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In this paper, a mathematical model based on a system of ordinary differential equations is developed with vaccination as an
intervention for the transmission dynamics of coronavirus 2019 (COVID-19). *e model solutions are shown to be well posed.
*e vaccine reproduction number is computed by using the next-generation matrix approach. *e sensitivity analysis carried out
on this model showed that the vaccination rate and vaccine efficacy are among the most sensitive parameters of the vaccine
reproduction number, RV. *e optimal control problem is solved with the rate of vaccination and the transition rate from the
vaccinated class to the infected class as control variables. Finally, the numerical simulations showed that the control intervention
should aim to increase the vaccination rate with a high-efficacy vaccine.

1. Introduction

COVID-19 is a highly contagious respiratory disease caused
by the novel severe acute respiratory syndrome coronavirus–2
(SARS-CoV-2). *e increasing prevalence rate of the virus
nearly devastated healthcare systems across the world [1, 2].
On March 11, 2020, the World Health Organization (WHO)
declared the disease a global health pandemic. It is trans-
mitted through inhalation of respiratory droplets from an
infectious person emitted through sneezing, coughing, and
having a close conversation, as well as contact with con-
taminated surfaces [3]. *e infection prominently affects the
respiratory tract. *e initial COVID-19 symptoms are fever,
dry cough, and fatigue. Other symptoms include body aches
and pains, a sore throat, diarrhoea, headache, loss of taste and
smell, breathing difficulties, skin rash, and discoloration of the
fingers and toes [3].

COVID-19morbidity andmortality can be compounded
by pre-existing diseases such as cardiovascular disease, re-
spiratory disease, cancer, infectious diseases, and substance
abuse. Furthermore, pre-existing conditions such as envi-
ronmental, demographic, and socioeconomic factors may
influence the COVID-19 incidence rate [4]. To prevent and

control the spread of COVID-19, health providers and
governments around the world implemented containment
measures such as lockdowns, travel bans, cessation of
movement, social distancing, proper hygiene, and proper
hand washing, among others. Despite these safeguards, the
virus continues to spread, although at a slow rate.

Vaccination has been a major public health tool in
modern medicine used to minimize the impact of many
infectious diseases on humans [5, 6]. A vaccine is any bi-
ologically derived substance that elicits a protective immune
response when administered to a susceptible host. Vaccines
help the body to prepare for disease by taking the advantage
of the fact that immunity knows how to defend against
infectious organisms, which are typically viruses, bacteria, or
toxins [7]. Given the emergence of highly transmissible new
variants, decreased vaccine effectiveness, and unequal vac-
cine availability, there is a growing concern that vaccination
may not result in herd immunity. Vaccines reduce the risk of
severe disease and death; therefore, a country’s vaccine
coverage must be high in order to protect the healthcare
system from an infection surge [2]. Since late 2020, several
SARS-CoV-2 variants of concern that are more transmis-
sible and/or vaccine-resistant have been identified [8].
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In modern medicine, vaccination has been an important
public health technique for reducing the burden of many
human infectious diseases [5, 6, 9]. Several COVID-19
vaccine candidates have been developed and are already in
use [10]. Vaccines such as Pfizer, Moderna, AstraZeneca,
Sputnik, Sinopharm, Johnson & Johnson, and many others
are currently being administered around the world to date. It
is a social responsibility choice of an individual to get
vaccinated. However, offsetting the fear and adverse side
effects of the vaccine has to be carried out[11]. *e shortage
of supply of COVID-19 vaccines in many developing
countries has resulted in the implementation of different
immunization strategies, with varying results. For example,
in Kenya, prioritization is given to the adult population [2].

A mathematical model provides insight into infectious
disease transmission and control [12, 13]. Many mathe-
matical models on the dynamics of COVID-19 with control
strategies have been developed and studied, for example, in
studies carried out in [9, 10]. Optimal control is regarded as a
powerful mathematical tool for optimizing control problems
in various fields [14–18]. In the context of vaccination, the
dynamics of disease transmission and immunity in a pop-
ulation are typically modelled by using network compart-
mental approaches [19]. A mathematical model for the
dynamics of COVID-19 is presented in [18]. An optimal
control function is added to the model in order to effectively
control the outbreak. *e main controls are isolation,
quarantine, and hospitalization. *e result shows that
adopting the available control measures to their full potential
will greatly reduce infectious populations.

A new COVID-19 model with an optimal control
analysis is presented in [20]. *e authors considered four
different controls to develop an optimal control model,
including prevention, vaccination control, rapid screening
of people who are exposed, and people who are infected
without screening. *e forward-backward Runge–Kutta
method is used to resolve the model with and without
control. *e findings suggest that control can be useful for
reducing infected individuals and improving population
health. A novel fractional-order mathematical model that
explains the behaviour of COVID-19 in Ethiopia is devel-
oped and analyzed in [21]. An inexact Newton iterative
method is used to solve the model system. *e model
considers the impact of various control techniques on
disease transmission.

Zamir et al. in [22] developed a mathematical model to
study the transmission dynamics of COVID-19. *e study
used a nonclinical approach to investigate optimal control. A
COVID-19 mathematical model that takes into account the
susceptible, exposed, infected, asymptotic, quarantine/iso-
lation, and recovered classes is developed and analyzed in
[23]. Elasticity and sensitivity analysis shows that the model
is more sensitive to transmission rates from infected to
exposed classes than transmission rates from susceptible to
exposed classes.

Alqarni et al. [24] developed a new mathematical model
for the transmission dynamics of the coronavirus (COVID-
19) using cases reported in the Kingdom of Saudi Arabia
from March 2, 2020, to July 31, 2020. *e model’s stability

results are shown when the basic reproduction number is
R0 < 1, and the model is locally asymptotically stable. Using
the PRCC method, they show some important parameters
that are more sensitive to the basic reproduction number R0.
*e sensitive parameters that act as control parameters and
can reduce and control infection in the population are
depicted graphically. *e study results suggested that if
controls are followed, the infection rate in the Kingdom of
Saudi Arabia can be reduced significantly. In this study, an
extended SEIR COVID-19 dynamics model with vaccination
is proposed to investigate the impact of vaccination as a
control intervention on the pandemic spread.

2. Model Formulation

A susceptible-vaccinated-exposed-infected-recovered
(SVEIR) model with a standard incidence rate is developed
and analyzed. Despite the fact that there are underlying
conditions that predispose someone to a higher risk of
contracting COVID-19 disease, the population under study
is assumed to have an equal level of susceptibility. Indi-
viduals in this category are known as susceptible individuals
denoted by S(t). Several COVID-19 vaccine candidates have
been developed and are already in use [10]. Individuals who
have been vaccinated are hereby categorised as the vacci-
nated class, denoted by V(t). When susceptible individuals
are exposed to the virus, they undergo an incubation period,
which is the time between virus exposure and the onset of
symptoms. *is is on average 5–6 days, but it can be as long
as 14 days [25]. *e incubating individuals in this study are
categorised as the exposed class denoted by E(t). Following
the end of the exposure period, the incubating individual’s
transit into the infection class is denoted by I(t). *e in-
fectious potential of COVID-19 is significantly greater just
before or within the first five days of symptom onset [26].
*e infected class I(t), in this study, includes both pre-
symptomatic and asymptomatic cases. Depending on the
severity of symptoms and the intervention strategies in
place, the infected individuals may die or recover from the
disease. *us, the class R(t) denotes the number of indi-
viduals who have recovered from the infection. *e study
assumes that infection with COVID-19 confers temporary
immunity upon recovery.

*e recruitment of individuals into the susceptible class
is through births at the per capita rate Λ. Following an
outbreak of the disease, several containment measures are
implemented to control the spread. *e susceptible humans
acquire infection from an infectious individual via a force of
infection βI, where β is the transmission coefficient. *e
saturated incidence rates given by βSI/1 + ηI and
β1VI/1 + ηI tend to the saturation level when I grows large.
*e constant η measures the saturation effects caused by
infective individuals in the presence of containment mea-
sures. *e proportion of vaccination is given by c,
(0< c≤ 1). *e transmission coefficient of the vaccinees is
denoted by β1: � (1 − ϑ)β, where the parameter ϑ,
(0< ϑ≤ 1) measures the vaccine efficacy. *e vaccinees are
considered to have acquired partial immunity against
COVID-19 subject to the type of vaccine (efficacy level)
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administered to an individual. *e transmission coefficient
of the vaccinees, β1 < β since the vaccinees are assumed to
have acquired a vaccine-induced immunity [27, 28].*e rate
at which exposed individuals become infectious is denoted
by ε. *e rates of natural and disease-induced mortality are μ
and δ, respectively. *e recovery rate from the infection is
taken as λ.

*e above model description translates into the fol-
lowing schematic flow diagram in Figure 1.

From the description above, the corresponding math-
ematical model is represented by the following set of or-
dinary differential equations:

dS

dt
� Λ −

βSI

1 + ηI
− (μ + c)S,

dV

dt
� cS −

β1VI

1 + ηI
− μV,

dE

dt
�

βS + β1V( 􏼁I

1 + ηI
− (μ + ε)E,

dI

dt
� εE − (μ + λ + δ)I,

dR

dt
� λI − μR,

(1)

where β1 < β, S � S(t), V � V(t), E � E(t), I � I(t),

R � R(t), (S, V, E, I, R) ∈ R5
+.

3. Well-Posedness of the Model

In this section, well-posedness of the model solutions is
discussed. Model (1) describes the human population, and
therefore, its solutions, as shown below, are positive and
bounded for all time t≥ 0.

3.1. Boundedness of Solutions. Model (1) is analyzed in a
suitable feasible region

Ω � (S, V, E, I, R)(t) ∈ R5
+: S(t) + V(t) + E(t) + I(t) + R(t)≤

Λ
μ

􏼨 􏼩,

(2)

where S(t) + V(t) + E(t) + I(t) + R(t) � N(t) gives the
total human population.

Using Proposition 1 below, the model solutions are
shown to be bounded for all t≥ 0 in the region Ω.

Proposition 1. For all time t≥ 0, the solutions of model (1)
are invariant in the region Ω.

Proof. *e solutions of model (1) are positively invariant of
Ω, i.e., all solutions start inΩ and remain in the regionΩ for
all t≥ 0. *e rate of change of human population N(t) is
given by

dN

dt
�
dS

dt
+
dV

dt
+
dE

dt
+
dI

dt
+
dR

dt
. (3)

which implies that

dN

dt
≤Λ − μN. (4)

By variation-of-constant formula, it follows that

limsup
t⟶+∞

N(t)≤
Λ
μ

. (5)

*us, N(t)≤Λ/μ. *is implies that the solution set
S(t), V(t), E(t), I(t), R(t){ } is bounded in the feasible region
Ω, i.e.,

Ω � (S(t), V(t), E(t), I(t), R(t){ }|S(t) + V(t) + E(t) + I(t) + R(t)≤
Λ
μ

, (S, V, E, I, R)(0)≥ 0􏼨 􏼩. (6)

Hence, all solutions of model (1) are bounded in the
region Ω. □

3.2. Positivity of Solutions

Proposition 2. All solution sets S(t), V(t), E(t), I(t), R(t){ }

of model (1) with non-negative initial conditions are positive
∀t> 0.

Proof. Considering the first equation in model (1), that is,

λI
βSI

1+ηIS E I R

γSμS

V β 1I
V

1 
+ 
ηI

 

μE

μV

μI
μR

εE

δI

Λ

Figure 1: A schematic flow diagram of the COVID-19 dynamics
model with vaccination.
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dS

dt
� Λ −

βSI

1 + ηI
− (μ + c)S, (7)

where

dS

dt
≥ −

βI

1 + ηI
+(μ + c)􏼢 􏼣S. (8)

integration by variable separation to get

􏽚
dS

S
≥ 􏽚 −

βI

1 + ηI
+(μ + c)􏼢 􏼣dt. (9)

thus

S(t)≥ S(0)exp − 􏽚
t

0
Kdτ +(μ + c)t􏼨 􏼩, (10)

where K � βI/1 + ηI. *is implies that

S(t)≥ 0∀ t≥ 0. (11)

In a similar way, all the other variables can be shown to
be positive ∀t≥ 0. Hence, all solutions of model (1) are
positive in the region Ω.

Clearly, from Propositions 1 and 2, all solutions of model
(1) are shown to be positively invariant in the regionΩ.*us,
model (1) is mathematically and epidemiologically well
posed in a biological feasible region Ω. □

4. The Vaccine Reproduction Number and the
Disease-Free Equilibrium

In this section, the disease-free equilibrium and the vaccine
reproduction number RV of the model (1) are computed.

4.1. 5e Disease-Free Equilibrium. *e disease-free equilib-
rium (DFE) point of model (1) is defined as the state in which
there is no COVID-19 infection in the population under study.

Proposition 3. 5ere exists a DFE of model (1) given by

E0 � S
0
, V

0
, E

0
, I

0
, R

0
􏼐 􏼑 �

Λ
μ + c

,
cΛ

μ(μ + c)
, 0, 0, 0􏼨 􏼩. (12)

Proof. At the disease-free equilibrium point, there is no
infection in the population. *erefore, with E � I � R � 0,
then model (1) is given as follows:

Λ −
βSI

1 + ηI
− (μ + c)S � 0,

cS −
β1VI

1 + ηI
− μV � 0,

βS + β1V( 􏼁I

1 + ηI
− (μ + ε)E � 0,

εE − (μ + λ + δ)I � 0,

λI − μR � 0.

(13)

Solving model (13) S0 � Λ/μ + c and V0 � cΛ/μ(μ + c).
*erefore, model (1) has a disease-free equilibrium given by

E0 �
Λ

μ + c
,

cΛ
μ(μ + c)

, 0, 0, 0􏼢 􏼣. (14)
□

4.2. Reproduction Number. *e basic reproduction number,
usually denoted by R0, is defined as the average number of
secondary infections due to a single infectious individual
introduced into a fully susceptible population during his/her
period of infectivity [29]. *e basic reproduction number is
the spectral radius of the matrix, FV− 1, R0 � ρ(FV− 1),
where F and V are the next-generation matrices [30]. *e
operator FV− 1, the next generation matrix, is formed from
matrices of partial derivatives of Fi (the rate of appearance
of new infection in the ith compartment) andVi � V−

i − V+
i

(the rate of transfer/transition rate in and out of the disease
compartment i) with respect to the infected compartments
(E and I) evaluated at DFE. *e matrices F and V are given
by

F �
zFi E0( 􏼁

zxj

􏼠 􏼡,

V �
zVi E0( 􏼁

zxj

􏼠 􏼡,

(15)

where the transition matrices F and V evaluated at E0 are
given by

F �

0
Λβμ + β1Λc
μ(μ + c)

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

and

V �
μ + ε 0

− ε μ + λ + δ
􏼠 􏼡. (17)

Matrix V is invertible and

V
− 1

�

1
μ + ε

0

ε
(μ + ε)(μ + λ + δ)

1
μ + λ + δ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

*us, the matrix FV− 1 is

FV
− 1

�

Λεβ(μ +(1 − ϑ)c)

μ(μ + c)(μ + ε)(μ + λ + δ)

Λβ(μ +(1 − ϑ)c)

μ(μ + c)(μ + ε)(μ + λ + δ)

0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(19)

Since model (1) involves vaccination as an intervention,
its associated reproduction number is called the vaccine
reproduction number denoted by RV. *is is the threshold
quantity that can predict the spread of the disease in a given
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population in the presence of vaccination. *e vaccine re-
production number computed by using the next-generation
matrix approach above is given by

RV �
Λεβ(μ +(1 − ϑ)c)

μ(μ + ε)(μ + λ + δ)(μ + c)
,

RV � R0
μ +(1 − ϑ)c

μ + c
􏼢 􏼣.

(20)

If the vaccine efficacy ϑ � 0, then Rv � R0 which is the
basic reproduction number given by
R0 � Λεβ/μ(μ + ε)(μ + λ + δ).

*e vaccine reproduction number, RV, is the measure of
the severity of an epidemic in the presence of vaccination
and one of the most important parameters since it deter-
mines whether or not the disease will invade a population.
Epidemiologically, if RV < 1, then by definition, the infection
does not spread in the population. On the other hand, if
RV > 1, then the infection spreads in the population and may
result into an epidemic.

5. Sensitivity Analysis

*e degree to which an input parameter influences a model’s
output is known as parameter sensitivity. Sensitivity analysis
of the basic reproductive number can be used to develop a
mitigation strategy that will slow the spread of the pandemic
by lowering RV [14]. Sensitive parameters are those that have
a significant impact on the transmission dynamics of an
infection. Using the normalized forward sensitivity indices
[31], the sensitivity indices are computed by

ΥRV

M �
zRV

zM
×

M

RV

, (21)

where M is the parameter whose sensitivity index is
computed.

Table 1 gives a summary of the sensitivity indices of RV

evaluated at the baseline parameters values given in Table 2.
From the sensitivity analysis as presented in Table 1, an

increase of the rate of vaccination c by 1% leads to a decrease
of the effective reproduction RV by 0.89844626%. An in-
crease of the vaccine efficacy ϑ by 1% leads to a decrease in
the effective reproductive number RV by 0.9990436%.
Clearly, the rate of vaccination and the vaccine efficacy are
among the sensitive parameters of RV. An increase in the
rate of vaccination, with high vaccine efficacy, leads to a
decrease in the vaccine reproduction number. Consequently,
control strategies should target an increased rate of vacci-
nation and administration of vaccines of high efficacy levels.

6. Optimal Analysis with Vaccination
Program as a Control Intervention

An optimal control problem is constructed to control the
spread of the COVID-19 virus and optimize the

vaccination program. *erefore, in this section, optimal
control is performed to understand the effects of the
sensitive parameters on the optimum vaccination pro-
gram. To determine the optimum vaccination program for
COVID-19, let the variables c∗ and β∗1 � : (1 − ϑ)β be the
control variables. As a result, an optimal control problem
is constructed, with the goal of reducing the number of
individuals infected with COVID-19. *e following ob-
jective function is created to accomplish this:

J � 􏽚
τ

0
P0S + P1V + P2E + P3c

2
+ P4β

2
1􏽨 􏽩dt. (22)

where [0, τ] is the entire time horizon over the control
applied and P0, P1, P2, P3, P4 are positive weights that
balance the relative importance of terms in the objective
functional J. An optimal control c∗, β∗1 is chosen as

J c
∗
, β∗1( 􏼁 � min J c, β1( 􏼁􏼈 􏼉. (23)

such that (c, β1) are measurable with 0≤ c≤ β1 ≤ 1. *is
is the necessary condition that the optimal control must

Table 1: Sensitivity indices of RV with respect to the model
parameters.

Parameter Description Sensitivity index
Λ Recruitment rate +1
β Transmission coefficient +1
ε Transition rate from E to I − 0.999843
μ Natural death rate +7.81816576×10− 5

c Rate of vaccination − 0.8984463
ϑ Vaccine efficacy − 0.9998436
λ Recovery rate − 0.999679
δ Disease mortality rate − 0.000008237

Table 2: *e descriptive summary of the model parameters.

Parameter Description Unit/value units Source

Λ Recruitment rate 3.178×10− 5

day− 1 [28]

μ Natural death rate 3.91×10− 5

day− 1 [10]

δ Disease mortality rate 0.103×10− 5

day− 1 [28]

β Transmission
coefficient 0.02 day− 1 Estimated

β1
Transition rate from V

to E 0.05 day− 1 Estimated

ϑ Vaccine efficacy (0–1.0) Variable
c Rate of vaccination (0–1.0) Variable

ε Transition rate from E
to I 0.5 day− 1 Estimated

η Human saturation
constant 0.05 Estimated

λ Human recovery rate 0.125 day− 1 [32]
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satisfy from Pontryagin’s maximum principle [33, 34]. *e
Hamiltonian function is

H � P0S + P1V + P2E + P3c
2

+ P4β
2
1 +Φs Λ −

βSI

1 + ηI
− (μ + c)S􏼢 􏼣

+ΦV cS −
β1VI

1 + ηI
− μV􏼢 􏼣 +ΦE

βS + β1V( 􏼁I

1 + ηI
− (μ + ε)E􏼢 􏼣 +ΦI[εE − (μ + λ + δ)I] +ΦR[λI − μR],

(24)

where ΦS, ΦV, ΦE, ΦI, and ΦR are the adjoint variables. To
obtain the expression of optimal controls in order to
minimize the number of infections in the population and the
cost of control strategies, the following proposition is
applied.

Proposition 4. For the optimal control (c, β1) that mini-
mizes J(c, β1), the adjoint variables ΦS, ΦV, ΦE, ΦI, and ΦR

satisfy the following ordinary differential equations:

dΦS

dt
� P0 − ΦS

βI

1 + ηI
− (μ + c)ΦS + cΦV +ΦE

βI

1 + ηI
,

dΦV

dt
� P1 − ΦV

βI

1 + ηI
− μΦV +ΦE

β1I
1 + ηI

,

dΦE

dt
� P2 − (μ + ε)ΦE + εΦI,

dΦI

dt
� − ΦS

βS

(1 + ηI)
2 − ΦV

β1V
(1 + ηI)

2 +ΦE

βS + β1V( 􏼁

(1 + ηI)
2

− ΦI(μ + λ + δ) + λΦR,

dΦR

dt
� μΦR.

(25)

with transversality conditions

ΦS(τ) � ΦV(τ) � ΦE(τ) � ΦI(τ) � ΦR(τ) � 0. (26)

*us, the optimal control takes the characterization
form, which is given as follows:

c
∗

� max 0, min 1,
S ΦS − ΦV( 􏼁

2P3
􏼠 􏼡􏼢 􏼣, (27)

β∗1 � max 0, min 1,
VI ΦV − ΦE( 􏼁

2(1 + ηI)P4
􏼠 􏼡􏼢 􏼣. (28)

Proof. *e Hamiltonian H in equation (25) is differentiated
with respect to the state variables, S, V, E, I, R, respectively.
*us, the adjoint of the system can be written as

ΦM � −
zH

zM
, (29)

for

M � S, V, E, I, R{ }. (30)

By Pontryagin’s maximum principle [34], H can be
maximized with respect to c and β1, that is,

0 �
zH

zc
|c∗ � 2P3c − ΦSS − ΦVS,

⇒c
∗

�
S ΦS − ΦV( 􏼁

2P3
.

0 �
zH

zβ1
|β∗1 � 2P4β1 − ΦV

VI

1 + ηI
+ΦE

VI

1 + ηI
,

⇒β∗1 �
VI ΦV − ΦE( 􏼁

2(1 + ηI)P4
.

(31)

Taking the bounds on c and β1 into account, the
characterization of c∗ and β∗1 is obtained as shown in (27)
and (28), respectively. Now, using the control arguments
0≤ c≤ β1 ≤ 1, then we obtain

c
∗

�

0 if ξ∗1 ≤ 0

ξ∗1 if 0< ξ∗1 < 1

1 if ξ∗1 ≥ 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

,

β∗1 �

0 if ξ∗2 ≤ 0

ξ∗2 if 0< ξ∗2 < 1

1 if ξ∗2 ≥ 1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

,

(32)

where

ξ∗1 �
S ΦS − ΦV( 􏼁

2P3
,

ξ∗2 �
VI ΦV − ΦE( 􏼁

2(1 + ηI)P4
.

(33)

Since the optimal control switches at most once, then the
control objective function constructed in this study is at
optimum.

In recent decades, control theory has been widely applied
in many fields. Optimal control, particularly in epidemiol-
ogy, could be very useful in controllingmathematical models
depicting the spread of infectious diseases [35]. *e ap-
propriate regulation of disease dynamics is specified in the
form of restrictions according to the biological
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interpretation of the objective function. *e control’s ob-
jectives must be met exclusively within these limits. Fur-
thermore, lowering illness prevalence requires reducing the
total number of infectious cases. *is entails increasing the
rate of vaccination (c) while decreasing the coefficient of
contracting the infection β1 � (1 − ϑ)β. Increased vaccina-
tion rates and the administering of highly efficacious vac-
cines would help maximize control strategies against
COVID-19 transmission dynamics. □

7. Numerical Simulation and Discussion

*e parameters used for simulation are obtained from lit-
erature, and others are estimates, as listed in Table 2. *ese
parameter values are varied within realistic limits.

For purposes of simulation, unless otherwise stated, the
initial populations are taken to be S(0) � 3000, V(0) � 2000,
E(0) � 1500, I(0) � 1200, and R(0) � 1000.

*e numerical simulation aims to analyze the change in
the state of COVID-19 virus progression over time, as well as
the impact of variation in the vaccination rate and vaccine
efficacy on COVID-19 transmission dynamics. *is is ac-
complished by varying the parameters ϑ and c while holding
the other parameters constant. Simulation analyses of the
model (1) are presented in Figures 2 and 3.

Figure 2 shows the effect of variation in vaccine efficacy
(ϑ) on infection dynamics. When the vaccine administered
is of high efficacy, say 90% efficacy, it would take less time for
the pool of infected individuals to reduce. On the other
hand, when the vaccine efficacy is low, it would take a longer
time for the number of infected individuals to reduce, and
therefore, COVID-19 infection would persist in the pop-
ulation. Figure 3 shows the effect of variation in the vac-
cination rate (c) on infection dynamics. It is shown that
when the rate of vaccination is high, the number of infected
individuals decreases sharply and vice versa. Figure 4 shows
the graph of the vaccine reproduction numberRV against the
vaccination rate (c). It is observed that with an increase in
the rate of vaccination (c), the vaccine reproduction number
decreases sharply. Figure 5 shows the 3D plot of the vaccine
reproduction number RV against the rate of vaccination (c)

and vaccine efficacy (ϑ). It is observed that with an increase
in both the rate of vaccination and vaccine efficacy, the
vaccine reproduction number decreases sharply.

Vaccination offers a very powerful method of COVID-19
disease control.*e critical level of vaccination of above 50%
with an> 80% vaccine efficacy level would be required to
reduce the severity and eventually eradicate the infection
from the population. Herd immunity against COVID-19 can
be achieved by immunizing a significant proportion of the
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susceptible population. To prevent a large outbreak in the
future, in addition to vaccination, a variety of other control
measures (e.g., COVID-19 protocols such as the use of
masks, social distancing, proper hygiene, and so on) are
required [14, 36].

8. Conclusion

In this paper, the effect of vaccination as an intervention is
investigated through an SVEIR model. *e well-posedness
of the model and the existence of disease-free equilibrium
are shown. Sensitivity analysis here suggests that the rate of
vaccination, c, and the vaccine efficacy ϑ are among the most
influential parameters of RV. For optimal control, increasing
the vaccination rate and administering highly efficacious
vaccines would help maximize control strategies against
COVID-19 transmission dynamics. *is is illustrated by the
numerical simulations. *is study, like others [19, 37, 38],
confirms that vaccination may possibly eradicate the in-
fection in the population. Future research could focus on an
age-dependent SVEIR model to determine the suitable
vaccination strategy to be applied with respect to age.
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