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Abstract

Field studies were done of the responses of Glossina palpalis palpalis in Côte d’Ivoire, and G. p. gambiensis and G. tachinoides
in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.)
electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced (,56)
by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p.
gambiensis both human and cattle odour increased (.26) the trap catch significantly but not the catch from electric targets.
For G. p. palpalis, odours from pigs and humans increased (,56) the numbers of tsetse attracted to the vicinity of the odour
source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-
ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-
propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA
consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those
produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (,500 mg/h) doses of acetone
also consistently produced significant but slight (,1.66) increases in catches of male flies. The results suggest that odour-
baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign
(PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only ,50% of
the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an
analysis of the visual responses and identification of any semiochemicals involved in short-range interaction.
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Introduction

Tsetse flies (Diptera: Glossinidae) infest ,10 million km2 of

sub-Saharan Africa where they transmit trypanosomes which

cause Human African Trypanosomiasis (HAT; also known as

sleeping sickness) and African Animal Trypanosomiasis (AAT; also

known as Nagana). This complex of diseases has an important

impact on health and productivity in sub-Saharan Africa [1,2].

HAT occurs in two forms; ‘‘rhodesiense’’ which is caused by

Trypanosoma brucei rhodesiense and occurs in eastern and southern

Africa; ‘‘gambiense’’ which is caused by T. b. gambiense and occurs

in western and central Africa. Currently the latter causes ,97% of

the total number of reported cases of HAT [1] and is transmitted

in West Africa by tsetse of the Palpalis group where the most

dangerous species are G. palpalis s.l. and G. tachinoides.

Means of tackling HAT and AAT differ fundamentally.

Control of AAT transmitted by riverine flies is funded and

implemented largely by livestock keepers [3] who treat their

livestock with trypanocides and insecticides and/or deploy odour-

baited traps or targets to control tsetse. Control of HAT is

managed and funded by intergovernmental and national agencies

and, in the case of the gambiense form, relies mainly on

systematic screening, treatment and follow-up of millions of

human individuals across the affected region [1]. With a few local

exceptions [4] vector control has generally played little role in the

management of HAT over the past 80 years. Paradoxically,

vector control could contribute significantly to the management

of HAT. The relatively low infection rates (,0.1%) and long

incubation period (,25 days) of T. brucei spp. in the vector [5],

compared to the Trypanosoma spp. of veterinary importance,

means that comparable reductions in the density and life-

expectancy of tsetse populations would have a relatively greater

effect on HAT than AAT. A cost-effective method of tsetse

control that could be implemented by local people would

complement the efforts of agencies that support mass screening

and treatment and hence improve sustainability. Analyses of the

history of efforts against sleeping sickness reveal that sustainable

solutions have proved elusive [6,7]. An integrated approach,

based on a combination of interventions directed at both tsetse

and trypanosomes, may provide a better way forward.
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Cost-effective methods of tsetse control exist for the Morsitans

group tsetse that spread AAT. Insecticide-treated cattle (or other

domesticated animals) are valuable where they are present in

sufficient numbers and form a major part of the diet of the flies.

Where that is not the case or where cattle are not the major

component in the fly diet, as is true in much of the cotton belt of

West Africa, insecticide treated targets can be substituted. For

Morsitans group flies these can be baited with attractants which

mimic the odours of the natural host and they can then be

deployed at densities of just 4 targets/km2 to eliminate fly

populations [8,9]. However, far higher densities of traps or targets

(e.g. 30–50/km2) are required to eliminate G. palpalis spp.

[10,11,12,13]. One reason such high densities of artificial baits

are required is that attractants effective against the major tsetse fly

vectors of T. brucei gambiense in West Africa have not been identified

so far.

Ironically, the genesis of modern methods of tsetse control using

artificial baits started with the work of Claude Laveissiere and

others, working in the HAT foci of Côte d’Ivoire during the 1970s.

Their work showed that traps and targets could be used to control

HAT [14] but efforts to improve the performance of traps by

baiting them with the attractants effective for Morsitans group flies

were not successful (C. Laveissière pers. com). Work on G.

tachinoides in Burkina Faso [15] showed that natural odour from a

human, a pig or a cow increased the catch 1.26. In subsequent

studies, they demonstrated that a combination of 3-methylphenol

and octenol doubled the catch of this species of tsetse [15,16]). In

the only study of G. p. palpalis [17], baiting traps with acetone or

octenol, both components of cattle odour, doubled the catch of

tsetse. To date however, there has not been a comprehensive

analysis of the olfactory responses of the Palpalis group species that

spread HAT in West Africa. Accordingly, this paper reports the

results of studies of the behavioural responses of G. p. palpalis in

Côte d’Ivoire and G. p. gambiensis and G. tachinoides in Burkina Faso

to host odours. These studies aimed to assess the responses of these

three species to (i) whole natural odour from pigs, humans and

cattle and (ii) synthetic host odours known to be effective against

other species of tsetse. Identifying attractants effective for these

three species would be particularly timely since the African Union

is currently initiating a major tsetse control operation in West

Africa under the auspices of its Pan African Tsetse and

Trypanosomosis Eradication Campaign (PATTEC).

Materials and Methods

Study sites
G. p. palpalis. During the first field season studies were carried

out between February and April 2008, when the rainy season

begins, at sites near Bingerville (,05.35u N, 3.82uW), ,25 km

East of Abidjan. In the second season studies took place between

December 2008 and March 2009 (the dry season) at Azaguié

(05.67u N, 04.11u W), ,45 km north of Abidjan. Annual rainfall is

about 1400 mm. Both areas comprise a mosaic of lagoons, farms

where tree crops such as banana, coffee, cocoa, rubber and oil

palm are cultivated and the remnants of dense linear forest.

Humans, pigs and cattle are present at both sites but wild

mammalian hosts are scarce. G. p. palpalis is the only species of

tsetse present at these sites.

G. tachinoides. Studies were undertaken along the Comoe river at

Folonzo (,09u 549 N, 04u 369W) in the Comoe province of

southern Burkina Faso. The area receives an annual rainfall of

,1100mm. Studies took place in the dry season between March to

June 2007 and January to May 2008. In general terms fly numbers

were highest in the early parts of the dry season. The study site is

in a protected area, and the habitat is Sudanese gallery forest.

There are several game species in relatively low abundance in the

research area, including warthogs (Phacochaerus aethiopicus), hippo-

potamus (Hippopotamus amphibus), monitor lizards (Varanus niloticus),

hartebeest (Alcelaphus buselaphus), buffalo (Syncerus cafer), Buffon kob

(Kobus kob), bushbuck (Tragelaphus scriptus), waterbuck (Kobus

ellipsiprymnus) and various species of monkey, snake and crocodile.

G. p. gambiensis. Studies were performed at the same time and

sites as for G. tachinoides, as the two species occur sympatrically

along the southern Comoe river. However the Sudanese type

gallery found on the Comoe is more favourable for G. tachinoides

[18] which occurs at much higher densities than G. p. gambiensis

[19]. Additional studies were therefore also conducted at Solenzo

(,12u149 N, 04u239 W), in the Banwa province of western Burkina

Faso along the Mouhoun river. Climatic conditions are similar to

those along the Comoe river, with an annual rainfall of 1000mm.

Studies were undertaken in the dry season between April–June

2007 and January–June 2008. The habitat along the river, classed

as Sudano-Guinean gallery forest [18], is favourable for the two

species, and forms a narrow corridor between agricultural fields

and small patches of woodland, but is heavily degraded due to

expansion of agricultural fields. Host species in the area include

humans, cattle, goats and pigs.

Natural host odours
At each study site, local cattle, pigs or humans were used as

sources of natural host odours. The baits were placed in PVC-

coated tents (,36262 m) from which the air was exhausted at

,2000 L/min using a 12 v co-axial fan connected to a flexible

PVC-coated tube (0.1 m dia.) with the outlet placed at ground

level, ,15 m away from the tent, where the various catching

devices were placed (Fig. 1B). Studies with Morsitans group flies

suggest that the effectiveness of odours from particular host species

is related to the gross weight of animals used. Accordingly, to

match the weights of different host species, tents normally

contained a single ox, two men, or three pigs. Given the

approximate weight of the cattle (,150 kg), humans (,75 kg)

Author Summary

Sleeping sickness, otherwise known as Human African
Trypanosomiasis, continues to be a serious threat to
human health. This disease, which is transmitted by tsetse
flies, normally afflicts poor and isolated communities. No
vaccines or prophylactic drugs are available to prevent the
disease, which, once it has been contracted, is treated with
curative drugs that often prove ineffective because of
emerging disease resistance in the trypanosomes. These
drugs can often have unpleasant and sometimes fatal side
effects. Prospects for development of effective vaccines or
prophylactic drugs are poor. Killing the tsetse fly vector
remains the only method of preventing disease transmis-
sion. This can be done at either a local level or regionally.
However, a major problem is the cost and logistical
difficulty of implementing fly control programmes. To
overcome this, we are trying to develop cost-effective
insecticide-treated targets by identifying chemicals that
will increase the numbers of tsetse that will be lured to a
target and killed. Here we show that G. tachinoides is
significantly attracted to cow odour, G. p. gambiensis to
both cow and human odour, and G. p. palpalis to odours
from pigs and humans. This opens the way for further
work to identify the attractants present in these natural
odours that can then be simply and cheaply incorporated
into targets to reduce the cost of control.
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and pigs (,50 kg) used, the gross weight of baits within the tent

was 150–200 kg unless reported otherwise. When numbers of

animals/humans in the tent varied from this it is noted at the

relevant point in the text. In most instances the same animals/

humans were used in the tent experiments but for logistical reasons

this was not always the case.

Synthetic host odours
In some experiments, studies were made of the responses of

tsetse to chemicals known to be present in cattle odour and known

to attract some species of tsetse. Chemicals were dispensed

following established methods [20,21]. Synthetic cattle odour, as

used in these experiments, consisted of carbon dioxide (,1 L/

min), acetone (,5 mg/h), racemic 1-octen-3-ol (,0.1 mg/h), 4-

methylphenol (,0.4 mg/h) and 3-n-propylphenol (,0.04 mg/h).

In some experiments chemicals were dispensed individually or as

blends, at rates known to be effective for other species of tsetse. For

these experiments the doses of 1-octen-3-ol (,0.2 mg/h), 4-

methylphenol (,0.4 mg/h) and 3-n-propylphenol (,0.02 mg/h)

were similar to those used with synthetic cattle odour, but the dose

of acetone was increased to ,500 mg/h. In experiments where 3-

methylphenol was used the release rate was ,0.4 mg/h. POCA

consisted of P = 3-n-propylphenol (,0.02 mg/h); O = 1-octen-3-ol

(,0.2 mg/h); C = 4-methylphenol (,0.4 mg/h); A = acetone

(,500 mg/h). Other blends and doses are as indicated in the text.

Catching devices
Traps. All traps used in the experiments were biconical traps

(Fig. 1A) [11,22].

Electrocuting devices. The numbers of tsetse attracted to

various baits was assessed using an electric net (E-net) of fine black

polyester netting (Quality no. 166, Swisstulle, Nottingham, UK),

1 m tall60.5 wide, mounted adjacent to an electric target (E-

target) of black cotton cloth, 161 m (Fig. 1B). Each side of the E-

net and E-target was covered with a grid of fine (0.2 mm diameter)

copper wires, spaced 8 mm apart. A potential difference of

,40 KVa was created between adjacent wires and tsetse that

either landed on the E-target or collided with the E-net were

electrocuted and fell into a tray (3 cm deep) of soapy water on

which the E-net and E-target were mounted. The fine netting and

electrocuting wires of the electric net are effectively invisible to

tsetse [23,24,25] and thus the E-net catches tsetse as they fly

around the target. The total catch (i.e. E-target + E-net) provided a

relative measure of the numbers of tsetse that are attracted to a

target. Host odours may also affect the landing responses of tsetse

[20]. Accordingly, the catches from the E-target and E-net were

recorded separately to distinguish those flies caught as they landed

on the target from those that collided with the net.

Traps with E-nets
Odours that increase the catch of traps may attract more tsetse

to the vicinity of the trap and/or increase the proportion of flies

that enter and remain within the trap. The number of flies caught

by the trap expressed as a proportion of the total flies attracted to

the vicinity of the trap is termed the trap’s efficiency [26] – exactly

how this measured is explained below. To obtain relative measures

of (i) attraction and (ii) trap entry independently, experiments were

performed with an E- net (0.5 m wide61 m high) placed adjacent

to the trap (Fig. 1A). Two methods were used with G. p. gambiensis

to assess whether odours had an effect on trap entry and efficiency.

In one experiment the catches from traps operated alone with or

without natural host odour were compared with those from traps

operated with an adjacent E-net. For this protocol, the mean daily

catch from a trap alone (i.e. without an accompanying E-net) was

expressed as a proportion of the total catch from a trap+flanking

E-net. This proportion is termed ‘trap efficiency’. For the second

method, catches from the trap and adjacent E-net were recorded

separately, to distinguish flies caught in the trap from those that

collided with the net and, using these data, we assessed whether

odours had a significant effect on the proportion of tsetse that

entered the trap – these data provide the ‘trap entry response’.

Both experiments are necessary since while the second method will

detect whether there is an increased propensity for flies to enter a

trap, it will underestimate absolute efficiency since the flanking E-

net may kill flies that would have otherwise entered the trap. For

the remainder of the paper the terms ‘trap efficiency’ and ‘trap

entry response’ will be used in the sense given above.

Experimental design and analyses
All field experiments were carried out for 4 h between 08:00 h

and 12:00 h local time when Palpalis group species are most active

[27,28]. In general, odour baited devices (i.e. traps, E-nets, E-

targets and combinations thereof) were compared with an unbaited

device over 6–12 days in a series of replicated Latin squares of days

6 sites 6 treatments. Sites were always .100 m apart.

The daily catches (n) were normalized and variances homog-

enized using a log10(n+1) transformation and subjected to analysis

of variance using GLIM4 [29]. To provide a common index of the

effect of odours on catches, the detransformed mean catch of tsetse

from an odour-baited device was expressed as the proportion of

that from an unbaited one. The value is termed the catch index;

odours which, say, double or halve the catch from a trap would

have catch indices of 2 and 0.5, respectively. In some experiments,

the mean catch of tsetse was ,1 fly/day and these results were

judged to be too low for adequate statistical analysis and are

therefore not presented.

Logistic regression was used to analyse the effects of odours on

the proportions that landed on a target or entered a trap. The total

catch (i.e. target + net, trap + net) per day from each treatment was

specified as the binomial denominator and the daily catches from

the target or the trap were specified as the y-variable. The

significance of changes in deviance was assessed by either x2 or, if

the data were overdispersed, an F-test following re-scaling [30].

Unless stated otherwise, mean catches are accompanied by the

standard error of the difference (SED) between means, and the

term ‘significant’ denotes that the means differ at P,0.05.

Isolation and analysis of host odours
To verify that synthetic host odours were dispensed at rates

similar to those produced by natural hosts, measurements were

made of the concentration of known compounds in host odours.

Carbon dioxide was measured routinely using an infra-red gas

analyzer (EGM-1 or EGM-4, PP Systems, Hitchin, UK). For other

chemicals, samples were collected from the air exhausted from

tents containing cattle (n = 3), synthetic cattle odour (n = 2) or an

empty tent (n = 3), concurrent with the behaviour studies. Volatiles

were entrained (1L/min21) for 4 hours onto a porous polymer

(Porapak Q 50/80 (50mg), Supelco, Bellefonte, USA) which was

held in glass tubing (5 mm outer diameter) by two plugs of

Figure 1. (Top) Biconical trap and (Bottom) E-target with flanking E-nets. The grey pipe leading up to the trap or target carries odour-laden
air from a tent, visible in the background, containing live hosts.
doi:10.1371/journal.pntd.0000632.g001
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silanised glass wool. After collection, the tubes were heat sealed at

the field site in glass ampoules and sent to Rothamsted Research,

UK where the volatiles were eluted with redistilled diethyl ether

(750 ml). Prior to analysis, the samples were stored at 222uC.

The Porapak Q was conditioned by washing with dichloro-

methane (4 ml) followed by one washing with redistilled diethyl

ether (4 ml) and then heating at 132 uC for 2 h under a stream of

purified nitrogen (90 ml min21). This conditioning process was

repeated three times before use.

Analysis of volatiles. The air entrainment extracts were

analyzed by gas chromatography (GC) on both polar (DB-wax,

30 m60.32 mm inner diameter60.5 mm film thickness) and non-

polar (HP-1, 50 m60.32 mm inner diameter60.5 mm film

thickness) capillary columns using a HP5890 GC (Agilent

Technologies, UK) fitted with a cool-on-column injector, a

deactivated retention gap (1m60.53 mm inner diameter) and a

flame ionisation detector (FID). The GC oven temperature was

maintained at 30 uC for 1 min after sample injection and then

raised by 5 uC min21 to 150 uC, then 10 uC min21 to 240 uC. The

carrier gas was hydrogen. Identification of volatiles within the

extracts was confirmed using peak enhancement by co-injection

with chemical standards. A multiple-point external standard method

was used to quantify each chemical of interest in the extracts.

Chemicals. Chemical standards used in the laboratory were

racemic 1-octen-3-ol (98%) and 4-methylphenol (99%) were

obtained from Avocado, UK. 3-n-Propylphenol (98%) was

obtained from Alfa Aesar, UK. Chemicals used in the field were

1-octen-3-ol from International Flavors and Fragrances (Haverhill,

UK); 4- and 3-methylphenols from Sigma-Aldrich (Gillingham,

UK); 3-n-propylphenol from Great Lakes Fine Chemicals

(Widnes, UK) or Appropriate Applications (Berkhamsted, UK).

Acetone was obtained locally (Cobel, Bobo-Dioulasso, Burkina

Faso), and carbon dioxide was kindly donated by BRAKINA

(Bobo-Dioulasso, Burkina Faso).

Results

Natural odours
Traps alone. Cattle odour significantly increased the catch of

G. tachinoides ,56 (Table 1) for both males and females whereas

human odour had no significant effect. By contrast, both cattle and

human odour significantly increased the catch of G. p. gambiensis

,2 to 66.

Electrocuting devices. Cattle, human and pig odour all

increased the catches of G. tachinoides, but only cattle odour had a

significant effect, albeit not in all experiments (Table 2). There was

no evidence that males were more responsive than females and

overall the catch increase with cattle odour was 1.6 times

compared to 1.2 and 1.3 for human and pig odour, respectively.

For G. p. gambiensis, looking at combined catches for males and

females, odours from cattle, human and pig increased catches

using electrocuting devices 1.5, 1.4 and 1.16 respectively but the

mean catches were not significantly different from the control

(Table 2). This is in contrast to traps where both cattle and human

odour give statistically significant increases in trap capture

(Table 1). Thus while host odours consistently increased the catch

from electrocuting devices, there is no compelling evidence that

host odours increase the numbers of G. p. gambiensis attracted to an

odour source. If there is no increase in the number of flies

attracted by the odour then a possible explanation for the

differences in catches between traps and targets may be that the

presence of odour increases trap efficiency.

For G. p. palpalis (Table 2), the results show that odours from five

but not two humans and from both three and five pigs significantly

increased the catch from electrocuting devices for male G. p.

palpalis. While there were increases in female catch index for every

host experiment performed none of these was statistically

significant (Table 2).

Synthetic odours
Synthetic cattle odour. The significant effects of host odours

might be due to carbon dioxide and/or chemicals previously

shown to be effective for some species of tsetse or additional

chemical components (yet to be identified). Measurements of

carbon dioxide produced by natural hosts in Burkina Faso and

Côte d’Ivoire showed that the mean release rates were 1.3 L/min

(range: 0.9–2.2 L/min, n = 26) for an individual ox, 1.7 L/min

(range: 0.4–3.2 L/min; n = 25) for three humans and 1.7 L/min

(range: 0.7–3.6 L/min; n = 9) for three pigs. Accordingly, we

assessed the responses of tsetse to doses of carbon dioxide alone, or

in combination with 3-n-propylphenol, 1-octen-3-ol, 4-

methylphenol and acetone which have been identified previously

in natural cattle odour. These chemicals were dispensed at doses

similar to those produced by a single ox [31,32]. The results show

that for G. tachinoides carbon dioxide significantly increased the

catch of tsetse from electrocuting devices 1.76(P,0.05 for females

only) (Table 2) but not from traps (Table 3). Synthetic cattle odour

increased catches ,46 from electrocuting devices (P,0.001 for

males and females) (Table 2) and POCA significantly increases

catches from traps (Tables 3 and 4). Measurements of the

concentration of compounds in the synthetic and natural host

odours show that the levels of 1-octen-3-ol and phenols were

greater in the synthetic cattle odour than the natural (Table 5).

These results suggest that for G. tachinoides, the response to cattle

Table 1. Detransformed mean daily catches (transformed mean 6 SED in brackets) of G. tachinoides and G. p. gambiensis from
odour-baited traps expressed as a proportion (Catch Index) of that from an unbaited trap.

Species Odour Reps Tsetse/day Catch Index

Males Females Males Females

G.tachinoides Cattle 8 14.9 (1.2060.106) 7.8 (0.9560.146) 4.8** 5.1**

Human 12 10.3 (1.0560.092) 3.2 (0.6260.118) 1.4 1.1

G.p.gambiensis Cattle 10 2.6
(0.5660.098)

3.6 (0.6660.083) 2.8* 6.2*

Human 10 3.2
(0.6260.090)

2.3 (0.5260.059) 4.4** 2.2**

Indices followed by * or ** are significant at the 0.05 or 0.01 levels respectively.
doi:10.1371/journal.pntd.0000632.t001
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odour might be explained by the combination of carbon dioxide,

1-octen-3-ol and phenols, and that the greater response to the

synthetic cattle odour might be due to the higher doses of 1-octen-

3-ol and phenols it contains.

The results for G. p. gambiensis (Table 2) show that carbon

dioxide and POCA both increased the catches from electrocuting

devices but this was not statistically significant.

For G. p. palpalis (Table 2), carbon dioxide dispensed at 1 or

2 L/min increased the electrocuting device catch of male and/or

female tsetse significantly in four separate experiments (Table 2).

The higher dose produced a greater increase, consistent with the

responses to natural host odours. For instance, the odour from two

humans increased the electrocuting device catch for male flies ,2

fold whereas the odour from five humans increased it five-fold

Table 2. Detransformed mean daily catches (transformed means 6 SED in brackets) of G. tachinoides, G. p. gambiensis and G. p.
palpalis from odour-baited electrocuting devices (E-net + E-target) expressed as a proportion (Catch Index) of that from an
unbaited E-net + E-target.

Odour Site Tsetse/day Catch Index

Males Females Males Females

G. tachinoides, Burkina Faso

Human Folonzo 45.5 (1.6760.079) 35.7 (1.5760.061) 1.4 1.3

45.5 (1.6760.079) 56.8 (1.7660.061) 1.2 1.1

Pig 41.4 (1.6360.103) 35.7 (1.5760.089) 1.3 1.6

Cattle 45.5 (1.6760.079) 56.8 (1.7660.061) 1.9** 1.3

41.4 (1.6360.103) 35.7 (1.5760.089) 1.7 2.1*

30.2 (1.4960.098) 25.4 (1.4260.088) 1.8* 2.4*

47.2 (1.6860.082) 83.3 (1.9360.076) 1.1 1.2

CO2 (1 L/min) 44.2 (1.6560.098) 42.7 (1.6460.088) 1.5 1.7*

Syn. cattle 41.4 (1.6360.103) 35.7 (1.5760.089) 3.7*** 4.1***

Human Folonzo 3.7 (0.6760.099) 2.1 (0.4960.102) 1.5 2.0

Solenzo 6.4 (0.8760.113) 8.0 (0.9560.094) 1.4 1.4

2.5 (0.5560.099) 5.2 (0.7960.088) 1.1 1.4

Pig Folonzo 3.0 (0.6060.140) 1.9 (0.4660.159) 1.0 0.9

3.7 (0.6760.099) 2.1 (0.4960.102) 1.5 1.3

Solenzo 6.4 (0.8760.113) 8.0 (0.9560.094) 0.9 0.9

2.5 (0.5560.099) 5.2 (0.7960.088) 1.8 1.1

Cattle Folonzo 3.7 (0.6760.099) 2.1 (0.4960.102) 1.0 2.4*

3.0 (0.6060.140) 1.9 (0.4660.159) 1.3 2.2

2.0 (0.4860.160) 1.4 (0.3960.138) 2.9 2.5

Solenzo 6.4 (0.8760.113) 8.0 (0.9560.094) 1.0 1.2

2.5 (0.5560.099) 5.2 (0.7960.088) 1.1 1.2

CO2 (1 L/min) Folonzo 1.2 (0.3560.160) 1.0 (0.3160.138) 1.8 1.8

POCA 3.0 (0.6060.140) 1.9 (0.4660.159) 1.5 2.5

G. p. palpalis: Côte d’Ivoire

Human Bingerville 6.3 (0.8760.094) 4.8 (0.7660.117) 1.2 1.2

Azaguié 5.2 (0.7960.092) 6.7 (0.8960.095) 2.0 1.5

Humans (65) Azaguié 2.3 (0.5260.082) 4.0 (0.7060.115) 5.0*** 1.5

Pig Bingerville 5.6 (0.8260.118) 3.4 (0.6560.119) 2.8* 2.7

Azaguié 3.7 (0.6760.092) 8.0 (0.9660.095) 1.4 1.8

Pigs (65) Azaguié 1.9 (0.4660.082) 3.5 (0.6560.115) 4.0** 1.3

Cattle Bingerville 4.5 (0.7460.108) 4.9 (0.7760.173) 1.0 2.4

Azaguié 4.4 (0.7360.092) 6.1 (0.8560.095) 1.7 1.4

CO2 (1L/min) Bingerville 9.0 (1.0060.081) 13.5 (1.1660.104) 1.4 1.8*

CO2 (2 L/min) Azaguié 2.1 (0.5060.082) 4.3 (0.7260.115) 4.6*** 1.6

CO2 (2 L/min) Azaguié 3.7 (0.6760.077) 5.7 (0.8360.095) 4.3*** 3.9**

CO2 (2 L/min){ Azaguié 2.4 (0.5460.077) 4.5 (0.7460.095) 2.8** 3.1**

All means based on 8 or 12 (Azaguié only) replicates. Indices followed by *, ** or *** are significant at the 0.05, 0.01 or 0.001 levels respectively. Cattle, human and pig
odours obtained from a single ox or bull, two humans or three pigs unless indicated otherwise. Syn. Cattle = synthetic cattle odour (carbon dioxide (2 L/min), acetone
(,500 mg/h), 1-octen-3-ol (,0.5 mg/h), 4-methylphenol (,1 mg/h), 3-methylphenol (,1 mg/h) and 3n-propylphenol (,0.1 mg/h).
{Carbon dioxide (CO2) dispensed outside. For all other experiments, carbon dioxide was dispensed inside a tent.
doi:10.1371/journal.pntd.0000632.t002
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(Table 2). Similarly, carbon dioxide dispensed at 1 L/min or 2 L/

min increased the catch by up to 1.86 and 4.66, respectively.

These results suggest that the response of G. p. palpalis to host

odour might be due to carbon dioxide. Dispensing carbon dioxide

within a tent – so its source concentration was comparable to that

with natural host odours (,0.1%) – or directly from a pipe

connected to the cylinder so that the source concentration was

100% made no clear difference to its effect (Table 2).

Components of ox odour [31,32] dispensed in the absence of

carbon dioxide increased the catch of G. tachinoides and G. p.

gambiensis. For G. tachinoides POCA consistently increased the trap

catch, albeit the increases were not always statistically significant

(Table 4). Pooling the results for the 31 replicates where a POCA-

baited trap was compared with an unbaited one showed that

POCA increased the catch of males four-fold, from 2.1

(0.5060.104) males/day to 8.5 (0.9860.104) males/day and the

catch of females increased six-fold, from 1.3 (0.3660.114)

females/day to 7.5 (0.9360.114) females/day (P,0.001 for

difference between means for both sexes). Baiting an E-target

with POCA also increased the catch from 30.2 males and 25.4

females without odour to 53.8 and 50.8, respectively, with POCA

(P,0.05 for both sexes).

When the numbers of G. p. gambiensis caught were sufficient to

allow robust statistical comparisons (.3 tsetse/trap/day for an

unbaited trap), the blends which gave the best results were POCA

and POC (i.e. POCA without acetone) (see Table 6). Pooling the

results for the 78 replicates where a POCA-baited trap was

compared with an unbaited one showed that POCA increased the

catch significantly. The catch increased 2.26 for males, from 2.3

(0.5160.050) males/day to 5.1 (0.7860.050) males/day and by

1.86 for females increasing from 3.7 females/day (0.6760.063)

without odour to 6.1 (0.8560.063) females/day with POCA.

Baiting an E-target with POCA also increased the detransformed

mean daily catch of males from 6.9 to 13.3 (P,0.001 for difference

between means) and of females from 8.0 to 13.3 (P,0.01).

For G. p. palpalis (Table 7), blends containing acetone or 1-

octen-3-ol increased the catch slightly (,1.56) and significantly in

some experiments.

Landing responses
For the 35 separate experiments listed in Table 2 (G. tachinoides,

9 experiments; G. p. gambiensis, 14 experiments; G. p. palpalis, 12

experiments) we also assessed the landing responses of tsetse

exposed to natural or synthetic odours. Just one, G. tachinoides

responding to human and cattle odour, showed a significant effect

(Fig. 2A). However, in other experiments, these odours did not

increase the landing response of G. tachinoides. Similarly baiting an

E-target+E-net with POCA had no significant effect on landing

response. We therefore conclude that natural host odours have no

clear or consistent effect on the landing responses of G. tachinoides,

G. p. gambiensis or G. p. palpalis. Illustrative examples of the general

landing responses from six experiments (i.e., two for each species)

are shown in Fig. 2. For G. tachinoides and G. p. palpalis, males

generally showed a stronger landing response than females but this

difference was not apparent for G. p. gambiensis.

Trap efficiency
Natural host odours had no significant effect on the trap entry

response of G. tachinoides, G. p. gambiensis or G. p. palpalis (Table 3).

The results show that for G. tachinoides there was a marked

difference in the trap entry response of males and females, with

30–38% of males being caught in the trap compared to only 11–

16% of females (Table 3, experiment 1). For G. p. gambiensis, the

percentage of males and females caught in a trap was variable,

ranging from 8–15% in one experiment (Table 3, experiment 2) to

22–35% in another (Table 3, experiment 3). The percentage of G.

p. palpalis caught from a trap was generally low, ranging between 8

and 27% (Table 3, experiments 3 & 4). While host odours did not

have any effect on trap entry, the results do show that the total

catch (trap+flanking net) of G. tachinoides was increased significantly

by the POCA blend (Table 3, experiment 1).

For G. p. gambiensis, host odours had no significant effect on total

catch or trap entry response (Table 3, experiments 2 and 3).

However, the data do suggest that both are increased; analysing

the pooled catch of males and females did show that the catch

increased significantly (from 16 to 23 tsetse/day, P,0.05) and the

trap efficiencies increased for both sexes and was significant

(P = 0.05) for males. The absence of any significant effects of host

odours on attraction or trap efficiency for G. p. gambiensis may be

Table 3. Detransformed mean daily catches (transformed
means and SED in brackets) (trap plus flanking E-net and trap-
entry responses (%) of tsetse for devices baited with natural
and synthetic host odours.

Odour Mean daily catch
Trap entry-
response6SE (%)

Males/day Females/day Males Females

Experiment 1. G. tachinoides (Folonzo, Burkina Faso)

CO2 57.1 (1.76) 97.2 (1.99) 3863.9 1263.1

POCA 92.1 (1.97)* 128.7 (2.11) 3063.5 1162.8

Cattle 52.3 (1.73) 102.3 (2.01) 3863.0 1662.7

None 47.2 (1.68) 83.3 (1.93) 3363.8 1162.7

SED (0.082) (0.076)

Replicates 8

Experiment 2. G.p. gambiensis (Solenzo, Burkina Faso)

Cattle 2.8 (0.58) 6.3 (0.86) 966.4) 1164.6

Human 2.9 (0.59) 7.1 (0.91) 1567.2 1464.5

Pig 4.5 (0.74) 5.9 (0.84) 965.5 1265.3

None 2.5 (0.55) 5.2 (0.79) 1568.2 864.5

SED (0.099) (0.088)

Replicates 8

Experiment 3. G.p. gambiensis (Solenzo, Burkina Faso)

POCA 13.0 (1.10) 10.5 (1.02) 3564.1 2964.9

None 8.0 (0.90) 8.2 (0.91) 2765.1 2265.8

SED (0.101) (0.063)

Replicates 10

Experiment 4. G.p. palpalis (Bingerville, Côte d’Ivoire)

Pig 3.9 (0.69) 4.5 (0.74) 866.2 1967.0

None 3.5 (0.66) 4.1 (0.71) 1668.4 2668.4

SED (0.138) (1.116)

Replicates 8

Experiment 5. G.p. palpalis (Bingerville, Côte d’Ivoire)

Human 4.8 (0.77) 5.0 (0.78) 1466.3 863.2

None 5.3 (0.80) 5.6 (0.82) 2766.7 1564.0

SED (0.115) (0.109)

Replicates 8

Catches accompanied by * differ from the unbaited control trap at the 0.05 level
of probability. Catches of the unbaited devices are accompanied by their
respective transformed means6SED shown in brackets.
doi:10.1371/journal.pntd.0000632.t003
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an experimental artefact: the E-net may have killed circling flies

that would have eventually entered the trap. Accordingly, we also

assessed trap efficiency for G. p. gambiensis using the alternative

protocol of comparing catches from traps with or without a

flanking E-net in the presence or absence of cattle odour. The

result showed that host odour had no significant effect, but placing

an E-net adjacent to a trap increased the detransformed mean

daily catch of both sexes significantly from 2 males and 4 females

to 10 males and 13 females. Thus the catch from the trap alone

was just 20–25% of that from the trap+E-net. These percentages

are broadly consistent with the estimates of efficiency which are

collected when using data from a trap+flanking E-net alone.

Taken together, the results suggest that the trap entry response is

not modulated by natural cattle odour but that total number of

flies attracted to the vicinity of the trap is.

Discussion

We report here that baiting various catching devices with

natural or synthetic odours increases catches of the Palpalis group

flies, G. tachinoides, G. p. gambiensis and G. p. palpalis. This is the first

comprehensive report of odour attraction for G. palpalis spp. and

confirms the earlier finding for G. tachinoides [27,33]. This gives new

promise for the use of odour-baited control devices against Palpalis

group flies that transmit gambiense sleeping sickness in West Africa.

Responses of G. tachinoides to natural and synthetic host
odours

The large number of experiments done and the high numbers of

flies caught provide firm evidence that G. tachinoides showed

consistent increases in catch index of around 26 in response to

natural cattle odour, confirming the previous findings [15,27]. We

obtained slightly higher increases than reported in their studies,

particular with traps where cattle odour increased our catches

,56. Synthetic cattle odour (defined in Materials and Methods),

which contains known kairomones for Morsitans group tsetse,

produced greater (,46) increases in trap catch (Table 4) than

given by the natural cattle odour (Table 1). The greater catch seen

with synthetic cattle odour may be because (i) the release rate was

,56greater than that in the natural (determined from Table 5) or

(ii) natural ox odour produces chemicals that ‘repel’ a proportion of

the flies. Human and pig odours were not effective with G.

tachinoides suggesting that the effective kairomones are found only in

cattle odours or that humans and pigs are producing repellents

over-riding any kairomones in their odour [34,35].

Various combinations of acetone, 1-octen-3-ol, 3-n-propylphe-

nol and 4-methylphenol are used to increase the performance of

traps and insecticide-treated targets to monitor and control various

Morsitans- and Fusca-group species of tsetse - see review [36]. The

results confirm those of earlier studies [15,37] showing that the

POCA blend, originally developed for use against G. pallidipes [38]

is also effective against G. tachinoides. Our data suggests that the

incorporation in the blend of 4-methylphenol is about twice as

effective as 3-methylphenol (Table 4). Our results combined with

those of earlier studies [16,37,39], suggest a blend of POC (i.e.

without acetone) may be equally effective, producing increases

comparable to natural cattle odour. This point is of practical

importance as the large volumes of acetone required makes its use

in long running control operations particularly difficult.

Responses of G. palpalis spp. to natural and synthetic
host odours

Natural odours from both cattle and humans increased the

catch of G. p. gambiensis from traps. But our extensive studies on the

effect of baiting electrocuting devices with natural host odours did

Table 4. Detransformed mean daily catch (transformed means6SED in brackets) of G. tachinoides from traps baited with synthetic
host odours.

Odours Reps. Tsetse/day Catch index

A O 4M 3nP 3M Males Females Males Females

X X X X X 12 13.3 (1.1660.198) 5.5 (0.8260.209) 2.3 3.0

X X X X 12 15.2 (1.2160.198) 8.8 (0.9960.198) 2.6 4.8

X X X X 8 7.7 (0.9460.191) 8.0 (0.9660.191) 5.8* 14.2**

X X X X 8 3.8 (0.6860.194) 5.9 (0.8460.149) 5.4 7.4**

X X X X 3 9.7 (1.0360.276) 9.8 (1.0360.161) 16.6 2.8

X X X X 12 11.2 (1.1660.198) 6.6 (0.8860.198) 1.9 3.6

X X X 8 1.7 (0.4460.194) 5.6 (0.8260.149) 2.4 7.0**

X X X 3 5.9 (0.8460.276) 7.3 (0.9260.161) 10.1 2.1

X X X 12 26.2 (1.4360.194) 14.7 (1.2060.183) 2.8* 3.2

X 8 4.0 (0.7060.194) 6.6 (0.8860.149) 5.6 8.4**

X 12 21.2 (1.3560.194) 15.7 (1.2260.183) 2.2 3.5

Catch Index is the mean catch of an odour-baited trap expressed as a proportion of that from an unbaited trap. Asterisks indicate that the Catch Index differs from unity
at the P,0.05 (*) or P,0.01 (**) levels of significance. Key to odours: A = acetone. O = 1-octen-3-ol; 3-n-P = 3-n-propylphenol; 4-M = 4-methylphenol; 3-M = 3-
methylphenol. Shaded cells indicate chemicals used in each experiment.
doi:10.1371/journal.pntd.0000632.t004

Table 5. Release rates of chemicals from natural and
synthetic odour sources.

Release Rates (mean mg h21 6 S.E.)

1-Octen-3-ol 4-Methylphenol 3-n-Propylphenol

Bull (Folonzo) 30.960.4 5560.7 22.362.6

Bull (Solenzo) 30.560.2 55.561.2 16.560.1

Synthetic
cattle odour

12966 332611 6662

doi:10.1371/journal.pntd.0000632.t005
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not show consistently significant effects. For example, for G. p.

palpalis, natural odours from five pigs or five humans increased the

catch from electrocuting devices but studies with lower numbers of

hosts were ineffective. These data for traps and electrocuting

devices suggest there is an interaction between odours and visual

responses to the catching device. At least part of the difficulty with

these studies is caused by the low densities of tsetse – a widespread

problem which hampers field studies of G. palpalis [40]. These low

densities require that very large numbers of replicates are

performed for robust statistical analysis to be possible. As a

consequence, the absence of statistically robust effects has perhaps

led to the erroneous conclusion that G. palpalis spp. are

unresponsive to host odours. In the present study, experiments

conducted at times or places where G. p. gambiensis were still low

but more abundant than usual did show that baiting traps with

natural odours and/or synthetic blends, particularly POCA and

POC significantly increased the catches. This is to our knowledge

the first published report of improvement in catches using

olfactory attractants for this species. Further studies of the

responses of G. palpalis spp. are clearly needed to confirm these

findings and to identify cost-effective doses and blends.

Landing responses and trap efficiencies
Our results suggest that the three species exhibit a relatively

high landing response (40–50%) which was not modulated by

natural host odours. However, exhausting volatiles from the tent

Table 6. Detransformed mean daily catch (transformed means6SED in brackets) of G. p. gambiensis from traps baited with
synthetic host odours.

A O 4M 3nP Reps. Tsetse/day Catch index

Males Females Males Females

X X X X 8 8.8 (0.9960.086) 2.5 (0.5560.128) 4.7*** 1.9

X X X X 10 5.9 (0.8460.130) 7.9 (0.9560.140) 1.9 1.4

X X X X 12 1.6 (0.4160.107) 3.0 (0.6060.155) 0.9 0.8

X X X X 16 6.4 (0.8760.099) 5.8 (0.7860.101) 2.9** 1.2

X X X X 12 4.8 (0.7660.154) 9.4 (1.0260.110) 1.9 2.5*

X X X X 20 5.8 (0.8460.080) 8.9 (0.9960.067) 2.5*** 2.5***

X X X 12 2.4 (0.5360.107) 2.9 (0.6060.155) 1.4 0.8

X X X 12 8.5 (0.9860.154) 8.0 (0.9660.110) 3.4* 2.2*

X X 12 1.8 (0.4460.107) 3.5 (0.6660.155) 1.1 1.0

X X 12 1.5 (0.3960.107) 3.4 (0.6560.155) 0.9 1.0

X X 12 1.8 (0.4560.107) 3.3 (0.6360.155) 1.1 0.9

X 12 1.3 (0.3760.142) 1.0 (0.3160.122) 1.3 1.6

X 10 4.0 (0.7060.130) 5.3 (0.8060.140) 1.3 1.0

X 10 3.4 (0.6460.130) 6.5 (0.8860.140) 1.1 1.2

X 10 5.8 (0.8360.130) 8.6 (0.9860.140) 1.9 1.5

Catch Index is the mean catch of an odour-baited trap expressed as a proportion of that from an unbaited trap. Asterisks indicate that the Catch Index differs from unity
at the P,0.05 (*) or P,0.01 (**) levels of significance. Key to odours: A = acetone. O = 1-octen-3-ol; 3nP = 3-n-propylphenol; 4M = 4-methylphenol. Cells in grey show the
chemicals that were used in each experiment.
doi:10.1371/journal.pntd.0000632.t006

Table 7. Detransformed mean daily catch (transformed means6SED in brackets) of G. p. palpalis from traps baited with synthetic
host odours.

A O 4M 3nP Site Tsetse/day Catch Index

Reps. Males Females Males Females

X X X X Azaguié 36 4.2 (0.7260.052) 4.8 (0.7760.052) 1.6* 1.3

X X X Bingerville 40 3.8 (0.6860.050) 6.7 (0.8960.065) 1.5* 1.5*

X X X Azaguié 36 2.5 (0.5560.052) 3.9 (0.6960.052) 1.0 1.0

X Bingerville 40 4.1 (0.7160.050) 5.3 (0.8060.065) 1.6* 1.2

X Azaguié 36 4.3 (0.7260.052) 5.0 (0.7860.052) 1.6* 1.3

X Bingerville 40 3.7 (0.6760.050) 3.9 (0.6960.065) 1.4* 0.9

X Azaguié 36 3.2 (0.6360.052) 4.1 (0.7160.052) 1.2 1.1

X X Azaguié 36 2.6 (0.5660.052) 4.2 (0.7260.052) 1.0 1.1

Catch Index is the mean catch of an odour-baited trap expressed as a proportion of that from an unbaited trap. Asterisks indicate that the Catch Index differs from unity
at the P,0.05 (*) level of significance. Key to odours: A = acetone. O = 1-octen-3-ol; 3nP = 3-n-propylphenol; 4M = 4-methylphenol. Cells in grey show the chemicals that
were used in each experiment.
doi:10.1371/journal.pntd.0000632.t007
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containing hosts through a long PVC-coated tube to the catching

devices could have resulted in a reduced number and concentra-

tion of compounds with low volatility compared with those emitted

by the host. Compounds with low volatility may be important cues

that induce tsetse landing response and this may have caused the

lack of difference in landing response to odours from different

hosts and control devices. For example, Warnes [41] demonstrated

that electrified targets impregnated with ox skin secretions (sebum)

caught more flies than targets without sebum. The landing

response of female G. tachinoides was lower than that of males,

confirming previous observations for this species [37] and G. p.

palpalis showed a similar trend. This was not the case for G. p.

gambiensis where both sexes show similar responses. It should be

noted that these responses are all to a single size of target.

Laveissière et al. [40] working on G. p. palpalis in Côte d’Ivoire,

suggested landing response of males and females varied with

changing surface area with more males and less females captured

as the black surface area increased.

The present results suggest that improvements could be made in

the efficiency of traps for Palpalis group tsetse since only 10–30%

of tsetse entered a trap. Thus while the biconical trap is the most

widely used trap for control and monitoring riverine tsetse in West

Africa most of the flies that are attracted to it do not enter

immediately [40]. For G. p. gambiensis, odours were most effective

when delivered with traps, suggesting the importance of visual

responses as well as responses to odours. Thus analysis of visual-

olfactory interactions might be the key to improving trap efficiency.

Seeing, smelling, or both?
For both G. p. gambiensis and G. tachinoides, the overall increases

in catch index, landing and entry responses were relatively small in

comparison to those found with Morsitans group flies [42,43]. In

the Palpalis group flies studied here G. tachinoides showed higher

responses to natural ox odours than G. p. gambiensis, and also higher

responses to POCA. This is consistent with previous observations

that this species’ behaviour and ecology is intermediate between

the savannah-dwelling Morsitans group flies and the more riverine

Palpalis group species such as G. palpalis [4]. The smaller increases

in catch indices compared to Morsitans group flies that have been

observed here for G. palpalis spp. also apply to the other Palpalis

group flies G. fuscipes fuscipes and G. f. quanzensis [44]. There is a

pressing need to understand why the odours investigated here are

seemingly less effective for Palpalis group tsetse. Is the poor

response because they rely predominantly on visual cues or

because they use odours in a different way to Morsitans group

flies? It has been argued that dense vegetation could be an obstacle

to the dispersion of the odour plume [45]. Indeed the riverine

species that were studied here (G. tachinoides and G. p. gambiensis) live

in habitats that differ considerably from the habitats where

detailed studies on olfactory cues and host location in savannah

tsetse have been conducted. Here their habitats are the linear

forests bordering the Comoe or Mouhoun rivers. In recent years,

these habitats have become highly fragmented due to human

pressure. Hence in these linear and/or fragmented habitats, wind-

borne odours may simply be carried to places where few tsetse are

found [45]. Such an explanation would not explain the results for

G. p. palpalis which is extensively distributed in humid and

degraded forest habitats of southern Côte d’Ivoire which are not

linear. Although dense vegetation may be an obstacle to the

dispersal of volatile chemicals, it is unlikely that this will completely

obstruct their movement through such an environment. For

example, it has been demonstrated that volatile chemicals release

by plants in the rhizosphere can disperse through the soil – an

extremely dense environment – and are detected by neighboring

plants and nematodes [46,47,48,49].

Another possible explanation for the variability in the responses

of G. palpalis spp. to host odours in the present and earlier studies

(eg, [40]) may center on population structure. There is evidence

that in the fragmented habitats typical of populations of G. p.

palpalis and G. p. gambiensis the populations may consist of several,

genetically-differentiated subunits [50,51], and it has been

suggested that these sympatric demes may respond differentially

to a given stimulus [52]. Genetically-differentiated demes are

associated with trypanosomes from particular host species. One

possible explanation for this is that these demes feed preferentially

on particular host species. Consequently, the low response to, say,

cattle odour may be because only tsetse with a preference for

feeding on cattle may respond strongly to cattle odours. Other

studies have already reported intraspecific variations in olfactory

responses for allopatric populations (e.g. G. pallidipes - [53]).

The present results, combined with the earlier studies [15,44]

contribute to the emerging view that Palpalis-group flies do not show

the marked response to host odours exhibited by Morsitans-group

tsetse. The relatively low (,26) increase in catch observed across a

range of habitats suggests that the difference between the Palpalis-

and Morsitans-groups is due to their innate host-oriented behavior

rather than their particular habitats. We now need to understand

better how the Palpalis-group species locate their hosts so that we

have a rational basis for developing more cost-effective baits.

Prospects for the use of olfactory attractants to control
Palpalis group tsetse flies

Despite being lower than for Morsitans group flies, the increases

in tsetse catches reported here promise improvements for Palpalis

group tsetse control with respect to both human and animal

trypanosomiases. There are immediate applications of the use of

POCA to improve trapping and control. Indeed, the AU-

supported PATTEC program in Burkina Faso has already begun

to use this blend for pre-control entomological surveys (I Sidibe,

PATTEC coordinator, Burkina Faso, pers. comm.). It is our

intention to investigate in more detail the use of POCA blends and

individual compounds to enhance control of Palpalis group flies.

Regarding costs, we are undertaking further experiments to

determine if more cost-effective blends (e.g. OC) can be used. In

preliminary experiments this blend has been shown to double the

catches of G. p. palpalis in Liberia [17] and to double catches of G.

tachinoides in Burkina Faso [16,37]. Present results suggest that even

the relatively modest 2–46 increases in catch indicated by current

results could halve the densities of targets required to control

Palpalis group tsetse from the current ,30–50 targets/km2 [54]

with consequent significant economic and logistical benefits.

Perhaps more importantly in the longer term, the present results

show that there is much for improvement in the design and

performance of trapping devices. In particular, there is a need to

analyse the visual and olfactory responses of riverine species to

their reptilian hosts, particularly monitor lizards and crocodiles

which constitute an important part of the diet of G. palpalis and G.

tachinoides [28,55,56,57].

Figure 2. Mean percentages of G. tachinoides, G. p. gambiensis and G. p. palpalis landing on a cloth target baited from experiment
where different natural (left-hand column) or natural vs. synthetic host odours (right-hand column) were compared. Values
accompanied by * differ from the unbaited target at the 0.05 level of probability.
doi:10.1371/journal.pntd.0000632.g002
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