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A topological index is a numerical quantity associated with the molecular structure of a chemical compound. This number
remains fixed with respect to the symmetry of a molecular graph. Diverse research studies have shown that the topological indices
of symmetrical graphs are interrelated with several physiochemical properties such as boiling point, density, and heat of for-
mation. Peripherality is also an important tool to study topological aspects of molecular graphs. Recently, a bond-additive
topological index called the Mostar index that measures the peripherality of a graph is investigated which attained wide attention
of researchers. In this article, we compute the Mostar index of cycle-related structures such as the Jahangir graph and the cycle

graph with chord.

1. Introduction and Preliminaries

Graph theory is being extensively used in mathematical
chemistry for the numerical formulation of chemical
compounds by representing atoms as vertices and bonds as
edges. The topological index (TI) of a molecular graph is a
numerical quantity associated with the molecular structure
of a chemical compound [1, 2]. These quantities are well
correlated with physicochemical properties and are used as a
tool to predict quantitative structure-activity relationships
and quantitative structure-property relationships (QSAR/
QSPR) [3, 4]. QSAR and QSPR techniques have been widely
used to study the structural properties of a molecule and its
biological activity [5, 6]. The TIs are majorly classified into
two types, namely, degree-based and distance-based or
bond-additive topological indices. The degree-based TIs
focus on the role of incident bonds towards the molecular
structure [7, 8] whereas the distance-based TIs emphasize on
the contribution of distances between atoms towards the
structure of a compound [9]. The introduction of the first
distance-based TI by Wiener in [10] pointed its significance
towards the physicochemical properties of the compound.

The physicochemical properties such as boiling point and
melting point were shown in correlation with the Wiener
index [11]. Afterwards, distance-based TIs such as the
Hosaya, Shultz, and Szeged indexes were introduced [12, 13].
The bond-additive TIs have several applications; for ex-
ample, they are useful in pharmaceutical sciences, in the
prediction of physical properties of a molecule, and in
complex network theory [14, 15]. To study further topo-
logical properties of various chemical compounds, we refer
to [16, 17].

In this article, we will consider a simple and finite graph
G with a vertex set V (G) and an edge set E (G). The degree of
any vertex x, denoted by d_, is the number of its incident
vertices. The distance between any two vertices x, y € V (G),
denoted by d(x, y), is the length of a shortest path con-
necting them. For any edge xy € E(G), the collection of all
vertices that are nearer to x than y will be called the resolving
neighborhood of (x, y), denoted by #(x, y), and its cardi-
nality is denoted by 7,

Recently, to measure the peripherality of graphs, Doslic
et al. proposed a new bond-additive topological index called
the Mostar index [18]. It is defined as
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Mo (G) = Z |nx—ny|. (1)
xy€E(G)

The Mostar index measures peripheral atoms and bonds
to determine the physical and chemical properties of a
molecular graph. Each edge (bond) is peripheral if there are
an unequal number of vertices (atoms) in each neighbor-
hood of its end vertices. In chemistry, peripherality is used to
measure the nonbalancedness among the bonds of a
chemical graph. Recently, many researchers took the ini-
tiative to investigate the chemical properties and mathe-
matical perspectives of the Mostar index. Arockiaraj et al.
defined the edge Mostar index and computed the Mostar
index and edge Mostar index of carbon nanostructures [19].
Hayat and Zhou determined the maximum Mostar index of
all n— vertex cacti and upper bound for the Mostar index of
n— vertex cacti that contains k— cycles [20]. Huang et al.
computed the Mostar index to find the extremal hexagonal
chains [21]. The conjecture about the bicyclic graphs
characterized by Doslic et al. has been proved by Tepeh [22].

The Mostar index of a graph G can be defined as

m*n® + 2m2n - mn2 +m? - 6mn — 5m,
Mo (]nrH) = 2

2 2 2 2
mn” +2mn—mn +m" —5mn—m,

(2) For n>9 and t >3,
2(t=2)(n—-1),
Mo(C,;) =1 2(n-1)(t-2),
2(n—t)(t-2)-2,

if n = odd,
if n = even, t = odd,

if n = even, t = even.

(5)

2. The Mostar Index of the Jahangir Graph

In this section, the Mostar index of the family of the Jahangir
graph J, , for n,m > 5 is computed. The Jahangir graph J, ,,

El(]n,m) ={uw |1 <k<m},
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Mo(G) = Z Mo (xy), 2)
xy€E(G)
where
MO(xJ’) = |71xy - rlyx" (3)

It is an NP-hard problem to derive general formulas for
the Mostar index; therefore, Doslic et al. computed the
Mostar index for different classes of graphs. Further, to-
pological properties of some interesting symmetrical
structures are computed in the articles [23, 24]. This mo-
tivates us to compute the Mostar index of cycle-related
graphs such as the Jahangir graph and the cycle graph with
chord.

L.1. Main Results. 'The main results computed in this article
are as follows.

Theorem 1. Consider the graphs J,,, and C, ,; then,
(1) For n,m =5,

ifn = odd,

if n = even.

(4)

consists of a cycle C,,,, with one additional vertex which is
adjacent to m vertices of C,,, at distance # to each other on
C,n as shown in Figure 1. The vertex set of J,, is
V) = {tbwp,wy, .. ,w,} U{v, vy, v, ) The edge
set of J,,. is E(J,,,) ={uwll<k<m} U wyv,wv,,
WiV (k- WV (k1112 Sk <m}p U {Vni+lvni+2’ e Vair (n-1)
Vinl0<i<m —1}. The edge set of J,, is partitioned as
follows.
For n = even,

EZ(]n,m> = {wkv(k—l)n’ WV -y 12k < m} U{w, v, wyv,,,,},

E3(]n,m) = {Vni+lvni+2’ ce

> V(@ir)n-2)2Y (2i+1)n-2)12> V (2i+1)n+4)12V (2i+1)n+6)/2~

(6)

s s Vais(ne) Vnisnl 0 ST <m — 1},

E4(] n,m) = {V((2i+1)n—2)/2v((2i+1)n)/2’ V(@istn2y2V (irymray 0 <i<m — 1}’

ES(]n,m) = {V((2i+1)n)/2V((2i+1)n+2)/2|O <is<m- 1}'

For n = odd,
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F1GURE 1: The Jahangir graph J; .

E{(Jom)
Ey(Tom)
E5(J,,

()

={uw|1 <k<m},
= {wkv(k—l)n’ WiV (k-1 12 <k < m} U {wy vy, wi v},

Vais1 Vhiv2o - - V(@i+Dn=3)2Y (i+1)n=-1)/2> Y (2i+D)n+3)2Y (2i+D)n+5)2~ (7)

s Vi (ne1) Viien 0 S T S — 1},

Ei(]n,m) = {V((2i+1)n—1)/2V((2i+1)n+1)/2’ V(@isDns2V (isDne3)20Si<m - 1}~

In the following lemmas, the Mostar index corre- n(wy,vy) = {U, Wy, .o, Wy Visys - - > Vo). Hence,
sponding to equations (6) and (7) of J,,,, is computed. Myw, = n+2/2) and n,, = 2mn-n+2m-1)/2.
Therefore, using equation (3), Mo (v,w,) =mn+m

Lemma 1. For xy € E(],,,) where n is even and n,m=5, -n-1
then Case (iii) (for xy € E5(J,,,,)):let x = v;and y = v, for
e e m 3, ifxy El(]nm) 1<i<(n-3/2), the resolving neighborhoods of
(v, i) and (v, vy,,) are {u,wy,...,w,, vy, ...,V
V(n+2i46)/20 - = +» Vit and Vi, Vn+2i+2/2}’ respec-
mn+m-n-1, ifxy e EZ(]n,m)’ tively. Hence, 1#,, = @2mn-n+2m-2)/2 and

My, = (n+2)/2. Therefore, using equation (3),
Mo (v;vy,) =mn—n+m-—2.

Mo(xy) =4 mn—n+m=2, if xy € E3(]W“)’ (8) Case (iv) (for xy € E (J,,,): let x=v ,, and

y=V,, by means of Figure 1, we obtain 7

2mn+2m-—-3n—4 1fxy c E4(] ) (V(n72/2)’ Vn/2) = {M,w1>UJ3,. oW Ve v(n—2/2)’
> nm —
2 V(3n+2/2)>---,an} and ﬂ(vn/Z’V(n—Z/Z)) = {Vn/Z"">Vn}'
Therefore, N, ., =mn-n+m-1 and
(n=2/2) Vn/2

| 0, ifxy e ES(]n)m). = (n+2/2). Hence, using equation (3),

nvn/ZV(rkZ/Z)
Mo (V2 Vypr) = (2mn +2m — 3n — 4)/2.
Case (v) (for xy € E5(J,,,,): let x=v,,, and y=v

Proof. Th try of h 11 to di th
roof. The symmetry of graph /,,, allows us to discuss the (n +2/2), the resolving neighborhoods of (v,5, v (,,42/2))

Mostar index of only the following types of edges:

and (V(n+2/2)’ Vyp) are {wl’ Vis - Vs Veem-1i2
i) (for xy € E : 1 = =w,, th .

Case (i) (for xy € By (Jyn,)): let x = uand y = wy, the sV} A {0, Ve Vamam)» respectively.
resolving neighborhoods of (u,w,;) and (w,,u) are H 5 d 5
ence, =n+2 an =n+2.

{u, Wys v s Wy Va5 Vi (n+2/2)} and {wl, Viseeos ﬂV(n/Z)".(wzm ] ﬂv(ﬂ+2/2)vn{2
vel B Therefore, in view of equation (3),
Vs Vinn (n-2/2) "> - - - » Vuun}» T€SPectively. Hence, 7,,, = Mo (v ayVars) = 0 O

n+ n *

mn—-n+m-2andn, , =n+ 1 Therefore, in view of
equation (3), Mo (uw,) =mn—2n+m—3.

Case (ii) (for xy € E,(J,,,)): let x = v, and y = w,, by ~ Lemma 2. For xy € E(J,,,) where n is odd and n,m>5,
means of Figure 1, n(vy,w;) ={v;,...,v,,,,} and then



mn-2n+m-—3,

mn—n+m-—2,
Mo(xy) =

mn—-n+m-—2,
mn-2n+m-—3,

)
' oo
)

Proof. The symmetry of the Jahangir graph J, ,, allows us to
compute the Mostar index of the following type of edges:

Case (i) (for xy € E|(],,,): let x =u and y = wy, the
resolving neighborhoods of (u,w,) and (w,,u) are

{u,wz,. . .,wm, V(n+3)/2" . .'an_(n+1)/2} and
{wl, Vi o Vinr1)2o Ve (n-1)2 7> - - +> vmn}, respectively.
Hence, 1, =mn-n+m-1 and 7n,,=n+2.
Therefore, applying equation (3),

Mo (uw,) = mn - 2n+m - 3.

Case (ii) (for xy € E,(J,,,,))): let x = v; and y = w,, by
means of Figure 1, n(v,,w,) = {vl,...,v n+3)/2} and
n(wy,v)) = {u, Wi oo Wy V(pas)ao - - an}- There-
fore, Myw, = (n+3)/2 and
Moy, = (2mn—n+2m—1)/2. Hence, using equation
(3), Mo(viwy) =mn+m—n-—2.

2.2 2 2 2

mn” +2mn—mn +m" —5mn—m,
MO(]"W!)z 22 2 2 2

mn +2mn—mn +m —6mn— 5m,

Proof.

Mo(Jum) = Y |y =y
xy€E; (Jum)
Y g e+
Xy€E; (],,)m)
+ Z 'nxy -n

xyEES (]n,m)

yx
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Case (iii) (for xy € E;(J,,,,)):letx =v;and y = v;,, for
1<i< (n-4/2), the resolving neighborhoods of

(Vis Vi1) and Vs> v) are
{u, Wis e s Wy Vs e Vi Viga2igsya - - - an} and
{vm, ces v(n+2i+1)/2}, respectively. Hence,
Ny, = (2mn—-n+2m-1)/2 and n, , = (n+3)/2.
Therefore, using equation (3),

Mo (vv,,,) =mn—n+m-2.

Case (iv) (for xy € E;(J,,)): let x=v( ), and
Y =V the resolving  neighborhoods  of
(V(n—l)/Z’ V(n+1)/z) and n (v(n+1)/2’ V(n—l)/Z) are

u,w ,U)3, e ,wm, Vl’ ey V( —1)/2> V3(n+1)/2, ey ang’
and fwl, Vi) -+ s v(3,,+1),;}, respectively. Therefore,
q"(nfl)/z"(m)/z : mn = 1’l.+ m—1 and }/Iv(nﬂ)/zv(.n—l)/z =n+2.
Hence, in view of equation (3),

Mo (V(_1)2V (ne1y2) = mn —2n+m = 3. O

In the following theorem, the Mostar index of the
Jahangir graph ], for n,m>5 is computed.

Theorem 2. For xy € E(J,,,,), then

if n = even,
if n = odd.

(10)

Case (i) n = even: in view of Lemma 1 and equation (2),
we have

Z 'nxy T Myx

xyEEZ (]n,m)

Z ‘”xy T Myx

xy€kE, (]n,m)

(11)

=mmn-2n+m-3)+2m(mn+m-n—-1)—

+mmn-4)(mn-n+m-2)+mQmn+2m-3n-4)+0,

2 2 2 2 2
=mn +2mn—-—mn +m — 5mn—m.

Case (ii) n = odd: it is easy to see from Lemma 2 and
equation (2) that
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Here, we present a numerical example in support of the
above theorem.

Example 1. Consider the Jahangir graph J 5; then, the sets
E{(Js5) = {uw,uw,, .. .,uws}, E; (J55) = {wvys, wyvs, . . .,
wsvy b E3(Uss) = {1V Vyvss. s Vagvas) and  Ef(Jss)
= {V,3, V3Vys . . ., V35, } form the edge partition of /5 5. Now
for respective edges xy, st, uv, and pq in these partitions,
Lemma 1 implies that ., = 24, 11, = 7, and Mo (xy) = 17;
Ny =27, #,, =4, and Mo(st) = 23; 1, =27, n,, =4, and
Mo (uv) = 23; 1, =24, n,, =7, and Mo(pq) = 17. There-
fore, using Theorem 2, Mo (Js55) =5x 17 +2x5x23 +5Xx
(5-4)%x23+2x5x17 =600.

5
MO(JW) = Z |”xy - ”yX' + Z '”xy - ”yX'
xy€Ey (Jum) XYE5(Jum)
+ Z '”xy - ”yX| + Z My = Myx
xy€E; (Tom) xy€Ey(Tum) (12)
=mmn-2n+m-3)+2m(mn+m-n-2)
+mn-3)mn-n+m-2)+2m(mn-2n+m-3),
=m*n® + 2m*n — mn’
O

3. The Mostar Index of Cycle with a Chord Graph

In this section, the Mostar index of a cycle with a chord
graph C,; is computed. The graph C,, is obtained from a
cycle C, by joining its two vertices at a distance ¢ —1 as
shown in Figure 2. The vertex set and edge set of C,; are
V(C,,) ={vi,vs...,v,} and E(C,,) = {vv;,4I1 <i<n}u
{vivI3<t< (n+3)/2}, respectively, where subscripts are
taken as mod .

The edge set of C,, is partitioned as follows.

For n = odd and t = even,

E}(Cn,t) = {Vt/ZV(HZ)/Z}’
Ey(Cpp) ={vivin |10 <v( oy Virupp i<t - 1},
E;(Cn,t) = {V(n+t—l)/2v(n+t+l)/2’ V(n+t+1)/2v(n+t+3)/2}’
(13)
E}L(Cn,t) = {V(n+t—3)/zv(n+t—l)/2’ V(n+t+3)/2v(n+t+5)/2}’
t— t
Eé(Cm) = {v~vi+1|t Siﬁu,gsiSn},
’ 2
Eé<cn,t) ={viv}
For n = odd, t = odd:
E%(Cn,t) = {Vt/ZV(HZ)/Z}’
o t=3t+3
E§<Cn,t) = {vivmll <1 ST,TS 1<t — 1},
E§<Cn,t) = {V(n+t)/2v(n+t+2)/2}’
(14)
Ei(cn,t) = {V(n+t—2)/zv(n+t)/2’ V(n+t+2)/2v(n+t+4)/2}’
EX(Cyy) = frmalt <is™ R i),
> 2
Eé(cn,t) = {Vl"t}



Uy

Uy
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F1cure 2: The cycle with a chord graph C, ;

For n=even and t = even,

Ei Cn,t) = {Vt/ZV(HZ)/Z}’

o n+t—-4n+t+2
leItsst,i

t— 2
E5(C,:) ={v,vi+1|1 i< -sist- 1}»,
3
E; Cn,t) {V(n+t)/2v(n+t+2)/2}
(15)
3
E, Cn,t) = {V(n+t—2)/2v(n+t)/2’ V(n+t)/2v(n+t+2)/2}’

SiSn},
2

|1<i <t_3 +3< <t 1}
l+1 1 5 0T 4 -
2 2

(16)
Vnst-3)2Y (n+t-1)120 V (n+t+3)/2v(n+t+5)/2}’

n+t—-4n+t+2

4 . .
E;(C,; :{vivmltSlST, Slgn},

2

(

(Cu) = 1wy

(Cut) = {Virstmvya? stsryizs Voustsnya? sy b
(Cue) =1

(Cue)

Ee(C,

) {Vlvt}

\In the following lemmas, the Mostar index corresponding
to equations (13)-(16) of C, ; for n>9 and t >3 is computed.

Lemma 3. Letxy € E(C, ;) wherenis odd and t is even and
4<t< (n+3)/2, then

[0, if xy € E(C,),
ifxye E;(Cn’t),
, ifxye E;(Cn’t),
Mo(xy) =1 (17)

ifxye E}}(Cn,t)’

ifxy e E;(Cn)t),

[ 0, ifxye Eé(Cn)t).

Proof.
Case (i) (for xy € E{(C,,)): let x = v,;, and y = v;,5),
the resolving neighborhoods of (v,,v,,,,) and
(Vis22o Vip)  are f"l’ s Vs Vineerd)zs - oo Vnz} and
Vprt-12 ) respectively. Hence,
Mopsvrns = Mvps = (n—1/2). Therefore, in view of
equation (3), Mo (V,,Vy0) =0

Vevae - -

Case (ii) (for xy € E}(C,,,)): let x = v; and y = v;,, for

1<i<(t-2)/2, by means of Figure 2,
N (Vs Vie1) = Vs Vis Vieaaiegyzs - - - Vn and
n (VH-I’ Vi ) Vitels -+ 5> Ves2i)2 i Hence,

U (2n—t)/2 and 7, , = (t/2). Therefore, equa-
tion (3) implies Mo (v; le) =n-t.

Case (iii) (for xy eEé(Cn,t)): let x =v(, 1), and

Y = Vnrt+1)2> then
NV nst-1)20 V(nstenya) = j"(nz)/zs co Vint 71)/2} and
NV sty Vnst-12) = Vet - - - VnL} Hence,
nV(mH)/zV(mHl)/z =n- 1)/2 and
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R (n—t+1)/2. ‘Therefore, applying t-1)/2 and 7, , = (t - 1)/2. Therefore, in view of
equation’ (3}, Mo (V(ust-1)2V (nirsnyn) = (8= 2)/2. equation (3), Mo(v;v;,;) =n—t.
Case (iv) (for xy € E} (Cn)f)): let X = Vue-3)n and Case (iii) (for xy € E5(C,,)): let x = (n+1)/2 and
Y = V(1 the resolving neighborhoods of Y= Vit then  1(Vounm Vinan) = Vo-- -
(Vinst-3y20 Vinre-1y2) - a4 (Viuge 1y Vinee-3)n) - are V1) Virtsyzs - > Vel A0 (Vi Vinsnn) =
Viseoos v(,,+t_3),2} and {V(n+t—1)/2’ AU ,,_1}, respec- {V(t+3)/2’ s v(,m)/z}. Hence, My aVonmesnyn = (n-1)/2
tively. Therefore, MY ety Vimseetyz — (n+ t -3)2 a.nd and My sV = (n—1)/2. Hence, equation (3) im-
My sV s = (n+t—1)/2. Hence, using equation plies Mo (v (mety2Y (met+2) 1) =0.
(3), Mo (V(uie-3)2V (nst-1y2) = £ = 2. Case (iv) (for xy € E3(C,,)): let x=v,., 5, and
Case (v) (for xy € E1(C,,)): let x = v; and y = v, for Y =V(un the resolving  neighborhoods  of
t<i<(n+t->5)/2, the resolving neighborhoods of (V(n+t—2)/2’ V(n+t)/2) and (V(n+t)/2’ V(n+t—2)/2) are
(Vi) and (vip,v) are {vi,...,v, . V(n+t+2i+4)/2> {vl, ce V(m_t_z)/z} and {v(,,m,z, ce v,,}, respectively.
..»v,}and {vi t1o oo V(nete2i +2)/2}, respectively. Hence, Therefore, Mo aya¥omern = (n+t-2)2 and

Myy,, = (n+t=2)/2 and n, , = (n—1t+2)/2. There-

= (n—t+2)/2. Henceforth, applying
fore, in view of equation (3), Mo (v;v;,;) =t — 2.

er(va)/ZV(anZ)/Z
equation (3), Mo (V 11-2)nV (nrey2) = £ — 2.

Case (vi) (for xy € E} (C,)):letx = v and y = v,, then Case (v) (for xy € Eé (C,): let x=v, and y =v,,,

we have (v, v,) = {Vl’ ceo Yy Vintez) o Vn} and where t <i< (n + t — 4)/2, the resolving neighborhoods
n(vpvy) = {V(t+2)/2’ cees V(n+t—1)/2}' Hence, My, = Moy, of vivy, and v;,,v; are jv,..., Vi_’ Vin-t+2i+4)2> - - ->Vn

= (n-1)/2. Therefore, using equation (3), and {vip,. .05 V(n-t+2i+2)/2 |> respectively. Hence, My, =
Mo (v,v,) = 0. O (n+t-2)/2and Ny, = (M=t +2)2. Therefore, using

equation (3), Mo(v;v;,,) =t —2.
Case (vi) (for xy € E2Z(C,,)): let x =v,, y =, the

Lemma 4. Let xz € E(C,;) where n and t are odd and resolving neighborhoods of (v;,v,) and (v, v,) are
3<t< 1)/2, t

(n+ 1)/ . {Vl’ ooV Vinrer2)2o o Vn} and

(n—t 2 {v(m),z, ceos v(nﬂ),z} respectively. Hence,

2 if xy € El(cn’t)’ fMyy = (n=1)/2 and n,, = (n-1)/2. Therefore,

equation (3) implies Mo (v,v;) = 0. O

n—t, ifxye E;(Cn’t),

Lemma 5. Let xy € E(C,,) where n and t are even and
0, ifxy e E;(Cm), 4<t< (n+2)/2, then
Mo (xy) = 4 (18) (

t-2, ifxye Ei(Cn)t),

nt )>
. 2
t-2, ifxyeE;(C,,) Mo(xy) =1 (19)
nt )>
| 0, ifxye Eé(CM). t-2, ifxye E; C.i)s

Proof.
Case (i) (for xy e Ej(C,,): let x=v, ), and
Y =V the resolving neighborhoods of
(V-1 Ver1y2) and Ve Ve-1y2) are

Vi o V-1 Vi) - o Vn} and

Proof.
Case (i) (for xy € E(C,,)):let x = v,y and y = v(;,5)
the resolving neighborhoods of (v, v(),) and
(V(m)/z) Vyp) are {Vp sV Vnstr2)o - - "Vn} and
Mvippvinmn = {v(t 2V +t)/2}’ respectively. Hence,

(n=1)/2 and 712V -1y2 = (£~ 1)/2. Therefore, =n/2 and 7, =n/2. Therefore, using
using equation (3), Mo (v ,_1y,V (141)2) = (n—1)/2. ‘

{V(t—l)/Z’ RN vt_l}, respectively. Hence,

er:/zV(m)/z t+1)/2V2
equation (3), Mo (V¥ (412)2) = 0.
Case (ii) (for xy € E5(C,,)): let x = v; and y = v, for o

11 3 . = . = .
l<i<(t-3)2, by means of Figure 2, Case (ii) (for xy € E5(C,,)): let x = v; and y = v;,, for

1<i< (t—-2)/2, the resolving neighborhoods of
Ny Vi) = {vl, e Vi Viisz) - oo Vn} and (v;»v;1) and vy, v; are {vl, “e > Vio Vigaaina) 2o -+ - vn}
NV Vi) = {vm, AN V(t+2i—1)/2}' Hence, 1, = (2n - and {vm, <> V(s420y2 | > Tespectively. Therefore, Mo, =
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(2n—-t)/2and y, , = t/2. Hence, equation (3) implies Vise oo V1) Vinste1)a - - vn} and
Mo (v;v;,,) =n—t. Vi -+ > V1 [ respectively. Hence,
Case (iii) (for xy € E3(C,,)): let x=v,,, and Mo v = W2 and 1, e = (£ -1)/2. There-
Y =V Dy ~ means  of  Figure 2, fore, using equation (3 0(V(-ny2V (es1y2) = 2
n (V(n+t)/2> V(n+t+2)/2) =WV v(n+t)/2} and (1’! ot + 1)/2 - (n - i+ 1)/2'
NV res2)2 Vinr2) = V1o -+ Vi Vinsts)as -+ V- Case (ii) (for xy € E5(C,;)): let x = v; and y = v;,, for
Therefore, # =n/2 and 7 =n/2. 1<i<(t-3)/2, by means of Figure 2,
Vinrt)2V (ngt+2)/2 V(nrts2)2Y (nrt)/2
Hence, applying equation (3), NV Vie1) = 1Vis oo Vo Vigaaisayar - - - vn} and
Mo (V(us1y2V (nts2)2) = O- N(Vig1> Vi) = Yo -+ o V(t+2i—1)/2i' Hence, Mo = (2n -
Case (iv) (for xy € E}(C,,): let x =V, and t- 1)(2 and 7, , = (t —1)/2. Therefore, in view of
Y = Vintyar then equation (3), Mo(v;v;,;) =n—t.
NV st-202 Vinry2) = V1o -+ 5 Vinre-2) 2} and Case (iii) (for xy € E} (Cn,.t)): let X =V (uyeo1)2 and
NV Gy Vinse-2y2) = Vnstys - - > vnr Hence, Y = V(1) the resolving neighborhoods of
M etmynVimson — (n+t=-2)2 and Vst Vinrerny2) A0 (Vi) Vireayyn) — are
My v (nt-2)12 = (n—t +2)/2. Therefore, in view of {'V(M)/z, s V-1 and {V(,H_H_l)/z, ce vn]}, respec-
equation (3), Mo (V(,4r-2)2V (nety2) =t = 2. tively. Therefore, My 02Vt n/2. and
Case (v) (for xy € E2(C,,)): let x = v; and y = v, for MooV = (1~ 1+ 1)/2. Hence,  equation  (3)
t<i< (n+t—4)/2, the resolving neighborhoods of implies
(vi»vis1) and (Viy1> v1) are Mo (Vus1y2V uaesnyn) = 2(E =112 = (£ = 1)/2.
Vi s Vis Vinops2isd)as -+ > Vi ' and Case (iv) (for xy € E;(C,,)): let x=v,,, 5, and
Viels - ooV (net42i +2)/2f, respectively. Hence, y = v(,, H-1)/2 we have
My, = (n+t=2)/27and n, , = (n—t+2)/2. There- NV st=3y2 Vinrt-1)2) = V1o - - o> v(mH),z} and
fore, Mo (v;v;,,) =t —2. 7V /2>V(n+t 32) = Vnt—1y2> - - > Va1~ Hence,
Case (vi) (for xy € E2(C,,)):letx = v, and y = v,, then Moy = P E=3)/2 and
resolving neighborhoods are M tmiya gy = (n—t+1)/2.  'Therefore, applying
NV VE) = V1o Vs Vinstsa)s - - - ,vn} and equation (35 MOV (yt-3)2V (nrt-1y2) = £ = 2.
NV V1) = Vs - v(nﬂ),zi. Hence, 7, , =n/2and Case (v) (for xy € E2(C,,)): let x=v; and y = v,
My, =n/2.  Therefore, using equation  (3), where t <i< (n + t — 5)/2, the resolving neighborhoods
Mo (vyv,) = 0. O of (Vs Vig1) and (Vi) are

Vis oo Vi Vintaias)2o - > Vn and

Viel> -+ o> V(n—t+2i+1)/2T’ respectively. Hence,
My, = (n+t=3)/2and n, , = (n+t-1)/2. There-
fore, using equation (3), Mo(v Vig) =1 —2.

Lemma 6. Let xy € E(C, ;) wheren is even and t is odd and
3<t< (n+2)/2, then

(not+l1 if xy € E4(C ) Case (vi) (For xy € E¢(C,,)): Let x = v, and y =,
2 o then resolving neighborhoods are
NV V) = Vs Vi Vinstsays - o Vn} and
n-t, ifxy € E;(C,,,t), NV V1) = Wisaye - - Vi Hence,
My, = (n=2)/2 and 7,, = (n-2)/2. Therefore, in
fq view of equation (3), Mo(v,v,) = 0. O
— if xy € E5(C,,),
Mo(xy) =1 2 Y 3( n’t) (20) In the following theorem, the Mostar index of cycle with

a chord graph C, ; is computed.
t-2, if xy € E;(C,),
Theorem 3. For xy € E(C,;) where n>9 and t >3, then

n-t-3, ifxye Eﬁ—f(Cm)» 2(t-2)(n-1), if n = odd,
Mo(Cn,t) =3 2(n-t)(t-2), if n = even, t = odd,
| O, ifxye Eg(Cn)t)_ 2(n—-t)(t-2)-2, ifn=even,t=even,
(21)
Proof.
Case (i) (for xy e E}(C,,): let x= V- and Proof.
Y =Vuyn the resolving  neighborhoods — of Case (i) n=o0dd, t = odd: in view of Lemma 3 and

(Vieo1yao Vies1)2) and (Vire1y20 Ve-1)12) are equation (2), we have
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MelC) = 3 s T by-nd
xy€E} (Cn,t) xyE; (CM)
+ Z |”xy - ”yX| + Z |”xy - ”yX|
xy€eE} (C,y) xy€eE} (Cyy)
+ Z My = nyx| + Z My = nyx|, (22)
xy€E} (CM) xy€E} (CM)
t—2
=1x0+(t-2)x(n—t)+2x ( 5 )+2><(t—2)
+(n—-t-3)x(t-2)+1x0,
=2(n—-t)(t-2).
Case (i) n = odd, t = even: in view of Lemma 4 and
equation (2), we have
Mo(Cn,t) = Z |nxy — M|+ Z |nxy - nyx|
xyeE? (C,,) xyE2 (C,y)
+ Z |”xy - ”yx| + Z |”xy - ”yx|
xy€eE;3 (Cn,,) xy€E] (Cn,,)
o) |”xy - ”yX| o) |”xy - ”yX|’ (23)
xy€eE2(C,;) xy€E2(C,;)
n—t
:2xT+(t—3)x(n—t)+1><0+2><(t—2)
+(n—-t-2)x(t-2)+1x0,
=2(n-t)(t-2).
Case (iii) n = even, t = odd: in view of Lemma 5 and
equation (2), we have
MO(CM) = Z |nxy - nyx| + Z |nxy - nyx|
xy€eES (C,) xyE3 (C,;)
+ Z |”xy - ”yX| + Z |”xy - ”yX|
xyeE; (CW) xyeEi (Cvx,t)
+ Z |”xy - ”yX| + Z |”xy - ”yX|’ (24)
xy€E3 (CM) xy€E} (CM)
t-2
=1x0+(t-2)x(n—-t)+2x ( 5 )+2><(t—2)

+(n—-t-3)x(t-2)+1x0,

=2(n-1t)(t-2).
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Case (iv) n = even, t = even: by using Lemma 6 and
equation (2),

Journal of Chemistry

MO(CM) = Z |"xy - ”yX| + Z '”xy - ”yx|
xyeE‘f (Cm) xyE% (Cn),)
+ Z |”xy - ”yX| + Z |”xy - ”yX|
xy€eE (C,y) xy€eEt (C,y)
+ n, —n,|+ n., —n,.|
xyEE‘S’Z(CﬂYt)| 7 yx| xyEEéZ(Cn,¢)| xy yX| (25)
=2><n_Tt+l+(t—3)><(n—t)+2>< (t;1)+2><(t—2)

+(n—-t=-3)x(t-2)+1x0,

= 2n—-1)(t-2) -2

Now, we present a numerical example in support of the
above theorem.

Examples 2. Consider a cycle with a chord graph C,, ;; then,
the sets Ej (Cyy7) = {v3v4, vyvsh E3(Ciy7) = {v1v, 9,73, v
Ve VsV7h E3(Craz) = {vigvi1 virvia}s E4(Cuyz) = {vovioo iz
vish E5(Clyz) = {v;Vg, VsVo, Visvis viai} and Eg(Cyy;) =
{v,v;} form the edge partition of C,, ;. Now for respective
edges xy, st, uv, pq, ef, and jk in these partitions, Lemma 6
implies that n,, =7, n,, =3, and Mo(xy) =4; ny = 10,
#;s = 3, and Mo(st) =7; n,, =7, 1, = 4, and Mo (uv) = 3;
Npg =9 MNgp =4 and Mo(pq) =5 1,5 =9, 1y =4, and
Mo(ef) =5; njc =6, ny; = 6 and Mo(jk) = 0. Therefore,
using Theorem 3, Mo(Cy,;) =1x0+4x5+2x5+2x3
+4x7+2x4=70.

4. Conclusion

In this article, by considering cycle-related graphs, we give
explicit expressions of the Mostar index of the Jahangir
graph and the cycle with a chord graph. The paper is
concluded by the following open problems:

Open Problem 1: compute the Mostar index of certain
classes of cycle-related structures such as convex pol-
ytopes Q,, R,, and A,

Open Problem 2: compute the Mostar index of some
rotationally symmetric graphs and S,
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