
ON REGULAR ELEMENTS AND VON-NEUMANN INVERSES OF

ZERO-SYMMETRIC LOCAL NEAR-RINGS WITH JORDAN IDEALS

ADMITTING FROBENIUS DERIVATIONS

Joseph Motanya Abuga

A Research Thesis Submitted in Partial Fulfillment of the Requirements for the

Award of the Degree of Doctor of Philosophy in Pure Mathematics of Masinde

Muliro University of Science and Technology

May, 2023



TITLE PAGE

i



DECLARATION

This research thesis is my original work prepared with no other than the indicated

sources and support and has not been presented elsewhere for a degree or any other

award.

Signature...................................................... Date ..........................

Name: Joseph Motanya Abuga

Reg. No. SEP/H/01-55568/2017

CERTIFICATION

We the undersigned certify that we have read and hereby recommend for accep-

tance of Masinde Muliro University of Science and Technology a research thesis

entitled, ”On Regular Elements and Von-Neumann inverses of Zero-symmetric Lo-

cal Near-rings with Jordan Ideals admitting Frobenius Derivations”

Signature....................................................... Date.........................

Dr. Ojiema Michael Onyango

Department of Mathematics

Masinde Muliro University of Science and Technology.

Signature....................................................... Date........................

Prof. Kivunge M. Benard

Department of Mathematics

Kenyatta University.

ii



Copyright

This thesis is a copyright material protected under the Berne convention, the copy-

right Act of 1999 and other international and national enactments in that behalf,

on intellectual property. It may not be reproduced by any means in full or in

parts except for short extracts in fair dealings, for research or private study, crit-

ical scholarly review or disclosure with acknowledgment, with written permission

of the Dean school of Graduate studies on behalf of both the author and Masinde

Muliro University of Science and Technology.

iii



DEDICATION

To all my family members, I dedicate this work for their support and encouragement

throughout the course. Without their support it may not have been easier to

accomplish this.

iv



ACKNOWLEDGEMENT

I begin by thanking the Almighty God for His protection throughout the course

of my study. I would also like to take this opportunity to very sincerely thank my

supervisors Dr. Ojiema Michael Onyango and Prof. Kivunge M. Benard for every-

thing that I have learned from them during the course of this study. I truly express

my gratitude to them for their guidance, advice and encouragement throughout

this research. I extend my sincere gratitude to all the members of the department

of mathematics of Masinde Muliro University of Science and Technology for the

support they also gave me in the course of my study. Grateful acknowledgement

is also made to my friends, Dr. Isaac Okwany and Mr. Evans Mogoi for their

continued encouragement.

v



ABSTRACT

The study of near-rings with identity is very vital in generalizing characterization of

commutative rings with identity. Much of the recent works on the classification of

finite rings with identity have considered a characterization paradigm using the unit

groups, the zero divisor graphs, adjacency and incidence matrices among others.

This has left the non-linear aspects fairly untouched. In particular, regular elements

and Von-Neumann inverses of near rings admitting derivations hardly exist in liter-

ature. Thus, the study determined the structures of classes of zero symmetric local

near rings N with n−nilpotent radical of Jordan ideals, J(N ); n = 2, n ≥ 3 with

char N as p, p2 and pk; k ≥ 3 convoluted with Frobenius derivations, the commuta-

tion over N constructed and finally characterized N , R(N ),Γ(N ) and the inverses

ofN . To achieve these, the research used idealization of R0-modules with respect to

Galois rings and Raghavendran’s characterization method to construct the classes

of near-rings under investigation, the theorems of Asma and Inzamam to determine

the commutation over N via J(N ) and the Frobenius derivations, the fundamental

theorem of finitely generated abelian groups to determine the structures of R(N )

and their inverses and SONATA. The results of this study showed two construc-

tions of classes of zero symmetric local near rings with a Jordan ideal containing

a 2-nilpotent radical which admit a commuting Frobenius derivation, determined

some graph morphisms which form symmetric groups, the regular elements ob-

tained have structures isomorphic to cyclic groups. The Von-Neumann inverses of

theN formulated agreed with the number theoretic standards of the Von-Neumann

inverses of idealized local rings while the arithmetic function, V (| R(N ) |) followed
the asymptotic properties of V (n), τ(n), ω(n), σ(n) and K(n). Furthermore, the

results determined the automorphisms of R(N both in terms of structures and

orders.
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CHAPTER ONE

INTRODUCTION

In this chapter, we give a brief mathematical background, definitions and the con-

cepts that have been useful in our research.

1.1 Mathematical background

Roos [64] was the first to define the concept of regularity for rings. Later certain

regularities in associative rings were obtained by other authors[36]. Most of these

regularities were defined for near-rings. Authors, such as Groenewald and Potgieter

[36] improved large part of the general theory about those regularities. Mason [40]

examined the concepts of regular and strongly regular for right near-rings. Fur-

thermore, Mason argued that it is necessary to distinguish between strong left and

right regularity. In recent years, Mason proved that for a zero-symmetric near-ring

with identity, the notions of left regularity, right regularity and left strong regu-

larity are equivalent. Reddy and Murty [63] have proven that these three notions

are equivalent for arbitrary near-rings. Also, Hongan [40] has proven that these

three notions and right strongly regular are equivalent. These results among others

demonstrate that regularity properties for rings and dual conditions in near-rings

have been studied in detail. Indeed, several authors have also researched on the

relationships between the concepts of primality and strongly regular. For example,

Argaç and Groenewald [6] used left 0-prime and left prime ideals to characterize

strongly regular near-rings. Moreover, it was attempted to adapt the concept of

strongly regular to the notions of ring and near-ring. Handelman and Lawrence

[37] introduced strongly prime rings. Groenewald [35] proposed the idea of strongly
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prime near-rings. Booth, et al [18], defined a strongly equiprime near-ring as an

alternative definition of a strongly prime near-ring. Some concepts, such as cen-

ter, idempotent element, identity, right and left permutable, medial, commutative,

abelian, internal multiplier in near-rings, have been studied. In [17, 48, 68], the

authors developed the basic properties of medial, left permutable, right permutable

and commutative near-rings. Furthermore, Mason [40] and Drazin [32] studied the

concepts of center and idempotent element and also examined some relationships

between these concepts. Also, several authors studied relationships with regular

forms, strongly regular forms and prime ideals of these concepts. Birkenmeier

[16] examined relationships between sets of idempotent elements and completely

semiprime ideals. Mason [50] introduced strong forms of regularity for near-rings

and examined some relations between the concepts of idempotent element and

strongly regular. Dheena [30] presented a generalization of strongly regular near-

rings. Drazin [32] studied regularity in near-rings where all idempotent elements

are central. Andrunakievich [4] defined p-regular rings and Choi [24] extended the

p-regularity of rings to the p-regularity of near-rings. In 2012, Dheena and Jenila

[31] introduced the notion of p-strongly regular near-rings and obtained equivalent

conditions for near-rings to be p-strongly regular. They also were the first to define

the concept of p-prime [31].

Kamal and Khalid [44] in their study of commutativity of near rings with deriva-

tions found that any near-ring admits a derivation iff it is zero-symmetric. They

also proved some commutativity theorems for a non-necessarily 3-prime near-ring

with a suitably constrained derivation d with the condition that d(a) is not a left

zero divisor in R for some a ∈ R. As a consequence, they attempted to advance

further research around a classification of 3-prime near-rings admitting derivations.

Near-rings which indeed are generalized rings, need not be commutative, and

most importantly, only one distributive law is postulated (e.g., Example 1.4, Pilz
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[59]). The pioneer work on derivations on near rings was conducted by Bell and

Mason [13] where they characterized the derivations on near rings and near fields

from a generalized point of view. Their work was however motivated by the study

by Posner [60] concerning derivations on prime rings, mappings that did not have

suitable constraints and thus not extrapolated to near-rings. A characterization

of the commutativity property of prime and semi-prime near-rings having certain

constraints on derivation has been advanced by a number of algebraists, see for

example ([7],[9],[12],[26],[33],[38],[60],[61]). A number of dual results have also been

obtained for near-rings (cf.[5],[10],[13],[29],[40],[66],[67],[71]). Daif and Bell [26]

established the following result: Let I be a nonzero ideal of a prime ring R. If

d is a derivation on R satisfying d([v, w]) = ±[v, w] for all v, w ∈ I, then R is

commutative. Boua and Oukhtite [21] proved that if a 3-prime near ring N with a

nonzero derivation d satisfying either d([v, w]) = ±[v, w] or d(v ◦w) = ±(v ◦w) for

every v, w ∈ N , then N is a commutative ring. Further, Boua [19] proved that if U

is a semigroup ideal of a 3-prime near ring N and d is a derivation on N satisfying

any one of the following conditions: (i) d([v, w]) = [v, w], (ii) d([v, w]) = [d(v), w],

(iii) [d(v), w] = [v, w], (iv) d(v ◦ w) = d(v) ◦ w, or (v) d(v) ◦ w = (v ◦ w) for all

v, w ∈ U , then N is a commutative ring.

The concept of multiplicative derivation in rings was introduced by Daif [25]

and it was inspired by Martindale [49]. Goldmann and Semrl [34], studied these

mappings and provided the full description of such mappings (for more details, we

refer to [25] and [34]). Thus, a mapping (not necessarily additive) d : N −→ N is

known as a multiplicative derivation on a near ring N if d(vw) = d(v)w+vd(w) for

every v, w ∈ N. Let N [x] = Z2[x] be a ring of all real valued continuous functions
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in indeterminate x over Z2. Thus a map d : N [x] −→ N [x] was defined by [34] as;

d(f)(g) =

 f(g) ln | f(g) |, f(g) ̸= 0;

0, otherwise.

Then it is verifiable that d(gh) = d(g)h + gd(h) for all g, h ∈ Z2 but d(g + h) ̸=

d(g) + d(h). It therefore follows that multiplicative derivations need not be addi-

tive in a general setting. The most recent works of Asma and Inzamam [8] on

commutativity of a 3-prime near ring satisfying certain differential identities on

Jordan ideals has given an investigation of near-rings admitting derivation a new

twist. In fact, they proposed a number of necessary results that qualify 3-prime

near rings with Jordan ideals admitting derivations and multiplicative derivations

to be commutative. In particular, they proved the commutativity condition for a

3-prime near ring N under any one of the following conditions:

(i) [d1(u), d2(k)] = [u, k], (ii) d([k, u]) = [d(k), u], (iii) [d(u), k] = [u, k], (iv)

d([k, u]) = d(k) ◦ u, (v) [d(k), d(u)] = 0 for all u ∈ N and k ∈ J, a Jordan

ideal of N , where d, d1, d2 are derivations on N . Bell and Daif, [12] showed the fol-

lowing result: If R is a 2-torsion free prime ring admitting a strong commutativity

preserving derivation d, that is, d satisfies [d(v), d(w)] = [v, w] for every v, w ∈ R,

then R is commutative. This result has been extended by Asma and Inzamam [8]

for a 3-prime near ring in two directions. First of all, they considered two deriva-

tions instead of one derivation, and secondly, they proved the commutativity of a

3-prime near ring N in place of a ring R in case of a Jordan ideal of N . These

results provided very good basic necessary conditions for studying near-rings. Per-

haps based on the recommendations of [8], it would be interesting to investigate

whether their results would still hold when another type of derivation is used. On

the other hand, little is documented about any class of idealized local near-rings.

Osba, Henriksen and Osama [56] conducted a classification survey on combining
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local and Von Neumann Regular Rings as a basis upon which the regularity proper-

ties of rings and their ideals could be explored. The rings studied in [56] were finite

and their Von Neumann inverses gave some asymptotic patterns. Their findings

demonstrated how to combine the Von Neumann inverses of classes of rings such

as the power series rings and the ring of integers. They however did not count the

number of regular elements in a given finite ring nor did they give the structural

formulae for the regular elements and the Von Neumann inverses of the specified

classes of rings. In a closely related research, the study on regular elements of

Galois rings can be attributed to Osama and Emad [55] where they character-

ized the regular elements in the ring of integers modulo n, Zn. Furthermore, they

studied the arithmetic functions denoted as V (n) and determined the relation-

ship between V (n) and the Euler’s phi function, φ(n). This gave an extension of

the ring theoretic algebra employed in counting the regular elements of Zn to the

number theoretic methodologies. For instance, the research revealed that if a is a

regular element in Zn, then a(−1) ≡ aφ(n)−1 (mod n). They proposed a criterion

for getting the possible Von Neumann inverses in the set of regular elements of Zn

and explored the asymptotic properties of V (n). Their findings did not consider

extensions and idealization using maximal submodules of Zn ∀ n ∈ Z+. In order

to advance the concept of classification of algebraic structures, the thesis considers

generalized rings, the near rings.

1.2 Basic concepts

The definitions below are commonly used in the thesis.

Definition 1.2.1. ([45], Chapter 5, section 5.1) A semigroup is a set with an

associative binary operation.

Definition 1.2.2. An algebraic structure N endowed with two binary operations +
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and · such that (i) (N ,+) is a group, (ii) (N , ·) is a semigroup and (iii) u·(v+w) =

u · v + u · w for every u, v, w ∈ N is called a left near-ring. Dually, if instead of

(iii), N satisfies the right distributive law, then N is said to be a right near ring.

Definition 1.2.3. A near-ring N is called local if the J = N \ N ∗ of all non-

invertible elements of N is a subgroup of (N ,+).

Definition 1.2.4. A near ring N is known as zero-symmetric if 0 · u = 0 for

every u ∈ N . Let N be a zero-symmetric left near ring with C(N ) as its multi-

plicative center. For v, w ∈ N , the symbols [v, w] and v ◦w denote the commutator

vw − wv and the anti-commutator vw + wv, respectively.

Definition 1.2.5. A near ring N is known as 2-torsion free if

2u = 0 =⇒ u = 0 for every u ∈ N .

Definition 1.2.6. A near ring N is known as 3-prime if for

v, w ∈ N , vNw = 0 =⇒ v = 0 or w = 0.

Definition 1.2.7. An additive subgroup J of a near ring N is known as a Jordan

ideal of N if k ◦ u ∈ J and u ◦ k ∈ J for all k ∈ J and u ∈ N .

Definition 1.2.8. An additive map f : N −→ N is known as commuting on a

non empty subset S of a near ring N if [f(u), u] = 0 for all u ∈ S. A mapping

d : R −→ R is known as a multiplicative derivation on a ring R if d(vw) =

d(v)w + vd(w) for every v, w ∈ R.

Definition 1.2.9. [28] A finite ring, R is called a Von Neumann regular ring,

V NR(R) if and only if for every a ∈ R, there exists some x ∈ R∗ such that a2x = a

where a is a regular element and a = ue for some u ∈ R∗ and e ∈ Idem(R), the

idempotent set of R .

Definition 1.2.10. [69], Definition 2) Let R be a nonempty set in which there

are defined two binary operations called addition and multiplication. For a, b ∈ R.

Then R is called a ring if the following axioms hold ;
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(i). For all a, b ∈ R, (a+ b) ∈ R

(ii). For all a, b, c ∈ R, (a+ b) + c = a+ (b+ c)

(iii). There exists an element denoted by 0 such that for all a ∈ R, a+0 = 0+a = a

(iv). For any a ∈ R there exists an element denoted by −a ∈ R such that a +

(−a) = (−a) + a = 0

(v). For all a, b ∈ R, a+ b = b+ a

(vi). For all a, b ∈ R, ab ∈ R

(vii). For all a, b, c ∈ R, (ab)c = a(bc) ∈ R

(viii). For all a, b, c ∈ R, a(b+ c) = ab+ ac, (a+ b)c = ac+ bc

Definition 1.2.11. ([69], Definition 5) Let R be a ring.

(i). An element 1 ∈ R such that 1a = a1 = a for all a ∈ R is called an identity

element or identity or unity of R.

(ii). Let a, b ∈ R. Then a and b are said to commute if the products ab = ba. If

any two elements of R commute then R is said to be commutative.

(iii). Let a, b ∈ R and 0 be a zero element of R such that ab = 0. Then a and b

are called zero divisors and if a ̸= 0 and b ̸= 0 then a and b are called proper

divisors of zero.

Definition 1.2.12. ([69], Definition 6) A commutative ring with an identity 1(1 ̸=

0) and no proper divisors of zero is called an integral domain.

Definition 1.2.13. ([45], Definition 1.1) If G is a nonempty set, a binary operation

∗ on G is a function ∗ : G×G → G.

7



Remark 1.2.1. The binary operation ∗ is thought of as either a multiplication (.)

or addition (+) of the elements of R.

Definition 1.2.14. ([45], Definition 1.7) Two groups (G, ∗) and (H, o) are said

to be isomorphic if there is a one-to-one correspondence θ : H → G such that

θ(g1 ∗ g2) = θ(g1og2) for all g1, g1 ∈ G. The mapping θ is called an isomorphism

and we say that G is isomorphic to H and denote it by G ∼= H.

Remark 1.2.2. If θ satisfies the above property but is not one-to-one correspon-

dence, we say that θ is a homomorphism.

Definition 1.2.15. ([45], Definition 1.8) A graph is a pair Γ = (ν, ε) where:

(i). ν is a finite set of vertices and

(ii). ε is the collection of unordered pairs of vertices called edges.

Definition 1.2.16. ([45], Definition 2.1) A nonempty subset S of the group is a

subgroup of G if S is a group under binary operation of G. We use the notation

S ≤ G to indicate that S is a subgroup of G.

Definition 1.2.17. ([45], Definition 2.4) The number of elements in a finite G is

called the order of G and is denoted by |G|.

Definition 1.2.18. ([45], Definition 5.4) An ideal P of a ring R is a prime ideal

if whenever ab ∈ P , then either a ∈ P or b ∈ P .

Definition 1.2.19. ([45], Definition 5.1) A subset I of a ring R is an ideal if:

(i). a, b ∈ I then a+ b ∈ I

(ii). r ∈ R and a ∈ I, then ra ∈ I and ar ∈ I. We write I ◁ R and say I is an

ideal of R.
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Definition 1.2.20. ([45], Definition 5.2) An ideal I that is singularly generated,

i.e I = (a), is called a principal ideal.

Definition 1.2.21. ([45], Definition 1.7) A ring with only principal ideals is called

a principal ideal ring (PIR). And similarly, a domain with only principal ideals is

a principal ideal domain (PID).

Definition 1.2.22. ([45], Chapter 5, section 5.1) A field is a commutative ring

with unity in which every nonzero element has a multiplicative inverse.

Definition 1.2.23. ([69], Definition 11) Let R and S be rings and let f : R → R

be a mapping such that f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for all

x, y ∈ R. Then f is said to be a homomorphism from R to S.

Definition 1.2.24. ([69], Definition 12) Let R and S be rings and f : R → R be

a homomorphism. then K = {x ∈ R | f(x) = Os} is an ideal of R which is called

the kernel of f , denoted by kerf .

Definition 1.2.25. ([51], Definition 5.21) Let M be an additively written abelian

group and R a ring. Then M is said to be a (right) R-module if a law of com-

position of M × R into M is defined uniquely as xa for a ∈ R,x ∈ M with the

following properties for x, y ∈ M and a, b ∈ R:

(i). (x+ y)a = xa+ ya

(ii). x(a+ b) = xa+ xb

(iii). x(ab) = (xa)b

Definition 1.2.26. ([51], Definition 6.1) Let a be an element of the ring R.

(i). if there exists an element b of R such that aob = 0, a is said to be right-quasi

regular and to have b as the right quasi inverse
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(ii). if there exists an element c of R such that coa = 0, a is said to be left-quasi

regular and to have c as the right quasi inverse

(iii). an element a is said to be quasi regular if it is both right-quasi regular and

left-quasi regular.

Definition 1.2.27. ([51], Definition 6.6) The Jacobson radical, J(R) of a ring R

is defined as J(R) = {a : a ∈ R, aR is right− quasi regular}.

Definition 1.2.28. ([51], Definition 7.2) Let c be an element of an arbitrary ring

R. If there exists an element c′ of R such that c = cc′c, c is said to be a regular

element of R. The ring R is said to be a regular ring if each of its elements is

regular.

Definition 1.2.29. ([51], Definition 7.17) An element a of the ring R is said to

be G-regular if a ∈ G(a). An ideal is said to be G-regular if each of its elements is

G-regular.

Definition 1.2.30. ([51], Definition 7.18) The radical R(R) of the ring R is

defined as R(R) = {b : b ∈ R, b is G − regular}.

1.3 Statement of the Problem

The problem of classification of algebraic structures has contributed greatly in

understanding their structural properties and applications. For instance, Galois

showed that the roots of a general quintic polynomial, f cannot be solved using

any radical by considering the automorphism groups of the splitting field of f .

The group classification problem for both finite and infinite groups is however

complete. On the other hand, the ring classification problem is still open. A

lot of current studies involving finite rings with identity have independently taken

the trajectory of determining and characterizing the algebraic structures associated
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with the various compartments of the ring R. These studies have left the non-linear

aspects of the structures of R fairly untouched. In particular, the generalization

of the regular elements of any classes of near-rings is hardly available in literature.

This study has therefore determined and classified the regular elements of the zero

symmetric local near-ring, N admitting Frobenius derivation up to isomorphism.

1.4 Objectives of the Study

1.4.1 Main Objective

The main objective of this study was to determine and classify the regular elements

and Von-Neumann inverses of the zero-symmetric local near rings with n−nilpotent

radical of Jordan ideals admitting Frobenius derivations.

1.4.2 Specific Objectives

The specific objectives of this study were:

(i). To determine the structures of classes of zero symmetric local near rings N

with n−nilpotent radical of Jordan ideals J(N ), for n = 2, n ≥ 3 for char

N = p, p2 and pk : k ≥ 3 convoluted with Frobenius derivations.

(ii). To determine the commutation over N constructed using J(N ) and the

Frobenius derivations d : N → N and d : N → J(N ).

(iii). To characterize and classify N , R(N ),Γ(N ) and the inverses of N .

1.5 Research Methods

1.5.1 Introduction

In the sequel, we give some techniques, characterization procedures and theorems

that have been used to achieve our objectives.
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1.5.2 Idealization Method

Suppose that R is a commutative ring with 1, and M is a unitary R-module. Then

we call the set R +M supplied with coordinatewise + and (.), the idealization of

M. Using Galois near-rings R0 with R0-modules M, we have used the idealization

method to:

(i). reduce the results concerning R0 to the ideal case.

(ii). generalize results from R0 to the R0-modules.

(iii). construct the new classes of finite zero symmetric local near-rings of char p, p2

and pk : k ≥ 3.

1.5.3 Commutativity of Near-rings

Commutative properties of near rings allow them to admit morphisms with a host

of properties. We have applied the following theorems due to Asma and Inzamam

[8] to determine commutation properties of the near ring N in question via J(N)

and the Frobenius derivation as the morphism.

Theorem 1.5.1. ([8], Theorem 1) Let J be a non-zero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d1, d2 are two nonzero derivations on N such that d2

is commuting on J and and [d1(u), d2(k)] = [u, k] for all k ∈ J and u ∈ N , then

either d1 = 0 on J or N is a commutative ring.

Theorem 1.5.2. ([8], Theorem 2) Let J be a non-zero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d is a nonzero derivation on N satisfying d([k, u]) =

[d(k), u] for all k ∈ J and u ∈ N , then N is a commutative ring.

Theorem 1.5.3. ([8], Theorem 3) Let J be a non-zero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d is a nonzero derivation on N satisfying [d(u), k] =
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[u, k] for all k ∈ J and u ∈ N , then either the elements of J commute under the

multiplication of N or N is a commutative ring.

Theorem 1.5.4. ([8], Theorem 4) Let J be a non-zero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d is a derivation on N satisfying d([k, u]) = d(k) ◦ u

for all k ∈ J and u ∈ N , then either d = 0 or the elements of J commute under

the multiplication of N .

1.5.4 Raghavendran’s Characterization Procedure and The Gap Pack-

age SONATA

As a supplement to idealization, Raghavendran’s characterization procedure [62]

was used in our study to determine the structures of R(N ) = N ∗ ∪ {0}

Theorem 1.5.5. ([62], Theorem 2) Let R be a finite ring with multiplicative iden-

tity 1 ̸= 0 whose zero divisors form an additive group Z(R). Then,

(i). Z(R) is the Jacobson radical of R.

(ii). |R| = pnr; and |Z(R)| = p(n−1)r for some prime integer p and some positive

integers n and r.

(iii). (Z(R))n = 0.

(iv). the characteristic of the ring R is pk for some positive integer k with 1 ≤ k ≤

n; and

(v). if the characteristic is pn, then R is commutative.

Theorem 1.5.6. ([62], Theorem 8) Let R, p, r be as in Theorem 1.5.5. Then

(i). R will contain a sub-ring isomorphic to GR(pkr, pk) if, and only if the char-

acteristic of R is pk, and
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(ii). if R2, R3 are any two sub-rings of R, both isomorphic to GR(pkr, pk), there

will be an invertible element a in R such that R2 = a−1.R3.a.

R(N ) were validated using the Gap package SONATA, a software package which

give algorithms for the construction and analysis of finite near-rings.

1.6 Significance of the Study

Near rings are generalized rings. On comparing with the standard class of rings,

endomorphism rings of abelian groups, it can be seen that ring theory describes

a ”linear theory of group mappings,”while near rings deal with the general ”non-

linear theory.” A great number of linear results have been transferred to the general

nonlinear case with some suitable changes. The results of near rings can be used

in various fields inside and outside of pure mathematics [59]. Efficient codes and

block designs can be constructed with the help of finite near rings. In mathematics,

there are applications of near ring theory in functional analysis, algebraic topology,

and category theory. Near rings also find applications in digital computing, au-

tomata theory, sequential mechanics, and combinatorics (see [58] and the references

therein).
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, we provide a detailed survey on the literature regarding the near

rings with generalized derivations, regular elements and Von Neumann inverses and

zero symmetric near rings with Jordan ideals admitting Frobenius derivations with

an aim of depicting the gaps which our study has addressed.

2.2 Near Rings with Generalized Derivations

Many results in literature have demonstrated how the global structure of a near-

ring N is often tightly connected to the behavior of additive mappings defined on

N . For example, Sammana et al [65] attempted to give an expositional study on

near-rings with generalized derivations and established the rich algebraic interplay

between generalized derivations and commuting structures of N . However, in some

cases, an arbitrary derivation d was used instead of the generalized one. This is

against the convention which requires that the type and nature of a differential

identity in question should be specified. According to [3], an additive mapping

D : N 7→ N is said to be a right (resp., left) generalized derivation with associated

derivation d if D(xy) = D(x)y+xd(y) or D(xy) = d(x)y+xD(y), for all x, y ∈ N ,

and D is said to be a generalized derivation with associated derivation d on D if it

is both a right and a left generalized derivation on N with associated derivation, d.

Every derivation on N is a generalized derivation. Familiar examples of generalized

derivations are the generalized inner derivations and derivations incorporating left

multiplier, that is, an additive mapping D : N 7→ N satisfying D(xy) = D(x)y
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for all x, y ∈ N . Generalized derivations have been primarily studied on operator

algebras. Therefore any investigation from the algebraic point of view with a

specific focus on local near-rings might be interesting

The results of [2] coined a definition for the term IFP ideal and considered the

relations between prime ideals and IFP-ideals. Furthermore, it was proved that a

right permutable or left permutable equiprime near-ring has no non-zero nilpotent

elements.

Proposition 2.2.1. ([2], Proposition 3.2)

If N is a right (or left) permutable 3-prime near-ring, then N has no non-zero

nilpotent elements.

Proposition 2.2.2. ([2], Proposition 3.4) If p is an IFP-ideal and a 3-(semi)

prime ideal of N , then p is a completely (semi) prime ideal.

The two propositions apply permutability of a near-ring and 3-primeness respec-

tively to determine the existence of non-zero nilpotent elements and to determine

whether the near-ring is completely prime near-ring. Our study does not involve

permutable 3-prime or prime ideal of IFP.

Proposition 2.2.3. ([2], Proposition 3.8)

Let N be a medial near-ring and p a 3-prime ideal of N . Then P is an IFP-

ideal.

It is clear that this proposition addressed a non-local near-ring and also omitted

the discussion of Jordan ideal of N . The matter in [73] is about behaviour of

homomorphisms and derivations on certain rings especially prime rings.

Theorem 2.2.1. ([73], Theorem 3.1) Let R be a 2-torsion-free prime ring and let

J be a Jordan ideal and a subring of ring R. If θ is an automorphism of R and

δ : R → R is an additive mapping satisfying δ(u2) = 2θ(u)δ(u), for all UϵJ , then

either J ⊆ Z(R) or δ(J) = (0).
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This theorem proves that the existence of a Jordan left derivation on a Lie

ideal U of 2-torsion-free prime ring R is possible only if U ⊆ Z(R) or δ(U) = (0).

However, this deviates from our study in a number of points. This result is on

2-torsion-free prime rings while ours deal with zero-symmetric local near-rings.

Secondly, this result was concerned with Jordan left derivations on Lie ideals whilst

our study is fixed on Jordan ideals which admit Frobenius derivation instead of left

derivation.

Theorem 2.2.2. ([73], Theorem 4.1) Let R be a prime ring, I a non zero right

ideal of R and let (θ, ϕ) be automorphisms of R. Suppose that δ : R → R is a

(θ, ϕ)-derivation of R.

(i). If δ acts as a homomorphism on I, then δ = 0 on R.

(ii). If δ acts as an antihomomorphism on I, then δ = 0 on R.

Theorem 2.2.3. ([73], Theorem 4.2) Let R be a 2-torsion-free prime ring and J

a nonzero Jordan ideal and a subring of R. Suppose that θ is an automorphism of

R and δ : R → R is a left (θ, θ)-derivation on R.

(i). If δ acts as a homomorphism on J, then δ = 0 on R.

(ii). If δ acts as an antihomomorphism on J, then δ = 0 on R.

These two theorems above focused on the behaviour of left derivation, especially

as homomorphisms or antihomomorphisms. Yet, still this deviates from our study

which focuses on the behaviour of elements of the near-ring and not on the maps

acting on the ideals of the near-ring. Results of [72] answered an open question

in the theory of minimal ideals in near-rings to the negative, that the heart of a

zero-symmetric sub-directly irreducible near-ring is subdirectly irreducible again.

Proposition 2.2.4. ([72], Proposition 2.1) Let N be a non-zero symmetric near-

ring. Let L be a minimal left ideal such that L satisfies the DCC on N -subgroups
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contained in L. Suppose M ⊆ L is an N -subgroup such that M ̸= L. Then L and

M cannot be N -isomorphic.

This result focused on minimal left ideals L which do not properly contain N -

subgroups which are N -isomorphic to L. The ideals considered in our study are

Jordan ideals which admit Frobenius derivations.

Theorem 2.2.4. ([72], Theorem 3.1) Let N be a zero symmetric near-ring with

DCCN and I a minimal ideal. Then I is isomorphic to a finite direct sum of

minimal left ideals of the near-ring N , all of the summands being N -isomorphic. I

contains a minimal left ideal L such that L2 ̸= {0}.

This theorem analyses the isomorphic properties of the minimal ideal of a near-

ring as opposed to the Jordan ideals considered in our study. In [8], the commu-

tative properties of a 3-prime near-ring with some differential identities on Jordan

ideals were investigated.

Theorem 2.2.5. ([8], Theorem 1) Let J be a nonzero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d1, d2 are two nonzero derivations on N such that d2

is commuting on J and [d1(u), d2(k)] = [u, k] for all k ∈ J and u ∈ N , then either

d1 = 0 on J or N is a commutative ring.

This result clearly, investigated the condition necessary for a 2-torsion-free

prime ring which admits strong commutativity preserving derivation to be com-

mutative. This result does not consider the Jordan ideal and the derivations con-

sidered are not of the Frobenius type. This assertion is reinforced by the following

theorems.

Theorem 2.2.6. ([8], Theorem 2) Let J be a non zero Jordan ideal of a 2-torsion

free 3-prime near ring N. If d is a non zero derivation on N satisfying d([k, u]) =

[d(k), u] for all k ∈ J and u ∈ N ,then N is a commutative ring.
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Theorem 2.2.7. ([8], Theorem 3) Let J be a non zero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d is a non zero derivation on N satisfying [d(u), k] =

[u, k] for all k ∈ J and u ∈ N , then either the elements of J commute under the

multiplication of N or N is a commutative ring.

Theorem 2.2.8. ([8], Theorem 4) Let J be a non-zero Jordan ideal of a 2-torsion

free 3-prime near-ring N . If d is a derivation on N satisfying ([k, u]) = d(k) ◦ u

for all k ∈ J and u ∈ N , then either d = 0 or the elements of J commute under

the multiplication of N .

It is also clear that the near-ring considered in [8] is not the zero-symmetric local

near-ring. Also the non zero derivations considered may or may not be Frobenius.

2.3 Regular Elements and Von-Neumann Inverses

Osba, Henricksen and Osama [56] conducted a classification survey on combining

local and Von Neumann regular rings as a basis upon which the regularity prop-

erties of rings and their ideals could be explored. Despite the fact that the rings

studied in [56] were finite and their Von Neumann inverses gave asymptotic pat-

terns, the study gave a baseline analysis regarding only the elements of Zn which

have symmetrical Von-Neumann inverses. The structural characterization did not

consider cases of idealization. Their findings demonstrated how to combine the

Von Neumann inverses of classes of rings such as the power series rings and the

ring of integers. They however did not count the number of regular elements in a

given finite ring nor did they give the structural formulae for the regular elements

and the Von Neumann inverses of the specified classes of rings.

In a separate but related research, the study on regular elements of Galois rings

can be attributed to Osama and Emad [55] where they characterized the regu-
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lar elements in Zn, the ring of integers modulo n. They studied the arithmetic

functions denoted as V (n) and determined the relationship between V (n) and the

Euler’s phi function, φ(n). This gave an extension of the ring theoretic algebra

employed in counting the regular elements of Zn to the number theoretic method-

ologies. For instance, the research revealed that if a is a regular element in Zn, then

a(−1) ≡ aφ(n)−1 (mod n). They developed a criterion for getting the possible Von

Neumann inverses in the set of regular elements of Zn and furthermore explored

the asymptotic properties of V (n). Their research however concentrated on direct

products of local rings constructed from the trivial Galois ring Zn for n, where

n is a product of primes qualifying GR(Pαi) to be the typical ring. One of the

fundamental results they obtained for such products of local rings is as follows;

Theorem 2.3.1. ([55], Section 3) If R =
∏m

i=1 Ri = R1 ×R2 × ...×Rm︸ ︷︷ ︸
m−tuple

, then the

number of Von Neumann regular elements counting multiplicities is

|Vr(R)| =
∏m

i=1(|Ri| − |Mi|+ 1)

where Ri - local, Mi - maximal ideal of Ri and

φ(n) =
∏m

i=1(P
αi
i − Pαi−1

i ) = n
∏

p\n(1−
1
p
).

From the results above, it would be interesting to extend their ideas to classes

of local rings expressed as direct summands of Galois rings and by extension to the

dual results in local near-rings. Studies on rings have led to the analysis of regular

elements with involution ∗. In [39], a number of results exist on properties of such

elements. For instance;

Theorem 2.3.2. ([39], Theorem 1) Let R be a primitive ring with ∗ and suppose

that a ̸= 0 in S is such that ak0a = 0. Then R contains a minimal right ideal ρ

such that the commuting ring of R on ρ is a field. Moreover, if R is a simple ring

with unit element, then R is isomorphic to Fn, the set of n × n matrices over the

field F, for some n.
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Thus, this theorem focused on primitive ring with an involution. It also showed

that the condition for a ring to be a field is that it must contain a minimal right

ideal. In our study, on the contrary, the research has considered local near-rings

with Jordan ideals.

Theorem 2.3.3. ([39], Theorem 2) Let R be a ring having no non trivial ideals

invariant with respect to ∗. If all non zero elements of k0 are invertible in R, then

R is a division ring, the direct sum of a division ring and its opposite, or F2, the

2× 2 matrices over a field F.

This result considers on division rings with ideals which are invariant with

respect to the involution ∗. On the other hand, our study focuses on the elements

of the local near-rings and on Jordan ideals in such near-rings.

Theorem 2.3.4. ([39], Theorem 4) Let R be a prime ring with involution in which

the non-zero elements of k0 are regular. Then R is either a domain or an order in

the 2× 2 matrices over a field.

This result is similar to that of our study, although our study has not considered

involutions. Furthermore, this result does not consider ideals of any type, although

it considers the derivations induced by involutions. David and Badawi [28] studied

the Von Neumann regular and related elements in commutative rings. In particular,

they characterized the Von Neumann regular elements of R by determining the

idempotent elements, the π-regular elements, the Von Neumann local elements and

the clean elements of R. They also investigated the subgraphs of the zero-divisor

graph, Γ(R) of R induced by the above elements. Among the results obtained in

their study is that;

Theorem 2.3.5. ([28], Theorem 3.7) Let R be a commutative ring and M an

R-module,
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(i). V NR(R⊕M)= {(r, rm) | r ∈ V NR(R), m ∈ M}.

(ii). R ⊕ M is Von Neumann Regular if and only if R is Von Neumann regular

and M = {0}.

(iii). V NL(R ⊕ M)={(r, rm) | r ∈ V NR(R),m ∈ M} ∪ {(1 + r, rm) | r ∈

V NR(R),m ∈ M}.

(iv). R is a Von Neumann Local Ring when R⊕M is a Von Neumann Local Ring.

(v). Suppose that there is m ∈ M with ann(R)(m) = {0}. Then R ⊕M is a Von

Neumann Local Ring if and only if R is a Von Neumann Local Ring with

idem(R) = {0, 1}.

(vi). If M is a ring extension of R, then R⊕M is a Von Neumann Local Ring if

and only if R is a Von Neumann Local Ring with idem(R) = {0, 1}.

The relationship between the graphs of idempotent elements, Von Neumann

regular elements, π-regular elements, the clean regular elements and the general-

ized Beck’s graph, Γ(R) was obtained as follows;

Γ(Idem(R)) ⊆ Γ(V NR(R)) ⊆ Γ(π−R(R)) ⊆ Γ(cln(R)) ⊆ Γ(R) and Γ(V NR(R)) ⊆

Γ(V NL(R)) ⊆ Γ(cln(R)) for any commutative ring R. The results of the study

were not extended to the graph theoretic properties of the Γ(R∗) and hence by

extension not addressed to the graphs of the units of the near-rings.

The most recent breakthrough on a characterization of Regular elements of ide-

alized finite rings can be seen in Owino and Musoga [52] where they studied the

Regular Elements of a Class of Commutative Completely Primary Finite Rings,

CPFRs. Their characterization was based on the construction and structural

classification of the Von Neumann Regular elements starting with the Galois rings

as a basis upon which the structures and orders of V NR(R) for other CPFRs were

characterized. Intuitively, the methods employed in Owino and Musoga [52] were
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similar to the ones used by Osama and Emad [55] although they were working on

completely distinct classes of rings. The object motivating this study is an endeav-

our to provide dual results in near-ring set up in order to generalize the notion of

regular elements R(N ) whose algebraic structure is an abelian group.

2.4 Zero-Symmetric Local Near-Rings

Sheaf representations of commutative rings and reduced rings can be unified using

symmetric rings. In depth study of symmetric rings, discussion of basic examples

and extensions have been done in [23]. It has been shown that a non-reduced

symmetric ring can be constructed from a reduced ring.

Theorem 2.4.1. ([23], Theorem 2.3) Let R be a ring and n any positive integer.

If R is reduced, R[x]/(xn) is a symmetric ring, where (xn) is the ideal generated by

xn .

This theorem proves the existence of a symmetric ring that is neither commu-

tative nor reduced. It also shows that the class of symmetric rings contains both

commutative and reduced rings. In our case, we have considered local near-rings

which may or may not be rings at all. The ideas of 2-primality of a ring and ability

of a ring to satisfy a polynomial identity with coefficients in the ring of integers

were related by [23] in the following proposition.

Proposition 2.4.1. ([23], Proposition 2.7) Let R be a ring.

(i). R is reduced if and only if R is semi prime and symmetric, if and only if R

is semi prime and IFP, if and only if R is semi prime and 2-primal.

(ii). R is a domain if and only if R is prime and reduced, if and only if R is prime

and symmetric, if and only if R is prime and IFP if and only if R is prime

and 2-primal.
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(iii). Let R be a semi prime ring such that each non-zero right ideal contains a

non-zero ideal. Then R is reduced.

(iv). let R be a p1-ring. Then R is a semi prime ring such that each non-zero right

ideal contains a non-zero ideal if and only if R is reduced.

It is observable that this result focused majorly on reduced and non-reduced

rings as opposed to local near-rings with ideals which is the centre of our discussion.

Furthermore, the rings considered in [23], were not the ones containing Jordan

ideals. The following proposition focused on the symmetry of the rings.

Proposition 2.4.2. ([23], Proposition 3.3) Let R be a ring and suppose that Z(R)

contains an infinite subring every non-zero elements of which is regular in R. Then

R is symmetric if and only if R[x] is symmetric if and only if R[x : x−1] is sym-

metric.

Thus this proposition considered regular elements of a ring, but omitted the

Von-Neumann inverses of such elements.

Proposition 2.4.3. ([23], Proposition 3.6)

(1). Let R be a ring and I be a proper ideal of R. If R|I is symmetric and I is

reduced, then R is symmetric.

(2). For an abelian ring R, R is symmetric if and only if eR and (1 − e)R are

symmetric for every idempotent e and R.

This result touched on proper ideals of a ring and not Jordan ideals. Classes of

near-rings which satisfy the polynomial identities below were considered by [1];

(i). For each x, y in a near-ring N , there exist positive integers t = (x, y) ≥ 1 and

s = s(x, y) > 1 such that xy = ±ysxt.
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(ii). For each x, y in a near-ring N , there exist positive integers t = t(x, y) ≥ 1

and s = s(x, y) > 1 such that xy = ±xtys.

Theorem 2.4.2. ([1], Theorem 2.1) Suppose that N is a near-ring which satisfies

(i) above and the idempotent elements of N are multiplicative central. Then the set

A of all nilpotent elements of N is a subnear-ring with trivial multiplication, and

the set B of all idempotent elements of N is a subnear-ring with (B,+) abelian.

Furthermore, N = A⊕B.

This theorem focused on idempotent elements of subnear-rings instead of regular

elements and their Von Neumann inverses on the near-rings which is at the centre

of our study. Similarly, the following theorem also focused on zero-commutative

near-ring instead of zero-symmetric near-ring algebra.

Theorem 2.4.3. ([1], Theorem 2.2) Let N be a zero-commutative near-ring which

satisfies condition (ii) above and the idempotent elements of N are multiplicative

central. Then the set A of all nilpotent elements of N is a subnear-ring with trivial

multiplication, and the set B of all idempotent elements of N is a subnear-ring with

(B,+) abelian. Furthermore, N = A⊕B.

Further studies on near-rings by [1] showed that there are certain near-rings

which are actually rings.

Theorem 2.4.4. ([1], Theorem 3.1) Let N be a d.g near-ring which satisfy (i).

Then N is commutative.

Theorem 2.4.5. ([1], Theorem 3.2) Let N be a d.g near-ring satisfying (ii). Then

N is commutative.

The two theorems point to the fact that the conditions (i) and (ii) are necessary

for a near-ring to be a commutative ring. It is clear that this study is not concerned

with local near-rings with Jordan ideals, as in the case of our study.
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The following two propositions considers zero-symmetric near-rings which contain

minimal ideals which are not similar to Jordan ideals. Furthermore, they involve

non-local near-rings which are different from the ones we have considered.

Proposition 2.4.4. ([72], Proposition 5.1) Let N be a zero symmetric near-ring

containing a minimal ideal H. Suppose that N is 0-primitive on the N -group Γ.

Then N is sub-directly irreducible near-ring with heart in H.

The condition required of a zero symmetric near-ring with a generator to be a

ring is considered by [72] in the following theorem.

Theorem 2.4.6. ([72], Theorem 5.3) Let N be a zero symmetric near-ring which

is 0-primitive on Γ. We assume that N is not a ring. Suppose that I := (0 :

Θ0) ̸= {0} and there is a finite number n of elements r1, ..., rn ⊆ Θ such that⋂n
i=1((0 : ri) ∩ I) = {0}. Then I = (0 : Θ0) is the unique minimal ideal of N . In

particular, (0 : Θ0) contains a right identity element Ir and a direct summand as

a left ideal of N and N = (0 : Θ1) + (0 : Θ0) with J1/2(N ) ⊆ (0 : Θ1). If there is

another N -group Γ,on which N acts 0-primitively also, then Γ ≃N Γ1.

The article [46] considered properties of rings with involution. In particular, the

structure of 2-torsion-free rings with involution whose non-zero symmetric elements

do not annihilate each other.

Theorem 2.4.7. ([46], Theorem 3) Suppose S ′ has no zero divisors. Then R has

a unique maximal nilpotent ideal N satisfying:

(i). N ⊂ K

(ii). N 3 = 0

(iii). If xϵN , then x2 = 0

(iv). N contains all nil one-sided ideals of R.
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(v). R|N is a 2-torsion-free ring with involution containing no nil ideals.

(vi). If S(R|N ) are the symmetric elements of R|N , then S ′(R|N ) has no zero

divisors.

This result deviates from our study in that whereas it focused on ideals of a ring,

our study involved ideals of a near-ring which can be a ring or not. Furthermore,

the ideals considered in this result were those of nilpotent nature but the ones

considered in our study are specifically Jordan in nature.

In [27] a generalization of near-rings is done for the case where the additive structure

is not necessarily associative. Locality of such near-rings were introduced and

algorithm for detection of locality generated. Such generalizations were used to

coin the definition of loop near-rings whose properties are studied thus;

Proposition 2.4.5. ([27], Proposition 1.7) Let N and M be loop near rings and

G = nGm an (N ,M)-bimodule. The following assertions hold: [(i).] K ⊆ G is a

left N-submodule if and only if K is a normal subloop in (G,+) and n(a+k)+K=na+K

hold for all k ∈ N [(ii).] K ⊆ G is a right M-submodule if and only if K is a nor-

mal subloop in (G,+) and MK ⊆ K [(iii).] I ⊆ G is a left N-subloop if and only

if I is a subloop in (G,+) and NI ⊆ I [(iv). I ⊆ G is a right M-subloop if and

only if I is a subloop in (G,+) and IM ⊆ I [(v).] If N is zero-symmetric, then

every left N-submodule in G is also an N-subloop.

In this case the author [27] majored on loop homomorphisms to analyse element-

by-element computations. It was also shown that lack of symmetry between the

element-wise characterizations of left N -modules and right M -modules are due to

absence of left distributivity. In our case though, we have not considered the loop

near-rings although we have considered homomorphisms similar to the ones applied

in [27]. A deeper study on homomorphisms on loop near rings [], lead the author to

consider isomorphisms generated by the homomorphisms in question. For instance
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given that ϕ : G 7→ H is a homomorphism of some (N,M)-bimodule, then this

homomorphism ϕ induces an isomorphism an isomorphism say, ϕ. Furthemore,

[] showed that such induced isomorphism determines a bijective correspondence

between subloops or submodules of the module in question. Our study on the con-

trary, does not consider isomorphisms related to loop near rings. In [70], the con-

cept of sandwich near-rings and that of centralizer near-rings were combined to get

a classification of zero symmetric 1-primitive near-rings. Such near-rings obtained

were dense subnear-rings of centralizer near-rings with sandwich multiplication.

The results [70] indeed generalize density theorem for zero symmetric 2-primitive

near-rings with identity to much bigger class of zero symmetric 1-primitive near-

rings with an identity.

Theorem 2.4.8. ([70], Theorem 4.3) Let N be a zero symmetric near-ring which

is not a ring. Then the following are equivalent:

(i). N is 1-primitive

(ii). There exists

(a). a group (Γ,+),

(b). a set X = {0} ∪X,⊆ Γ, X ̸= ∅, 0 /∈ X and 0 being the zero of Γ.

(c). S ≤ Aut(Γ,+), with S(x) ≤ X and S acting without fixed points on X1

(d). a function ∅ : Γ −→ X with ∅|x = id, ∅(0) = 0 and such that ∀ν ∈ Γ

∀s ∈ S : ∅(s(ν)) = s(∅(ν)), such that N is isomorphic to a dense subnear-

ring Ms of M0(X,Γ, ∅, S) where X,Γ, ∅, S additionally satisfy the following

property (p) :

The results of [70], heavily relied on equivalence relation and the annihilation

property of the near rings. In our study, on the contrary, w have not used annihi-

lators. Furthermore, we have not considered such dense sub-near rings. From the
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foregoing studies, it’s worth noting that little has been done regarding a character-

ization of near-rings via regular elements, Von Neumann inverses and their graphs.

In particular, local near-rings admitting Frobenius derivations have attracted not

much attention despite the fact that all rings are known to be near-rings and fur-

ther that commutation criteria on rings and near-rings can be canvassed through

derivations on either maximal, prime or Jordan ideals.
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CHAPTER THREE

ZERO SYMMETRIC LOCAL NEAR-RINGS OF CONSTRUCTION I

3.1 Introduction

In this chapter, we have used the elements finite dimensional near-module to con-

struct zero symmetric local near-ring of charpk : k = 1, 2. Furthermore, we have

characterized the classes of the near-rings constructed and also investigated the

commutation over the constructed near-rings using the properties of the Jordan

ideal, J(N ) and Frobenius derivation d, d1 and d2 admitted by N .

3.2 The Construction

Let R0 = GN (pkr, pk) be a Galois near-ring of order pkr and characteristic pk and

let M = ⟨ui⟩ : i = 1, · · ·h be an h−dimensional near-module of R0 so that the

ordered pair (N ,+) = (R0 ⊕M,+) is a group. On N , let

pkui =
k∏

i=1

ui = 0

and uir0 = (r0)
diui when k = 1, 2 where r0 ∈ R0, k, r are invariants and di a

Frobenius derivation associated with elements of M and given by; di(ui) = (ui)
p.

Let J be a near-ideal of M satisfying the condition that whenever ui, uj ∈ J , we

have ui ◦ uj ∈ J or ui ◦ uj = 0. If λi are any units of R0, then we can see that

the elements of N = R0 ⊕ M are of the form: x = r0 +
∑h

i=1 λiui. In fact, if

x = r0 +
∑h

i=1 αiui and y = s0 +
∑h

i=1 βiui are any two elements of N , then we

have their product as:
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x · y =
(
r0 +

h∑
i=1

αiui

)
·
(
s0 +

h∑
i=1

βiui

)

= r0s0 +
h∑

i=1

{
βi(r0 + pkR0)

di + αi(s0 + pkR0)
di
}
ui. (3.2.1)

Theorem 3.2.1. The triplet, (N ,+, ·) with the product given in construction

(3.2.1) is a left (respective right) local near-ring.

Proof. Since (N ,+) is a group, we only show that (N , ·) is a semi group and

that the left(right) distributive law holds on N . Let x, y, z ∈ N be defined by:

x = r0 +
∑h

i=1 αiui, y = s0 +
∑h

i=1 βiui, z = k0 +
∑h

i=1 γiui where α, β, γ ∈ R∗
0 or

αi, βi, γi ∈ pkR0, then,(
r0 +

∑h
i=1 αiui

){
(s0 +

∑h
i=1 βiui)(k0 +

∑h
i=1 γiui)

}

=
(
r0 +

h∑
i=1

αiui

)({
s0k0 +

h∑
i=1

(
γi(s0 + pR0)

di + βi(k0 + pR0)
di
)}

ui

)
= r0s0k0 + r0

( h∑
i=1

{
γi(s0 + pR0)

di + βi(k0 + pR0)
di
}
ui

)
+

h∑
i=1

αiui

(
s0k0 +

h∑
i=1

{
γi(s0 + pR0)

di + βi(k0 + pR0)
di
})

= r0s0k0 +
h∑

i=1

{
γi(r0 + pR0)

di + αi(s0 + pR0)
di + βi(k0 + pR0)

di
}
ui

= r0s0 +
h∑

i=1

{
βi(r0 + pR0)

di + αi(s0 + pR0)
di
}
ui(k0 +

h∑
i=1

(γiui)

=
(
(r0 +

h∑
i=1

αiui)(s0 +
h∑

i=1

βiui)
)(

k0 +
h∑

i=1

γiui

)
.

Thus, the multiplication given by the construction is associative.
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Next,
(
r0 +

∑h
i=1 αiui

){
(s0 +

∑h
i=1 βiui) + (k0 +

∑h
i=1 γiui)

}

=
(
r0 +

h∑
i=1

αiui

){
(s0 + k0) +

h∑
i=1

(βi + γi)ui)
}

= r0s0 + r0k0 +
h∑

i=1

{
(ro + pR0)βi + αi(s0 + pR0)

di
}
ui

+
h∑

i=1

{
(ro + pR0)γi + αi(k0 + pR0)

di
}
ui

= r0s0 +
h∑

i=1

{
(r0 + pR0)βi + αi(s0 + pR0)

di
}
ui + r0k0

+
h∑

i=1

{
(r0 + pR0)γi + αi(k0 + pR0)

di
}
ui

=
(
r0 +

h∑
i=1

αiui

)
·
(
s0 +

h∑
i=1

βiui

)
+
(
r0 +

h∑
i=1

αiui

)
·
(
k0 +

h∑
i=1

γiui

)
,

the desired left distributive law.

Remark 3.2.1. Whenever di = iN the identity map, then, N = R ⊕ M is a

commutative near-ring with identity (1, 0, ..., 0)

Proposition 3.2.1. The Frobenius derivation d : N → N is an endomorphism

whenever u1−p + v1−p = 1 for any u, v ∈ N .

Proof. Let N constructed be a local near-ring with unity, then by

Bezout’s Theorem, for some non-zero divisors u, v ∈ N , u1−p + v1−p = 1 holds.

Now, from the construction, R0 = GN (pk, pk) is a maximal subset of N , the

characteristic of R0 coincides with the characteristic of N , thus pku = 0, k =

1, 2 ∀ u ∈ N . Let u = r0 +
∑h

i=1 αiui, and v = s0 +
∑h

i=1 βiui, then clearly u, v are
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in N and by definition of our derivation; d(u) = up. But,

d(uv) = d(u)v + ud(v) = upv + uvp

= up(v + u1−pvp)

= up(v1−p + u1−p︸ ︷︷ ︸
1

)vp = upvp.

Thus, d(uv) = upvp = d(u)d(v).

Next,

d(u+ v) = (u+ v)p

=

p∑
i=1

 p

i

up−ivi

=

 p

0

upv0 +

 p

1

up−1v + · · ·+

 p

p

u0vp

= up + pup−1v + · · ·︸ ︷︷ ︸
0

+vp = up + vp = d(u) + d(v).

The next result presents a characterization of the direct products of classes of the

near-rings constructed via matrix ring type near-rings.

Theorem 3.2.2. Let {Ni} = {N1,N2, · · · ,Nh} be a family of classes of the near-

rings constructed and define N1 = R0 ⊕ M1, N2 = R0 ⊕ M1 ⊕ M2, · · · ,Nh =

R0 ⊕M1 ⊕ · · · ⊕Mh where M1 =< u1 >,

M2 =< u1, u2 >, · · · ,Mh =< u1, · · · , uh > and T =
∏h

i=1Ni be their direct prod-

ucts. Then, for any n ≥ 1, the rings Mn(T ) and

S =
∏h

i=1Mn(Ni) are isomorphic.

Proof. Let n ≥ 1, Θ = Mn(T ), Ω =
∏h

i=1Mn(Ni). For any
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A = [ars]n×n ∈ Θ, let ars =
∏h

i=1 airs ∈ T for any r, s ∈ {1, · · · , n}. Now, for each

i ∈ {1, · · · , h}, let Ai = [ars]n×n ∈ Mn(Ni), then, it is easy to verify that the map

f : Θ → Ω with f(A) =
∏h

i=1 Ai is an additive group isomorphism. To see that f

is indeed a near-ring homomorphism, let B = [brs]n×n ∈ Θ and set AB = C, then

C = [crs]n×n ∈ Θ where,

crs =
n∑

t=1

( h∏
i=1

airt

)( h∏
i=1

birt

)
=

h∏
i=1

( n∑
t=1

airtbits

)
∈ T .

Hence, cirs =
∑n

t=1 airtbits, : 1 ≤ i ≤ h, r, s ∈ {1, · · · , n}. Thus, by definition,

f(C) =
∏

i Ci where

Ci = [cirs]n×n = [
n∑

t=1

airtbits]n×n ∈ Mn(Ni).

Dually,

f(A)f(B) =
h∏

i=1

(AiBi) =
∏
i

(
[airs][bits]

)
=

∏
i

[ n∑
t=1

airsbits

]
∈ Ω.

Thus, f(AB) = f(A)f(B), as required.

3.3 Jordan Ideal and Commutation of N via the Frobenius Derivation

We investigate the commutation over the constructed N using the properties of

the Jordan ideal, J(N ) and the Frobenius derivations d, d1 and d2 admitted by N .

In the sequel, the following results hold:

Theorem 3.3.1. Let the Jordan ideal J(N ) of N be of the form:

J(N ) = (0)⊕
∑h

i=1 αiui and
(
J(N )

)2

= (0), then the near-ring constructed has a

2-nilpotent radical.

Proof. Suppose u ∈ N with u = r0 +
∑h

i=1 αiui and from the construction of N ,

we have that pkui = 0 for any prime p with k = 1, 2, so,
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2u = 2(r0 +
∑h

i=1 αiui) = 0, implies that u = r0 +
∑h

i=1 αiui ̸= 0, necessarily, thus

N is zero-symmetric but non-2-torsion free. Now, let d : N → N be an identity

Frobenius derivation obeying the product on N , then the anti-commutator of u

and itself is u ◦ u and given by:

(
r0 +

h∑
i=1

αiui

)
◦
(
r0 +

h∑
i=1

αiui

)
=

{(
r0 +

h∑
i=1

αiui

)(
r0 +

h∑
i=1

αiui

)}
+

{(
r0 +

h∑
i=1

αiui

)(
r0 +

h∑
i=1

αiui

)}
= 2

{(
r0 +

h∑
i=1

αiui

)(
r0 +

h∑
i=1

αiui

)}
= 2

(
r20 +

h∑
i=1

2
(
(r0 + pR0)

d
)
αiui︸ ︷︷ ︸

∈N

)
= 0 ∈ J(N ).

Next, since the char R0 = charN = pk; k = 1, 2, it is immediate that

2
(
r20 +

h∑
i=1

2
(
(r0 + pR0)

d
)
αiui︸ ︷︷ ︸

∈N

)
= 2r20 + 2

h∑
i=1

2
(
(r0 + pR0)

d
)
αiui

= 0⊕
h∑

i=1

αiui ∈ J(N ).

So J(N ) ∼= (0)⊕
∑h

i=1 αiui.

Finally, since 2
{(

r0 +
∑h

i=1 αiui

)(
r0 +

∑h
i=1 αiui

)}
is in J(N ),

(
2
{(

r0 +
h∑

i=1

αiui

)(
r0 +

h∑
i=1

αiui

)})2

=
(
2
(
r20 +

h∑
i=1

2
(
(r0 + pR0)

d
)
αiui︸ ︷︷ ︸

∈N

))2

= 0.

Hence the required condition
(
J(N )

)2 ∼= (0).
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Claim 3.3.1. Let N = R0 ⊕M be the near-ring constructed in (3.2.1). Since

pkui =
∏h

i=1 ui = 0; k = 1, 2, it means that if k = 2, and R0 = {0} then u2 = 0 so

that uNu = 0. So, N is said to be quasi-3 prime near ring of characteristic p or

p2.

Next, we investigate some commutativity properties of N .

Proposition 3.3.1. Let N be the near-ring of the construction and J(N ) be its

Jordan ideal. Then J(N ) =
{
0 +

∑h
i=1 αiui

}
⊆ C(N ).

Proof. By definition of center, we have that for all
(
s0 +

∑h
i=1 βiui

)
∈ N

C(N ) =
{
r0 +

h∑
i=1

αiui :
(
r0 +

h∑
i=1

αiui

)(
s0 +

h∑
i=1

βiui

)}
=

{(
s0 +

h∑
i=1

βiui

)(
r0 +

h∑
i=1

αiui

)}
.

If J(N ) = (0) we are done because, trivially 0 ∈ C(N ) and thus

J(N ) ⊆ C(N ). Otherwise, let w ∈ J(N ) and v ∈ N , with

w = 0 +
∑h

i=1 αiui and v = s0 +
∑h

i=1 βiui, then

wv =
(
0 +

h∑
i=1

αiui

)(
s0 +

h∑
i=1

βiui

)
= 0 +

h∑
i=1

{
βi(0 + pkR0)

di + αi(s0 + pkR0)
di
}
ui ∈ J(N ),

and

vw =
(
s0 +

h∑
i=1

βiui

)(
0 +

h∑
i=1

αiui

)
= 0 +

h∑
i=1

{
αi(s0 + pkR0)

di + βi(0 + pkR0)
di
}
ui ∈ J(N ).

Since the usual addition is commutative on N , we see that
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wv = vw ∈ J(N ) and thus w =
(
0 +

∑h
i=1 αiui

)
∈ J(N ) is also a member of

C(N ), which clears the proof. Thus, J(N ) ⊆ C(N ).

Claim 3.3.2. Given that J(N ) ⊆ C(N ), N is a commutative near-ring.

Theorem 3.3.2. Let J(N ) ̸= (0) be the Jordan ideal of the non-2-torsion free quasi

3-prime near-ring N constructed. Let d : N → N be the multiplicative Frobenius

derivation of the construction 3.2.1, such that d(J(N )) = 0, then either d = 0 or{
0 +

∑h
i=1 αiui

}
⊆ C(N ).

Proof. If d = 0, we are done. If d ̸= 0, then the elements of J(N ) commute under

the multiplication on N . Therefore,

C(J(N )) ∩ C(N ) =
{
0 +

h∑
i=1

αiui

}
.

So (0 +
∑h

i=1 αiui) ∈ C(N ) and
{
0 +

∑h
i=1 αiui

}
⊆ C(N ).

Theorem 3.3.3. Let J(N ) ̸= (0) be the Jordan ideal of the non-2-torsion free

quasi 3-prime near-ring N = R0 ⊕ M. Let d : N → N be the multiplicative

Frobenius derivation of the construction 3.2.1. If u, v, w ∈ N and r0, s0, k0 ∈ R0,{
(r0+pR0)

dγi+(s0+pR0)
dβi+(k0+pR0)

dαi

}
⊆ Ann(M), then d(uvw) = d(r0s0k0).

Moreover, (
d(uv)

)
w =

(
d(u)v + ud(v)

)
w = d(u)vw + ud(v)w.

Proof. Let u, v, w ∈ N ,

u = r0 +
h∑

i=1

αiui, v = s0 +
h∑

i=1

βiui, w = k0 +
h∑

i=1

γiui
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so,

d(uvw) = d
(
r0s0k0 +

h∑
i=1

{
(r0 + pR0)

dγi + (s0 + pR0)
dβi + (k0 + pR0)

dαi︸ ︷︷ ︸
σ

}
ui

)
= d

(
r0s0k0 + σui

)
=

(
r0s0k0 + σui

)p

=
(
r0s0k0

)p

= d
(
r0s0k0

)
.

Next, case (i)

d(uvw) = d(uv)w + uvd(w) =
(
d(u)v + ud(v)

)
w + uvd(w)

=
(
upv + uvp

)
w + uvwp = upvw + uvpw + uvwp.

Also, case (ii)

d(uvw) = d(u)vw + ud(vw) = d(u)vw + u
(
d(v)w + vd(w)

)
= d(u)vw + ud(v)w + uvd(w) = upvw + uvpw + uvwp

From, (i) and (ii), it follows that

(
d(uv)

)
w =

(
d(u)v + ud(v)

)
w = d(u)vw + ud(v)w.

Theorem 3.3.4. Let J(N ) be the non-zero Jordan ideal of N . Suppose d1 : N →

N and d2 : N → J(N ) are two non-zero Frobenius derivations such that d2 com-

mutes on J(N ) and the commutators

[d1(u), d2(y)] = [u, y] where u ∈ N and y ∈ J(N ), then d1 ̸= 0 on J(N ) and N is

commutative.

Proof. We show that N is indeed commutative iff [u, y] = 0, ∀y ∈ J(N ) whenever
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the Frobenius map d1 ̸= 0 on J(N ). Let u ∈ N and y ∈ J(N ). Since the ideal

J(N ) is a subset of N , yu ∈ N and yu ∈ J(N ). Now, [d1(u), d2(y)] = [u, y] for

all u ∈ N and y ∈ J(N ). Let x = yu for some x ∈ N . Then [x, y] = [yu, y] = y[u, y].

Therefore [d1(yu), d2(y)] = [yu, y] = y[u, y]. But by definition of commutator, we

see that

[d1(yu), d2(y)] = d1(yu)d2(y)− d2(y)d1(yu) = y[d1(u), d2(y)]

= y[u, y], ∀y ∈ J(N), u ∈ N .

From

[d1(yu), d2(y)] = d1(yu)d2(y)− d2(y)d1(yu), (3.3.2)

we use d1 and apply the definition of the multiplicative Frobenius derivation of the

construction of N on the right hand side of equation (3.3.1) above to get,

[d1(yu), d2(y)] =
(
yd1(u) + d1(y)u

)
d2(y)− d2(y)

(
yd1(u) + d1(y)u

)
(3.3.3)

= yd1(u)d2(y) + d1(y)ud2(y)− d2(y)yd1(u)− d2(y)d1(y)u

= yd1(u)d2(y)− yd2(y)d1(u),

because of the commuting property of d2 on J(N ) and thus intuitively, equation

(3.3.2) implies that,

d1(y)ud2(y)− d2(y)d1(y)u = {0} ⇒ d1(y)ud2(y) = d2(y)d1(y)u (3.3.4)

Finally, consider some linear combination of u as u = vm where

u, v,m ∈ N and by quasi-3-primeness of N together with the condition that
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d1(y)ud2(y)− d2(y)d1(y)u = {0}, we see that,

d1(y)vmd2(y)−d2(y)d1(y)vm = {0} ⇒ d1(y)N [d2(y),m] = {0}∀y ∈ J(N ),m ∈ N .

(3.3.5)

Thus d1(y) = 0 or d2(y) ∈ C(N ) by quasi-3 primeness of our N .

If d1(y) ̸= 0 then d2(y) ∈ C(N ) in which case [u, y] = 0 ∀ y ∈ J(N ) which implies

that y ∈ C(N ). We therefore conclude that N is commutative.

The following results are useful in the next part:

Definition 3.3.1. Given a zero symmetric near-ring N , we say that N is integral

if xy = 0 implies that x = 0 or y = 0, xy ∈ N . We notice that N = R0 ⊕ U

constructed above have zero divisors, thus non-integral and the zero divisors satisfy

an ascending (reverse descending) chain conditions on their annihilators. The set

{x ∈ N|fy ∈ N\0 : yx = 0} = {x ∈ N|fy ∈ N : xy = 0}

⇔ ZR(N )

= ZL(N ) = J(N )

where ZR(N ) are right zero divisors and ZL(N ) are left zero divisors and J(N ) is

the Jordan ideal.

Theorem 3.3.5. Let N be the zero symmetric near-ring of the construction (3.2.1).

Since N has the trivial and one maximal ideal, it is descending so that NZR =

J(N ) and if m /∈ ZR(N ), then Nm = N .

Proof. Forward inclusion (⊆) : Let m ∈ N ∗. Then any

mi ∈ N \ZR∀i ∈ N. The descending chain conditions on the ideals of N guarantee

that Nm ⊇ Nm2 ⊇ ... terminates at some k-step say such that Nmk = Nmk+1 :

k ∈ N and thus

Nmk = Nmk+1 = Nm(mk).
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This means that for any x ∈ N there exists some i ∈ N such that imk = (im)mk.

Since mk /∈ ZR(N ) = J(N ) we get that

k = im ⇒ N ⊆ Nm. The reverse inclusion is immediate, that is

Nm ⊆ N . Next, let y ∈ ZR(N ) and k ∈ N . If k ∈ ZR(N ), then clearly ky ∈

ZR(N ). If k ∈ N ∗, then Nk = N and since y ∈ ZR(N), there is an element

j ∈ N \ {0} such that jy = 0. Thus j = mk for some non-zero m ∈ N and

consequently jy = m(ky) = 0..

∴ ky ∈ Zr(N ) = J(N ). From m(ky) = 0 ⇒ NZR(N ) = J(N ) as required.

Theorem 3.3.6. Let {N} be the set of near-rings of our construction and z ∈

ZR(N ) \ {0}. Since every element of ZR(N ) is nilpotent,

J2(N ) = ZR(N )

where J2(N ) is the Jacobson’s radical of type 2 .

Proof. Suppose N = GN (pk, pk) ∼= GNF (pkr), r = 1, k = 1 then we know that

Zr(N0) = {0} and each member of ZR(N0), which is the only member 0 has an

index of nilpotence of 2. The statement is clear because N is a near-field. On the

other hand, let N = R0 ⊕ U be non-integral and let z ∈ ZR(N ) \ {0}. Then there

is a natural number k such that zk = 0 but zk−1 ̸= 0. Indeed k ≥ 2 in this case.

Then z ∈ (0 : z) and (0 : z) ≤ Zr(N ). But (0 : z) is a nil-ideal and therefore

contained in J2(N ). Thus ZR(N ) = J2(N )

Remark 3.3.1. Let L = {z ∈ N | N z ̸= N}. Then,

(i). L is an N - subgroup.

(ii). N is Local.

Proof. Let (ii)⇒ (i): If N is Local then L = ZR(N ) by definition : If z ∈ ZR(N )
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then zn ∈ ZR(N ) : n ∈ Nn ≥ 2. Therefore z must be nilpotent, otherwise, the

semi-group generated by z contains a non-zero idempotent.

Let N ∗ be the set of all the invertible elements with respect to near-ring

multiplication given, so N ∗ = N \ ZR(N ). We want to find a lower bound for

| N ∗ |=|< α > ×1 + J(N ) | where |< α >|= φ(pr − 1) as a consequence obtaining

an upper bound for | ZR(N ) |.

3.4 Some Graph Morphisms of Γ(N )

In this section, we determine some aspects of graph morphisms over N in construc-

tion (3.2.1).

Proposition 3.4.1. Let N be a local near ring of characteristic p, defined with

respect to multiplication in construction (3.2.1). Then,

|Aut(Γ(N ))| =


(phr − 1)! or.

(phr − 2)!
∑hr

i=1 φ(p
i) or

1
phr−1φ(p

hr)(phr − 2)!
∑hr

i=1 p
hr−i.

Proof. From the construction, we have that R0 = GN (pr, p).

Let K = R0/pR0 be a near-field. Suppose U = Kh is an R0-module gener-

ated by {u1, u2, u3, · · · , uh}. Therefore N = R0 ⊕ U is an additive group. But

ZL(N ) = R0u1 ⊕ R0u2 ⊕ · · · ⊕ R0uh and every element in ZL(N )∗ is of the form

(0, a1, a2, · · · , ah) so that the product of every pair (0, a1, a2, · · · , ah), (0, b1, b2, · · · , bh) ∈

ZL(N )∗ is identically zero, indicating that every pair of elements of zero divisor

graph of N are joined by an edge. So |V (Γ(N ))| = |Z(N )∗| = phr − 1 so that

Aut(Γ(N )) ∼= Sphr−1 and the first part of the results follows.

Next,
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|Aut(Γ(N ))| = (phr − 1)! = (phr − 1)(phr − 2)! and

hr∑
i=1

φ(pi) = φ(p1) + φ(p2) + φ(p3) + · · ·+ φ(phr)

= (p− 1) + p(p− 1) + p2(p− 1) + p3(p− 1) + · · ·+ phr−1(p− 1)

= (p− 1)(1 + p+ p2 + p3 + · · ·+ phr−1)

= (p− 1)(
phr − 1

p− 1
) = phr − 1.

Dividing |Aut(Γ(N )| by
∑hr

i=1 φ(p
i) gives the relation

|Aut(Γ(N ))| = (phr − 2)!
hr∑
i=1

φ(pi).

Finally,

|Aut(Γ(N ))| = (phr − 1)! = (phr − 1)(phr − 2)!

= (p− 1)
hr∑
i=1

phr−i(phr − 2)!

and φ(phr) = phr − phr−1 = phr−1(p − 1). On dividing |Aut(Γ(N ))| by φ(phr) and

expressing the equation in terms of |Aut(Γ(N ))| establishes the relation

|Aut(Γ(N ))| = 1

phr−1
φ(phr)(phr − 2)!

hr∑
i=1

phr−i.

Proposition 3.4.2. Let N be a local near ring of characteristic p, with respect to

the multiplication in construction (3.2.1). Then,

|Aut(Γ(N ))| =


(phr − 3)!

∑
v∈V deg(v).

2(phr − 3)!|E|.
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Proof. Note that, |Aut(Γ(N ))| = (phr − 1)! is well known and the sum of degrees

of zero divisor graph of N is (phr − 1)(phr − 2) accordingly. Since (phr−1)!
(phr−1)(phr−2)

=

(phr − 3)!, it follows that

|Aut(Γ(N ))| = (phr − 3)!
∑
v∈V

deg(v).

Also, |Aut(Γ(N ))| = (phr − 1)! and as such, the sum of edges of Γ(N ) is 1
2
(phr −

1)(phr − 2). Since (phr−1)!
1
2
(phr−1)(phr−2)

= 2(phr − 3)!, straight forward argument gives;

|Aut(Γ(N ))| = 2(phr − 3)!|E|.

Proposition 3.4.3. Let N be a class of near ring constructed, of characteristic p

such that p ∈ J (N ). Then, |V (Γ(N ))| =


1

phr−2

∑
v∈V deg(v).

2|E|
phr−2

.

Proof. By definition, |Z(N )∗| = |V (Γ(N ))| = phr − 1. The sum of the degrees of

Γ(N ) is (phr − 1)(phr − 2). Since (phr−1)
(phr−1)(phr−2)

= 1
(phr−2)

the first part follows.

Next, the fact that the sum of edges of Γ(N ) is 1
2
(phr − 1)(phr − 2) follows from

the previous proposition while

|Z(N )∗| = |V (Γ(N ))| = phr − 1

is clear. Now, writing (phr−1)
1
2
(phr−1)(phr−2)

= 2
(phr−2)

clears the proof.

Proposition 3.4.4. Let N be near ring constructed of characteristic p2. Then,

|Aut(Γ(N ))| =


(p(h+1)r − 1)!

(p(h+1)r − 2)!
∑(h+1)r

i=1 φ(pi)

1
p(h+1)r−1φ(p

(h+1)r)(p(h+1)r − 2)!
∑(h+1)r

i=1 p(h+1)r−i.
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Proof. Define the Galois subnear-ring by R0 = GR(p2r, p2) and

K = R0/pR0. Let U = Kh be an R0-module generated by {u1, u2, u3, · · · , uh} and

N = R0 ⊕ U is an additive group.

Clearly, ZL(N ) = pR0 ⊕ R0u1 ⊕ R0u2 ⊕ · · · ⊕ R0uh and the product of every pair

of elements in ZL(N ) is zero. Thus |N | = |R0||U | = p(h+2)r ⇒ |ZL(N )| = p(h+1)r

and |V (Γ(N ))| = |ZL(N )∗| = p(h+1)r − 1. Since every vertex of (ZLN )∗ is adja-

cent to all the other vertices of the zero divisor graph of N , so Aut(Γ(N )) must

permute all the symmetries of Γ(N ) independently so that Aut(Γ(N )) ∼= Sp(h+1)r−1.

Next, |Aut(Γ(N ))| = (p(h+1)r−1)! = (p(h+1)r−1)(p(h+1)r−2)! and
∑(h+1)r

i=1 φ(pi) =

p(h+1)r − 1, so that |Aut(Γ(N ))| = (p(h+1)r − 2)!
∑(h+1)r

i=1 φ(pi).

Finally,

|Aut(Γ(N ))| = (p(h+1)r − 1)!

= (p(h+1)r − 1)(p(h+1)r − 2)!

= (p− 1)

(h+1)r∑
i=1

p(h+1)r−i(p(h+1)r − 2)!

and φ(p(h+1)r) = p(h+1)r − p(h+1)r−1 = p(h+1)r−1(p− 1).

Giving the relation in terms of |Aut(Γ(N )| yields,

|Aut(Γ(N ))| = 1

p(h+1)r−1
φ(p(h+1)r)(p(h+1)r − 2)!

(h+1)r∑
i=1

p(h+1)r−i.

Proposition 3.4.5. Let N be a near ring of characteristic p2, with respect to

multiplication in construction (3.2.1). Then

|V (Γ(N ))| =


1

p(h+1)r−1φ(p
(h+1)r)

∑(h+1)r
i=1 p(h+1)r−i.∑(h+1)r

i=1 φ(pi).
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Proof.

|V (Γ(N ))| = p(h+1)r − 1 = (p− 1)(p(h+1)r−1 + p(h+1)r−2 + p(h+1)r−3 + · · ·+ 1)

= (p− 1)

(h+1)r∑
i=1

p(h+1)r−i.

Also,

φ(p(h+1)r) = p(h+1)r − p(h+1)r−1 = p(h+1)r−1(p− 1),

so that

|V (Γ(N ))| = 1

p(h+1)r−1
φ(p(h+1)r)

(h+1)r∑
i=1

p(h+1)r−i.

Next,

|V (Γ(N ))| = (p(h+1)r − 1)

and
∑(h+1)r

i=1 φ(pi) = p(h+1)r − 1. Thus,

|V (Γ(N ))| =
(h+1)r∑
i=1

φ(pi).

Lemma 3.4.1. Let N be a near ring of characteristic p2, with respect to the multi-

plication in construction (3.2.1). Then,|E| = 1
2
(p(h+1)r−1)(p(h+1)r−2). Moreover,

∑
v∈V

deg(v) = (p(h+1)r − 1)(p(h+1)r − 2).

The lemma above will be used in the proof of the next result.

Proposition 3.4.6. Let N be the near ring constructed, then,

|Aut(Γ(N ))| =


(p(h+1)r − 3)!

∑
v∈V deg(v).

2(p(h+1)r − 3)!|E|.
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Proof. Evidently,

|Aut(Γ(N ))| = (p(h+1)r − 1)!

and

|Z(N )∗| = |V (Γ(N ))| = (p(h+1)r − 1).

The sum of degrees of Γ(N ) is (p(h+1)r − 1)(p(h+1)r − 2).

Since (p(h+1)r−1)!

(p(h+1)r−1)(p(h+1)r−2)
= (p(h+1)r − 3)!, it follows that |Aut(Γ(N ))| = (p(h+1)r −

3)!
∑

v∈V deg(v).

Also, |Aut(Γ(N ))| = (p(h+1)r − 1)!

and |Z(N )∗| = |V (Γ(N ))| = (p(h+1)r − 1). But the sum of the edges of Γ(N ) is

1
2
(p(h+1)r − 1)(p(h+1)r − 2).

Since (p(h+1)r−1)!
1
2
(p(h+1)r−1)(p(h+1)r−2)

= 2(p(h+1)r − 3)! we have |Aut(Γ(N ))| = 2(p(h+1)r −

3)!|E|.

Proposition 3.4.7. Let N be a a near ring of characteristic p2, with respect to

the multiplication in construction (3.2.1) . Then,

|V (Γ(N ))| =


1

p(h+)r−2

∑
v∈V deg(v).

2|E|
p(h+1)r−2

.

Proof. Let |Z(N )∗| = |V (Γ(N )| = p(h+1)r − 1 and the sum of the degrees of

Γ(N ) is (p(h+1)r − 1)(p(h+1)r − 2). Since (p(h+1)r−1)

(p(h+1)r−1)(p(h+1)r−2)
= 1

(p(h+1)r−2)
we have

1
p(h+)r−2

∑
v∈V deg(v).

Next, |Z(N )∗| = |V (Γ(N )| = p(h+1)r − 1 and the sum of edges of Γ(N ) is

1
2
(p(h+1)r−1)(p(h+1)r−2). Since (p(h+1)r−1)

1
2
(p(h+1)r−1)(p(h+1)r−2)

= 2
(p(h+1)r−2)

we get |V (Γ(N ))| =
2

p(h+1)r−2
|E|.
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CHAPTER FOUR

ZERO SYMMETRIC LOCAL NEAR-RINGS OF CONSTRUCTION

II

4.1 Introduction

This chapter contains the construction of zero symmetric local near-rings of charpk :

k ≥ 3 using the elements of the sub near-modules obtained from Galois near-rings.

Furthermore, the properties of regular elements of Von Neumann are investigated.

4.2 The Construction

Let R0 = GN (pkr, pk). Let i = 1, ..., h and ui ∈ ZL(N ) and M =< ui >.

Then,

N = R0 ⊕M = R0 ⊕
h∑

i=1

(R0/pR0)
i

is a group with respect to addition.

On N , let

(r0, r1, ..., rh)(s0, s1, ..., sh) = (r0s0, r0s1 + r1s0, ..., r0sh + rhs0)
δ (4.2.1)

where δ is the identity Frobenius automorphism. The multiplication turns N into

a local zero symmetric near-ring with identity (1, 0, ..., 0).

Remark 4.2.1. By remark 4.2 of construction (4.2.1), N = R0 ⊕M is commu-

tative since δ is the identity Frobenius automorphism.

Proposition 4.2.1. Consider N = GN (pkr, pk) where k ≥ 3. Then, charN = pk
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and:

(i). ZL(N ) = pR0 ⊕
∑h

i=1(Ro/pRo)
i

(ii). (ZL(N ))k−1 = pk−1R0 ̸= (0)

(iii). (ZL(N ))k = (0).

Proof. Char GN (pkr, pk) = charN and idN = idGN (pkr,pk).

Let a ∈ R0 and a not contained in pRo and let s ∈ ZL(N ).

Then

(a+ s)pr = apr + s′ : (s′ ∈ ZL(N ))

= (a+ s′′)p
r−1 : (s′′ ∈ ZL(N )).

But (a + s′′)p
r−1 ≡ 1 + s′′′ with s′′′ ∈ ZL(N ) and (1 + s′′′)p

k−1 = 1. Hence (a + s)

is regular and not zero.

Since | ZL(N ) |= p(h+k−1)r and

| (R0/pR0)
∗ + ZL(N ) |= (pr − 1)(p(h+k−1)r), it follows that

(R0/pR0)
∗+ZL(N ) = N −ZL(N ) and hence all the elements outside ZL(N ) \ {0}

are regular.

4.3 Regular Elements Determined by Von Neumann Inverses

This section characterizes the properties of regular elements, structures and orders

as well as the counting of Von Neumann and Reflexive inverses of the near rings of

constructions (3.2.1) and (4.2.1).

In the zero-symmetric near-rings considered in this thesis, Von-Neumann regular
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elements are determined by their inner inverses. Let R(N ) be the set of regular

elements of N , for elements

x, y ∈ R(N ), x = y ⇔ I(x) = I(y) where I denotes the set of inner inverses.

Remark 4.3.1. A regular element x ∈ R(N ) may have more than one Von-

Neumann inverse. However, for the classes of near-rings considered in this study,

the Von-Neumann inverses are unique.

Definition 4.3.1. An element y ∈ N is an outer inverse of x ∈ R(N ) if and only

if yxy = y and whenever y ∈ I(x), then yxy is both inner and outer. Indeed y ∈ N

is called reflexive inverse of x ∈ R(N ) if it is both inner and outer.

Let Ref(a) be the set of all reflexive inverses of x ∈ R(N ), I(x) be the set of

inner inverse of x ∈ R(N ), then, the following results hold:

Proposition 4.3.1. Let N be a class of near-ring of the construction (4.2.1). For

x ∈ N and x0 ∈ I(x), we have that:

I(x) = {x0 + α− x0xαxx0 | α ∈ N}.

Proof. From the construction, if x ∈ N , then

x = (r0 + (
h∑

i=1

r0 + pr
′
)r

′ ∈ GN (pkr, pk)/pGN (pkr, pk)).

So the definition of the multiplication in N gives the desired result.

Denote by l(x) and r(x) the left and the right annihilator of an element x ∈ N .

So the inner annihilator of x ∈ N is:

Iann(x) = {y ∈ N : xyx = 0}.

Theorem 4.3.1. Let N be the near ring of construction (4.2.1). If a ∈ R(N ),

then for any b ∈ N , bI(a)b is a singleton set if and only if b ∈ Na ∩ aN .
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Proof. Suppose there exists x, y ∈ N such that b = xa = ay and let a0 ∈ I(a). We

then have that for any t ∈ N ,

b(a0 + t− a0ataao)b = (xaa0 + xat− xataa0)ay

= xay + xatay − xatay

= xay.

Thus the set bI(a)b = {xay} is singleton.

Conversely, suppose that bI(a)b = {ba0b}.

We then have: b(a0+ t−aoataa0)b = ba0b for any t ∈ N . This implies that for any

t ∈ N , we have:

b(t− a0ataa0)b = 0 (4.3.2)

Substituting (1− a0a)t for t in this equality yields b(1− a0ataa0)tb = 0 for any

t ∈ N . But N constructed is semiprime so that

b(1− a0a) = 0 ⇒ b = ba0a ∈ Na (4.3.3)

Similarly, substituting t by t(1− aa0) in the equality (i)

gives

b = aa0b ∈ aN (4.3.4)

Comparing (4.3.2) and (4.3.3), we conclude that b ∈ Na ∩ aN

Lemma 4.3.1. Let N be the near ring constructed and let b, d ∈ N such that b+d

is a Von Neumann regular element. Then the following are equivalent:

(i) bN ⊕ dN = (b+ d)N

(ii) N b⊕Nd = N (b+ d)
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(iii) bN b ∩ dN = {0} and N b ∩Nd = {0}.

The next result shows when I(a) ⊆ I(b) necessarily and sufficiently where

a, b ∈ N

Proposition 4.3.2. Let a, b ∈ R(N ). Then I(a) ⊆ I(b) if and only if bN ∩ dN =

{0} and N b ∩Nd = {0} where a = d+ b.

Proof. Let I(a) ⊆ I(b). Then by definition, there exists some x ∈ I(a) such that

bxb = b.

Now b ∈ Na ∩ aN .

Write b = αa = aβ where α, β ∈ N .

Then bI(a)a = b.

Next

bI(a)d = bI(a)a− bI(a)b

= b− bI(a)b = 0.

Consider now

dI(a)b = aI(a)b− bI(a)b

= αβ − bI(a)b

= b− b = 0.

We thus have bI(a)d = 0 and dI(a)b = 0 Then for any x ∈ I(a) we have;

b+ d = a = axa

= (b+ d)x(b+ d)

= bxa+ dxb+ dxd

= b+ 0 + dxd.
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This yields

dI(a)d = d (4.3.5)

To show that dN ∩ bN = {0}.

Let bx = dy ∈ bN ∩ dN .

Multiplying both sides of (4.3.4) by y on the right and using bx = dy yields,

dI(a)bx = dy.

But from above we have that dI(a)b = 0 and so dy = 0.

Similarly, we show that N b ∩Nd = {0}.

Let xb = yd ∈ N b∩Nd. Multiplying both sides of (4.3.4) on the left by y. We get:

ydI(a)d = yd. This proves that xbI(a)d = yd.

Since bI(a)d = 0, we obtain yd = 0, showing that N b ∩Nd = {0}.

Theorem 4.3.2. Let a, b ∈ R(N ). Then I(a) = I(b) if and only if a = b.

Proof. From the construction, N = ZL(N ) ∪ N ∗ ∪ {0}︸ ︷︷ ︸ . We can write a = b + d

with bN ∩dN = 0 and Nd∩Nd = 0. But (b+d)N = bN ⊕dN . Since I(a) = I(b),

we have that aI(b)a = {a} and bI(a)b = {b} and therefore it follows that Na = N b

and aN = bN which leads to aN = (b + d)N = bN ⊕ dN , giving d = 0. Hence

a = b as desired.

Next, we provide the analogue to the previous theorem by generalizing the case

to reflexive inverses:

Theorem 4.3.3. Let a, b ∈ R(N ). Then Ref(a) = Ref(b) if and only if a = b.

Proof. Let ao ∈ Ref(a) = Ref(b). Since a = 0 if and only if Ref(a) = 0, assume

that a, b ̸= 0.

Since bRef(a)b = bRe(b)b = b and Ref(a) = I(a)aI(a), we have that for any
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t ∈ N , b(a0 + t− a0ataao)a(a0 + t− aoataa0)b = b. Replacing t by (1− a0a)t and

noting that a(1− a0a) = 0,

we obtain successively

b(a0a+ (1− a0a)ta)(a0 + (1− a0a)t)b = b and

b(a0b+ (1− a0a)ta)(a0)b = b and so ba0b+ b(1− a0a)taa0)b = b.

Since ba0b = b gives b(1− a0a)taa0b = 0 ∀ t ∈ N , this leads to

aa0b(1− a0a)taa0b(1− a0a) = 0 ∀ t ∈ N .

But we are guaranteed of semi-primeness of N which then implies that

aa0b(1− a0a) = 0. Left multiplying by a0 ∈ Ref(a), we get that

a0b(1− a0a) = 0 and hence since a0 ∈ I(b), we conclude that b(1− a0a) = 0.

Therefore we obtain that N b ⊆ Na and Na ⊆ N b which implies that Na = N b.

Finally, Hartwig’s theorem gives us that there exist invertible elements u, v ∈ N

such that a = bu and b = av

4.4 Structures and Orders of Von-Neumann Regular Elements

Definition 4.4.1. Let (N ,+) be a group. The exponent of the group is the least

common multiple of all the orders of the group elements.

Remark 4.4.1. Let N be a finite near-ring with identity 1 and n be the exponent

of (N ,+). Then ord(1) = n.

Let Zn be the ring of integers modulo n. Then | Z∗
n |= φ(n), φ- being the Euler-Phi

function. We now give a generalization of this result to an arbitrary case:

Proposition 4.4.1. Let N be the near-ring from the classes of near-rings in con-

struction (3.2.1) and (4.2.1) and N ∗ be as obtained in the constructions. Let n be

the exponent of (N ,+) and φ be the Euler’s-Phi function. Then there is a subgroup

of order φ(n) contained in N ∗.
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Proof. We use the fact that the identity (1, 0, 0, ..., 0) ∈ N generates a subring of

N . Assume the usual (+) and the multiplication (.) defined on N . Consider the

cyclic group < 1, 0, 0, ..., 0 >, additively generated by 1 where 1 ≡ (1, 0, 0, ..., 0).

Then l.1 = 1 + 1 + ...+ 1︸ ︷︷ ︸ l − summands and k.1 = 1 + 1 + ...+ 1︸ ︷︷ ︸ k − summands

are two elements of < 1 >. Since 1 is an identity: (l.1)(k.1) = (lk.1) ∈< 1 >.

Thus S = (< 1 >,+, .) is a sub-near ring containing the identity. Indeed f : S −→

Zn : f(k.1) = [k]n is a near-ring isomorphism. Thus S ∼= Zn. Let S
∗ be the group

of units of S. It follows from the canonical isomorphism above that S∗ has φ(n)

invertible elements. Since S and N have the same identity elements, an element

y ∈ S : y−1 ∈ S implies that y−1 ∈ N .

∴ S∗ ⊆ N ∗ and S∗ is a subgroup of order φ(n).

Corollary 4.4.1. | R(N ) |= φ(n) + 1.

We recall some notions in Number Theory: Let N = Zpk . For each natural

number n, we have the following functions

φ(n) = {♯x : 1 ≤ x ≤ n gcd(x, n) = 1} w(n) = number of distinct primes dividing

n

τ(n) = number of the divisors of n and

σ(n) = sum of the divisors of n

Let p = 2 and k = 2 so that n = 4 ⇒ n = pk

Then φ(4) = 2, w(4) = 1, τ(4) = 3 and

σ(4) = 1 + 2 + 4 = 7.

Theorem 4.4.1. ([55], Theorem 2) Let p be a prime integer and k ∈ Z+ then

a ∈ GN (pk, pk) is regular if ap
k−pk−1+1 ∼= a(mod pk).

The element ap
k−pk−1+1 is a Von Neumann inverse of a

Example 4.4.1. Let N = Z4[x]⧸< x+ 1 >. Then N = {0, 1, 2, 3}.

From a ∈ R(N ) if and only if ap
k−pk−1+1 ≡ a(mod pk) gives:
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If a = 3̄, then, 3̄2
2−22−1+1 ≡ 3̄(mod 4) which implies that (3̄)3 ≡ 3̄(mod 4).

Thus 3̄ is a regular element and (3̄)3 is a Von-Neumann inverse. Therefore, Von-

Neumann inverses of 1̄, 3̄ are 1̄, 3̄ respectively.

Theorem 4.4.2. Let N = GN (pk, pk). Then,

V (pk) = pk − pk−1 + 1 = φ(pk) + 1.

Proof. Since N = GN (pk, pk) is zero-symmetric local, every element

a ∈ R(N ) is either 0 or a unit.

But | N ∗ |= pk−pk−1 and the zero element is unique, it follows from the arithmetic

function formula that:

V (pk) = pk − pk−1 + 1 = φ(pk) + 1.

Definition 4.4.2. Let x, y ∈ Z+. We say that x is a unitary divisor of y if x | y

and gcd(x, y
x
) = 1 and we write x∥y.

The number of regular elements in N can then be calculated using the unitary

divisors of an integer n =| N | .

Proposition 4.4.2. Let N = GN (pk, pk). Then V (N ) = Σx∥pkφ(x) and V (N)/φ(pk) =

Σx∥pk
1

φ(x)
.

Proof. In N above x = 1 and x = pk ≡ 0(mod pk).

By definition, φ(1) = 1. But φ(pk) = pk − pk−1 and

V (pk) = pk − pk−1 + 1

= φ(pk) + φ(1).

56



Moreover,

V (pk)

φ(pk)
=

pk − pk−1 + 1

pk − pk−1

= 1 +
1

pk − pk−1

=
1

φ(1)
+

1

φ(pk)
.

The summatory function:

K(pk) =
∑
x∥(pk)

V (x)

=
k∑

i=0

V (pi)

= V (1) +
k∑

i=1

V (pi)

= V (1) +
k∑

i=1

[(pi − pi−1) + 1]

= 1 + (p+ p2 + ...+ pk)− (1 + p+ p2 + ...+ pk−1) + k

K(pk) = pk + k.

Example 4.4.2. Consider N = GR(22, 22), then

V (22) =
∑
t||

φ(t)

= φ(1) + φ(4)

= 1 + 2 = 3.

Thus the number of regular elements are 3.

Theorem 4.4.3. Let N = GR(pk, pk) and σ(pk) be the sums of the divisors of pk.
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Then

σ(pk) =
k∑

i=0

piand

V (pk)σ(pk) = [pk − pk−1][
k∑

i=0

pi].

Proof. Clearly,

V (pk)σ(pk) = [pk − pk−1][
k∑

i=0

pi]

= pk(1− 1

p
+

1

pk
)(

k∑
i=1

pi)

= pk(1− 1

p
+

1

pk
)(1 + p+ p2 + ...+ pk)

= pk[1 + p+ p2 + ...+ pk − 1

p
− 1− p− ...pk−1 +

1

pk
+

1

pk−1
+

1

p2
+

1

p
+ 1]

= pk[1 + pk + p−2 + p−3 + ...+ p2−k + p1−k + pk]

= pk[1 + pk +
k∑

i=2

p−i]

= p2k[1 + p−k +
k∑

i=2

p−(k+i)]

which implies that

V (pk)σ(pk)

p2k
= 1 + p−k +

k∑
i=2

p−(k+i)

as required.

Theorem 4.4.4. Let N = GR(pk, pk). Then σ(pk) + φ(pk) ≤ pkτ(pk).

Proof. Let k = 1. Then σ(pk) = p+ 1 and φ(p) = p− 1 so that

σ(p) + φ(p) = 2p. Since p has only two divisors 1 and p, this implies that
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2p = p(pτ). Thus σ(p) + φ(p) = 2p. Now suppose that k > 1, then,

σ(pk) =
k∑

i=1

pi

and φ(pk) = pk − pk−1, so that

σ(pk) + φ(pk) = 1 + p+ ...+ pk + pk + pk−1

= 2pk + pk−2 + ...+ p+ 1 < (k + 1)pk.

But pk has (k + 1) divisors so that (k + 1)pk = pkτ(pk),

thus σ(pk) + φ(pk) < pkτ(pk).

Example 4.4.3. Let N = Z4[x]/ < x+ 1 >= GR(22, 22)

σ(22) + φ(22) ≤ 22τ(22)

⇒ σ(4) + φ(4) ≤ 4τ4

⇒ 7 + 2 ≤ 4× 3.

Thus the result of σ(pk) + φ(pk) < pkτ(pk) holds.

Proposition 4.4.3. Consider N = GR(pkr, pk), where kr = n > 1. Then

σ(pn) + V (pn) < pnτ(pn).

Proof. 1 + 1
p
+ 1

p2
+ ...+ pn < n = (n+ 1)− 1 = τ(pn)− 1.

Now

σ(pn)

pn
=

1 + p+ p2 + ...+ pn

pn
< τ(pn)− 1

⇒ σ(pn) < σpn[τ(pn)− 1]

= pnτ(pn)− pn.
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Since V (pn) < pn, it is clear that σ(pn)+V (pn) < pnτ(pn). However, if n = 1, then

σ(p) + V (p) > pτ(p). Let

N = Z2[x]/ < x2 + x+ 1 >: p = 2, r = 2, k = 1, n = kr > 1

= {0, 1, x, x+ 1}.

We notice that,

σ(p) = σ(2) = 1 + 2 = 3

V (p) = V (2) = 2

τ(p) = τ(2) = 2

⇒ σ(p) + V (p) > pτ(p)i.e.5 > 4.

But, if N = Z2[x]/ < x2 + x+ 1 >∼= GR(pkr, pk), k = 2, r = 2, p = 2,

σ(pk) = σ(4) = 2, V (4) = 4, pkτ(pk) = 4τ(4) = 4× 3 = 12.

Therefore σ(pk) + V (pk) < pkτ(pk)(6 < 12) which justifies the previous result.

Lemma 4.4.1. Let N = GN (pkr, pk) ⊕M where p is prime k and r are positive

integers and M is a h-dimensional near-module over N . Then if h = 0,

(i) R(N ) ∼= (1 + Z(N )) ∪ {0} and

(ii) | R(N ) |= (p(k−1)r)(pr − 1) + 1.

Proof. Let a ∈ R(N ) ∼= (1 + Z(N )) ∪ {0}. Then a is invertible or 0. But N is

local means that a is regular i.e. a ∈ R(N ).

Thus

R(N ) ⊆ [< a > ×(1 + Z(N ))] ∪ {0} (4.4.6)

Conversely, let a ∈ R(N ). Then by definition ∃ an element b ∈ R(N ) such that

a = a2b ⇒ a(1− ab) = 0.
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If a ∈ (N ∗) then 1− ab = 0 ⇒ ab = 1.

Hence b is a Von Neumann inverse of a. If a is not a member of N ∗ then ab is not

a member of N ∗, but ab = aabb = a2b2 = abab = (ab)2.

Since N commutes, it implies ab = (ab)2 ⇒ ab(1− ab) = 0.

Now implies 1−ab is a unit and ab = 0 so that a = 0 because b is its Von Neumann

inverse.

[{< a > ×1 + Z(N )} ∪ {0}] ⊆ R(N ) (4.4.7)

Combining (5.4.1) and (5.4.2) gives

R(N ) ∼= [1 + Z(N )] ∪ {0}

= < a > ×[1 + Z(N )] ∪ {0}.

Next,

N ∗ = (N ∗/1 + Z(N ))× 1 + Z(N )

∼= < a > ×[1 + Z(N )]

= Zpr−1 × [1 + Z(N )].

But

| [1 + Z(N )] | = | Z(N ) |

= p(k−1)r.

Therefore | N ∗ |= (pr − 1)(p(k−1)r).

But R(N ) = N ∗ ∪ {0} thus | R(N ) |= (pr − 1)(p(k−1)r) + 1 as required.
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Theorem 4.4.5. Let N be the near-ring constructed in (3.2.1) and (4.2.1) and

R(N ) be the set of all the regular elements. Then

(i).

R(N ) =

 Zpr−1 × (Zr
p)

h ∪ {0}, CharN = p;

Zpr−1 × (Zr
p)

h+1 ∪ {0}, CharN = p2.

(ii).

R(N ) =

 Z2r−1 × Z2 × Z2k−2 × Zr−1
2k−1 × (Z2)

h ∪ {0}, p = 2;

Zpr−1 × Zr
pk−1

× (Zr
p)

h ∪ {0}, p ̸= 2 : CharN = pk : k ≥ 3.

Proof. Let τ1, ..., τr ∈ Fq with τ1 = 1 such that τ 1, ..., τ r form a basis for Fq re-

garded as a vector space over its prime subnear-field Fq where q = pr for any prime

p and a positive integer r.

(i) Let charN = p [case 1]

Observe that for every l = 1, ..., r and 1 ≤ i ≤ h, 1 + τlui ∈ 1 + Z(N ) and

(1 + τlu1)
p = (1 + τlu1 + τlu2)

p

= ...

= (1 + τlu1 + τlu2 + ...+ τluh)
p

= 1.

That is, yp = 1 ∀ y ∈ 1 + Z(N ).

Now for the positive integers a1l, a2l, ..., ahl with a1l ≤ p, a2l ≤ p, ..., ahl ≤ p we
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notice that

r∏
l=1

{(1 + τlu1)
a1l} �

r∏
l=1

{(1 + τlu1 + τlu2)
a1l} �

... �
r∏

l=1

{(1 + τlu1 + τlu2 + ...+ τluh)
a1l} = 1

will imply that ail = p, ∀l = 1, ..., r and 1 ≤ i ≤ h.

Let

S1l = {(1 + τlu1)
a1 : a1 = 1, ..., p}

S2l = {(1 + τlu1 + τlu2)
a2 : a2 = 1, ..., p}

...

Shl = {(1 + τlu1 + ...+ τluh)
ah : ah = 1, ..., p},

then S1l, S2l, ..., Shl are all cyclic subgroups of 1+Z(N ) and they are each of order

p, hence 1 + Z(N ) is abelian and each element a ∈ 1 + Z(N) is such that ap = 1.

Now

r∏
l=1

|< 1 + τlu1 >| �
r∏

l=1

|< 1 + τlu1 + τlu2 >| ...

r∏
l=1

|< 1 + τlu1 + τlu2 + ...+ τluh >| = phr

and the intersection of any pair of the cyclic subgroups gives the identity group,

the product of the hr subgroups S1l...Shl exhausts (1 + Z(N)).

But

R(N ) =< a > ⋉(1 + Z(N )) ∪ {0} : o(a) = pr − 1 =Zpr−1 × (Zr
p)

h ∪ {0}, which

settles the case 1.
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Let p2 = charN [case 2].

We notice that for every l = 1, ..., r, (1 + pτl)
p = 1,

(1+ τlu1)
p2 = 1, (1+ τlu1+ τlu2)

p2 = 1, ..., (1+ τlu1+ ...+ τluh)
p2 = 1). For positive

integers al, b1l, ..., bhl with al ≤ p, b1l ≤ p2, ..., bhl ≤ p2. It is clear that

r∏
l=1

(1 + pτl)
al .

r∏
l=1

(1 + τlu1)
b1l .....

r∏
l=1

(1 + τlu1 + τlu2 + ...+ τluh)
bhl = 1

⇒ al = p, b1l = p2, ..., bhl = p2 for every l = 1, 2, ..., r and 1 ≤ i ≤ h.

Set

Tl = {1 + pτl)
a : a = 1, ..., p}

S1l = {1 + τlu1)
b1 : b1 = 1, ..., p2}

...

Shl = {(1 + τlu1 + τlu2+, ...,+τluh)
bh : bh = 1, ..., p2}.

Tl, S1, ..., Sh are all cyclic subgroups of the group 1 + Z(N ) and they are of the

orders indicated by their definitions.

Since∏r
l=1 |< 1 + pτ1 >| .....

∏r
l=1 |< 1 + τlu1 + ...+ τluh >|= p(2h+1)r,

and the intersection of any pair of the cyclic subgroups Tl, ..., Sh gives an identity

group, the product of the (h + 1)r subgroups Tl, S1, ..., Sh is direct and exhausts

1 + Z(N ).

Thus according to case 1, we have R(N ) =< α > ×(1 + Z) ∪ {0},

R(N ) = Zpr−1 × (Zr
p)

h+1 ∪ {0}.

(iii) Let char N = pk : k ≥ 3.
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We provide the general case using p = odd.

Notice that every

l = 1, ..., r; (1 + pτ1)
pk−1

= 1

(1 + τlu1)
pk = 1, ..., (1 + pτLu1 + τlu2 + ...+ τlun)

pk = 1.

Let al, b1l, ..., bhl ∈ Z+ with al ≤ pk−1,

bil ≤ pk : 1 ≤ i ≤ h. We notice that∏r
l=1{(1 + pτL)

aL} ·
∏r

l=1{(1 + τlu1)
b1l} ·

∏r
l=1{(1 + τlu1 + τlu2 + ...+ τluh)} = 1

which ⇒ al = pk−1, b1l = pk = · · · = bhl = pk. Set

Tl = < {(1 + pτl)
a | a = 1, ..., pk−1} >

S1l = < {(1 + τlu1)
b1 | b1 = 1, · · · , pk} >

...

Shl = < {(1 + τlu1 + · · ·+ τlun)
bh | bh = 1, · · · , pk} > .

The sets defined are all cyclic subgroups of the group 1+Z(N ) and they are of the

indicated orders. Furthermore, the intersection of any pair of the cyclic subgroups

indicated gives an identity group and the product of the (h+ 1)r subgroups gives:

| Tl × S1l × Shl |= pk((h+1)r)−1, exhausting 1 + Z(N ).

Thus 1 + Z(N ) ∼= Zr
pk−1 × (Zr

p)
h.

Therefore

R(N ) =< α > ⋉(1 + (Z(N )))

= Zpr−1 × Zr
pk−1 × (Zr

p)
h.

Theorem 4.4.6. Let N = R0 ⊕M where r = 1 and p-prime, k ∈ Z+.

If

M = R0/pR0 ⊕ ...⊕R0/pR0
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. Let r0 ∈ R(R0) then, its Von-Neumann inverse is

r−1
0 = rp

k−pk−1−1
0 and (r0, ..., rh)

−1 = (rp
k−pk−1−1

0 ,−r1t0r
−1
0 , ...,−rht0r

−1
0 ).

Proof. We know that if a ∈ R0 = GN (pkr, pk) then, the Von-Neumann inverse of

a is given by: a−1 ≡ ap
(k−1)r(pr−1)−1

(mod pk), therefore

r−1
0 ≡ rp

k−pk−1−1
0

as required in step 1.

Now let (t0, ..., th) = (r0, ..., rh)
−1, then

(r0, r1, ..., rh) = (r0, ..., rh)
2(t0, ..., th)

= (r20, r0r1 + r1r0, ..., r0rh + rhr0)(t0, ..., th)

= (r20t0, r
2
0t1 + (r0r1 + r1r0)t0, ..., r

2
0th + (r0rh + rhr0)t0),

therefore r0 = r20t0 ⇒ r0t0 = 1 ⇒ t0 = r−1
0 = rp

k−pk−1−1
0 .

For i = 1, ..., h, ri = r20ti + (r0ri + rir0)t0

⇒ r20ti = ri − (r0ri + rir0)t0

⇒ ti =
ri − 2r0rit0

r20
(∴ N commutative)

⇒ ti =
ri
r20

− 2rit0
r0

.

But t0 = r−1
0

⇒ ti =
ri
r20

− 2ri
r20

= − ri
r20

= −rir
−2
0 .

∴ t1 = −r1r
−2
0 ...th = −rhr

−2
0

⇒ (r0, ..., rh)
−1 = (rp

k−pk−1−1
0 , ...,−rhr

−2
0 ) as required.
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Example 4.4.4. N = Z9 ⊕ Z9/3Z9 ⊕ ...⊕ Z9/3Z9

Then

(2, 2, ..., 2)−1 = (29−3−1, (−2)(5)2, ..., (−2)(5)2)

= (5, 1, 1, ..., 1)

(5, 1, 1, ..., 1)(2, 2, ..., 2) = (1, 0, ..., 0).

Example 4.4.5. Consider N = GN (pkr, pk) ∼= Z2[x]⧸ < x2 + x+ 1 >,

where p = 2, k = 1, r = 2.

Now GN = {0, 1, x, x+ 1} and R(N ) = {0, 1, x, x+ 1}.

Let N = GN (4, 2)⊕GN (4, 2) with GN (4, 2) as defined above, then:

N = {0, 1, x, x+ 1} ⊕ {0, 1, x, x+ 1}

= {(0, 0), (0, 1), (0, x), (0, x+ 1), (1, 0), (1, 1), (1, x), (1, x+ 1), (x, 0), (x, 1), (x, x),

(x, x+ 1), (x+ 1, 0), (x+ 1, 1), (x+ 1, x), (x+ 1, x+ 1)}.

So | N |= 16, ZL(N ) = {(0, 0), (0, 1), (0, x), (0, x+1)}. Since N is an extension of

GN (4, 2),

| R(N) |= 13 = (pr − 1)(pkr) + 1.

Applying (r0, r1)
−1 = (rp

k−pk−1−1
0 ,−r1r

−2
0 ), we can find the Von Neumann inverses

of all the members of R(N ).

For instance,

R(N ) = {(1, 0), (1, 1), (1, x), (1, x+ 1), (x, 0), (x, 1), (x, x), (x, x+ 1),

(x+ 1, 0), (x+ 1, 1), (x+ 1, x), (x+ 1, x+ 1)}.

So (1, 0)−1 = (12
1−20−1,−01−1) = (12, 0) = (1, 0), (x, x)−1 = (x−2, x−1).
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This can be done in the same manner for the other members of R(N ).

The next result gives the structures and orders of the automorphism groups of the

regular elements, R(N ).

Theorem 4.4.7. Let N be a near-ring of construction (3.2.1) and (4.2.1), R(N )

be the set of all the regular elements including 0. Then if

Aut : R(N ) → R(N ) is an automorphism:

(i) when charN = p, then Aut(R(N )) ∼= [(Zpr−1)
∗×GLhr(GN (pr, p))]∪ △ where

△= {x ∈ R(N ) : Aut(x) = 0}

(ii) when charN = p2, then, Aut(R(N )) ∼= [(Zpr−1)
∗×GL(h+1)r(GN (p2r, p2))]∪ △

(iii) when

charN = pk : k ≥ 3, then,

Aut(R(N )) ∼= [(Zpr−1)
∗ ×GL(k−1)r(GN(pkr, pk))]×GLhr(GN(pkr, pk))]∪ △.

Proof. By enumeration, R(N ) =< a > ×(1 + ZL(N )) ∪ {0} where

< a >= Zpr−1. Since gcd(pr − 1, | 1 + ZL(N ) |) = 1, we have that

Aut(Zpr−1 × 1 + ZL(N )) ∼= Aut(Zpr−1)× Aut(1 + Z(N )).

But Aut(Zpr−1) = (Zpr−1)
∗ which is a permutation group whose order coincides

with the order of (1 + ZL(N )).

Next, define a zero automorphism to be the set

△ = {x ∈ R(N )} : Aut(x) = 0 . Then clearly △ = {Aut(0) = 0n}.

When

charN = p, R(N ) = [Zpr−1 × (Zr
p)

h] ∪ {0}

⇒ AutR(N ) ∼= [(Zpr−1)
∗×GLhr(Fp)]∪△ which proves (i). The conditions (ii) and

(iii) follow from the proof of (i) with modifications.

The next result is on the counting of the automorphisms of the regular elements.
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Theorem 4.4.8. Let N be a zero symmetric local near-rings from the class of

near-rings of constructions (3.2.1) and (4.2.1). Then:

(i)

| Aut(R(N )) | = [φ(pr − 1) �
hr∏
k=1

(pk − pk−1)] + 1

when charN = p

(ii)

| Aut(R(N )) | = [φ(pr − 1) �
(h+1)r∏
k=1

(pk − pk−1)] + 1

when charN = p2

(iii)

| Aut(R(N )) | = [φ(pr − 1) �
(k−1)r∏
k=1

(pk − pk−1) �
hr∏
k=1

(pk − pk−1)] + 1

when charN = pk : k ≥ 3.

Proof. (i) Let charN = p.

By definition of φ(n) attributed to Osama and Emad [55],

| (Zpr−1)
∗ |= φ(pr − 1)

and since | Aut(Zpr−1) |=| (Zpr−1)
∗ |= φ(pr − 1) the prefix of right hand side to (i)

is clear.

From the previous theorem, Aut(1 + ZL(N )) = GLhr(Zp). Thus, we need to find

all the elements of

GLhr(Zp)

69



in the endomorphism, End(1+ZL(N )) and calculate the distinct ways of extending

such an element to an endomorphism. So we need all such matrices that are

invertible modulo p.

Let Rp ∈ End(1+ZL(N )), then the number of matrices A ∈ Rp that are invertible

modulo p are upper block triangular matrices whose number can be given as:

♯A =
n∏

k=1

(pk − pk−1).

Now when charR = p, n = hr therefore

♯A =
hr∏
k=1

[pk − pk−1].

This means that

| Zpr−1 ×GLhr(Zp)) | = φ(pr − 1) �
hr∏
k=1

[pk − pk−1].

Finally 0 ∈ R(N ) and Aut(0) = 0. Now | Aut(0) |=| {0} |= 1, thus

| AutR(N ) | = | [Aut(Zpr−1) � Aut(GLhr(Zp))] | + | Aut{0} |

= [φ(pr − 1) �
hr∏
k=1

(pk − pk−1)] + 1

as required. The proofs to (ii) and (iii) are similar to proofs of (i) with modifications

on the orders of GLn(Zp).
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This study was set up with an aim of determining and classifying the regular

elements and Von-Neumann inverses of the zero symmetric local near-rings with n-

nilpotent radical of Jordan ideals admitting Frobenius derivations. The objectives

have been achieved via three main steps that is: determination of constructions

(3.2.1) and (4.2.1) representing the classes of the near-rings under investigations

whose algebraic structures were subjected to commutation checks using the theorem

of Asma and Inzamam involving properties of J (N ) and the Frobenius derivations,

d : N → N and d : N → J (N ).

The structures and orders of R(N ) were then characterized in a case by case ba-

sis using the fundamental theorem of Finitely Generated Abelian Groups and the

properties of the general linear groups in the endomorphism of R(N ) respectively.

The structures of V (| R(N ) |) followed asymptotic patterns proposed by Osama

and Emad [55] using the properties of V (n), τ(n), ω(n), σ(n) and K(n). The mor-

phisms of Γ(N ) followed number theoretic analysis and the automorphism of Γ(N )

revealed in terms of groups of symmetry.

In conclusion, the research demonstrates that the classes of the near-rings con-

structed have algebraic properties related to the dual properties of the idealized

rings. The Frobenius derivations assigned to the permutation of the products is an

automorphism. Thus, this study extends the ring theoretic notion of unit groups

to a characterization of R(N ). The results of the study regarding the character-

ization of N , Γ(N ), d : N → N , d : N → JN ) and commutation have been
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presented in theorem 3.2.1, proposition 3.2.1, theorem 3.2.2, theorem 3.3.1 and

theorem 3.3.3. The results of propositions 3.4.1 to 3.4.6 show the structures and

orders of automorphism of Γ(N ). Similarly, the properties of R(N ), V (| R(N ) |)

and the automorphisms of R(N ) are captured in theorems 4.3.5, 4.3.6 and 4.3.8.

5.2 Recommendations

The classification problem of finite rings using near-rings is still open. This study

leaves certain gaps that can be considered in future:

(i). A characterization of the regular elements and inverses of non-local near-rings,

N with generalized derivations.

(ii). A determination of the automorphisms of N , unit groups and the generalized

graphs of the near-rings in constructions (3.2.1) and (4.2.1).
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