Changes in the frequencies of *Plasmodium falciparum dhps* and *dhfr* drug-resistant mutations in children from Western Kenya from 2005 to 2018: the rise of *Pfdhps* S436H

Abstract

Background

Sulfadoxine-pyrimethamine (SP) is the only anti-malarial drug formulation approved for intermittent preventive treatment in pregnancy (IPTp). However, mutations in the *Plasmodium falciparum dhfr* (*Pfdhfr*) and *dhps* (*Pfdhps*) genes confer resistance to pyrimethamine and sulfadoxine, respectively. Here, the frequencies of SP resistance-associated mutations from 2005 to 2018 were compared in samples from Kenyan children with malaria residing in a holoendemic transmission region.

Methods

Partial sequences of the *Pfdhfr* and *Pfdhps* genes were amplified and sequenced from samples collected in 2005 (n = 81), 2010 (n = 95), 2017 (n = 43), and 2018 (n = 55). The frequency of known mutations conferring resistance to pyrimethamine and sulfadoxine were estimated and compared. Since artemisinin-based combination therapy (ACT) is the current first-line treatment for malaria, the presence of mutations in the propeller domain of *P*. *falciparum kelch13* gene (*Pfk13*) linked to ACT-delayed parasite clearance was studied in the 2017/18 samples.

Results

Among other changes, the point mutation of *Pfdhps* S436**H** increased in frequency from undetectable in 2005 to 28% in 2017/18. Triple *Pfdhfr* mutant allele (CIRNI) increased in frequency from 84% in 2005 to 95% in 2017/18, while the frequency of *Pfdhfr* double mutant alleles declined (allele CICNI from 29% in 2005 to 6% in 2017/18, and CNRNI from 9% in 2005 to undetectable in 2010 and 2017/18). Thus, a multilocus *Pfdhfr/Pfdhps* genotype with six mutations (**HGE**AA/CIRNI), including *Pfdhps* S436**H**, increased in frequency from 2010 to 2017/18. Although none of the mutations associated with ACT-delayed parasite clearance was observed, the *Pfk13* mutation A578S, the most widespread *Pfk13* SNP found in Africa, was detected in low frequency (2.04%).

Conclusions

There were changes in SP resistance mutant allele frequencies, including an increase in the *Pfdhps* S436**H**. Although these patterns seem consistent with directional selection due to drug pressure, there is a lack of information to determine the actual cause of such changes. These results suggest incorporating molecular surveillance of *Pfdhfr/Pfdhps* mutations in the context of SP efficacy studies for intermittent preventive treatment in pregnancy (IPTp).

Authors.

M. Andreína Pacheco, Kristan A. Schneider, Qiuying Cheng, Elly O. Munde, Caroline Ndege, Clinton Onyango, Evans Raballah, Samuel B. Anyona, Collins Ouma, Douglas J. Perkins & Ananias A. Escalante