of developing the breast cancer cell by 

30%. Another study by Razvi et al.  [51] showed that active females have a breast cancer 

reduction rate of between 15-20%. However, the effect differs across the life course and 

menopausal status [50]. Another study showed a 20-40% breast cancer risk reduction when 

physical activities are done 3-5 times every week [52]. 

 

Another extrinsic risk factor conditioning the development of breast cancer cells is using 

Hormone Replacement Therapy. Women who consume HRP drugs for over five years 

during menopause, not only raise their likelihood of acquiring breast cancer but also risk 

the cancer being discovered in late stages [53]. Also, consuming birth control pills is 

associated with a higher probability of developing breast cancer cells. Studies have also 

shown that a woman’s chances for developing breast cancer cells increase with high 

consumption of alcohol. Other factors like excessive smoking, exposure to cancer-causing 

chemicals, and hormonal changes because of working in night shifts also may raise the 

chances of developing the breast cancer cell. 

2.3 Breast Cancer Screening Tests 

Globally, breast cancer is the second most common killer for women [10]. In developing 

countries, the death rate is higher than in developed countries because of a limited capacity 

for diagnosis and treatment. However, the long-term survival rate for women can be 

improved through effective screening during the early stages of breast cancer development 
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[19]. Breast cancer screening is performed through physical examination tests or imaging 

tests. Physical examination tests include Breast Self-Examination (BSE) and Clinical 

Breast Examination (CBE) while imaging tests include; Breast Ultrasound, Magnetic 

Resonance Imaging, and Mammography. 

 

Breast Self-Examination (BSE) is a cost-effective test since it only requires a woman to 

physically inspect her breasts regularly for any abnormal lumps using her fingers. This test 

is recommended for women who are above 20 years of age. However, its effectiveness in 

reducing the number of breast cancer death is contentious because being healthy does not 

compel a woman to perform the test, and evidence from clinical trials is limited [19] [54]. 

some reasons that most women do not practice Breast Self-Examination include; attitude, 

lack of awareness, lack of time to perform the test, lack of self-assurance in performing the 

procedure properly, distress experienced in discovering a tumor, and awkwardness related 

with breast inspection [19] [55][56]. 

Clinical Breast Examination (CBE) test is recommended for the early identification of 

palpable breast tumors [20]. The test is suitable for women 40 years and younger [57]. It 

involves a thorough physical inspection of the breasts by a clinician. During the procedure, 

the clinician makes a visual check-up for palpation of the breast and inspects auxiliary 

lymph nodes [20], [58]. The CBE test aims to detect irregularities in the breasts that allow 

for further evaluation. Even though the Clinical Breast Examination (CBE) test is better at 

identifying breast abnormalities than Self Breast Examination (SBE), on its own, it cannot 
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accurately differentiate between a benign tumor and a malignant tumor [57]. 

Also, understanding the visual and palpable observations of CBE is difficult [57] because 

of the different combinations of a patient’s physical features like age, parity, menopausal 

status, breast tissue density, and modularity which can affect the interpretation of the 

observation made [59]. Unlike the physical examination tests, imaging tests allow a 

radiologist to have an internal view of the breast, which makes the results got more certain 

and reliable. Breast imaging tests include; Ultrasound, MRI, and Mammography. 

An ultrasound test uses sound waves to generate a picture of the internal structure of the 

breast [60]. It helps determine if a breast tumor is a mass or cyst. It is primarily used to 

complement other imaging tests such as mammography and also guides on biopsy of 

suspicious lesions. Even though the use of Ultrasound is helpful when used in women who 

have dense breasts and are at a high risk of developing the disease, it has a low contrast for 

soft tissues than mammography and contrast-enhanced MRI. Therefore, it becomes 

challenging when differentiating between a benign and a malignant tumor because of 

overlapping characteristics [61]. Also, it is highly operator dependent, which means it 

requires real-time adjustments of focal zones, pressure, and patient positioning [62]. 

Breast Magnetic Resonance Imaging (MRI) creates a detailed picture of the internal 

structure of the breast by using a magnetic field and radiofrequency pulses. It is useful for 

breast lumps that cannot be seen by mammography or ultrasound, especially for women 

with high breast density [60] or in a patient who has had a biopsy and the doctor wants to 

see the extent of the disease. Unlike mammography and Ultrasound, MRI can cover a large 
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portion of the breast and is unlikely to cause an allergic reaction experienced by ionized 

based substances in X-rays and CT scans [61]. However, MRI is relatively expensive, 

time-consuming, the procedure is uncomfortable for the patient, it produces blurred images 

and cannot be performed on patients who have metal implants because it uses magnets 

[62]. Besides, it has more false-positive results compared to mammography because of the 

inability to distinguish between a malignant and a benign tumor [61].  

A mammography is a screening tool that uses a low dose of x-ray to assist a radiologist in 

examining the internal structure of the breast for any suspicious tumor in women without 

physical signs of breast cancer [63]. This screening involves exposing the breasts to a low 

dose of ionizing radiation to get a picture of the internal parts of the breasts. There are two 

types of mammography, Digital and Film mammography. Digital mammography is better 

than Film mammography at finding breast cancer cells among women who are 

premenopausal, below the age of 50 years, and have densely structured breasts [61]. 

However, there are no significant differences in the results obtained, when either Digital or 

film mammography is used for women not in any of the above-mentioned groups since its 

effectiveness is the same. Even though a mammography test is economically affordable 

and it is a procedure that takes less than five minutes, the procedure is, however, 

uncomfortable for the patient because it causes compression of the breast tissue, the 

effectiveness of a mammography test is greatly reduced when performed on women with 

densely populated tissues and it exposes a patient to x-ray ionizing radiation which may 

induce cancerous cells especially for women younger than 20 years of age [64]. However, 
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there is emerging evidence that when MRI and mammography tests are performed together 

in women who have a high probability of developing the disease than for women who have 

an average probability [61] the detection of breast cancer cells is increased significantly.  

Several factors, including the age of the patient, elapsed time since they performed the last 

examination, the density of the breasts, and the skills of the radiologist interpreting the 

results can influence the sensitivity and specificity of screening tools [65]. An age-

dependent analysis by Linda et al. [54] revealed that sensitivity for BSE ranges from 12% 

to 41% whereas CBE has a sensitivity of 40% to 69% and a specificity of 88% to 99% 

[20]. A major shortcoming of BSE and CBE as physical examination tests, of the breast, is 

that the sensitivity to detect breast cancer is low, which in most cases results in women 

undergoing biopsies.  

 

Imaging tests give higher sensitivity values than physical examination tests, which 

minimizes the need for biopsies. The clinical guidelines released in 2015 showed that 

performing an MRI on high-risk women without cancer resulted in an age-dependent 

sensitivity and specificity ranging from 71% to 100% and 81% to 97% respectively [66]. 

Linda et al.   [54] showed the age-dependent sensitivity of a mammography test is between 

77% to 95% whereas specificity ranges from 94% to 97% while Pisano et al. [65] showed 

the sensitivity of mammography for dense breast tissues to be as low as 30% to 48%. 

Despite Ultrasound and MRI tests having higher sensitivity values than mammography in 

non-fatty breasts, both Ultrasound and MRI have a higher probability of overestimating the 
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extent of the tumor [67]. Therefore, a lower MRI specificity compared to mammography 

might be associated with high biopsies rate and high chances of over-diagnosis, especially 

when used in women with a low probability of developing the breast cancer cell. 

Additionally, the accuracy of mammography alone is higher than the accuracy of 

Ultrasound, MRI alone, or a combination of mammography with clinical-based 

examination tests [67].  

A review of ten selected articles between 2001 and 2018 is shown in Table 2.1 to 

determine among mammography, Ultrasound, and MRI the imaging test with the highest 

sensitivity and/ or specificity for breast cancer diagnosis. We based the inclusion criteria of 

the articles on studies that compared mammography, Ultrasound, and MRI image testing 

modalities using performance measures of sensitivity and/ or specificity and showed the 

number of patients used in the study. 
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Table 2. 1: Sensitivity and specificity analysis of imaging tests 

 

Author No. of 

Patients 

Mammography (%) Ultrasound (%) MRI (%) 

Sensitivit

y 

Specificity  Sensitivity Specificity Sensitivity Specificit

y 

Warner et 

al,2001 [31]  

196 33 99.50 60 93 100 91 

Warner  et al, 

2004 [32] 

236 36 99.8 33 96 77 95 

Sim et al, 

2004 [33] 

245 53.9 85.7 83.3 65.5 93.3 63.6 

Kuhl et 

al,2005 [34] 

529 32.6 96.8 39.5 90.5 90.7 97.2 

Crowshaw et 

al,  2011[35] 

61 81 48 90 33 86 79 

Valente et al, 

2012[36] 

244 21 99.5 43.5 96.2 37.1 96.7 

Shao et al 

2013[37] 

90 72.7 62.9 80.0 60.0 90.9 82.7 

Huzarski et 

al, 2017[38] 

2995 57 - 59 - 86 - 

Hossam and 

Hurb 2018 

[39] 

50 67.8 88.2 98.4 94.0 99.0 97.0 

Huang et al 

2018 [40] 

107 88.6 71.4 90.9 79.4 95.5 81.0 
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From the ten reviewed articles, performance comparison analysis of the imaging tests 

showed that in four out of the nine articles that considered specificity, mammography gave 

a higher specificity than Ultrasound and MRI. Also from the ten reviewed articles, it can 

be noted that with regards to sensitivity, MRI had the highest sensitivity in nine out of the 

ten articles. Table 2.1 shows that none of the imaging tests had a perfect sensitivity and 

specificity value in diagnosing breast cancer cells.  

 

Besides considering the efficiency of the screening tool based on sensitivity and specificity 

scores, another fundamental consideration is how to ensure there are fewer errors when the 

radiologist is reading and interpreting the mammographic images. This can be achieved by 

adopting a Computer-Aided Detection (CAD) system for breast cancer diagnosis. 

 

2.4 Mammographic Signs of Breast Cancer  

Signs of breast cancer on a mammogram image are seen as clusters of microcalcification, 

presences of masses, Architectural Distortions (AD), and Bilateral Asymmetry (BA) of the 

breast. Mass and microcalcification are the most common signs used to indicate breast 

cancer because they are detected during the early stages of cancer development. While 

masses are commonly seen among patients diagnosed with invasive breast cancer, 

microcalcification is reported in a higher percentage among patients diagnosed with Ductal 

Carcinoma In situ (DCIS) breast cancer. A study conducted by Gadjos et al. [78] indicated 

that 95% of breast cancer present as masses was invasive cancer, while 68% of breast 

cancer present as microcalcification was associated with DCIS. A study conducted by 
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Venkatesan et al. [79] showed that Bilateral Asymmetry and Architectural distortion are 

rarely linked to the presence of breast cancer cells. In this study, out of 1552 breast cancer 

cases, 56% indicated presences of masses, 29% indicated presences of microcalcification, 

12% indicated Bilateral Asymmetry and 4% indicated Architectural Distortion.  

 

2.4.1 Microcalcification 

Calcification is an accumulation of calcium in the breast which can either be macro 

calcification or microcalcification. Macro calcification is large calcium deposits considered 

noncancerous therefore,  they are not linked to breast cancer and consequently, no special 

consideration is dedicated to them [80].  On the other hand, microcalcifications are clusters 

of calcium deposits that are small bright white dots of varying sizes and shapes in the 

breast tissue [81]. Benign microcalcifications have a regular shape and are found in 

isolation while malignant microcalcification has an irregular shape and is clustered [82]. 

Microcalcification is identified by its size, shape, number, and distribution [83] [84]. The 

more, bigger, and closely clustered they are, the higher the chance is for them to be 

identified. Microcalcification is a challenge to discover because they are not separated 

from the surrounding normal tissue. When malignant cells start to invade the tissues the 

microcalcification viewed on a mammogram will be seen as a light patch on normal tissue. 
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Figure 2. 1: Microcalcification in the breast (Source: [41]) 

Developing a model to detect microcalcification is easier because their presences are 

depicted by their numbers and how they are distributed, however their small size, 

presences of overlapping breast tissue, low contrast, and breast density especially in young 

women increase the probability that they can be missed or misinterpreted [83],[85]. Studies 

in [86] [87] [88][89] [90] developed wavelet transform-based methods, for detecting 

microcalcification. The main reason being that wavelet transform can specifically locate 

the image region with high spatial frequencies than transforms like Fourier than give the 

content of frequencies but cannot locate in the image the specific spatial frequencies [83]. 

Also, because microcalcification is seen as bright white dots on the mammogram, the 

wavelet transform methods can easily identify them as discontinued points. Studies in [91] 

[92] opted to detect microcalcification through shape features, though they achieved good 

results, they cannot be used alone and it is a challenge to detect microcalcification based on 

shape because of their small size. Other Studies in [93] [94] opted to use texture features, 

but even with good classifiers like SVM and ANN the results were not good enough.  
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2.4.2 Masses 

A mass is a lump that varies in shape and size and can be seen in two projection; shape and 

margin properties [95]. A mass that is round, smooth, and has circumscribed margins has 

an increased possibility to be benign whereas a mass that is spiculated, rough, and has 

blurry margins has an increased likelihood to be malignant [95]. A majority of algorithms 

used for mass detection have two stages: (1) detecting suspicious regions (2) classifying 

suspicious regions.  

 

2.4.2.1 Detecting suspicious regions 

When a suspicious region is correctly identified, it is expected that the sensitivity to 

correctly classify the region during the classification stage is increased. However, 

sometimes it results in a high number of false positives. Algorithms applied for stage one 

detection are of two forms; Pixel-based detection methods and region-based detection 

methods [96].  

 

Pixel-based detection is based on the extracted features of its local neighborhood, which is 

achieved by either defining a threshold value or using a sophisticated classification 

technique [96]. The suspicious pixels which have been detected are then grouped into 

regions by connected pixels. Regions labeled as suspicious by the algorithm do not 

automatically indicate malignancies. Categorization of the suspicious region into 

malignancy or benign is done during the classification stage. 
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Researchers have mainly focused on pixel-based methods. Liu et al. [97] designed a 

multiresolution system to detect spiculated lesions in mammograms based on a binary tree 

classifier. Experimental evaluation using the MIAS dataset showed the scheme achieved a 

low positive rate. Sampat and Bovik [98] presented a two-stage algorithm for detecting 

spiculated lesions in mammograms. The lesions were first enhanced then their location was 

detected. The algorithm was tested on the DDSM dataset and results achieved indicate that 

the algorithm could correctly locate the mass region. Zwiggelaar et al. [99] developed a 

model for detecting spiculated lesions based on local scale oriented signatures built using 

recursive median filtering and Principle Component Analysis. They achieved a sensitivity 

value of 80%. Even though a majority of researchers have focused on spiculated masses 

because of their high probability of showing malignancy, Other researchers such as 

[100],[101],[102],[103], and [104],  focused on masses without considering a specific type 

of margin.  

 

An advantage of pixel-based methods is accessibility to many pixels per image for training 

a classifier. However, the ability to use multiple pixels could pose a challenge. When 

multiple pixels are present on the margin and center of a mass, it becomes a challenge for 

the classifier to differentiate between these two regions, since two regions may be grouped 

to the same class, yet they may not always be homogenous. These pose a challenge of 

discriminating against a mass from normal surrounding tissue. 
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Region-based detection methods, use filtering or segmentation techniques to get the 

Region Of Interest (ROI). Shape and texture features are then extracted from each ROI and 

then they are classified as either suspicious or not. An advantage of region-based detection 

methods is taking into consideration spatial information which improves its discriminate 

power of a mass from its surrounding tissues. Also, the features extracted directly correlate 

with the shape and margins of the extracted regions. These ensure regions with similar 

characteristics can be categorized together. Further, in comparison to pixel-based methods, 

region-based are less computationally expensive. However, region-based detection 

methods have few samples for training if a classifier is to be used.  

 

2.4.2.2 Classifying suspicious region into normal or abnormal tissue.  

This stage classifies the suspicious region as normal/abnormal tissue and decreases the 

number of false positives generated in stage one. Olivera et al. [105] used the Support 

Vector Machine classifier to differentiate between normal and abnormal breast regions and 

attained an average accuracy of 98.88% with the DDSM dataset. To develop a system that 

emulates image features used by a radiologist Brake et al. [106] relied on 

intensity,  density, location, and contrast features to get approximately 75% accuracy of all 

detected cancer. Wang et al. [107] relied on size, shape, contrast, homogeneity, and 

speculation features and got AUC of 0.786±0.026. 

 

Even though studies in [108], [109], [110], [111], [112] established various approaches for 

identification of masses, detecting a mass is more challenging than detecting 
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microcalcification, because masses have poor image contrast [113]. Therefore, to increase 

the visibility of a mass, proper segmentation is important to separate the tumor from its 

background. Also, because benign and malignant tumors develop form one spot and spread 

outward, the shape of the tumor is relatively not specific. Therefore, differentiating the 

shape of a benign tumor from a malignant tumor is a challenging task. 

 

 

Figure 2. 2: Mass shapes and margins  [42] 

Most 80 -85% of breast cancer cells are identified as masses, clusters of microcalcification, 

or a combination of both [114]. However, 15-20% of breast cancer cells may not exist as a 

malignant mass or a malignant microcalcification. In such circumstances, focal nondescript 

abnormalities that include bilateral asymmetry and architectural distortion may be the only 

clue that a malignant tumor is present.  
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2.4.3 Architectural Distortion (AD) 

Architectural Distortion (AD) occurs when the normal breast architecture deforms without 

the presence of a defined mass. The distortion often appears star-shaped. Even though 

(AD) are less predominate in indicating breast cancer than masses and microcalcification, 

they can predict breast cancer with high accuracy at the screening and diagnostic stage 

[79]. Approximately, 12% - 45% of missed breast cancer cases in mammogram screenings 

are because of the breast cancer cells manifesting themselves inform of breast 

Architectural Distortion [115]. Therefore, as a measure to reduce the number of missed 

breast cancer incidences, it is significantly important to accurately identify ADs. See 

Figure 2.3.  

 

Figure 2. 3: Architectural distortion of the breast (Source: [41]) 

 

Even though a high percentage of DCIS manifest themselves as malignant appearing 

microcalcification, Architectural distortion accounts for 10.8% [116]. However, AD’s is 

predominantly associated with invasive ductal and lobular breast cancer. 
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2.4.4 Bilateral Asymmetry (BA) 

Bilateral Asymmetry is an indicator used by radiologists to identify the existence of breast 

cancer cells viewed on a mammogram. To detect Bilateral Asymmetry (BA), compare the 

right and left breasts for any inequality. Examining the breast asymmetry can provide 

insight into symptoms like parenchymal distortion and asymmetric points which cannot be 

evaluated by other methods [117]. Before the left and the right breasts of a patient are 

compared, flip one breast so that both breasts are on the same orientation. On a computer 

monitor, different colors are used to distinguish contrast regions on the left and regions on 

the right breast. The regions on the right breast that are different from the corresponding 

regions on the left are highlighted using green color, while regions on the left breast that 

are different from corresponding regions on the right are highlighted using a blue color 

[80]. 

 

Microcalcification, masses, AD’s, and BA are all breast cancer signs viewed on 

mammography. However, their performance in terms of sensitivity, specificity, and 

accuracy varies. A research carried out by [118] revealed that mass detection has the 

highest sensitivity of 94.7% followed by microcalcification with 93.7%. The sensitivity 

was good in both microcalcification and masses but poor for Architectural distortion and 

Bilateral Asymmetry. Based on specificity values, Architectural Distortion got the highest 

score of 79.1% and Bilateral Asymmetry being the least with 52.4%.In terms of 

performance accuracy, masses had the highest with 84.8% followed closely by 
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microcalcification with 82.1%. Bilateral Asymmetry had the least accuracy of 67.4%. The 

outstanding performance of masses and microcalcification makes them the most popularly 

used mammographic signs of breast cancer detection. Even though many publications have 

focused on detecting and analyzing microcalcification and masses, very few researchers 

focused on detecting Architectural Distortion in mammograms. Broeders et al. [119] and 

Rangayyan et al. [120] suggested that a more effective breast cancer prognosis could be 

realized if more attention is geared towards the detection of AD’s. 

 

2.5 Breast Cancer Modelling 

Locating and correctly interpreting a breast tumor is a viable though challenging task in 

computer vision because of the inherent variability of the tools used and breast structure. 

While tools used to capture the breast image are susceptible to noise and illumination, 

breast structure among individuals varies. While some individuals may have fatty breasts 

others have dense breasts. This section presents various approaches discussed in the 

literature for image representation when detecting breast cancer cells. 

2.5.1 Shape Models 

The shape is a significant visual cue used by radiologists to distinguish the two distinct 

classes of breast tumors. Benign tumors have circular and symmetric shapes while 

malignant tumors have random and asymmetric shapes [95]. To identify the shape of the 

tumor, the radiologist uses the shape interior region or contours defined by the tumor 

boundary. An effective shape model should successfully discover similar shapes in a 
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pattern matching problem, irrespective of whether the shape being recognized is rotated or 

flipped. Also, it should be robust such that it can effectively compare two images even 

though one may be noise affected or distorted. 

 

When the interior region of shape is used, it takes all the pixels within the shape into 

consideration for shape representation. Further, the interior region can be considered as 

global since it considers the entire region or structural since it partitions the interior region 

into sub-parts for shape image representation [121]. Shape contours are defined by tumor 

boundaries. The boundary defines the edges, which define a transition between tumor and 

surrounding tissues. Understanding tumor boundary aid in knowing to what extent the 

cancer cells have spread, which brings out the size of the tumor. The shape contours can be 

represented globally in which the complete margin information is used to develop the 

feature vector or structural in which the shape boundary information is broken into sub-

parts [121]. 

Shape features such as roundness, eccentricity, and compactness are used to characterize a 

tumor [122]. Caulkin et al. [123] defined shape vector                       by 

placing k equally spaced points on margins of each mass then defined the origin as the 

point of intersection between the border and the line connecting the nipple. This approach 

was based on the understanding that masses are formed in the breast ducts that originate 

from the nipple. However, this introduced rotational variances in the model, because the 

model did not consider interdependencies between size and feature vector. To improve the 
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model Berks et al. [124] defined a compact model of shape variation built by applying 

PCA to the aligned vectors Such that                              where 

       is a matrix of principal modes and                                  is 

the vector of model parameters stored for each shape. This model had negligible variance 

discarded. An important characteristic of using shape to locate breast tumors is low 

computation complexity and robustness of shape features [121]. However, using shape 

features requires enough landmark points to reveal the complete shape of the tumor. 

 2.5.2 Texture Models 

Texture models, mainly model a tumor by looking at structural properties which are not 

visible to the human eye. They have been used extensively in modeling tumors for breast 

cancer detection. They take into consideration the texture of a tumor which makes the 

model appropriate for breast cancer detection at all stages. Texture is a feature of 

homogeneity of images using the pixel for tonal variation, which has a certain scale, 

regularity, and directionality [125]. Texture highlights important details about the 

structural arrangement and environmental relationship of the object in an image and 

reveals important discriminatory characteristics related to variability patterns [126]. While 

shape models are inspired by the properties for which a radiologist looks for, appearance 

models are structured in a way that they can capture important properties not noticeable to 

the human eye [83]. Therefore, appearance models can capture properties that are valuable 

but not extracted visually. Also, they do not occur over a point, but over a region. Even 

though appearance models are used to analyze many images in natural and medical 
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science, extracting the features is challenged by changes that could result from 

illumination, position view, which cause a large variation in the image appearance of 

texture. Also, two different textures under different imaging conditions can appear to be 

similar [127]. Furthermore, to effectively use appearance models, there is a need to first 

process each region to remove background breast tissue [124]. 

2.5.3 Hybrid Models 

Hybrid modeling seeks to improve on the limitations of shape and texture models by 

combining them to get a more robust model for breast cancer detection. Hybrid models aim 

to improve the detection of masses and microcalcification by increasing the rate of true 

positive and reducing the rate of false-positive which improves the CAD system [122]. The 

performance of hybrid models is expected to be higher than when using either shape or 

appearance models. However, care should be taken to ensure we combine no two or more 

similar models, and also the combination does not cancel the effects of each other. Models 

could be combined in parallel, in which individual outputs of the models are concatenated 

and used for final breast cancer detection, or hierarchical in which the output of the first 

model is fed as input for the second model. This approach takes advantage of the strength 

in each of the modeling techniques. 

2.6 Breast Cancer CAD System 

Breast Cancer Computer-Aided Detection is a clinically proven technology aimed at aiding 

a radiologist in identifying abnormal cells viewed on a mammographic image by 

decreasing their observational oversight [128],[83]. It serves as a second reader by 

improving a radiologist's ability to make an objective and more accurate interpretation of 
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breast mammographic images which reduces rates of false-negative [128]. The objective of 

a CAD system is not diagnosing, but to bring the attention of the radiologist to a specific 

area whose analysis might determine the need for further analysis [21]. 

 

 Studies by [129], [130], and [131] showed that when a CAD system is used as an aid by 

the radiologist, it increases breast cancer detection accuracy level. Further, Dheeba et al. 

[63] noted that using a CAD system improves the rate of breast cancer detection by 14.8% 

more than when radiologist does the detection. The approach is cost-effective and the 

accuracy levels got are comparable to the double reading of mammograms. Because CAD 

systems have high sensitivity rates, they are suitable especially when observing 

abnormalities in dense breast tissues, which are common among young women. A breast 

cancer CAD system can detect anomalies and suspicious areas of the breast during image 

preprocessing, feature extraction, and classification. Figure 2.4 shows an overview of the 

CAD system for breast cancer detection. Below is a detailed explanation of each of the 

breast cancer CAD stages. 
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Figure 2. 4: Flow Diagram of Breast cancer CAD system [43] 

 

2.7 Breast Cancer Preprocessing Techniques 

Preprocessing is a foremost task in medical imaging. Its goal is to prepare an image for 

further analysis by enhancing image quality, eliminating noise and artifacts, without 

distorting image features [130]. Mammogram preprocessing is done in two different ways: 

De-noising and Intensity enhancement [132] [133]. The section below explains the most 

popular De-noising and Intensity enhancement techniques for mammograms.  
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2.7.1 Mammogram De-noising Techniques 

Noise is unwanted signals that are seen as grain particles in an image and cause a change in 

image intensity [134]. Noise is caused by changes in light or thermal energy of heat inside 

an image. The presence of noise alters the image pixels, which changes intensity values 

resulting in an image that appears to have dots.  

 

Salt and pepper, Speckle, Poisson, and Gaussian noises affect mammogram images. The 

Salt and pepper noise appears as white and black dots on a mammogram image and is 

caused by an abrupt change in image signal and accumulation of specks of dust in the 

image when the image is being captured. When a mammogram image has this noise, it 

substitutes the original image pixels values with noisy pixel values. Speckle noise is 

multiplicative, and it is created when dust particles settle on the image. Poisson noise is 

caused by the statistical behavior of electro-magnetic waves of an X-ray machine. 

Gaussian noise is caused by electronic circuits and sensor noise. To remove these types of 

noises, researchers have devices techniques for de-noising. Figure 2.5 illustrates the 

categorization of image de-noising techniques. 
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Figure 2. 5: Classification of image de-noising techniques (source [44]) 

 

De-noising techniques are classified as spatial or transform domain. The spatial domain 

aims at removing or isolating frequencies in the images. This technique considers the 

original noisy image and speed of the processing tool while the transform domain turns out 

a certain transformation of noisy image data and then applies the noise reduction process in 

the transformed image [136]. Table 2.2 shows the merits and demerits of different spatial 

and transform techniques.  
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Table 2. 2: Merits and Demerits of de-noising techniques 

De-noising technique Description Examples Merits Demerits 

Spatial 

Domain  

Linear 

Filter 

They are linearly 

constrained and 

generate input 

signals that vary 

based on time  

Wiener  filter  

Mean filter 

Sharpen the edges 

of an image 

Correct unequal 

illumination 

Reduce salt and 

pepper noise 

Blur shape 

images 

Destroy lines 

and image 

details 

Perform poorly 

in the presence 

of signal 

independent 

noise 

Non-

linear 

Filter 

They do not 

follow the 

linearity 

relationship  

Median 

Filter 

Adaptive 

Filter 

Reduce the noise 

without any 

attempt to 

explicitly identify 

it 

They are 

complex to use 

design and 

implement  than 

linear filters 

Transform 

domain 

Data 

adaptive 

Characteristics  of  

the  image  inside  

the  filter  

Independent 

Component 

Analysis 

(ICA) 

it uses a non-

Gaussian signal  

Computationally 

costly 

Non-data 

adaptive 

Coefficients are 

fixed and there is 

no difference in 

function between 

direct and 

transposed form. 

Spatial                 

Wavelet 

 

can be applied to 

the signal without 

computing some 

statistics, Can be 

applied to feed-

forward filters 

Dependent on 

noise and signal 

characteristics 

which are 

unknown 
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2.7.2 Mammogram Intensity Enhancement Techniques 

Intensity enhancement aims to improve image quality which makes it easily 

comprehensible by a human eye [60].To achieve mammogram image enhancement, the 

contrast of a mammogram is increased by creating a large intensity difference between the 

image of interest and background. When a mammogram image is enhanced the 

background noise is removed which makes it easy to determine the Region of Interest and 

also the complexity for reading and interpreting a mammogram by a radiologist is reduced 

[137].  

An effective mammogram enhancement technique aims to improve an image by enhancing 

features in masses [137]. Researchers have used several techniques. However, the 

histogram modification approach is the most popularly applied technique. It is based on 

creating a new distribution of intensities that are highly uniform by reassigning pixel 

intensity values [31]. A narrow histogram implies a low contrast image while a uniform 

histogram depicts a high-contrast image [137]. I discuss some commonly used histogram 

enhancement techniques below. 

The histogram equalization (HE) technique works by uniformly distributing intensity 

values and maximizing information visibility in mammograms. Each pixel value is 

substituted by the integral of the histogram image in that pixel. Because HE efficiently 

spreads out high-intensity values to allow low-intensity values to get better contrast [138]. 

This technique is suitable for use with images that have a dark or bright foreground and 

background, especially when the image is viewed on an x-ray [139]. In a mammogram, HE 
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is employed to adjust the contrast of the image which allows better visibility of image 

anomalies. A desirable outcome of the HE technique is in its effectiveness to equally 

distribute the image pixels in the entire image. However, this technique only works 

effectively when the image has only one object or if there is no dissimilarity between the 

object and its surroundings [31].  

Adaptive histogram equalization is different from HE in that it calculates multiple 

histograms from different sections of an image instead of the entire image. Kayode et 

al.  [137] ascertained that AHE is suitable for enhancing edges in regions and improving 

region contrast. However, Sivaramakrishna et al. [140] argued that AHE tends to generate 

a significant level of noise. Further, Kayode et al.  [137] noted that AHE suffers from 

overestimation since noise is heightened because almost uniform regions generate highly 

peaked histograms that result in large values. 

The generation of noise experienced by Adaptive Histogram Equalization (HE) can be 

overcome by using the Contrast Limited Adaptive Histogram equalization technique. With 

CLAHE, the contrast in a homogeneous area is limited to avoid amplifying noise. Contrast 

Limited Adaptive Histogram equalization technique operates on small areas called tiles. 

Every tile is enhanced, such that the histogram of the output region is approximately 

similar to the histogram defined by the distribution parameter [141]. It requires getting a 

local histogram defined by neighbors of each pixel and using a defined limit to trim the 

histogram, then redistribute the pixels and finally integrate the histograms [137]. Because 
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mammogram images comprise more than one object CLAHE would be a suitable 

technique because it does not over enhance. 

 

2.8 Breast Cancer Segmentation Techniques 

Image segmentation techniques partition a digital image into many sets of components to 

highlight significant regions of interest for further investigation [130]. They define 

suspected abnormalities and isolate them from the surrounding regions using tumor edges 

or pixel regions. The output of the segmentation process is a set of segments jointly 

covering the entire image. They segment images automatically or manually based on 

similar properties of color, shape, or intensity. However, in either case, segmentation is 

challenging because of overlapping tissues. Providing a segmentation technique that can 

detect and localize breast anomalies is highly desirable. Researchers have applied 

segmentation techniques in breast cancer detection for confining suspicious areas, tracking 

the progression of breast tumors, and analyzing anatomic structures. Segmentation 

techniques like thresholding, using edges, region growing, and clustering is used with 

mammograms. 

 

2.8.1 Thresholding Techniques 

The threshold segmentation technique separates the foreground and background by 

converting a grayscaled image into a binary image based on an optimum threshold [142]. It 

uses the threshold value for generating a binary image by allocating zeros to all pixels 
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values below the threshold and assigning ones to all pixel values above the threshold. The 

threshold-based segmentation technique can be performed globally or locally. In the global 

threshold, there is a search for a threshold value Tg by relying on the intensity of nearby 

tissues, while in local thresholding it defines several local threshold values Tl for every 

pixel based on the intensity values of its neighboring pixel [143]. Global thresholding 

produces poor results when background illumination is uneven. Even though threshold-

based segmentation techniques do not perform well in images with the close color 

spectrum and do not guarantee object coherence [144], they are simple to implement, fast 

especially if repetition is on similar images and are used for real-time application [145]. A 

commonly used threshold-based segmentation technique is Otsu. 

The Otsu threshold algorithm creates a one intensity threshold that splits the pixels into 

two distinct classes. It selects an optimal threshold value by minimizing the weighted 

intensity variance within the class intensity by applying equation (2.1) given by:  

 

   
            

            
     

 

(2.1) 

Where weights    and    are probabilities of two classes whose value ranges from 0 to 

255 at threshold t and      
 

 and     
 

are class variances for the two classes, while     
 

(t) is the 

minimized value. Equation (2.2) defines the class probability for the two classes: 
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(2.2) 

The mean for each of the class         and       is calculated by applying equation (2.3). 

 

 

        
     

     

 

   

    

 

 

         
     

     

 

     

     

 

(2.3) 

Then the variance is obtained by applying equation (2.4) 

 

  
               

 

 

   

    

     
   

 

  
               

 

 

     

    

     
 

 

(2.4) 

The Otsu method achieves outstanding performance when the histogram has a bimodal 

distribution. However, if the object area is small compared to its background area, the 

histogram will no longer be bimodal. When the intensity variance between the object and 

background area is larger compared to the mean difference, it degrades the ability to 

separate between the gray level histogram. 
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2.8.2 Edge-Based Techniques 

Edges are points in an image where the gray values change from one pixel to another. 

Edge-based segmentation methods use the abrupt pixel change of an image to extract 

useful information. Because edges occur at image location which represents image 

boundaries, edges can segment the tumor region in mammographic images to aid 

separation of tumor from surrounding tissues. Further, it can show breast abnormalities.  

Gradient and Laplacian are the two main edge-based segmentation techniques. To find an 

edge, a gradient is used to detect edges by calculating the first derivative of image 

intensity. Examples of gradient techniques include; Roberts, Prewitt, and Sobel.   

Laplacian techniques locate an edge where the second derivative has zero-crossing [146]. 

Even though edges are easy to perceive from the human eye and work well with good 

contrast they are highly sensitive to noise and perform poorly in images with low contrast 

[144].  

 

2.8.3 Region-Based Techniques 

The region-based segmentation techniques divide a region into homogenous regions of 

connected pixels by using pre-defined criteria like intensity, color, or shape. They include 

region growing, split and merge, and watershed transform method. 

 The region growing approach works by selecting an initial seed point from which the 

region grows depending on similarity with the neighboring pixels until it achieves a 
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homogeneous and connected region. It can correctly segment a region that has the same 

properties, provides clear edges, and the user can accurately define the initial seed point 

and criteria for growing the seed [147]. However, it is computationally expensive, sensitive 

to noise, and lacks a global view of the problem since it is a local technique [147].  

The split and merge technique divides an image into four by four squares by using Region 

Adjacency Graph (RAG). It then merges the squares depending on similarity with 

neighboring pixels [148]. It repeats the procedure until it gets a homogeneous connected 

region. The advantage of this technique is it allows the user to set the criteria for a split 

which can differ from the merge criteria. Also, the user can progressively determine the 

number of split levels. However, this technique suffers from blocky segments caused by 

the number of split levels used [149]. Even though making high-level splits reduce blocky 

segments, the process leads to high computation time.  

Watershed transform uses mathematical morphology to compute the gradient of the 

original image. Watershed is simple to implement, produces unique solutions for a 

particular image, adapts to different digit grid, and extends to a k-dimensional image [150]. 

Since a mass tumor has a higher intensity than its surrounding, watershed segmentation is 

suitable for mass segmentation. However, when the watershed transform is applied directly 

to a mammogram image, it can cause over-segmentation because of the presence of noise 

in the image. Also, because it does not produce smooth boundaries, it is inefficient and 

thus may not be a final segmentation technique [151].  Even though region-based methods 

apply multiple criteria at the same time and perform well in the presences of noise [144], 
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their performance depends on the selection criteria, in addition, region-based techniques 

are computationally expensive in terms of time and storage and can lead to over or under 

segmentation.  

 

2.8.4 Cluster-Based Technique 

Cluster-Based techniques group objects based on attribute similarity. They generate 

clusters using   K mean since it is easy and fast to implement efficient, and scalable to 

large datasets [145]. However, it is a challenge to define the number of clusters because 

there are no explicit selection criteria [152]. We find a discussion on some segmentation 

techniques for mammographic images in [153] [154] [155]. 
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Table 2. 3: Mammogram segmentation techniques 

Segmentation 

techniques 

Description Advantages Disadvantages 
E

d
g
e-

b
as

ed
 

m
et

h
o
d
s 

It aims at identifying 

sharp discontinuities 

in the image 

Easy to be perceived 

by humans 

Suitable for images 

with good contrast 

Unsuitable for low contrast 

images    

Highly sensitive to noise 

T
h
re

sh
o
ld

in
g
 

b
as

ed
 

m
et

h
o
d
s 

Selects an appropriate 

threshold value 

according to image 

properties then 

assigns pixel images 

to specific regions 

Can be used for real-

time applications 

Simple to implement 

Fast especially if 

repeating on similar 

images 

Does not work well in 

images with a close color 

spectrum 

No guarantee of object 

coherence 

eg
io

n
 g

ro
w

in
g
 m

et
h
o
d
s 

Divide a region into 

homogeneous regions 

of connected pixels 

based on predefined 

criteria such as 

intensity, color, or 

texture. 

More than one  criteria 

can be applied 

concurrently 

It is simple to 

implement 

Performs well in the 

presence of noise 

It is dependent on the 

selected criteria 

It is computationally 

expensive in terms of time 

and memory 

It suffers the problem of 

under or over-segmentation 

C
lu

st
er

-

b
as

ed
 

m
et

h
o
d
s 

Groups objects based 

on their similarity 

Easy to implement 

Allow 3-dimensional 

segmentation 

Challenged on how to 

define the number of 

clusters 

 

2.9 Mammogram Feature Extraction Techniques 

Feature extraction is a dimensionality reduction technique that aims at transforming a high 

dimensional input feature set to a low dimensional feature set containing features with 

good discriminant ability between one class and another [157]. The reduction of features 
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implies not only imposing a random or predetermined ceiling on the number of features for 

the newly generated feature set, but the choice of features also depends on the importance 

of the feature based on discriminate power. Since the extracted or selected are the only 

inputs that guide the classifier, it is paramount to have a feature set that contains the most 

significant and discriminate features that could positively influence the chances of 

achieving high classification results. Features extraction techniques for breast cancer 

detection using mammograms are categorized based on descriptors for shape, texture, and 

Hybrid [158]. Below is a detailed discussion of the descriptors. 

 

2.9.1 Shape-Based Descriptors 

The shape is a significant visual cue applied in medical image processing for the 

identification of images. Extracting shape features from an image is a low computation 

process that involves few properties of an image resulting in a robust feature set [121]. 

Shape features play a significant role in applications used for retrieving, identifying, and 

classifying shapes of an image [130]. For breast cancer detection, the shape of a breast 

tumor is extracted then classified as a benign or malignant tumor. The shape of an image is 

defined by its margin properties. The margin defines the edges, which define a transition 

between mass and surrounding tissues. Understanding the margins aid in knowing to what 

extent the cancer cells have spread, which brings out the size of the mass. Coupling this 

knowledge with the mass property of having defined shapes is used to define mass 

features. Shape-based descriptors are extracted based on the entire region or contours of 

the image. 



55 

 

 

 Region-based features make use of the interior content of an image. It considers all the 

pixels within the shape region for representing shape. Region-based features can be global 

or structural, depending on whether they divide the shape into subparts. The global region-

based approach considers the entire shape region for shape representation, while the 

structural approach partitions the shape region into sub-parts used for representing shape 

[121]. 

Contour based shape features use boundary features by using either a global or structural 

approach. The global approach does not split the shape into sub-components rather, the 

whole boundary information is used to get the feature vector for the matching process. 

Structural methods split the shape boundary information into small segments, called 

primitives. The final representation of the structural method is a string or a graph used for 

matching during the process of image retrieval [121]. 

Shape features extraction techniques are designed for different purposes based on how 

accurately the features promote effective recognition. However, a good shape feature 

extraction technique can effectively discover shapes similar in a pattern matching problem, 

irrespective of whether the shape being recognized is rotated or flipped. Also, it should be 

robust such that it can effectively compare two images even though one may be noisy or 

distorted. Kallergi and Übersichtsarbeit [159] reported morphology to be a significant 

clinical factor used by clinicians’ detection of microcalcification. However, a major 

challenge with extracting shape features is that it becomes more complicated in the 

presence of noise, occlusion, and arbitrary distortion making recognition difficult [121]. 
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Also, the accuracy of the diagnosis algorithm relies on the effectiveness of the 

segmentation process [83]. 

 

2.9.2 Texture-Based Descriptors 

Texture is a feature of homogeneity of images using the pixel as the fundamental for tonal 

variation, which has a certain scale, regularity, and directionality [125]. Texture highlights 

the structural arrangement and environmental relationship of the object in an image and 

reveals important discriminatory characteristics related to variability patterns [126]. The 

section below explains the local texture feature extraction techniques applied for breast 

cancer detection. 

 

2.9.2.1 Gabor Filter 

The Gabor filter is a texture analysis technique that uses different frequencies and 

orientations modulated by a Gaussian function [160]. It computes a 2D Gabor filter as 

shown by equation (2.5) 

 
        

 

      
       

 

 
  
  

  
 
  

  

  
          

 

(2.5) 

In which σa and σb are standard deviations of the distribution while S is the radial 

frequency. 

The general equation for a Gabor filter bank is given by equation (2.6):  

                      (2.6) 
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where, 

                                    

    
   

 
            

where n is the number of orientations used and z
-m

 =0,1,2…S for S scales. 

 The 2D band-pass filter has shown optimal localization properties in both spatial and 

frequency domains. Hence, making it suitable for extracting image features positioned in a 

particular orientation and within a certain frequency because shape defines breast cancer 

masses and margin for an orientation. Researchers have extensively used the Gabor filter 

for mass segmentation and edge detection in breast cancer mass detection. Salabat et al. 

[161] Initialized different filters in Gabor bank to different scales and orientations to 

extract patterns in ROI to that differentiated between normal and abnormal breast tissues.  

2.9.2.2 Linear Discriminant Analysis 

The Linear Discriminant Analysis (LDA) is a dimensionality reduction strategy that aims 

at transforming a high dimensional feature vector to a low dimensional space by increasing 

the ratio between intraclass scatter Sw and inter-class scatter Sb.  

Sw and Sb measures are given by equation (2.7): 

 

         
       

     

  

   

 

   

 

 

(2.7) 
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Where   
   is the     instance and    is the mean of class b, while b,c is the number of 

classes.     is the number of instances in class b calculated using equation (2.8) 

 
          

 

   

          

 

(2.8) 

2.9.2.3 Gray-Level Co-occurrence Matrix (GLCM) 

The Gray-level co-occurrence matrix is a texture measure that uses image distance and 

orientation to examine the texture of a grayscale image by comparing every pixel with its 

neighboring pixel. The image distance between the reference pixel value and its 

neighboring pixel values forms a square shape [162] quantized in 0
0
, 45

0
,90

0
,180

0 

orientations [109]. Also, it is balanced about the diagonal, such that if there is a difference 

of 2 cells from the diagonal, then it is a two-level gray difference [163]. 

 

The GLCM value at GLCM (x,y) is defined by probability measure of reference pixel x and 

gray value y at neighboring pixel  by distance d, orientation   given by equation (2.9) 

 

                  

                                
 

        
          

  
               

   

                     

(2.9) 
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Even though GLCM is easy to implement and it has good performance in terms of the 

processing time [164], and it gives good results in a large field of application, however, the 

large dimensionality forces it to reduce the number of gray levels and may not be effective 

in images with a lot of noise. Also, the image quantization process leads to loss of 

information, making the extracted features not reliable [83]. Also, there is no established 

way of choosing the displacement vector (d) and calculating Co-occurrences matrices for 

different values [83].  

 

2.9.2.4 Local Binary Pattern 

The Local Binary Pattern (LBP) is a local texture descriptor proposed by Ojala et al. [165]. 

Given an N × N image, LBP operator thresholds p neighboring pixels with the central pixel 

results to an 8-Bit binary code. The LBP operator considers p neighboring pixels along a 

circular path either clockwise or counter-clockwise and R distance, which is the radius of 

comparison as shown in formula (2.10): 

 

                        
 

 

   

  

 

       

       

        
   

 

(2.10) 
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Where    the value of its neighbors is,    is the gray value of the referenced pixel,    is the 

total number of neighbors, and    is a neighborhood radius. First, it identifies the center 

pixel value, then compares that central pixel with the neighboring values using a defined 

radius. The thresholding and encoding steps define the LBP extraction algorithm. 

During thresholding, the LBP compares the value of the central pixel with all the 

neighboring pixel values P based on an identified distance R. If the value of the 

neighboring pixel is higher than the value of the central pixel, then it allocates value 1 to 

that position otherwise value 0. The values are then read clockwise or counter-clockwise 

into a binary value. Thresholding aims to get the local binary differences [166] that result 

in an eight-bit binary number.  

The LBP operator is computationally simple and can withstand monotonic gray-scale 

changes [167]. Figure 2.6 shows a sample 3*3 input image and its corresponding LBP 

code. The generated LBP code is then used to get a global histogram. 

           

              (a)   (b)          (c)   (d) 

Figure 2. 6:  Sample LBP code (a) Sample image region (b) Threshold image (c) Weights 

assigned to image (b) (d) Binary pattern and its equivalent decimal value 

Binary Pattern = 111100012 

Decimal= 1+16+32+64+128=24110 
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The ability to discriminate and computational simplicity of LBP has made it a common 

technique for breast segmentation and classification, therefore researchers have adopted 

LBP for identifying breast abnormalities in mammograms [168] which has facilitated LBP 

feature extraction during segmentation and classification of breast cancer tumors. 

2.9.2.5 Local Ternary Pattern 

Relying on the central pixel as a threshold in LBP makes it sensitive to noise. A minor 

change of central pixel significantly changes the LBP code. To overcome this challenge, 

LTP extends LBP by thresholding the pixels into (0, 1,-1) instead of (0, 1). Using three 

value pixels makes LTP robust to noise than LBP. Consider threshold constant c, center 

pixel r, and neighbor pixel n. Equation (2.11) gives the LTP formula. 

 

      

                             
                  
                              

  

(2.11) 

 

Where        s is the    neighbor containing the LTP code value. 

 

After thresholding, to get rid of the negative values, the ternary pattern generated is divided 

into positive and negative patterns.  
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Figure 2. 7: LTP Operator 

 

While LTP can resist noise, its major disadvantage is that modification done is invariant 

under grayscale transform of intensity values. Also, the discriminate property is still 

inadequate since it can classify two or more distinct patterns in the same class. 

2.9.2.6 Local Directional Pattern 

To resolve the challenge of relying on neighboring pixel intensity which makes LBP 

unstable, Jabid et al. [30] proposed a Local Directional Pattern descriptor that encodes 

image texture by computing edge response values of a pixel in a different direction. 

Popular edge detectors like Frei-Chen, Kirsch, Sobel, and Prewitt edge detectors are used 

in this case [169]. Among the edge detectors, Kirsch is the most popular because it 

identifies different directional edge responses more accurately by considering all the eight 

neighbors of a pixel [169]. Figure 2.8 shows the Kirsch mask. 
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Figure 2. 8: Kirsch Mask 

 

The original LDP does not consider all response values because they are not all equally 

important. Therefore the   most top prominent directional values    are selected while the 

remaining       are set to 0 as shown by the formula (2.12). 

 

                     

 

   

     

                 

                                  
     

     
                                                          

 

(2.12) 
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LDP binary code: 00010011    LDP decimal code:19 

Figure 2. 9: A sample LDP code using     

 

LDP operator is more robust to changes caused by noise than LBP because it applies 

orientation responses that are more stable than intensity values used by LBP [30]. Even 

though LDP is more stable than LBP, it depends on the top three responses which result in 

information loss around a local neighborhood. Also, according to Shabat and Tapamo 

[170], LDP is computationally expensive when compared to other techniques. 

 

2.9.2.7 Local Quinary Pattern 

While LBP and LTP encode the pixels into (0,1) and (0,1,-1) respectively, Local Quinary 

Pattern (LQP) encodes the pixels into 5 values by using two threshold values    and    set 

by the user [171] using equation (2.13). 



65 

 

 

 

 
 
 

 
 

                                   
                     
                      

                         
                                            

          

(2.13) 

 

The Local Quinary pattern is split into four binary patterns. Figure 2.10 illustrates how a 

Quinary code is split into four binary patterns. 

 

Figure 2. 10: Quinary Code split into four binary code 

2.9.3 Hybrid-Based Descriptors 

Hybrid feature extraction techniques combine two or more feature extraction techniques to 

help improve the detection of masses and microcalcification in breast cancer Computer-

Aided detection systems [122]. When hybrid feature extraction techniques are used, the 

performance is expected to be higher than when using individual feature extraction 

techniques. However, care should be taken to ensure no two or more similar techniques are 
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combined, as not much improvement will be achieved. Also during, combination care 

should be taken such that no two combined techniques cancel the effects of each other. 

 

2.10 Breast Cancer Feature Selection Techniques 

Feature selection is a process of searching for the best feature subset among competing 

candidate subsets, according to some defined evaluation measure. The selection process 

involves generating a new feature set by disregarding features with insignificant or no 

predictive information while ensuring detection accuracy does not decrease [172]. Feature 

selection infers not only to a random or pre-defined threshold on the number of features to 

be considered, rather it further defines the type of features to be selected based on their 

characteristics, their presence, or lack of interaction with other features and selection 

algorithm.  This implies that features are picked or discarded depending on their 

importance to the target class. 

The process of feature selection involves performing a search to generate a subset of 

candidates, then testing the goodness of the generated subset by checking against a 

stopping criterion and then determining the result through a validation process. It then uses 

the selected features for classification. Filters, wrappers, embedded and hybrid is a way of 

categorizing feature selection techniques [173]. 

 

2.10.1 Filter Technique 

The filter technique evaluates the importance of a feature by considering its intrinsic 

characteristics independent of the classification algorithm [174], [175]. It selects a feature 
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based on a ranking criterion used to score all the features and a defined threshold value 

used to eliminate all features below the threshold value [174]. Subsequently, the features 

obtained are fed to a classification algorithm. Table 2.4 shows a generalized filter 

algorithm. 

Given dataset D, the algorithm begins with an initial subset  S0, which could be an 

empty/full set or a randomly generated subset. Subsequently, the initial subset S0, is 

evaluated based on an independent measure M and the result is stored in Ωbest. After that, a 

new subset S is created and evaluated (by the same M independent measure) for further 

comparison with the previous best one Ωbest. If it is found to be better, it is considered 

being the best current subset. The process is repeated until a preset stopping criterion ɛ is 

attained. The algorithm then outputs the last best current subset Sbest as the final set of best 

features. 

 Table 2. 4: Pseudocode of a generalized filter algorithm (Source: [45]) 

 

Filter Algorithm 

Input: 

D (f0,f1,..,FN-1)  // initial dataset with N features 

S0   // an empty subset  

ɛ   // stopping criteria 

Output:  

Sbest   // best subset  
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Begin 

Ωbest  =eval (S0,M);  // Evaluate S0 by  independent measure M 

 do begin 

S = generate (D);  // Generate a subset of features for evaluation 

Ω=eval (S, D, M); // Evaluate the current subset S by an independent measure M 

If (Ω>Ωbest) 

Ωbest = Ω ; 

Sbest = S; 

end until (ɛ is reached); 

return Sbest; 

end 

Filter techniques are categorized into univariate/ attribute evaluation and Multivariate/ 

subset evaluation techniques. Univariate filters consider each feature separately during the 

selection process [177]. Each feature is given a score based on an evaluation measure and 

amount of information within a feature that can help describe the target class. The features 

are then ranked based on a score. Features with the lowest score are ranked last. A 

threshold can be defined to help eliminate the features with the least score.  Univariate 

filter techniques are scalable, independent on any classifier, thus exhibit generality and are 

fast [177]. However, they ignore feature dependencies since every feature is evaluated 

separately depending on its relevance with the target class. Consequently, a feature can be 

discarded as being useless on its own, yet may be useful when considered with others 
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[178]. Also, they do not interact with a classification algorithm which makes the technique 

produce results not tailored to a specific classifier.  

Apart from evaluating class relevance like univariate filters, multivariate filters calculate 

feature dependencies between each feature pair to find relationships among features [174]. 

Even though multivariate filters are less computational complex than wrappers techniques, 

they are slow and less scalable when compared with univariate filters [174].   

2.10.2 Wrapper Technique 

Wrapper techniques use a predetermined selection algorithm to evaluate and determine the 

features to select [178]. They define a search procedure in the space of likely feature subset 

then generate and evaluate various subsets of features. To get an evaluated subset of 

features, they define a specific selection model which makes this technique custom-made 

to a particular algorithm [174]. Wrappers are better at obtaining optimal feature by 

allowing for the specific biases and heuristics of the learning algorithm and the training set 

[179]. Table 2.5 shows a generalized wrapper algorithm. 

 

Table 2. 5: Pseudocode of a generalized wrapper algorithm ( source: [45]) 

 

Wrapper Algorithm 

Input: 

D (f0,f1,..,FN-1)  // initial dataset with N features 

S0   // an empty subset to start the search 
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ɛ   // A stopping criterion 

MLC   // A specified Machine Learning Classifier 

Output:  

Sbest   // an optimal subset of features 

Begin 

θbest  =eval (S0,D,MLC);  // Evaluate S0 by a MLC 

do begin 

S = generate (D);  // Generate a subset of features for evaluation 

θ=eval (S, D, MLC);  // Evaluate the current subset S by classifier MLC 

If (θ>θbest) 

θbest = θ; 

Sbest =S; 

end until (ɛ is reached); 

return Sbest; 

end 

 

2.10.3 Embedded Techniques 

The embedded techniques select features using a particular learning algorithm during the 

training process. Their interaction with the learning algorithm is at a lower computational 

cost than with the wrapper techniques [178], [179]. The embedded techniques capture 

feature dependencies considering not only relations between one input feature and the 

output feature but also look for local features that allow higher local discrimination. They 
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select the optimum feature subset for a known number of elements in a set using an 

independent criterion. They use the selection algorithm to choose the ultimate best feature 

subset among the optimal feature subsets across different cardinalities.  

2.10.4 Hybrid Techniques 

Hybrid techniques combine two or more similar or different selection techniques. See a 

generalized hybrid algorithm in Table 2.6. They first apply a filter technique to decrease 

the number of features in the original feature set. Then they use the resultant feature subset 

as input to the second stage, where they apply a wrapper technique to choose an 

appropriate number of features. Another way of implementing a hybrid technique is by 

applying the filter technique twice to a dataset. 

Table 2. 6: Pseudocode of a generalized hybrid algorithm (Source: [45]) 

 

Hybrid Algorithm 

Input: 

D (f0,f1,..,FN-1)  // initial dataset with N features 

S0   // A subset to start the search 

Output:  

Sbest   // an optimal subset of features 

Begin 

C0 = card (S0);   // Calculate the cardinality of S0 

Ωbest = eval (S0, D, M);  // Evaluate S0 by an independent measure M 

Ωbest = eval (S0,D, MLC);  // Evaluate S0 by a classifier MLC 
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for c =C0+1 to N begin 

for i= 0 to N-c begin 

S=Sbest U {fi};  //Generate a subset of feature with cardinality c for evaluation 

Ω=eval (S,D,M); // Evaluate the current subset S by an independent measure M 

If (Ω>Ωbest) 

Ωbest = Ω ; 

Sbest = S; 

end 

θ=eval (S’best, D, MLC); // Evaluate S’best by a classifier MLC 

If (θ>θbest) 

Sbest =S’best; 

θbest = θ; 

else 

break and return Sbest 

end 

return Sbest; 

end 

 

2.10.5 Comparative Analysis of Feature Selection Techniques 

Feature selection aims to generate a set of features with significantly important features 

while ensuring it selects not too many or too few features than required. The problem of 

feature selection has been addressed through univariate filter techniques such as discussed 
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by Heshmati et al. [180] and Alharbi et al.  [181]. Researchers are relying heavily on 

univariate filters that perform ranking to order features because they are simple, scalable, 

and have good empirical success [182].  

 The ranking is done by looking at the relevance of a feature in relation to the class. 

Therefore, they discard a feature that is not significant to the target class. This brings out 

two issues. First, some features when considered alone may not be useful but become 

useful when considered together with other features. Also, two features that are not useful 

individually can become useful when combined with other features [182]. Secondly, 

ranking is based on relevance alone. This means they do not consider redundancy 

therefore, choosing two highly ranked correlated features results in a feature subset of 

closely correlated features. According to Guyon and Elisseff [182], correlated features are 

redundant because there is no additional information gained by including two or more of 

these features. Also, the best feature set does not necessarily comprise the best individually 

selected features. Therefore, the selection of features should be done by looking at features 

as a set rather than on contribution made by an individual feature. This makes univariate 

filter techniques inappropriate for selecting the best feature set. However, in most real-

world situations, the best set of features and the number of features in such a set is 

unknown. 

 

The lack of feature dependencies experienced in univariate filter techniques provoked the 

introduction of multivariate filter techniques. Apart from considering the relevance of the 

features as in the univariate filter techniques, multivariate filter techniques also consider 
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redundancy. Redundancy among features is identified through correlation criteria as in 

[183], [184] or mutual information criteria in [185], [181].  Some correlation criteria can 

only detect linear dependencies between features and the target class. This implies that 

some degree of redundancy will still be present. Also, a dataset can contain uncorrelated 

features that complement each other.  

 

Correlated criteria cannot discriminate complimentary features therefore two 

complementary features are presumed to be different. Guyon and Elisseff [182] proved that 

absences of correlation do not imply the absence of feature complementarities. The demerit 

of mutual information criteria is that it considers the quantity of dependency rather than the 

type of dependency which can cause the inaccurate ordering of the features because a 

feature with more information does not necessarily mean it is more useful than one with 

less information.  

 

Wrapper techniques addressed the lack of interaction with the classifier experienced by 

filter techniques. Wrapper techniques consider feature dependencies and selection 

algorithms, which makes them tailored to the specific learning algorithm. Researchers in 

[94], [85], [95] used wrapper techniques. However, they used forward or backward 

selection techniques, which have a high likely hood of falling in the local minimum [181]. 

Vasantha [95] noted that Sequential Forward and Sequential Backward selection present 

sub-optimal solutions and suffer from the nesting effect. Such that initially selected 

/removed features cannot be discarded or reintroduced later. Wrapper techniques are 



75 

 

 

generally computationally expensive, especially when dealing with large datasets. Wrapper 

techniques also suffer from overfitting, however, this can be avoided by using cross-

validation [179]. 

 

To take advantage of the simplicity of filter techniques and the high accuracy of wrapper 

techniques, researchers developed hybrid techniques. Perez [9] and Huang et al.  [186] 

developed hybrid techniques that exploit the efficiency of filters and the accuracy of 

wrappers. To circumvent computation expenses experienced by wrappers, hybrid 

techniques perform feature selection by first using filter techniques to rank the features and 

also reduce the input feature set for the application of the wrapper in the second step. Even 

though hybrid techniques have reported outstanding performance, sometimes the 

performance improvement is not significant enough to warrant the effort, which depends 

on the way they form the hybrid. While some hybrid techniques conduct one filtration after 

another, others attempted to find the intersection of two or more filters and use the output 

for the multivariate filter technique as in [186]. 

A major challenge facing researchers is how to choose an appropriate algorithm for the 

selection process. Some researchers have chosen selection algorithms without considering 

their stability. Considering the stability of a feature selection algorithm makes the 

technique robust to minor variations, especially when new learning samples are added or 

removed from the learning set [187], [188], [189]. Naseriparsa et al. [190] attempted to 

handle the instability of the selection algorithm by considering sample size and carefully 
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choosing the selection algorithm. However, this has not been exhaustive. The stability of a 

selection algorithm should not be examined alone, rather in combination with the 

predictive performance of the features, because factors such as inherent characteristics of 

an algorithm, underlying data distribution, and sample size affect stability. For instance, 

multivariate filter-based feature selection techniques are less stable than Univariate filters. 

[187]. Haury et al. [188] and Kalousis et al.  [189] showed that ensemble feature selection 

is a better approach for achieving stable feature subsets. Table 2.7 shows the merit and 

demerit of feature selection techniques discussed. 
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Table 2. 7: Merits and Demerits of feature selection techniques 

 

2.11 Breast Cancer Classification Techniques 

Classification is a vital stage in a CAD system for differentiating and labeling 

abnormalities by mapping data to a pre-defined target class. A classification algorithm 

aims to build a classifier that takes some input features during training and learns the 

pattern, then uses the knowledge learned to predict new features during the testing phase 

Feature 

selection 

method 

Examples Merit Demerit 

Filter Maximum Difference 

Feature Selection (MDFS) 

[46]; Correlation-based 

Feature Selection [47]; 

ReliefF [48] 

Computationally 

efficient, Independent 

of any algorithm                            

Fast and scalable 

lack interaction with the 

classifier  

Ignore feature 

dependencies 

Wrapper Sequential Forward 

Selection (SFS)[49]; 

Modified Artificial Bee 

Colony Feature Selection 

(MBCFS) [50]; Enhance 

Cuckoo Search Feature 

Selection [51]  

Includes interaction 

between feature subset 

search and model 

choice 

Takes into account 

feature dependencies 

Less computationally 

intensive 

Depend on a specific 

classifier 

They are likely to overfit 

than filter methods 

They are computationally 

intensive  

Embedded PSO-KNN [52]; PSO-

KNN [53] 

 

 

No need to split the 

training data  

Allow interaction with 

classification model 

 Less prone to 

overfitting  

Classifier dependent  

Computationally 

expensive than filter-based 

methods 

Hybrid New Particle Swarm 

Optimization and Genetic 

Algorithm [54]; GA [55]; 

SFS, SBS, and F-score 

[56] 

-Have better accuracy 

than filter and wrapper 

methods 

-Classifier dependent 

selection 

-A lot of effort can result 

in insignificant 

improvement 
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[196]. Breast cancer is purely a classification problem in which the classifier assigns a 

label based on the attributes tested. It can either be a binary classification problem where 

two distinctive features are used to distinguish absences or presences of cancer cells or a 

multi-class problem that uses more than two labels.  Since radiologists are often prone to 

making mistakes when analyzing mammograms, using classification algorithms is a 

suitable approach for automating the analysis of breast tumors because classifiers can learn 

complex relationships and patterns [197].  

Classification techniques used in breast cancer detection are supervised or unsupervised. In 

supervised classification techniques, the classifier learns based on a training set, and they 

use the gained knowledge for classification. Geometric and statistical distance measures 

are used to define how close a point is to each of the training samples. The approach has 

two main phases: A training phase in which data is analyzed by a classifier and a testing 

phase in which a classifier estimates accuracy using test data [198]. Supervised techniques 

rely on a training set that distinguishes spectral distinctiveness of the classes by avoiding 

two or more classes being similar so that the rate of misclassification is low. To achieve 

this, they require a well-developed training set to ensure a good representation of data 

which aids outstanding performance for the classifier. Some examples of commonly used 

supervised classification techniques for breast cancer classification include Support Vector 

Machine, Artificial Neural Networks, K-Nearest Neighbor, Random Forest, Bayesian and 

Naïve Bayes.  
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In unsupervised classification, there are no class samples provided, rather they generate 

clusters they then assign the clusters classes (classified). It is faster than a supervised 

technique because it does not require prior learning. Also, they create classes based on 

spectral information only, and therefore, they are not subjective. However, sometimes the 

spectral classes may not correspond with the information classes, consequently, more time 

is used to interpret and label the classes. The section below explains classifiers used for 

breast cancer classification. 

 

2.11.1 Support Vector Machine  

Support Vector Machine (SVM) is a supervised classifier that uses statistical learning 

theory to find a hyperplane that separates two classes. They aim at maximizing the margin 

between the separating hyperplane and data points on either side of the hyperplane. If the 

training data is separable linearly, then there exists a pair (v,b) calculated using equation 

(2.14). 

                           
                               

 

(2.14) 

In which the decision rule is computed by; 

                                                                        
 
 

(2.15) 

where v is the weight vector and b is the bias 
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The SVM classifier creates the hyperplane, using a selected kernel. Choosing a suitable 

kernel function is essential because the kernel defines the feature space in which the 

learning set instances are classified. The two most popular kernels are polynomial and 

Gaussian kernel. The equation (2.16) represents the polynomial kernel where d is the 

polynomial degree while they calculate the Gaussian kernel using equation (2.17). 

                    
 

(2.16) 

 

 
           

     

   
 

 

    
(2.17) 

 

The advantages of SVM are (1) they are highly accurate, especially in high-dimensional 

space because they can model complex nonlinear decision boundaries. (2) They are less 

prone to over fit than other supervised classifiers. (3) They provide a compact description 

of the learned model [199]. (4) They have good generalization properties compared to 

conventional classifiers because during training they aim at minimizing misclassification 

risk [85], [186].  

2.11.2 K- Nearest Neighbor  

Nearest-neighbor is a nonparametric technique in which places a new instance in a class 

closest to it depending on a pre-defined distance measure. Given a learning set   

                       where    denotes class membership and    represents predictive 
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value. To determine the nearest neighbor        for the learning set L, on distance 

function d for a new instance (y, x) is given by formula (2.18). 

                       
 

(2.18) 

Popular distance metrics used to define the closeness of an instance to the nearest neighbor 

are Euclidean distance [199], Manhattan [200], and Murkowski. Even though KNN 

requires large storage, it is highly sensitive on the choice of similarity function and defines 

no mechanism for selecting k, it however effectively handles noisy and large training data. 

 

2.11.3 Artificial Neural Network  

Artificial Neural Network (ANN) is a classifier that has neurons arranged into input and 

output layers, as sometimes hidden layers which convert an input vector into some output. 

Each neuron takes an input, applies a nonlinear function to it, and then passes the output on 

to the next layer The ANN is appropriate when the problem to solve is too complex to use 

the conventional techniques or challenging to get algorithmic solutions [9].  However, 

ANN has a generic layered structure which proves to be time-consuming and results in 

very poor performance. Furthermore, this technique uses “black-box” technology. 

Therefore, attempting to understand and explain exactly how it performs the classification 

process is almost impossible [201].  
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2.11.4 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a classification approach developed by R. A. 

Fisher whose goal is to transform a feature space with n-dimensional samples to a smaller 

feature subspace k where k≤n−1 while maintaining the class-discriminatory information 

[9]. Even though LDA is mathematically robust and can model complex problems with 

good accuracy, it, however, produces C-1 feature projections such that if the classification 

error estimates establish that more features are needed, some other method must be 

employed to provide those additional features. Also, because it assumes a unimodal 

Gaussian likelihood when the distributions are significantly non-Gaussian, consequently it 

is not able to preserve any complex structure of the data, which may be needed for 

classification.  

 

2.11.5 Ensemble of Classifiers 

Some of the individual classifiers such as discussed in the above section are limited 

because of high time and space complexity, especially when the sample size is large, others 

are limited in terms of high error rates leading to high rates of misclassification. Based on 

this, studies have proposed the hybridization of individual classifiers as a way to improve 

their classification performance. One such approach is to ensemble classifiers either from 

the same family or different families. The ensemble of classifiers not only achieves better 

classification performance than individual classifiers but also, increases the reliability and 

confidence of results achieved [57]. Because of the diversity of individual classifiers, they 

are prone to make different errors. Therefore allowing an individual classifier to participate 
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in an ensemble, enables the classification error of one classifier to be compensated by 

another classifier. However, caution must be taken on what classifier to ensemble to ensure 

that a classifier does not cancel the positive effects of another classifier. 

 

An ensemble of classifiers can be constructed by either influencing the input feature space 

or classifier output targets. An ensemble of the classifier using input feature space 

considers the input features given to the classifier. Classifiers in the ensemble can either 

work with the same set of training features or different subsets of the training set that are 

apportioned to the classifiers. In terms of classifier output targets, the final decision could 

be based on a majority voting rule which gives equal weights to the decisions of each 

classifier and carries out the prediction with the highest number of votes[58]. 

Alternatively, weights can be assigned to individual classifiers and the final decision is 

based on the classifier with the highest votes. 

 

2.12 Performance Evaluation 

Performance of a breast cancer model is measured by True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) using a Receiver Operating 

Characteristic (ROC) [204] and/or a confusion matrix [205].  Receiver Operating 

Characteristic is a graphical plot applied for binary classifiers. Using different threshold 

values, it creates a graphical plot of True Positive Rate against False Positive Rate. An 

advantage of ROC is that it presents the performance of a classifier in a visual format that 

is interpreted graphically or numerically [130]. A Confusion matrix visualizes the 
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performance of a classifier by displaying total correct and incorrect predictions made by 

the model in a table form [206].  It defines the final decision by using True Positive, True 

Negative, False Positive, and False Negative measures. The final decision is the values 

along the diagonal of the confusion matrix. 

 

Alongside evaluation tools, there are specific evaluation metrics like accuracy, error rate, 

sensitivity, specificity, Precision, and F-score used to measure the true performance of a 

classifier.  

Accuracy assesses the effectiveness of a classifier by looking at the percentage of instances 

predicted correctly. Even though it is a simple and intuitive evaluation measure for a 

classifier, it is not appropriate for imbalanced data [207]. Equation (2.19) defines it. 

 

 
         

     

             
  

 

(2.19) 

The compliment of Accuracy is the Error rate, which seeks to find the percentage of 

instances predicted incorrectly. Accuracy and Error rate is a general metric that adapts to 

the multi-class classification problem. Equation (2.20) defines the error rate. 

 
           

     

           
       

 

(2.20) 
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The sensitivity metric evaluates the effectiveness of a classifier. By looking at the 

proportion of samples belonging to the positive class, which was correctly predicted as 

positive against all true positive and false negative samples. Equation 2.21 shows the 

calculation for the sensitivity metric. 

 
            

  

     
     

 

(2.21) 

The specificity metric evaluates the effectiveness of a classifier. By looking at the 

proportion of samples belonging to the negative class correctly predicted as negative 

against all true negative and false-positive samples. Equation (2.22) shows the specificity 

metric. 

 
           

  

     
     

 

(2.22) 

The precision metric correctly predicts a positive prediction. Unlike the accuracy measure 

Precision and sensitivity can work well with imbalanced data, however, they present a 

severe shortcoming in that they cannot classify the negative examples, and they are more 

useful when combined with accuracy or when applied to both positive and negative classes 

[207]. Equation (2.23) defines it: 

 
          

  

     
   

 

(2.23) 
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F-score is a common metric for imbalance problems [208]. F-score values range from 0 to 

1, where 1 is perfect classification and 0 is a total failure. It combines sensitivity and 

precision which are good metrics for retrieving information where imbalance problem 

occurs. F score depends on the ß factor, which is a parameter that takes values from 0 to 

infinity.  ß factor is used to control the influence of sensitivity and precision separately. 

When ß = 0 the f score reduces to precision and conversely when ß approaches infinity, the 

f score reduces to sensitivity [207]. To integrate the two measures, ß = 1 is used, making it 

represent a harmonic mean between sensitivity and precision. Equation (2.24) defines it. 

 
F score=2  

 recision  Sensitivity

 recision Sensitivity
    

 

(2.24) 

 

2.13 Breast Cancer Datasets 

Breast cancer datasets are used to facilitate research in breast cancer analysis and aid in 

developing algorithms used in teaching and training. There are several breast cancer 

datasets available for research. While some are publically available others are privately 

owned therefore accessible by specific institutions. Even though the research community 

has attempted to define an ideal breast cancer dataset, each dataset is unique in terms of the 

kind and number of cases handled, the conditions the images were taken, and the 

information provided about each case. Because of differences in strengths and weaknesses, 

it is a challenge to compare performance differences of models, approaches, and 

techniques based on these datasets. However, a study conducted by Nahid and  Kong [1] 
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showed that DDSM and MIAS datasets have the highest number of research papers 

published. 

 

2.13.1 Digital Database for Screening Mammography (DDSM) 

Digital Database for Screening Mammography is a publically available dataset [209] for 

researchers analyzing mammogram images. The dataset was initially accessible through 

http://marathon.csee.usf.edu/Mammography/Database.html [210] which is no longer 

available, however, the cases are organized into several volumes and are available online 

by anonymous ftp of ftp://figment.csee.usf.edu/pub/DDSM/cases. 

  

The cases in the dataset are from Massachusetts General Hospital, Wake Forest University 

School of Medicine, and Washington University. Originally, the dataset had 596 cases with 

373 non-cancerous and 223 cancerous cases [210]. However, with time they improved it 

by adding more cases, therefore it now has 2620 cases. Out of the 2620 cases, 695 are 

normal, 95 Benign, and 101 Malignant. It also has an enhanced interface to enable 

previewing of each case. The database uses the Joint Pictures Expert Group (JPEG) file 

image type, and it is 231GB in size distributed in 43 volumes. Every case comprises two 

images of each breast, patient information from different ethnic and racial backgrounds, 

and the age of a patient. It also describes the breast density using (ACR) and Breast 

Imaging Reporting and Data System (BI-RADS) annotation [211] [212].  

 

http://marathon.csee.usf.edu/Mammography/Database.html
ftp://figment.csee.usf.edu/pub/DDSM/cases
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2.13.2 Mammographic Image Analysis Society (MIAS) 

Mammographic Image Analysis Society is a 2.3 GB dataset generated by UK research 

groups that wanted to understand mammograms. It is publically accessible and contains 

322 mammographic images of both breasts from 161 patients. The 322 digitized 

mammograms are in the mediolateral view out of which 51 are in malignant class, 64 are 

in benign class, and 207 in the normal class [213]. Further, the MIAS dataset gives 

information on the location and radius of the tumor, type of abnormality, and breast tissue 

affected [85]. The image file format is Portable Gray Map (PGM) and the mammograms 

are available through a Pilot European Image Processing (PEIPA) archives at the 

University of Essex. 

 

Even though the dataset contains breast density information, Rungayyan [214] observed 

that the classification of breast density information was not according to any 

standard.  Also, although it defines the MIAS annotation based on the region of interest 

centered on a circular radius, this was not sufficient for studies such as that conducted by 

Oliver et al.  [215] which required manual segmentation for all circumscribed and 

spiculated masses. Also, the resolution used to digitize the images makes it unsuitable for 

experiments for detecting microcalcification, yet the dataset had the highest percentage of 

microcalcification [212]. 
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 2.13.3 Image Retrieval in Medical Applications (IRMA)  

Image Retrieval in Medical Applications dataset contains images collected from the 

Department of Diagnostic Radiology, Department of Medical Informatics, Division of 

Medical Image Processing, and the Chair of Computer Science VI at the Aachen 

University of Technology [216]. The project aimed to develop and implement methods for 

Content-Based Image Retrieval. The dataset contains 10,509 reference images split into 

normal cases (12 volumes), cancer cases (15 volumes), and benign cases (14 volumes): 

each case may have one or more associated Pathological Lesions (PLs) segmentations, 

usually in Medio-lateral-Oblique (MLO) and Cranio-caudal (CC) images of the same 

breast [9]. 

 

2.13.4 Breast Cancer Digital Repository (BCDR)  

Breast Cancer Digital Repository (BCDR) is a Portuguese breast cancer image dataset with 

real female patient information from medical records supplied by the Faculty of Medicine 

at the University of Porto, Portugal [217] [209]. They released it for the public domain in 

2012, even though it is still under development. It has 1734 patient cases against   5776 

Mediolateral-Oblique (MLO) and  Cranio-Caudal (CC) image views [217].  

 

They split the BCDR dataset into Breast Cancer Digital Repository–Film Mammography 

(BCDR-FM) and Breast Cancer Digital Repository-Digital Mammography (BCDR–

DM).  Out of the 1734 cases, the BCDR-FM makes up 1010 cases with an age bracket 
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between 20 -90 years [217]. The BCDR–DM comprises 724 cases of which 723 are female 

and 1 male with ages between 27 and 92 years old. 

 

2.13.5 INBreast 

The mammogram images in the INBreast dataset were gotten from the breast center in 

CHSJ, Porto, allowed by the Hospital Ethics Committee and National Committee of Data 

protection. It is a publicly available dataset with  115 cases and 410 MLO and CC images 

from which 90 cases are from women with both breasts affected (four images per case) and 

25 cases from mastectomy patients (two images per case) [212]. They saved the images in 

DICOM format with all confidential information removed. The images are FFDM taken 

from screening, diagnostics, and follow up cases. The dataset is available at 

http://medicalresearch.inseporto.pt/breastresearch/GetINbreastDatabase.html. 

 

2.13.6 Nijmegen Dataset 

The Nijmegen dataset contains 40 digitized mammograms of both Cranio-Caudal (CC) and 

Medio-Lateral Oblique (MLO) views recorded from 21 patients by the National Expert and 

Training Centre for Breast Cancer Screening and the Department of Radiology at the 

University of Nijmegen Netherlands [218]. They digitized the images with a screen-film 

resolution of 2048 2048 pixels [218]. Each mammogram image shows one or more 

microcalcification clusters verified by histology. The total number of clusters in the dataset 

is 105. The truth circle marked by expert radiologists shows the location and size of each 

http://medicalresearch.inseporto.pt/breastresearch/GetINbreastDatabase.html
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cluster. The dataset also contains look-up tables for rescaling of the image data and text 

files, storing the center and diameter of the truth circles in pixel coordinates [218]. 

 

2.13.7 Banco web LAPIMO dataset 

It is the most recent dataset that requires users to register, gain access and contribute using 

http://lapimo.sel.eesc.usp.br.bancoweb/.  It has 320 cases, 1473 images in MLO and CC 

view. It avails patient background information and breast density annotation with BI-

RADS. 

 

2.13.8 Mammography Image reading for Radiologists and Computers Learning 

(MIRAcle) dataset 

It is a web-accessible mammographic dataset with a dynamic repository for machines and 

radiologists training and evaluation module [212]. It has 204 mammograms collected from 

196 patients and it is available for classification or education evaluation by radiologists 

[219]. 

 

Other mammographic datasets such as Lawrence  Livermore National Laboratories 

(LLNL) [216] [220], Washington University Digital Mammography Database [220], 

Trueta [221] [222], Malaga [222], and Rheinisch-Westfälische Technische Hochschule 

(RWTH) [216] exist, however, most of them are not available in the public domain, others 

are privately owned while others are still at the experimental stage therefore much 

information about them is unknown. We can find more explanation about them in [51, 59-

http://lapimo.sel.eesc.usp.br.bancoweb/
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61]. Table 2.8 presents a brief description of the characteristics of breast cancer 

mammographic datasets.  
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Table 2. 8: Characteristics of breast cancer mammographic datasets 

Dataset No. of 

images 

Mode of image 

acquisition 

Image view Lesion 

type 

No. of 

patients 

Access 

type 

Ground Truth 

DDSM 9916 Screen Film MLO and CC All kinds 2620 Public Boundary chain code of 

findings 

MIAS 322 Screen Film MLO  All kinds  161 Public Centre & radius of the circle 

around the area of interest 

IRMA 10509 Screen Film MLO and CC All kinds Unknown Public Boundary chain code of 

findings 

BCDR 5776 FFDM MLO, CC, and 

Ultrasound 

All kinds 1734 Public Lesion Contour 

INBreast 410 FFDM MLO and CC All kinds 115 Public Lesion Contour 

Nijimegen 40 Screen Film MLO and CC MCs 

 

21 Private Centre & radius of the circle 

around the area of interest 

Banco Web 1400 Screen Film MLO, CC, and All kinds 320 Public ROI available in some images 
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LAPIMO others 

MIRAcle 204 Unknown Unknown Unknown 196  ROI of findings 

LLNL 198 Unknown MLO and CC MCs 50 Public Binary images of MCs 

clusters &area of some MCs 

Trueta 320 FFDM Unknown Unknown 89 Private Centre & radius of the circle 

around the area of interest 

Malaga Unknown Unknown MLO and CC Masses 35 Unknown Not available 
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2.14 Breast Cancer Evaluation Protocols 

Evaluation protocols are statistical methods that estimate the generalization ability of a 

model based on some new data [223]. While there are several evaluation protocols, they 

have common characteristics. For instance, they all keep a subset of data for testing the 

model and train the model using the remaining set of data. However, they differ in 

calculating the generalization error, the number of samples kept for testing, and whether 

the process repeats many times or performed only once [223]. Because breast cancer 

models are likely to over fit, it is, therefore, important to test the model on unseen data 

which enhances generalization. 

 

 Cross-validation is a popular evaluation strategy that works by averaging together 

multiple runs of model tests. It partitions data into a training set and a testing set. 

Depending on how data is partitioned, cross-validation can be exhaustive (Leave-One-Out 

Cross-Validation and Leave P-Out Cross Validation) in which it tests all possible ways to 

divide the data or non-exhaustive (k-fold, hold out and monte Carlos) which approximate 

data split. 

  

Hold out is an exhaustive cross-validation which involves simple and efficient 

computations [224]. Given a dataset of size N, it randomly partitions the dataset into a 

training set (d0) and testing set (d1). Even though the size of each set is arbitrarily, typically 

the testing set should be smaller than the training set. A common split is to have 2/3 (N) for 

training and 1/3(N) for validation. It builds a model using the training set and evaluates 
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performance on the testing set. It performs the entire process of training and testing only 

once, therefore making it computationally efficient. However, it has two inherent biases; 

bias from individual observation and bias owing to a small training set leading to 

overestimation. Also, the lack of averaging multiple runs may lead to highly misleading 

results because multiple iterations help to smoothen out the error leading to a more stable 

model [225].  

 

Another commonly used strategy is the K-fold Cross-Validation. It lays a foundation for 

other types of cross-validations. Other types of validations are special cases of k-fold or 

comprise repetitive rounds of k-fold Cross-Validation.  In k-fold cross-validation, it 

generates k equal subsets from the original sample and k iterations performed on training 

and testing set. For every repetition, it set aside a different fold for testing, and the 

remaining k-1 set aside for training.  It gets an estimated error by averaging all testing 

errors and also gets the confidence range of the estimated error by calculating the measure 

of variance such as standard deviation [226]. 

 

An advantage of k fold lies in its ability to eventually use all samples for both training and 

testing the model. Also, even though value k is an unfixed parameter, the most commonly 

used values for k are 5 and 10, which give an estimate that is statistically likely to be 

accurate for 5 to 10 times longer computation time. [226]. For instance, 10-fold cross-

validation is a popular alternative to LOOCV because it needs less computation time than 

LOOCV when the numbers of samples are many. However, K-fold  Cross Validation is 
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slightly more positively biased than LOOCV, since it develops the classifier on 90%  of 

the full dataset and it provides error estimates with less variance [227]. 

 

Leave One Out Cross Validation (LOOCV) is a special K-fold validation where K (the 

number of folds) is equal to N the number of samples [228]. It is also called the jackknife 

method [227]. It works by taking all samples for training except those used for testing. 

Therefore, for n samples, there are n different training sets and n different test sets. Given a 

dataset with C classes, it performs C-1 validation experiments. For each experiment, it uses 

data from C-1 classes for training, and data from the class left out for testing. Therefore, 

given a dataset of n breast images, LOOCV performs n-1 validation experiments. In each 

experiment I, it uses ni breast images for testing and the remaining n-1 for training. This 

strategy uses each image for both training and testing. This way, it validates in the same 

way as its application scenario.   

 

The advantages of this strategy are its implementation simplicity, and it does not waste a 

lot of time, since it removes only one sample for testing and the remaining n-1 for training. 

In terms of accuracy, LOOCV has high variance as an estimator for the test error which 

decreases by finding the average of all n training–testing partitions [227].   Also, it requires 

less computation time than Leave P Out cross-validation (LPOCV) since LOOCV requires 

   
 
  passes while LPOCV requires     

 
  passes. Moreover, it eliminates the positive bias 

of the partition because each training set comprises one less sample than the full dataset, 

[227]. However, n passes may still require a large computation time, in which case another 
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strategy such as K fold cross-validation may be more appropriate [225]. Also, because of 

the high variance, it is likely to generate unreliable estimates [229]. 

 

Leave P Out cross-validation (LPOCV) is the same as LOOCV when the value of p=1. 

Given a set of N images, LPOCV uses p observations for validation and N-p for training. It 

repetitively leaves out every possible subset of p images where p ≤ (N-1). Then it averages 

the error for all trials, to give overall effectiveness. Even though this strategy is exhaustive, 

it can become computationally infeasible to train and validate models for all possible 

combinations, especially when p is moderately large [230].  

 

Another type of cross-validation is Monte Carlo Cross-Validation (MCCV) commonly 

known as Repeated Random Sub-sampling. It generalizes the split sample method. Given a 

dataset of N samples, MCCV generates several random splits of the dataset into a training 

set (d0) and testing set (d1). For every split, it trains the model on the training data and tests 

the performance on testing data. Then it averages the outcomes over the splits. For every 

training-testing partition, every instance appears either in the training or testing set, but not 

in both. And because the training and testing split is random, an instance may appear in a 

test set several times. An instance may appear in m training set and not in the test set, 

whereas another instance may appear in all the test sets, but not in the training 

set.  Compared to k fold cross-validation, MCCV training /testing split does not depend on 

the number of folds. However, because of overlap, MCCV can oversample some 

observations while not sampling others, unlike in k fold which has disconnected test sets 
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[227].  Therefore, with a repetitive analysis using different random splits, the overlap 

results in varying outcomes. 

  

 Molinaro et al. (2005) noted that even though MCCV does not decrease the bias of the 

split sample method, it significantly decreases the variance of the split sample error 

estimate. They also reported that the random training and testing splits are sufficiently 

significant to decrease the variance. As the number of random splits tends to infinity, the 

results of MCCV validation tend towards LPOCV validation. 

 

Bootstrap is a re-sampling strategy introduced by Efron and Tibshirani commonly used 

when dealing with small datasets [224]. [231]. A bootstrap set of instances forms by 

uniformly picking instances from the original data n to form a training set with the same 

number of samples as the original dataset. The samples that are not selected for training 

form a testing set. Since it samples data with replacement, it gives the probability of any 

data instance not being chosen by        
      which is approximately 0.368, while 

the probability of a data instance being picked for the training set is (1-0.368) = 0.632n. 

Therefore, the estimated accuracy of bootstrap sampling increases as the number of repeats 

increase.  
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2.15 Related Work 

This section presents previous studies on texture descriptors for breast cancer tumor 

identification. It highlights the feature descriptor used, the strengths and weakness of the 

descriptors, and the results achieved. Oliver et al. [232] used an LBP descriptor for the 

false-positive reduction in mammographic mass detection by first getting a global 

descriptor for each ROI, then analyzing its spatial texture information. They then divided 

the ROI into small regions and local texture description computed using Local Binary 

Pattern. The combined Local descriptor in a spatially enhanced histogram defined the 

feature descriptor they used. Using the SVM classifier with 1792 ROI’s extracted from the 

DDSM dataset and testing the experiment using Leave-One-Out cross-validation, the used 

descriptor reduced the false-positive rate. Even though they showed that LBP features are 

effective for false-positive reduction using different ROI image sizes, however, the LBP 

descriptor could assign the same pattern to a pixel in a tumor region and to another pixel in 

a normal region which leads to noticeable reductions in the number of false positives. 

Also, by extending the basic LBP histogram into a spatially enhanced histogram leads to 

long histograms which affect the efficiency of the descriptor. 

 

To reduce the effect of noise inherent in the basic LBP descriptor Chen et al. [233] 

developed a Robust Local Binary Pattern (RLBP) descriptor which maps a non-uniform 

pattern to a uniform pattern by partitioning each 8 bit LBP binary code into a sequence of 

three consecutive bits. If they find 010 or 101 bits in the binary code, they replace them 

with 000 or 111 bits, respectively, consequently reducing the impact of noise. The RLBP 



101 

 

 

descriptor is simple to comprehend, and the experimental results from two datasets showed 

that it is robust in the presence of noise. However, mapping the non-uniform pattern to a 

uniform pattern consequently distorts the overall description and any wrong mapping 

affects the quality of the final histogram.  

 

Sansare and Kinge [167]  used Gabor filter and LBP to classify benign, malignant, and 

normal breast cancer cells using the SVM classifier on 158 MIAS images. The images 

underwent preprocessing of noise removal image enhancement and pectoral muscle 

removal. They achieved an accuracy of 96.72%, 84%, and 81.90% for the benign, 

malignant, and normal class respectively. A major weakness of LBP is its dependence on 

the intensity difference of the pixels, which makes it very sensitive to noise and 

illumination changes, which makes it unsuitable in differentiating between a benign and a 

malignant tumor. 

 

Rabidas et al. [234] compared the performance of LBP, LBP Variance, and Complete LBP 

descriptors for benign/malignant breast mass classification. By using a stepwise logistic 

regression method for feature selection and the Fisher Linear Discriminant Analysis 

classifier on 200 mammograms from the DDSM database, they achieved a classification 

accuracy of 92.95% 87.7%, and 90.6% with LBP, LBPV, and CLBP respectively using 

tenfold cross-validation. Even though LBP achieved the highest accuracy, it was not 

rotation invariant and therefore not suitable for benign/ malignant classification, which 

requires edge orientation at the margin. 
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To achieve a local pattern that is rotation invariant, Rabidas et al.  [235] developed 

Discriminative Robust LBP (DRLBP) and Discriminative Robust LTP (DRLTP) texture 

descriptors for classification of mammographic masses into benign and malignant classes. 

They based the methodology on the hypothesis that both texture and edge information of a 

malignant mass differs from a benign mass. Using the Fisher Linear Discriminant Analysis 

classifier, stepwise logistic regression for feature selection, and tenfold cross-validation on 

58 masses from the Mini MIAS dataset, they achieved the best results with DRLBP having 

an AUC of 0.98. Even though the results of DRLBP and DRLTP were very close to each 

other, the authors did not test the statistical significance of that difference. Also, the 

authors used very few images to warrant a reliable conclusion. 

 

Gardezi and Faye [236] fused Completed Local Binary Patterns (CLBP) with curvelet 

features for Normal/Abnormal classification using images from MIAS and IRMA datasets. 

First, they computed CLBP features using rotationally invariant mapping; then, they 

computed curvelet features from the curvelet sub-band coefficient. They extracted CLBP 

and curvelet features, they then fused them and passed them to a classifier. They got a 

classification accuracy of 96%. Even though the author tested the statistical significance of 

the developed descriptor against other descriptors, we attribute the high accuracy to the 

fusion of different texture features and using images from two different datasets. 

 

Ponraj et al. [237] developed a Local Binary Textual Patterns that considers the central 

pixel. They compare the central pixel with the neighboring pixel to generate a binary bit. 
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They then convert the binary bit to a decimal number by counting the number of zeros and 

ones. Then textual features are used to classify a mammogram into either a normal or an 

abnormal class. By using an SVM classifier and 70 images from the MIAS database, they 

achieved an accuracy of 97.2% and 96.4% for Binary pattern one and Binary pattern two, 

respectively. The major criticism of the methodology used is that it leads to long 

histograms that increase the computational speed. Further, there was no comparative 

analysis of the developed descriptor with Original LBP or existing LBP variants as 

evidence of significant contribution. Also, the authors only stated that they performed 

preprocessing but did not explain how they did it. 

 

Abdel-Nasser et al. [238] developed a Uniform Local Directional Pattern (ULDP) 

descriptor for classifying breast tissues into a mass or normal and breast density into fatty, 

glandular, or dense tissue. They used two publicly available mammographic datasets; Mini 

MIAS and INbreast. Using NLSVM, LSVM, LDA, and MLP classifiers, they got AUC of 

0.92, 0.93, 0.91, and 0.92 respectively. Although the developed descriptor achieved 

excellent results, however, it is important to note that the CAD system was not fully 

automatic since the selection of the Region Of Interest (ROI’s) was manual. Also, the 

selection of ROI’s was done from the middle of the breast, yet a tumor can occur anywhere 

within the breast. Therefore, it is uncertain that the developed descriptor achieved good 

mass/ normal classification. Further, even though the authors concluded that the developed 

descriptor can properly discriminate between different tissues regardless of their shape, 
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there is no evidence that they investigated the influence of the shape of the masses on the 

performance of the descriptor. 

 

Rampun et al. [239] used the Uniform LTP descriptor that modeled the appearance of the 

fibro-granular disk region. They used SVM on the MIAS dataset with stratified ten-fold 

cross-validation. They achieved an accuracy of 82.33%. Even though the authors used 

Uniform LTP which is more stable, less prone to noise, and has fewer labels than the 

original LTP. However, extracting features from both lower and upper patterns in eight 

different orientations leads to the generation of very long histograms which slowed 

downed the classification phase. Also, this method highly depends on the parameter 

settings of the LTP operator. 

 

Muramatsu et al. [240] developed the Radial Local Ternary Patterns (RLTP) that 

considered not only pattern orientation about the center of a mass but also robustness to 

image rotation. Using 376 ROI’s from Nagoya medical dataset and ANN, SVM, and RF 

classifiers, for benign /malignant classification, they achieved the highest Area Under 

Curve (AUC) of 0.90 with the ANN classifier. They performed the test using Leave-One-

Case-Out cross-validation, the training and test dataset were not completely independent. 

Therefore, to test the effectiveness of the developed descriptor, there is a need to validate it 

with an independent dataset. 

Paramkusham et al. [241] used the Local Quinary Pattern  (LQP) to classify mass into 

normal/abnormal classes and geometric features for classifying abnormalities into either a 
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benign or a malignant tumor. The images got from the IRMA dataset underwent noise 

removal through a median filter and automatic segmentation using the k-mean algorithm. 

They used the SVM classifier, which attained classification accuracy of 99.27% and 

79.13% for the normal, abnormal, and benign, malignant classes respectively. Even though 

the developed Local Quinary Pattern (LQP) showed stability in accuracy levels for all the 

five folds used, however, the authors did not test the statistical significance for the 

Benign/Malignant classification, yet the difference was small. 

 

Apart from the Local texture descriptors, the research community has also developed other 

descriptors. Faya et al. [242] used wavelet-based feature extraction, where they define a 

wavelet coefficient for each image set. They then selected the threshold value and used the 

Euclidean distance to differentiate between two classes. They tested the approach on the 

MIAS dataset for normal, abnormal, and then benign, malignant classes. With a 

training/testing ratio of approximately 50:50, they achieved a classification accuracy of 

98.55% and 98% for normal, abnormal, and benign, malignant classes respectively. 

 

 Eltoukhy et al. [243] proposed a texture feature extraction technique based on the curvelet 

transform. The mammogram image is first cropped, then passed through the curvelet 

transform. They then pass the resultant feature vector to a feature selector, then they 

performed normal/abnormal and benign/malignant classifications using the Nearest 

Neighbor classifier on images taken from the MIAS dataset. They got a classification 

accuracy of 97.03% and 91.68% for the normal/abnormal and benign/malignant 
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classification, respectively. Herwanto and Arymurthy [110] developed a system for 

diagnosing breast masses using GLCM features. The images first underwent preprocessing 

of image cropping, artifact removal, and enhancement. Using 73 images taken from the 

MIAS dataset, they achieved a classification accuracy of 88% for normal/abnormal 

classification. Gardezi and Faye [236] fused CLBP and curvelet features for classifying 

tumors into either normal or abnormal class by using images from MIAS and IRMA 

datasets. First, they computed CLBP features using rotationally invariant mapping. They 

then computed curvelet features from the curvelet sub-band coefficient, then pass the fused 

features to One Nearest Neighbour classifier. They attained an accuracy of 96%.  Pratiwi et 

al. [244]  extracted GLCM based features using RBFNN and BPFNN classifiers on the 

MIAS dataset. Experimental results showed that RBFNN achieved a higher accuracy of 

93.98% and 94.27% for normal/abnormal and benign/malignant classification respectively 

than BPFNN. Biswas et al. [245] extracted GLCM features using 20 images from the 

MIAS dataset and KNN, SVM, and ANN classifiers. The mammograms first underwent 

preprocessing of artifact and noise removal, ROI extraction, and image enhancement. The 

experimental results showed that the 3NN classifier outperformed SVM and ANN with 

95% accuracy for normal/ abnormal classification. Htay and Maung [246] extracted 

GLCM features from a mammogram image that had undergone preprocessing of noise 

removal, image cropping, and segmentation by Otsu thresholding. The KNN classifier was 

used to classify a mammogram image into either a normal or an abnormal class. Using 120 

images from the MIAS dataset, they achieved an accuracy of 92%. 
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From the previous work on the application of texture descriptors for breast cancer 

classification using mammogram images, literature has revealed that the extraction of 

breast cancer features sparingly uses local texture features, because of low classification 

accuracy levels achieved especially for benign/malignant classification. Studies that 

produced high accuracies used either privately owned datasets, which are not accessible for 

verification, or they used a few images for testing. Therefore, there is a need to develop a 

more effective local texture descriptor for extracting breast cancer features, which 

consequently improves classification accuracy. 

 

2.16 Theoretical Framework 

I anchor this study on the feature analysis theory of face recognition studied by Shepherd 

et al. [59] in 1979. It is a bottom-up theory of pattern recognition because it looks at details 

first in terms of features (nose, mouth, and hair) of the face, then the entire picture when 

trying to recognize or describing the face. . Feature analysis theorizes that humans and 

animals have neurons and neural networks that function as detectors, which aid in 

recognizing objects by observing and assembling their features to determine the object. 

According to this theory, the visual system breaks down the incoming stimuli into its 

features and processes the information. However, some features may be more important 

than others. Therefore, there is a need to discern the most discriminant features and use 

them for more accurate recognition.  
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For instance an image with a two-dimensional (N by N)   array of pointwise or pixel-wise 

intensity values and p possible pixels then the number of possible images is a set N of size 

pN
2
. To distinguish all possible images having N by N pixels, there is a need for a space of 

N
2
 dimensions which is too large in practice to search for a particular image. Therefore, the 

core idea behind feature analysis is the ability to transform the original feature set into a 

new set with fewer but discriminative features. The transformation can be by way of 

feature selection or feature extraction. While feature selection maintains the original set, 

feature extraction transforms the original set into a new feature set. Shepherd et al [59] 

aimed to see how features are used when recalling unfamiliar faces. Participants were 

briefly shown faces of people they had never seen before and then they had to describe the 

faces. The results showed that the participants describe the individuals based on features 

such as the hair and the eyes, indicating that faces of the unfamiliar individual tend to be 

recalled using the faces salient features. 

 

In this study, the aim is to define a set of features that aid in differentiating between a 

normal, benign, and malignant tumor in breast cancer classification. I pick the set of 

features to be defined from mammogram images that contain very many features. I used 

the feature analysis theory to help in correctly differentiating tumor types by first reducing 

the dimension of the features through feature extraction. Even though basic logic portrays 

that the more features an image contains, the higher the classification power, however, this 

is not always the case. Presences of many features, some of which may be irrelevant and/or 

redundant degrade classification performance, especially when the training examples (a 
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common characteristic of medical data) and computation power is limited, which may lead 

to model overfitting. Since features are inputs to a classifier if the features are not 

informative enough the classifier performs poorly [248]. Therefore, the feature analysis 

theory aids in actualizing the feature extraction process. 

 

Given N-dimensional features represented by              feature extraction aims to 

project a higher dimensional space to a lower-dimensional space M whose feature vector 

is             , where      and each of the   features is a summation of the input 

feature set            . The aim is to project so that the lower dimensional feature set is 

smaller than the original which will facilitate better classification. In linear feature 

extraction, the data is assumed to lie on the lower dimensional linear space. The projection 

is done using matrix factorization [60]. Given a dataset        there exists a projection 

matrix       and a projection       where        Using      (Orthogonal 

property of eigenvectors), we get         A graphical representation is presented in 

figure 2.11. The resultant feature set M is expected to have: (1) fewer features than feature 

set N, (2) uncorrelated features in their reduced form (3) large variances between features. 

 

 

  

 

Figure 2. 11: Theoretical Framework 
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When feature set M has fewer features than feature set N, it not only implies setting a 

threshold on the number of features used to build feature set M but also selects features 

from feature set N based on their significant discriminant ability to the target class. Also, 

since correlation promotes feature redundancy, there is a need to have the features 

uncorrelated. Correlated features do not contribute additional information rather they 

promote redundancy, which does not add value to the decision taken by the classification 

algorithm [249]. Finally, a large variance between features promotes discrimination. If a 

feature takes similar values for all instances, then it cannot be discriminant enough. Since 

we need the features to distinguish between the different instances, therefore we need a 

large variance between the features, otherwise, the features will not be informative. 

 

2.17 Conceptual Framework 

The focus of this study was to develop a local texture descriptor for breast cancer 

classification. The study defined the local texture features as the independent variables and 

the level of classification accuracy of breast tumors as the independent variable. The 

moderating variables were the MIAS dataset, the MATLAB coding environment, and 

SVM and ANN classifier.  I conducted cross-validation to ensure that the sourced dataset 

was valid, complete, and comprehensive Also, to ensure the classifiers were an effective 

representative sample, the selection of the classifiers was from different categories. A 

conceptual framework showing the relationship among variables in the study is shown in 

Figure 2.12. 
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Figure 2. 12: Conceptual Framework 
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2.18 Summary 

A comprehensive literature review on breast cancer detection revealed that enormous effort 

directed towards modeling breast cancer detection by developing feature extraction, feature 

selection, and classification techniques.  In feature extraction, shape, texture, and hybrid 

descriptors are used to model the breast cancer detection system. Even though shape 

descriptors are a visual cue used by a radiologist in identifying breast tumors, they 

however make the recognition process difficult, especially when the image has noise, 

occlusion, and arbitrary distortion. Texture descriptors provide a better recognition because 

they take into consideration the structural arrangement and environmental relationship of 

the image.  The hybrid based descriptors ought to yield better results since they combine 

two or more different descriptors, however, care must be taken to ensure the presences of 

one type of descriptor does not compromise or cancel the effect of the other descriptor. 

 

Breast cancer detection is purely a classification problem. The classification is binary or 

multiclass. In binary classification, two attributes such as normal or abnormal, benign or 

malignant are used to distinguish a breast cell. Multiclass classifications use more than two 

labels, such as classifying a tumor into a normal, malignant, or benign class. The 

classification process is also viewed as either supervised or unsupervised. Both supervised 

and unsupervised breast cancer classification is used. 

 

There are several datasets for breast cancer detection in mammograms as discussed in 

section 2.13 of this thesis. The datasets have a commonality in indicating the number of 
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images contained, the mode of acquiring the images, the lesion focused on, the access type, 

and grounded truth. However, they differ in terms of the image format and how much 

patient information is available. I observed that MIAS and DDSM datasets are the most 

popularly used and publically accessible datasets.  

 

There are several evaluation protocols for breast cancer detection as discussed in section 

2.14 of this thesis. They all have a common feature in which they partition the data into a 

testing and training set. However, these evaluation protocols differ in terms of; (1) the 

method for calculating the generalization error (2) criteria for partitioning the training and 

testing sets (3) the method adopted for carrying out repeats. Among the evaluation 

protocols, literature revealed the k- fold cross-validation is the most frequently used and 

reliable evaluation protocol. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Overview 

This chapter addressed the research methodology adopted for the study. It began by 

demystifying the research philosophy adopted and provided an explanation and 

justification for the choices taken during the entire research process using Saunders's 

research onion. It also explained the experimental set-up for the methodology followed, a 

review of research objectives with a focus on the source of data and data analysis 

technique used. It also discussed the research tools, material, and model validation 

techniques used. The chapter concluded with a brief discussion on ethical considerations. 

 

3.2 Research Philosophy 

Research philosophy is a belief and assumptions on the development of knowledge in a 

specific field [250].The assumption created justify direction taken for conducting research, 

gathering, and interpreting knowledge, the researcher views the world in terms of values 

upheld in research and reality [251]. The selection of a research philosophy depends on the 

nature of knowledge examined. Thus, comprehending the research philosophy used aids in 

explaining the assumptions built within the research. 

A research philosophy takes a Positivism, Realism, or Interpretive approach. Positivism 

adopts the philosophical stand of the natural science that emphasizes on universal truth and 
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quantification [250]. Positivist work with facts based on an observable reality which leads 

to the creation of reliable data, hypothesizing existing theories, and generalizing the results 

gotten rather than impression [250]. The researcher sees himself as a neutral recorder, and 

similar research conducted using the same instrument should reach the same conclusion.   

This research adopted a positivist philosophical stance, which relies on facts and existing 

theory.  It is a fact breast cancer exists and a mammogram can capture its features. 

Mammographic images are the observable reality and they anchor their credibility on the 

grounded truth provided for each image. This research is anchored on the theory of feature 

analysis which theorizes that humans and animals have neurons and neural networks that 

aid in recognizing objects by observing and assembling their features to determine the 

object. According to this theory, the visual system breaks down the incoming stimuli into 

its features and processes the information. However, some features may be more important 

than others. Therefore, the feature extraction process is used to discriminate features. The 

success of this research was evaluated based on studies conducted by other researchers in a 

similar area by measuring how closely the findings match, irrespective of the imperfection 

of the data collection instruments.  
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3.3 Research Design 

This study used simulation and experimental design by simulating the training and testing 

the model on an existing dataset and performing validation experiments using the local 

texture descriptor developed. To demystify the entire research process, this study applied 

the research onion established by Saunders et al.  [252]. The research onion was 

progressively used to illustrate the analysis of the different components of research so that 

I achieve a good research design. Its usefulness lies in its applicability and flexibility to 

any type of research methodology in a variety of contexts. The research onion covers 

research philosophy, research approaches, research strategy, research choices, time 

horizon, data collection and analysis, research design, and sampling techniques. The outer 

layer being the research philosophy. 

  

Figure 3. 1: Research Onion by Saunders 2012 [61] 
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3.3.1. Research Approach 

The research approach is the second layer of the research onion. The research approach is 

meant to help the researcher make an informed decision on strategies to be used in research 

and to adapt to a research design that caters to constraints [250]. A research approach can 

either be inductive or deductive. In the inductive approach, the researcher starts from a 

specific aspect and moves towards general aspects of research while in deductive the 

researcher starts from general to specific by first making an assumption based on some pre-

existing idea from which a research approach is formulated and tested.  

 

This research adopted a deductive approach by basing it on the pre-existing theory of 

feature analysis, making it is possible to define a set of new features that are significant 

discriminate through the process of feature extraction. Further, this research formulated a 

research relationship between breast tissue features in a mammogram and the occurrence 

of breast cancer based on previous research. Finally, it is particularly suitable for a 

positivist approach, which is the philosophical stance adopted in this research. 

 

3.3.2 Research Strategy 

The third layer of the research onion is the research strategy. It is a step by step worked out 

a plan that directs the thoughts of a researcher [250], it can be experimental, a case study, 

action research, or based on grounded theory and ethnography. The choice depends on the 

research objectives stipulated.  
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Experimental research analyzes the results achieved against the expected results [250]. 

This research achieved objective two through simulation-based experiments. The research 

aimed to prove a pre-existing theory of feature analysis by extracting discriminant and 

significant breast tissue features from an image. The features were then used to predict the 

occurrence of breast cancer. Further, the development of the breast cancer classification 

models was by using discriminant features. Using an experiment, the researcher 

established a causal link between mammographic breast tissue features and the occurrence 

of breast cancer. 

 

3.3.3 Time Horizon 

The time horizon is the fourth layer in the research onion. It defines the data collection 

period within which the project is planned for completion [250]. The time horizon is 

defined as longitudinal or cross-sectional. In a longitudinal time horizon, the researcher 

repeatedly gathers data over an extended period because the phenomenon under 

observation changes over time [250]. In cross-sectional time horizon data is collected at a 

specified time and therefore the researcher is required to gather the data only once. 

Therefore, this research applied a cross-section time horizon because the mammographic 

images were taken at a certain time in the life of a patient. The datasets used showed the 

age of the patient when the mammogram images were taken. 
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3.3.4 Data Source   

Data collection is the innermost layer of the research onion. Data collected can either be 

primary or secondary. This research utilized images collected from the MIAS breast cancer 

dataset. Section 3.3.4.1 of this thesis gives a detailed explanation of the dataset. Because 

the dataset contained few images, the number of images was increased through the process 

of data augmentation as discussed in section 3.4.3 of this thesis. 

 

The mammographic images used to validate the proposed model were obtained from the 

Mammographic Image Analysis Society (MIAS) breast cancer dataset. The dataset was 

generated by a UK research group that wanted to understand mammogram images. It is 

publically accessible for scientific research and has 322 digitized mammographic images 

of both breasts from 161 patients. It provides background information on the class of 

abnormalities present in a mammogram image. The class of abnormalities comprises 

normal/ abnormal class and based on abnormality severity, the abnormal class is further 

split into malignant and benign class. Out of 322 mammogram images, 207 images are 

normal and 115 images are abnormal. Among the 115 abnormal images, 64 are benign and 

51 are malignant [213]. The abnormalities are grouped into microcalcification, 

circumscribed mass, ill-defined mass. Spiculated mass, architectural, and asymmetry as 

shown in Table 3.1. In this research, all the 322 mammogram images were used for 

training and testing the model. 
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Table 3. 1: Image distribution in the MIAS dataset[62] 

 

Class Benign  Malignant Total 

Microcalcification 12 13 25 

Circumscribed mass 19 4 23 

Ill-defined mass 7 7 14 

Spiculated mass 11 8 19 

Architectural  9 10 19 

Asymmetry 6 9 15 

Normal - - 207 

Total  64 51 322 

 

The choice of the MIAS dataset was based on its public accessibility and online 

availability making it a reliable source of mammogram images. It also provides metadata 

corresponding to the background tissue, class, severity of the abnormality as well as 

coordinates to the center of the abnormality, and the approximate radius of a circle 

enclosing it. Such coordinates and radius allow the extraction of ROI’s from images. It is 

also an old dataset published in 1994 with very little updates [253] therefore, the images 

are in their original form. However, a major challenge in using the MIAS dataset was that 

images are in 8 bits which compromises image quality. To ensure the quality of the images 

was improved, preprocessing by removing noise, artifacts and image enhancement was 



121 

 

 

performed. A detailed explanation of the preprocessing procedure is presented in section 

3.4.2 of this thesis.  Also, the MIAS dataset has very few images to warrant effective 

pattern learning. As a measure to facilitate better training, the number of images in the 

dataset was increased through the process of data augmentation discussed in section 3.4.3 

of this thesis. 

 

3.4 Experimental Setup  

This section outlines the experimental simulation-based setup used in this research. Areas 

covered include: a description of the dataset used, preprocessing techniques applied, 

feature extraction technique employed, Classifiers, and performance evaluation measures 

applied. Figure 3.2 shows the steps in the experimental setup. 
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Figure 3. 2: Experimental setup of the research methodology 

 

3.4.1 Reading a Mammogram Image  

I took the input images used in this study from the MIAS dataset. First, I downloaded the 

dataset from Pilot European Image Processing (PEIPA) archives. The images are in 

Portable Gray Map (PGM) and categorized into Normal, Benign, and malignant classes. 

To allow classification into normal/abnormal and benign/malignant classes. The dataset 

has the images split into normal/abnormal classes which contained 322 images and 

benign/malignant classes which contained 115 images.  I then read the images into the 

MATLAB environment using the imread function. Below is a brief explanation of the 

mammogram image reading process in MATLAB. 
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 On the command window section, type: 

 img=imread (‘mdb001.pgm’) ;  

imshow (img); 

 To read one image at a time and display it. 

 

3.4.2 Mammogram Image Preprocessing 

Mammogram preprocessing aims to improve image quality which avoids undue influences 

on the abnormality from the background of a mammogram [254].  This research 

preprocessed the image for artifacts and noise removal, mammogram cropping, and image 

enhancement. An Adaptive filter was used to remove artifacts and noise. Since the 

characteristics of mammographic images vary from one area to another and an adaptive 

filter can change with the varying characteristics of the mammogram, noise, and artifact. 

Once the noise and artifacts are removed, the mammogram images were enhanced using 

Contrast Limited Adaptive Histogram Equalization (CLAHE) technique.  

 

The CLAHE technique was initially developed to minimize the shadow of edges and noise 

emitted in a homogeneous area of a medical image [256]. The technique has been used for 

enhancing digital mammogram [256] [254], [257], [258], and has shown good 

improvement to mammogram visual quality. An N x N input image I is split into small 

blocks. CLAHE is then applied to every block to enhance contrast. Finally, using bilinear 

interpolation, the individually enhanced small neighboring blocks are joint together to 

form the entire image.  The choice of CLAHE technique was based on the advantage that it 
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can perform two in one operation of noise reduction and contrast enhancement, it prevents 

edge shadowing effect on mammogram making the edges clearer and prevents over-

amplification of noise that may be present in the image especially in a homogeneous area 

[141] [259]. Finally, the enhanced image is cropped. The intension of cropping the images 

was to remove undesirable parts of the mammogram and extract the region of interest 

[255]. Cropping was done using the imcrop MATLAB built-in function.  The algorithm 

below presents the entire procedure for preprocessing a mammogram image: 

 

Input: Mammogram image 

Output: Preprocessed mammogram image 

1. Step 1: Using MATLAB, open the image batch processor App by selecting the App 

icon from the apps gallery 

2. Step 2: Load  mammogram image into the Image batch processor App by 

specifying the name of the folder containing the images 

3. Step 3: Using the new function specify the  Wiener-2 adaptive filter function to 

remove noise and artifacts   

4. Step 4: Run the noise and artifact removal function on all the images 

5. Step 5: Obtain the results  of the Batch processing operation and save the results 

into a file 

6. Step 6: Load  the file containing  the noise and artifact removed mammogram 

images into the Image batch processor  
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7. Step 7: Enhance the image by applying the CLAHE technique using MATLAB 

adapthisteq inbuilt function  

8. Step 8: Run the adapthisteq inbuilt function on all the images 

9. Step 9: Obtain the results  of the Batch processing operation and save the results 

into a file 

10. Step 10: Open the file containing the enhanced mammogram images 

11.  Step 11: To perform manual cropping and obtain the Region of Interest, use the 

crop image tool  

12. Step 12: Specify the optional return value rect in which imcrop  function returns 

the four elements position vector of the rectangle drawn 

13. Step 13: Move the cursor over the image  and draw a rectangle over the portion of 

the image you want to crop 

14. Step 14: Perform the crop operation by double-clicking in the crop rectangle or 

select Crop image on the context menu 

15. Step 15: The crop image tool returns the cropped area 

16. Step 16: Save the cropped image 

17. Step 17: Repeat step 10 to 16 for all mammogram images 

 

3.4.3 Data Augmentation 

Data augmentation is a strategy used by practitioners’ to artificially increase the size of 

training samples [260]. The importance of data augmentation is to increase samples for 
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training a model without collecting new data. Mirroring and cropping are the most 

commonly used data augmentation techniques because they do not alter the image. In 

image mirroring, they represent the image data in different orientations resulting in copies 

of the same image but from different perspectives or visual angles [261]. It can mirror an 

image along the x, y, -x, -y-axis. Cropping entails getting copies of the same image by 

focusing on different areas of the same image, which results in a reduced image [261]. 

 

The dataset used in this research contains 322 images which are not sufficient for learning 

and generalization of a model. Therefore, to increase the size of the dataset, a data 

augmentation process was used. The number of images was increased by mirroring the 

images along the x and y-axis. Each image is transformed into three different images:  the 

original image, the image mirrored along the x-axis, and the image mirrored along the y-

axis. These ensure model generalization since the images are increased from 322 to 966 

images. Table 3.2 shows the number of images after mirroring the images along the x and 

y-axis. The algorithm below presented the data augmentation process. 

  

Input: Cropped image 

Output: augmented image 

1. Step 1: Load  the folder containing the cropped images into the Image batch 

processor App by specifying the name of the folder  

2. Step 2: Create the flip-down function on the image batch processor App using the 

new function 
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3. Step 3: Run the flip-down function to mirror the cropped images along the x-axis 

4. Step 4: Store the flipped down images 

5. Step 5: Load the folder containing the cropped images into the Image batch 

processor App by specifying the name of the folder 

6. Step 6: Create the flip right function on the image batch processor App using the 

new function 

7. Step 7: Run the flip right function to mirror the cropped image along the y-axis 

8. Step 8: Store the flipped  right images 

 

Table 3. 2: Number of images after data augmentation 

 

Class Benign  Malignant Total 

Microcalcification 36 39 75 

Circumscribed mass 57 12 69 

Ill-defined mass 21 21 42 

Spiculated mass 33 24 57 

Architectural  27 30 57 

Asymmetry 18 27 45 

Normal - - 621 

Total  192 153 966 
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3.4.4 Mammogram Feature Extraction 

Feature extraction aims to transform a feature set from high-dimensional space to lower-

dimensional space, which is a more convenient representation of the actual feature set 

[191].  The goal of feature extraction is to represent an input image to its reduced form, 

which is a more convenient representation of the image to facilitate effective classification. 

As discussed in the literature mammogram feature extraction techniques include; Texture, 

Shape, and Hybrid. This research work used Local Direction Patterns (LDP) and Local 

Ternary Pattern (LTP) texture features extraction techniques to come up with a new Local 

texture descriptor termed as Local Directional Ternary Pattern (LDTP). The algorithm 

below presents a brief explanation of the Local Directional Ternary Pattern (LDTP) 

descriptor.  

 Input: 3 by 3 image region 

Process: Run LDTP descriptor 

Output: LDTP encoded image region 

1. Step 1: Read a 3 × 3 mammogram image region 

2. Step 2: Calculate the absolute differential value between the neighboring pixel and 

the central pixel using equation 4.1 in this thesis 

3. Step 3: Convolve the resultant absolute differential matrix with Kirsch mask 

4. Step 4: Perform mini max normalization using equation 4.2 in this thesis 

5. Step 5: Perform softmax normalization using equation 4.3 in this thesis 

6. Step 6: Calculate the upper and lower threshold values using equation 4.4 and 

equation 4.5 respectively 
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7. Step 7: Using the threshold values obtain a Local Direction Ternary Pattern code 

using equation 4.6 in this thesis 

8. Step 8: Split the ternary pattern into a positive and negative pattern using equation 

4.7 in this thesis 

9. Step 9: Concatenate the eight bits into a binary number for the positive pattern 

10. Step 10: Convert the binary number to its decimal equivalent and allocate it to the 

central pixel as its LDTP.  

11. Step 11: Repeat step 1 to 10 for the entire region 

12. Step 12: Save the positive LDTP  pattern to a .csv file 

 

3.4.5 Classification 

To validate the effectiveness of the new local texture descriptor, I used two classifiers 

SVM and ANN. In this research work, I modeled the breast cancer classification problem 

as a binary classification problem performed on two levels. By using 966 mammogram 

images obtained after data augmentation, in the first level of classification, I used a 

classifier to distinguish between normal and abnormal classes.  In the second level 

classification, 345 abnormal tumors were used for training the classifiers to categorize the 

tumor into a malignant or benign class. The algorithm below shows the process of 

classification. 

1. Step 1: Using the imageSet function in MATLAB, recursively load the file 

containing the feature extracted images in the three categories; Normal, benign, and 

malignant 
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2. Step 2: From each category split the images into a training set and a test set using 

the 70: 30 ratio 

3. Step 3: Load the .csv file for Normal/ Abnormal class of the extracted features into 

the classification learners App in MATLAB. 

4. Step 4: Select the classifiers used for training and click on the train button 

5. Step 5: To inspect the accuracy of the predictions in each class, click on the 

confusion matrix 

6. Step 6: Export the model to make predictions with new data 

7. Step 7: Load the .csv file for Benign/ Malignant class of the extracted features into 

the classification learners App in MATLAB. 

8. Step 8: Select the classifiers used for training and click on the train button 

9. Step 9: To inspect the accuracy of the predictions in each class, click on the 

confusion matrix 

10. Step 10: Export the model to make predictions with new data 

 

3.4.6. Validation and Evaluation Protocol  

The model was validated using 10-fold cross-validation when selecting SVM and ANN 

parameters. In 10-fold cross-validation, it generates 10 equal subsets from the original 

sample and 10 iterations performed on training and testing set. For every repetition, it sets 

aside one different fold for testing and the remaining 9 folds for training. 

The performance of the developed descriptor was measured using True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN) using a two-class confusion 
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matrix. As discussed in the literature metrics used to test performance include Sensitivity, 

Specificity, Precision, Accuracy, and F-score. In this study, the performance of classifiers 

was measured using Accuracy, Sensitivity, and Specificity. Accuracy is the simplest and 

most intuitive evaluation measure for classifiers. In this study, accuracy was used to aid 

comparison between the performance of the developed local descriptor and other existing 

descriptors, because most of the researchers tested the classifiers based on it, therefore it 

made performance comparison less challenging. 

  

3.5 Review of Research Questions 

Table 3. 3: Review of Research questions   

 

Research Questions Research Design 

i. How do the existing techniques detect breast cancer?? Exploratory 

ii. How can a Local Directional Ternary Pattern texture descriptor 

that considers all directional responses and an adaptive threshold 

when encoding image gradient be developed? 

Simulated 

Experiment 

iii. How valid is the developed Local Directional Ternary Pattern 

texture descriptor in breast cancer detection? 

Simulated 

Experiment 

 

3.6 Research Tools and Material 

This study used the MATLAB software package for image processing. It has powerful and 

easy-to-use features, especially when dealing with images. I implement all algorithms 
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developed using MATLAB (R2018a) on a PC equipped with an Intel Core i5 processor, 

8GB RAM, and Windows 10 Operating System. I based the choice of MATLAB on its 

capability to carry out complex computations; it provided a visualization environment and 

easy to use mathematical notations [262]. Further, it provided inbuilt toolboxes for image 

processing, computer vision, and batch processing which are appropriate for this research. 

A detailed explanation of the MATLAB software installation and activation procedure in 

section 3.6.1 of this thesis. 

Getting actual images to carry out this research was highly difficult because of privacy and 

legal issues and technical hurdles. Therefore, the MIAS dataset was used to study the 

effectiveness of the developed local descriptor as it was a benchmark dataset available 

online for research. To use the MIAS dataset, I downloaded raw images. Section 3.6.2 of 

this thesis presents an explanation on the process for downloading the dataset. 

 3.6.1 MATLAB Installation and Activation procedure 

To install MATLAB R2018a, insert the MATLAB flash drive then open the bin\win folder 

and double click on the setup then follow the steps given below.  

Step 1: Select the installation method by logging into your account if you have a 

MathWorks account or use a file installation key. In this case, I used a file installation key. 

Step 2: In the MathWorks installer window, select the button Next to use a File installation 

key. After the selection of “ Use a file installation key”, click the Next button. 
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Step 3: In the Licence agreement window, select the Yes button and then accept the terms 

of the license agreement by clicking on the Accept radio button. Then select the Next 

button. 

Step 4: In the File installation Key window, click the radio button on “I have the activation 

key for my license” then enter the file installation key found in the readme.txt file. Then 

click the Next button. 

Step 5: In the folder selection window, select the place where you want to install the 

MATLAB software then click the Next button. 

Step 6: In the product selection window, select all the products to be installed by clicking 

on all the checkboxes then at the end click the Next button. 

Step 7: In the license file browser, select the license file and click Next. 

Step 8: In the installation window, choose the desktop option to install a shortcut then click 

the Next button. 

Step 9: In the confirmation window, click the Install button, when the installation is 

complete, click on the finish button 

Once MATLAB R2018a was installed successfully, it required activation. There are two 

options for activation. Either to login to MathWorks Account or to enter the full path to 

license file. Since I had the license file, I used the option of using a license file. Therefore 

to activate the MATLAB R2018a the following steps were followed; 

Step 1: On the provide License file window, click the radio button beside the option for 

“Activate automatically using the Internet” and then click the Next button. 

Step 2: Click on browse and locate the license file. 
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Step 3: Once you provide a valid license file, you will be prompted with a success message 

of “Activation Complete”. 

 

3.6.2 MATLAB Image processing App 

After installing and activating the MATLAB R2018a software two major applications; the 

image batch processor App and the classification learners' App tools were used in this 

research software.  

The image batch processor App was used to read in images that needed to be preprocessed. 

The preprocessing functions carried out in this study included image noise removal and 

image enhancement. To access the image batch processor App follow the steps outlined 

below.  

Step 1: On the Apps tab, in the image processing and computer vision toolbox, click Image 

Batch Processor. 

Step 2: Load the images into the image batch processor app by clicking on Load images. 

Step 3: In the load images section, specify the folder containing the images you want to 

load. By default, the app includes images in subfolders. The Image batch processor app 

creates thumbnails of the images loaded 

Step 4: Specify the name of the function to use by typing the name in the function name 

box in the batch function section.   

Step 5: Test the new function by running the batch processor on one of the images  
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Step 6: Once the results of the test are successful, then execute the function on all the other 

images 

Step 7: To save the results, click on the Export tab. You can export the results to a file or 

workspace. 

 

3.6.3 MATLAB Classification Learners App  

Another App that was used in this study was the classification learners App. This App was 

used to train the SVM classifier. To access and use the classification learners App in 

MATLAB follow the steps given below. 

Step 1: In the Apps tab, click on the classification Learner section or select it from the 

machine learning toolbox 

Step 2: Click New Session and import your data from the workspace or from a file 

Step 3: If you import your data from a file select the file, wait for it to loaded then click on 

import selection tab 

Step 4: Specify a response variable and predictor variables 

Step 5: Choose the type of validation under the validation section, then click on start 

session tab 

Step 6: You can visualize the distribution of your data by looking at the scatter plot  

Step 7:  On the model type section select the classifiers 
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Step 8:  Click the train tab to train your data based on the classifier select in step 7 

Step 9: View the results of the training in the history list window. 

Step 10: You can further analyze the results of the model by looking at the confusion 

matrix and the ROC curve. 

 

3.6.4 Procedure for downloading the mammogram images from the MIAS dataset 

The MIAS dataset contains 322 images out of which 270 are non-cancerous and 52 are 

cancerous was used in this study. The dataset is available at 

https://www.repository.cam.ac.uk/handle/1810/250394 The images have 50  m per pixel 

and clipping/padding to a fixed size of 1024 × 1024 pixels in Portable Gray Map (PGM) 

format and associated truth data [63]. The procedure for downloading the images was 

described as follows: 

Step 1:  Type the URL https://www.repository.cam.ac.uk/handle/1810/250394 on browser 

Step 2:  Click on view/open files icon on the Mammographic Image Analysis Society 

(MIAS) database v1.2.1, then wait for the download to complete   

Step 3: Extract the images to a specified folder 

 

3.7 Ethical Consideration 

The researchers understand that mammographic images contain sensitive information and 

that they are properties of the research community. The researcher exercised utmost 

confidentiality by using the mammographic images purely for academic research. Since the 

https://www.researchgate.net/deref/https%3A%2F%2Fwww.repository.cam.ac.uk%2Fhandle%2F1810%2F250394
https://www.researchgate.net/deref/https%3A%2F%2Fwww.repository.cam.ac.uk%2Fhandle%2F1810%2F250394
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mammographic images were anonymously coded with no patient demographic 

information, they could not be traced back to individual patients. Also, an effort was made 

to source for research permit approval from the National Commission of Science 

Technology and Innovation (NACOSTI) before proceeding with data collection. 

 

3.8 Summary 

This section began by demystifying the research philosophy adopted and the research 

process followed using Saunders's research onion. It also explained the experimental setup 

for the development of the new local descriptor citing the process of mammogram image 

reading, mammogram image preprocessing, data augmentation, feature extraction, 

classification, and performance evaluation of the classifiers.  A review of research 

questions, research tools and material used, model validation, and ethical consideration 

during the research process was also presented in this section. 
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4. CHAPTER FOUR 

LDTP TEXTURE DESCRIPTOR 

4.1 Overview 

This chapter explains the process of developing the LDTP texture descriptor based on the 

algorithm outlined in section 3.4.4 of this thesis. The chapter explains the image gradient 

encoding process in two major steps; (1) computing the edge responses for all the eight 

directions as explained in section 4.2.1 and  (2) calculating  an adaptive threshold as 

explained in section 4.2.2 of this thesis.  

 

 4.2 Local Directional Ternary Pattern (LDTP) Texture Descriptor 

The state of the art LTP descriptor uses a static threshold τ defined by a user for all datasets 

or images in a dataset. The chosen threshold is invariant to grey-value variations, static and 

lacks a defined way of selecting an optimum value for the threshold. The Local Directional 

Patterns (LDP) only considers top k directional responses when encoding local texture in 

an image. Although the difference between a reference pixel and its neighbors derives an 

image gradient, it does not consider the central pixel, thereby deteriorating the 

discriminative power of the features extracted. Further, LDP disregards 8−k responses, 

which leads to a loss of subtle texture features.  Herein, a Local Directional Ternary 

Patterns (LDTP) texture descriptor is developed. Unlike LDP and LTP, the LDTP 

descriptor considers the central pixel, takes into account all directional responses, and uses 

two adaptive threshold values for a      image regions when deriving an image gradient. 
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The LDTP applies the Kirsch mask to compute responses for all the eight directions for the 

central reference pixel in a 3×3 image region. It uses the sign of the directional responses 

to increase the discriminative nature of the encoded image gradient.  

4.2.1 Computing directional responses 

Given a      image region, LDTP first finds the absolute difference in grey-values 

between neighboring pixels and central reference pixel as defined by equation (4.1) 

 

                  (4.1) 

Where     , is the gray value at row i, column j, and    is the gray value of the central pixel.  

The absolute differences are then convolved with the Kirsch masks to get directional 

responses. Figure 4.1 illustrates a      image region, the absolute difference in grey 

values, and corresponding directional responses.  

 

Figure 4. 1: LDTP process (a) Image region (b) Absolute differential values (c) Directional 

responses using kirsch masks 
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 While the original LDP descriptor picks the top three directional responses, Here we 

consider all the eight directional responses because each response carries important 

information and therefore should not be ignored.  

 

The directional responses are then normalized using the min-max normalization technique 

as shown in equation (4.2) 

 
        

      

       
   

 

(4.2) 

Where      is the absolute response at index i, j and Max and Min are the maximum and 

minimum responses respectively, and     
     is the normalized value for      responses.  

 

The normalized values are in the range of 0…1, but they add up to a value of more than 1. 

However, to ensure the values add to a maximum value of 1, the normalized values are 

passed through a softmax function given by Equation (4.3) and illustrated in Figure 4.2(b) 

in comparison to the min-max technique in figure 4.2 (a). 

 
     

     
    

      
        

(4.3) 

Where     is the likelihood for the presence of an edge towards a given direction,      
    

is 

the exponential value of the normalized absolute responses at index i,j and       
    

is the 

summation of all the exponential values. 
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Figure 4. 2:  Normalization process with (a) Min-Max Normalization and (b) Soft-max 

technique 

 

4.2.2 Calculating an adaptive threshold  

Once the normalization is done, the probability space is split into three parts for -1,0,+1 

bits for the generated ternary pattern and calculates two thresholds, Tp and Tn as shown in 

equation (4.4) and (4.5); 

 

   
 

 
   

 

 

 

   

     
(4.4) 

 

   
 

 
   

 

 

 

   

         
(4.5) 

Where L
T

i is the i
th

 top likelihood, and L
B

i is the i
th

 bottom likelihood. For the likelihoods 

shown in Figure 4.2 (b), the thresholds are Tp=0.1589 and Tn =0.0911, respectively. 
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Where Tp  is calculated as the average of the four highest  values given by  0.1739, 0.1904, 

0.1503, and 0.1209, while Tn is the average of the four lowest values given by 0.1192, 

0.1026, 0.0726 and 0.0700 

LDTP code is calculated as shown in equation (4.6); 

LDTP code is calculated as; 

 

                        

 

   

  

 

 

     

 
 
 

 
 
                         

             

                  

                       

 

(4.6) 

Where Li is a likelihood i as shown in Figure 4.2 (b) 

For the likelihoods in Figure 4.2 (b), Figure 8 shows the resultant ternary pattern and the 

corresponding positive and negative LTP codes. The LDTP code is split into a positive and 

negative LTP code, as shown in Figure 4.3(b) and Figure 4.3(c), respectively. 
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Figure 4. 3: Resultant Ternary Pattern code with (a) Resultant LDTP code (b) Positive 

LDTP code (c) Negative LDTP code 

The positive and negative gradients of an M × N image shown in Figure 4.3 (b) and Figure 

4.3 (c) are represented as Hp and Hn and defined as expressed in eq. (4.7); 

 

                       

 

   

 

   

  

 

                         

 

   

 

   

     

 

                       
                       
                  

      
                                             

                     

(4.7) 

Where f (x, i) is a logical function that compares if the LDTP code at location x (m, n) of 

the LDTP encoded image is equal to current LDTP pattern i for all i in the image    

  
 .The resultant histogram has dimensions    

 , which represent the image. The two 

histograms are then fused and used for pattern recognition application. 
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4.3 Summary 

This chapter explained the process of developing the LDTP texture descriptor based on the 

LDTP algorithm defined in section 3.4.4 of this thesis. The development of the LDTP 

texture descriptor was explained in two steps of calculating the edge responses for all the 

eight directions as explained in section 4.2.1 and calculating  an adaptive threshold as 

explained in section 4.2.2 of this thesis.   
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CHAPTER FIVE 

EXPERIMENTAL VALIDATION, RESULTS AND DISCUSSION 

 

5.1 Overview 

This chapter elucidates and discusses the experimental validation in terms of the 

experimental setup defined in section 3.4. It provides details on how the mammogram 

images were read into the MATLAB environment, how the images were preprocessed to 

improve their quality, how data augmentation was performed to increase the number of 

images, how extraction was performed using the developed LDTP texture descriptor, how 

the classification was performed using SVM and ANN classifiers and validation of each of 

the classifiers into Normal/abnormal class and benign/malignant class using the breast 

cancer dataset.  Also the results achieved by the developed LDTP texture descriptor in 

terms of performance evaluation of LDTP descriptor using ANN and SVM classifiers, 

Accuracy comparison of LDP, LTP, LDTP descriptors using SVM and ANN classifiers, 

sensitivity and specificity comparison between SVM and ANN classifiers, the statistical 

significance of the achieved accuracy using Wilcoxon signed-rank test. In addition a 

detailed discussion on classification comparison between LDTP with related studies based 

on classifying the breast cells into Normal/Abnormal and Benign/Malignant classes is 

presented. 
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5.2 Experimental Validation of Local Directional Ternary Pattern (LDTP) 

Steps of experimental validation of the LDTP descriptor are as shown in Figure 3.2. First, 

a mammogram image is read from the MIAS dataset. Then, the read image undergoes 

preprocessing which involves noise and artifacts removal, image enhancement, and 

cropping. Then, data augmentation is performed to increase the number of images that are 

then passed to the LDTP descriptor for feature extraction. Then classification is performed 

using SVM and ANN classifiers using the MIAS dataset. The performance of LDTP is 

then evaluated using accuracy, sensitivity, and specificity metrics. A detailed explanation 

of all the steps followed during the experimental validation is given below. 

 

5.2.1 Mammogram Image Acquisition and Reading 

The study used mammogram images taken from the MIAS dataset. The images are split 

into malignant, benign, and normal classes each containing 51, 64, 207 images 

respectively. Figure 5.1 shows three sample images from each of the categories in the 

MIAS dataset. 

  

                    (a)                       (b)                                      (c) 

Figure 5. 1: Sample MIAS images (a) mdb012 benign image (b) mdb184 malignant image 

(c) mdb006 Normal image. 
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To load the images into the MATLAB environment, store the images into three separate 

folders designated for benign, malignant, and normal cases. Use the image batch processor 

App under the image processing and computer vision toolbox to load the images into 

MATLAB. Figure 5.2 shows how images are loaded through the image batch processor 

app. 

 

Figure 5. 2: The process of loading images into the image batch processor app 
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5.2.2 Mammogram Preprocessing 

The purpose of preprocessing a mammogram is to improve its quality by removing 

artifacts, labels, and noise that may be present in the mammogram image. Also, through 

enhancement techniques image contrast is enhanced.  In this research, preprocessing was 

done in two stages. Stage one consisted of filtering noise, removing artifacts, and 

enhancing the mammogram images. The wiener-2 adaptive filter function is applied to 

filter noise and eliminate artifacts and labels. To enhance the mammogram images CLAHE 

technique is applied. The merit of this technique is that it does not amplify any noise 

present in a mammogram image.  

 

The second stage of preprocessing entails image cropping. Cropping is performed to 

localize the affected breast region without being influenced by the unwanted region. 

Because of the different orientation and position of a breast tumor, the images were 

manually cropped.  

 

To prepare the mammogram images for feature extraction, each of the images underwent 

noise removal, enhancement, and cropping. The output of one stage became the input for 

the next stage of preprocessing. .Figure 5.3: shows sample images of the input images and 

the preprocessed images from each of the three categories. 
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(a)                                   (b)                                 (c)                                        (d) 

Figure 5. 3:  preprocessed Benign, Malignant and Normal images (a) Input  image  (b) 

artifact and noise removed image   (c) enhanced image  (d) Cropped image 

 

5.2.3 Data Augmentation 

The MIAS dataset used in the study has 322 images which are very few to warrant 

effective pattern learning, therefore as a measure to facilitate better learning the number of 

images was increased through the process of data augmentation. Each mammogram image 

was mirrored along the x-axis and the y-axis.  Figure 5.4 shows a mammogram image 

mirrored along the x and y-axis respectively. 
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(a)                                          (b)                                            (c) 

Figure 5. 4: mdb184 malignant image mirrored on x and y-axis (a) preprocessed mdb184 

malignant image (b) mdb184 malignant image mirrored along the x-axis (c) mdb184 

malignant image mirrored along the y-axis 

 

5.2.4 Mammogram Feature Extraction using LDTP descriptor 

In this research, a new Local Directional Ternary Pattern (LDTP) texture descriptor that 

considers all directional responses and an adaptive threshold when encoding image 

gradient was developed for breast cancer classification. The mathematical explanation of 

how the texture descriptor was developed was presented in section 4.2 of this thesis. Figure 

5.5 shows a sample preprocessed benign image with its corresponding LDTP extracted 

image and histogram. 
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                   (a)                                         (b)                                               (c) 

Figure 5. 5: LDTP images for Mdb012 benign image (a) Input mammogram image (b) 

LDTP mammogram image (c) Histogram for the LDTP image 

 

5.2.5 Classification  

The classification stage was conducted in two levels using a total of 966 instances. Out of 

966 instances, 621 were normal and 345 were abnormal.  The first level of classification 

aimed to differentiate a normal instance from an abnormal instance. Here, all the 966 

instances were used with 30% of the instances used for testing. Therefore a total of 290 

instances were used for testing from which 186 instances belonged to the normal class 

while 104 instances belonged to the abnormal class. The classification process was carried 

out using SVM and ANN classifiers, from which confusion matrices were generated. Table 

5.1 and Table 5.2 shows the confusion matrix for normal /abnormal classification using 

ANN and SVM classifiers respectively. 
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Table 5. 1: Confusion matrix for normal/abnormal classification using ANN classifier 

 

Class Normal Abnormal 

Normal 182 4 

Abnormal 4 100 

 

Table 5. 2: Confusion matrix for normal/abnormal classification using SVM classifier 

 

Class Normal Abnormal 

Normal 185 1 

Abnormal 5 99 

 

In the second level of classification, the aim was to distinguish between a benign and a 

malignant tumor, a total of 345 instances were used, out of which 192 were benign and 153 

were malignant. From each class, 30% of the instances were used for testing. Therefore, 58 

instances were selected from the benign class, and 46 instances were selected from the 

malignant class. Table 5.3 and Table 5.4 shows the confusion matrix for benign/malignant 

classification using ANN and SVM classifiers respectively. 
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Table 5. 3: Confusion matrix for benign/malignant classification using ANN classifier 

 

Class Benign Malignant 

Benign 55 3 

Malignant 6 40 

 

 

Table 5. 4: Confusion matrix for benign/malignant classification using SVM classifier 

 

Class Benign Malignant 

Benign 56 2 

Malignant 4 42 

 

5.2.6 Performance Validation and Evaluation  

To assess the performance of the developed LDTP descriptor, its performance was 

evaluated using SVM and ANN classifiers. To show the robustness of the developed 

LDTP descriptor, an accuracy metric was used to evaluate its classification performance 

against LDP and LTP descriptors. To understand the effectiveness of SVM and ANN 

classifiers to correctly classifying a breast tumor, sensitivity, and specificity measures were 

calculated. Further, to show the statistical significance of the achieved accuracy the 

Wilcoxon signed-rank test was conducted. 
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5.2.6.1 Performance evaluation of LDTP descriptor using ANN and SVM classifiers  

Two levels of classifications were performed to determine the accuracy of ANN and SVM 

classifiers for the LDTP descriptor. The first level of classification determined if the tumor 

was normal or abnormal, while the second level of classification determined if the tumor 

was benign or malignant. Figure 5.6 shows the results using accuracy measure when LDTP 

was passed through SVM and ANN classifiers. The figure depicts that SVM achieved 

higher accuracy than ANN with 97.32% and 93.93% for the normal/ abnormal and 

benign/malignant classes respectively. 

 

 

Figure 5. 6: Accuracy levels of SVM and ANN classifiers for LDTP descriptor 
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5.2.6.2 Accuracy levels comparison of SVM and ANN classifiers for LDP, LTP, and 

LDTP descriptor  

The accuracy levels of SVM and ANN classifier for the LDTP descriptor was compared 

against SVM and ANN classifiers' accuracy for LDP and LTP descriptors for the 

normal/abnormal and Benign/malignant classes.  In both cases, LDTP performed better 

than LDP and LTP with accuracy levels of 97% and 90.90% for the normal/abnormal and 

benign/malignant class. Figure 5.7 and Figure 5.8 shows the comparisons using ANN and 

SVM classifiers. 

 

Figure 5. 7: Accuracy comparison of ANN classifier for LDP, LTP, and LDTP descriptors 
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Figure 5. 8: Accuracy comparison of SVM classifier for LDP, LTP, and LDTP descriptors 

5.2.6.3 Sensitivity and Specificity comparison of ANN and SVM classifiers for LDTP 

descriptor 

To be able to determine the effectiveness of the SVM and ANN classifiers in identifying a 

normal, malignant or benign tumor, sensitivity and specificity measures were calculated. 

The results of the sensitivity test determined the percentage of normal tumors that were 

correctly classified as normal. Figure 5.9 shows the sensitivity comparison of SVM and 

ANN classifiers for the LDTP descriptor.  
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Figure 5. 9: Sensitivity measure of SVM and ANN classifiers for the LDTP descriptor 

 

The specificity measure determined the percentage of abnormal tumors correctly classified 

as abnormal. Figure 5.10 shows a specificity comparison of SVM and ANN classifiers for 

the LDTP descriptor. 
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Figure 5. 10: Specificity measure of SVM and ANN classifiers for the LDTP descriptor 
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comparisons of pairs of descriptors. Let n1 and n2 be respectively the accuracy vectors of 

two descriptors that are under comparisons. Each of the n1 and n2 vectors has 10 elements. 

The difference scores d= n1 - n2 is calculated and if the test detects significance difference 

we consider that one of the two descriptors outperforms (underperforms) the other.  

 

The null hypothesis states that “there is no improvement in the accuracy levels between the 

LDTP descriptor against the LDP descriptor and the LDTP descriptor against the LTP 

descriptor”. The rejection of the assumption would mean that there was a statistically 

significant improvement of the accuracy achieved by the LDTP descriptor.  The procedure 

is performed for each pair of descriptors using MS-Excel software. Table 5.5 shows the 

results of the Wilcoxon test for the LDTP descriptor against LDP and LTP descriptors at a 

significance level of  =0.05. 

 

Table 5. 5: The results of the Wilcoxon test for LDTP descriptor against LDP and LTP 

descriptors 

Descriptor Class P-value Null  

Hypothesis 

LDTP vs LDP Normal/Abnormal 0.000279953 Reject 

Benign/Malignant 0.000279953 Reject 

LDTP vs LTP Normal/Abnormal 0.000279953 Reject 

Benign/Malignant 0.000279953 Reject 
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5.3 Analysis of Results 

The results of the experimental validation were evaluated based the confusion matrix 

values gotten after executing the LDTP descriptor using ANN and SVM classifiers. Also 

the results obtained were presented inform of bar graphs to give insight into the 

performance of the LDTP descriptor when compared to LDP and LTP descriptors based on 

Accuracy sensitivity and specificity measures. A detailed analysis of the results achieved is 

presented below. 

 

5.3.1 Performance Analysis of the LDTP descriptor for the Normal/ Abnormal class  

Table 5.1   shows the confusion matrix for the normal/abnormal classes using the ANN 

classifier. For the normal class, it could correctly classify 182 out of 186 instances, while 

for the abnormal class, it correctly classified 100 out of 104 instances resulting in a 

classification accuracy of 97.85% and 96.16% respectively.  Table 5.2 depicted confusion 

matrix for normal/ abnormal classification using SVM classifier. 185 out of 186 instances 

were correctly classified as normal while out of 104 instances, it correctly classified 99 as 

abnormal. These correspond to the classification accuracy of 99.46% and 95.19% for the 

normal and abnormal classes, respectively. Therefore, from the confusion matrix, it can be 

established that the average accuracy for the SVM classifier was 97.32% while the average 

accuracy for the ANN classifier was 97%, implying that the SVM classifier achieved a 

higher classification accuracy than the ANN classifier.   
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5.3.2 Performance Analysis of LDTP descriptor for the Benign/Malignant class 

Table 5.3 depicted the classification of Benign/malignant class using ANN classifier. The 

classifier correctly classified 55 out of 58 benign instances and 40 out of 46 instances as 

malignant. This resulted in a percentage accuracy of 94.84 and 86.96 respectively.  

 

Table 5.4 shows the confusion matrix for classifying an abnormal tumor belonging to 

either a benign or malignant class using an SVM classifier. The SVM classifier correctly 

classified 56 out of 58 benign instances and 42 out of 46 malignant instances, which 

resulted in a percentage accuracy of 96.55 and 91.30 respectively.  The accuracy of the 

benign class was slightly higher than the malignant class by 5.25%. This implies that the 

SVM classifier could distinguish the benign class with higher accuracy than the malignant 

class.  

 

As shown in Figure 5.6 in terms of accuracy levels of classifiers, the SVM classifier 

achieved a slightly higher accuracy level than the ANN classifier for both normal/abnormal 

and benign/malignant classes. 

 

5.3.3 Accuracy level Comparison of ANN classifier for LDP, LTP, and LDTP 

descriptors  

The accuracy level of the ANN classifier for the LDTP descriptor was compared against 

the accuracy level of the ANN classifier for the LDP and LTP descriptors. In both levels of 

classifying a tumor into either a normal/abnormal class or a benign/malignant class, the 
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LDTP descriptor outperformed the LDP and LTP descriptors. Figure 5.7 shows that all 

three descriptors could distinguish between normal and abnormal tumors with higher 

accuracy than when differentiating a benign tumor from a malignant one. 

   

5.3.4 Accuracy level Comparison of SVM classifier for LDP, LTP, and LDTP 

descriptors  

When the accuracy level of the SVM classifier was compared among the three descriptors, 

it was established that the LDTP descriptor outperformed the LDP and LTP descriptor for 

both normal/ abnormal and benign/malignant classification. Figure 5.8 depicted low 

accuracy levels in benign/malignant classification for both LDP and LTP descriptors. 

Further, for both normal/abnormal and benign/malignant classes, the LTP descriptor 

achieved the lowest classification accuracy.  

 

5.3.5 Sensitivity and Specificity comparison of SVM and ANN Classifiers for LDTP 

descriptor 

Figure 5.9 shows that the ANN classifier achieved a higher sensitivity value than the SVM 

classifier for the normal/abnormal class, while the SVM classifier had a slightly higher 

sensitivity value than the ANN classifier for benign/malignant class. The implication of the 

sensitivity results achieved implies that the ANN classifier was better at distinguishing 

between a normal and abnormal tumor, while SVM was better at differentiating between a 

benign and malignant tumor.  In terms of specificity, Figure 5.10 shows that the SVM 

classifier had a higher specificity value than the ANN classifier for both normal/abnormal 
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and benign/malignant classes. This suggests that the SVM classifier was better than the 

ANN classifier, at designating a patient who does not have cancer cells at a higher 

accuracy which consequently increases the true negative rate. 

 

5.3.6 Statistical Significance of the accuracy level achieved by LDTP descriptor 

The goal of calculating the statistical significance of the achieved accuracy between the 

LDTP descriptor against LDP and LTP descriptors was to show the statistical significance 

of accuracy improvement achieved by the developed LDTP descriptor. Table 5.5 shows 

that the LDTP descriptor against LDP and LTP descriptors achieved a P-value of 

0.000279953 and since the P-value was below 0.05, this is clear that there was a significant 

improvement in terms of accuracy levels for the LDTP descriptor. 

 

5.3.7 Accuracy level comparison of LDTP descriptor with Existing Local descriptors 

The accuracy level of the LDTP descriptor was compared against the accuracy levels of 

existing local descriptors in classifying breast cells into normal/abnormal and 

benign/malignant classes. Table 5.6 shows the comparison of the LDTP descriptor with 

existing local descriptors. The comparison analyzed the local descriptors applied, classifier 

used, the dataset implemented, the number of images used, the average classification 

accuracy achieved for normal/abnormal and/or benign/malignant classes, the author, and 

the year the work was published.  
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Table 5. 6: Accuracy level comparison of LDTP descriptor with existing local descriptors 

Descriptor Classifier Dataset No. of 

images 

Classification Accuracy/AUC Author/Year 

of Publication Normal/Abnormal Benign/Maligna

nt 

LBP SVM MIAS 70  97.2% 

96.4% 

       - 

 

Ponraj et al 

[237] 2017 

ULDP NLSVM, 

LSVM 

LDA, 

MLP 

MIAS 

INBreast 

312 

417 

0.92, 0.93 

0.91, 0.92 

    - Abdel-Nasser 

et al  [238] 

2015 

LTP 

RLTP 

SVM, 

ANN, RF 

Nagoya 

Medical 

Centre 

376 - LTP-0.765, 

0.773, 0.712 

RLTP-0.895, 

0.900,0.810 

Muramatsu et 

al [240] 2016 

LBP, 

LBPV, 

CLBP 

Fisher 

Linear 

Discrimin

ant 

Analysis 

DDSM 200 - 92.95%, 

87.7% 

90.6% 

Rabidas et al 

[234] 2016 

DRLBP 

DRLTP 

Fisher 

Linear 

Discrimin

MIAS 58    - 0.98, 0.96 Rabidas et al  

[235]2016 
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ant 

Analysis 

CLBP with 

Curvelet  

INN MIAS 

IRMA 

- 96% - Gardezi and 

Faye [236] 

2015 

LQP and 

Gabor filter 

SVM IRMA 137 99.27% 79.41% Paramkusham 

et al  [241] 

2016 

LDTP SVM  

ANN 

MIAS 290-N/A 

104-B/M 

SVM-97.32% 

ANN-97.00% 

 

SVM-

93.93% 

ANN-

90.90% 

Developed 

LDTP  

 

5.4 Discussion 

This research developed a local texture descriptor that encodes an image gradient by 

considering all directional responses and an adaptive threshold for breast cancer 

classification. The developed LDTP descriptor focused on classifying breast cells into 

normal, benign, or malignant tumors using SVM and ANN classifiers. The experiment was 

conducted using the MIAS dataset. Since the MIAS dataset has too few images to warrant 

effective generalization, the number of images was increased through data augmentation. 

Each image was mirrored along the x and y-axis to generate two additional images, 

therefore the images were increased from 322 to 966. The training/testing ratio of the 
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images for each category was 70:30. For the testing sample, 290 images were used for 

normal/abnormal class and 104 for benign/malignant class. The results based on accuracy 

level comparison showed that the developed LDTP descriptor produced higher accuracy 

for normal, abnormal, and benign, malignant classes when compared to LDP and LTP 

descriptors. The highest accuracy was 97.32% attained by the SVM classifier.  

 

 When the developed LDTP descriptor was compared against results achieved by other 

studies, it was evident from Table 5.6 that LDTP performed better than existing 

descriptors. Due to variations in datasets, the classifiers, the number of images and 

different texture descriptors used by researchers, a one-to-one comparison of the results 

with existing descriptors was a challenge. However, to minimize bias, the comparison was 

based majorly on studies that used the MIAS dataset, local descriptors, and performed 

classification based on normal/abnormal class and/or benign/malignant class.  

When the performance of the LDTP descriptor for the normal/abnormal and 

benign/malignant classification is compared with the results achieved by researchers 

shown in table 5.6, it can be concluded that LDTP descriptor outperformed all the selected 

descriptors except for the work published by Paramkusham et al [241] on normal/abnormal 

class and work published by Rabidas et al. [235] on benign/malignant class. The higher 

results could be attributed to using too few images which could have caused 

overfitting.  Sometimes, the descriptors achieved high classification for one classification 

group and very low results for the other group as witnessed by work done by 
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Paramkusham et al. [241]. As for the developed LDTP descriptor, the accuracy levels for 

both normal/abnormal and benign/malignant classification were relatively high, with an 

average of over 95% accuracy level.  

5.5 Summary 

This chapter explained the experimental validation based on the experimental setup 

defined in section 3.4. The experimental validation process included mammogram images 

reading, mammogram image preprocessing procedure, data augmentation process, feature 

extraction using LDTP descriptor, classification using SVM and ANN classifiers, and 

validation of each of the classifiers into Normal/abnormal class and benign/malignant class 

using the breast cancer dataset. Also the chapter explained the results obtained by the 

Local Directional Ternary Pattern (LDTP) descriptor. Performance analysis of the LDTP 

descriptor for normal/abnormal and benign/malignant classes, Accuracy level comparisons 

of ANN and SVM classifiers for LDP, LTP, LDTP descriptor, sensitivity and specificity 

comparison of SVM and ANN classifiers for LDTP descriptor, the statistical significance 

of accuracy level achieved by LDTP descriptor and a detailed discussion on classification 

comparison between LDTP descriptor with related studies based on classifying the breast 

cells into either Normal/Abnormal and/or Benign/Malignant classes. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

6.1 Overview 

This section concludes by highlighting significant findings of the research, explained the 

achievement of the research objectives, provided a brief description of contribution to 

knowledge and practice, and highlighted future work. 

 

6.2 Summary of Findings 

Effective screening can extend the survival rate for women diagnosed with breast cancer 

cells. Mammography is the recommended imaging test for breast cancer identification 

because it can recognize breast cancer cells many years in advance before physical 

indicators appear. However, many suspicious findings on a mammogram are benign 

tumors that eventually require a patient to undergo unnecessary biopsies, consequently 

causing anxiety to patients and increase the cost of diagnosis. 

 

 This study developed a local texture descriptor used on breast cancer data to classify a 

tumor as normal, benign, or malignant. This study modeled the problem of breast cancer as 

a two-class classification problem that classified the breast tumor into a normal or 

abnormal tumor and the abnormal tumor into a benign or malignant tumor. The developed 

LDTP descriptor showed impressive results and can effectively predict breast cancer tumor 

type with good precisions than LDP and LTP descriptors. Further, the LDTP descriptor 
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performed better for normal/abnormal class than benign/malignant class. In terms of 

classifier performance for the LDTP descriptor, the SVM classifier outperformed the ANN 

classifier using accuracy, sensitivity, and specificity measure for the benign/malignant 

class. The implication being that the SVM classifier was good at distinguishing a benign 

tumor from a malignant tumor, yet other researchers have shown that differentiating a 

malignant tumor from a benign tumor is a challenging task. 

 

6.3 Achievement of Research Objectives 

The objective of this research was to develop a Local Directional Ternary Pattern texture 

descriptor that considers all directional responses and an adaptive threshold in encoding 

image gradient for breast cancer classification. The objective was broken down into three 

specific objectives as outlined in Section 1.4.2 of this thesis. Below is a brief explanation 

of how the objectives were met. 

To achieve the first objective of breast cancer detection techniques, a thorough literature 

review was conducted. 

 

A comprehensive literature review presented in chapter two of this thesis revealed that 

researchers have directed significant effort towards developing a more effective breast 

cancer classification system. Even though local descriptors have effectively been used for 

pattern recognition especially in face recognition, section 2.9 in this thesis revealed that 

researchers sparingly used the local descriptors for breast cancer classification, because of 

low classification accuracy levels achieved especially for benign/malignant classification. 
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Also, studies that used the local descriptor and achieved high accuracies either used 

privately owned datasets that cannot be accessed for verification or used a few images for 

testing. Also, even though shape descriptors have visual cues used by the radiologist in 

identifying breast tumor, they, however, make the recognition process difficult especially 

when the image has noise, occlusion, and arbitrary distortion therefore, texture descriptors 

provide a better recognition because they take into consideration the structural arrangement 

and environmental relationship of the image.  

 

To achieve objective two, a Local Directional Ternary Pattern texture descriptor that 

considers all directional responses and an adaptive threshold when encoding image 

gradient was developed. 

 

The experimental setup defined in section 3.4 of this thesis, addressed the methodology 

followed in developing the LDTP texture descriptor. This section explained the procedure 

for reading the mammogram image into MATLAB, the procedure for preprocessing the 

mammogram image, the process of data augmentation, algorithmic steps of the new local 

descriptor which was explained in further details in section 4.2 of this thesis, and the 

process of classification, validation, and evaluation.  

 

To achieve objective three, simulation based experimental validation of the LDTP texture 

descriptor on breast cancer data was conducted.  
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 The experimental validation of the developed Local Directional Ternary Pattern was 

presented in section 4.3 of this thesis. This section addressed the procedure for 

mammogram image reading, mammogram preprocessing, data augmentation, feature 

extraction using the developed LDTP descriptor, classification, performance validation, 

and evaluation. Further, the performance analysis of the LDTP descriptor was presented in 

section 5.2 of this thesis. 

 

6.4 Contribution to Knowledge  

This study contributed to knowledge by developing a new Local Directional Ternary 

Pattern (LDTP) descriptor that considers all directional responses and an adaptive 

threshold in encoding image gradient for breast cancer classification. Experimental 

validation and evaluation of the LDTP descriptor showed better performance compared to 

LDP and LTP descriptors from which the new descriptor was based on. Even though local 

texture descriptors have not been widely applied in breast cancer classification as 

compared to the face recognition system, development of the LDTP descriptor and its good 

performance in comparison to existing methods shows a future direction that subsequent 

researchers can exploit. 

The work was further availed to the research community by publishing it in a peer-

reviewed journal.  Further, the developed LDTP descriptor affirmed the theory of feature 

analysis as used in face recognition. This showed that theory of feature analysis can 
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effectively be applied in breast cancer tumor differentiation. Consequently building a better 

breast cancer classification system that improves the classification accuracy. 

6.5 Contribution to Practice  

The current imaging test recommended for breast cancer screening is mammography. The 

mammographic test is performed by a radiologist who reads and interprets the test results, 

however, the radiologist is susceptible to human observer variability and the reading and 

interpretation of the test results depend on the proficiency of the radiologist administering 

the test. This research contributed to practice by presenting a more effective way of 

reading and interpreting the mammographic test results through a Computer-Aided 

Detection System (CAD). The CAD system could aid the radiologist in making a more 

accurate reading and interpretation of mammogram results by eliminating observer 

oversight, which consequently reduces unnecessary biopsies, increases the survival rate of 

women, and provides better health care to humanity. 

Currently, a radiologist relies on visual cue and the shape interior region or contours 

defined by the tumor boundary to identify the shape of the tumor and classify it. Shape 

features are not sufficient to describe a tumor, because they do not provide structural 

arrangements and environmental relationships of the image. This research makes a second 

contribution to practice by presenting a technique of extracting discriminant features 

independent of a radiologist. This technique extracts features by looking at the structural 

properties which are not visible to the human eye unlike a radiologist who relies on the 
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shape features.  Therefore using the features extracted by the developed descriptor 

provides insight for the radiologist since it eliminates observer variability.  

Dust particles on a mammogram and breast surgery scars on a patient can obstruct the 

radiologist and lead to false interpretation. This study makes a third contribution to 

practice by providing a way of improving a mammogram image by preprocessing the 

image before use. In this study, three ways of improving and enhancing image quality are 

discussed and implemented. The images were cleansed of noise, labels and artifacts then 

enhanced and cropped.  

  

6.6 Future Work 

The prospects of this research are to further show the robustness and feasibility of the 

developed LDTP descriptor by fusing different texture features and ensembling different 

classifiers to arrive at a final decision. Fusing features and classifier decisions is an area 

that has not been exhaustively exploited for breast cancer classification. Fusing features in 

different categories of features could result in an enriched feature set that can differentiate 

between breast cancer tumors especially for the benign/malignant class. Also, 

implementing decision fusion from multiple classifiers is expected to generate a classifier 

that is more robust from individual classifiers. To further test the feasibility of the LDTP 

descriptor, there would be a need to implement and compare its performance on other 

mammographic breast cancer datasets with many images. Also, in the future, the issue of 

balancing between effectiveness and efficiency should be taken into consideration. 
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Currently, a lot of emphases has been focused on how to effectively improve breast cancer 

detection at the expense of efficiency. Finally in future it would be viable to develop a 

CAD feature extraction tool based on the LDTP descriptor. 
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