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Abstract

The study of completely primary finite rings has generated interest-
ing results in the structure theory of finite rings with identity. It has
been shown that a finite ring can be classified by studying the structures
of its group of units. But this group has subgroups which are interesting
objects of study. Let R be a completely primary finite ring of character-
istic pn and J be its Jacobson radical satisfying the condition Jn = (0)
and Jn−1 6= (0). In this paper, we characterize the quotient groups of
subgroups of the group of units of R.
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1. Introduction

Research on finite rings and their applications has produced admirable re-
sults in abstract algebra. A completely primary finite ring is a finite ring R
with identity 1 6= 0 whose subset of all the zero divisors forms a unique max-
imal ideal J . Although the classification of commutative completely primary
finite rings has produced good research material in the recent past, the char-
acterization of their groups of units has not been exhaustively done. In this
paper, the quotient groups of the subgroups of the unit groups studied in [3]
have been characterized. For the most recent related work and notations, ref-
erence can be made to [2], [3] and [4].

2. The construction

Let R0 be the Galois ring of the form GR(pnr, pn). For each i = 1, ..., h, let
ui ∈ J(R0) such that U is an h dimensional R0− module generated by u1, ..., uh
so that R0 ⊕ U is an additive group. On this group, define multiplication by
the following relations:

(i)If n = 1, 2 then pui = uiuj = ujui = 0, uir0 = r0ui.

(ii)If n > 3 then pn−1ui = 0, uiuj = p2γij, ui
n = ui

n−1uj = uiuj
n−1 = 0, uir0 =

r0ui, where r0, γij ∈ R0, 1 ≤ i, j ≤ h, p is a prime integer, n and r are
positive integers. Moreover if ui|U , then the additive order of ui is p.

Remark 1. If n = 1 or 2, then the construction yields rings in which multi-
plication of any two zero divisors is zero, that is J2 = (0). Such rings have
been shown to be completely primary and their group of units is well known.
Reference can be made to [3].

Remark 2. From the above construction, we see that every element of R may
uniquely be expressed as r = r0 + r1u1 + r2u2 + ...+ rhuh for ri ∈ R0, uj ∈ U ,
0 ≤ i ≤ h, 1 ≤ j ≤ h.

Remark 3. The constructed ring is known to be completely primary and can
be classified under rings satisfying the conditions Jn = (0), Jn−1 6= (0).

Proposition 1. Let R be the ring constructed above. Then

(i) J = pR0 ⊕ U .

(ii) Jn−1 = pn−1R0.

(iii)Jn = (0).

See e.g [3].
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3. Preliminary Results

3.1 The group of units
The following theorems describe the structure of the multiplicative group

R0
∗ for any Galois ring R0 and the constructed ring R respectively.

Theorem 1. LetR0
∗ be the multiplicative group of the invertible elements

of the ring GR(pnr, pn) where p is a prime. Then R0
∗ is the direct product

of the cyclic group < a > of order pr − 1 and the unit group 1 + J of order
p(n−1)r. See e.g [2].

Theorem 2. The unit group R∗ of the commutative completely primary
finite ring R of characteristic pn with maximal ideal J such that J2 = (0) when
n = 1, 2 and Jn = (0), Jn−1 6= (0) when n ≥ 3 and with invariants p (prime
integer) p ∈ J , r ≥ 1 and n ≥ 1 is a direct product of cyclic groups as follows:
(i)If char R = p then

R∗ ∼= Zpr−1 × (Zrp)h.

(ii)If char R = p2 then

R∗ ∼= Zpr−1 × Zrp × (Zrp)h.

(iii)If char R = pn for n ≥ 3, then

R∗ ∼=
{

Z2r−1 × Z2 × Z2n−2 × Zr−1
2n−1 × (Zr2)h. if p = 2;

Zpr−1 × Zrpn−1 × (Zrp)h. if p 6= 2.

Proof. See [3].

3.2 The quotient groups
Let R be the commutative finite ring constructed in section 2 above. Notice
that Jn = (0) and Jn−1 6= (0) with char R=pn. Now R is of order p(n+h)r and
the residue field R/J is the finite field GF (pr) for some prime integer p and pos-
itive integer r. Since R is of order p(n+h)r then |R∗|=|R−J |=(pr − 1)p(n−1)r+rh

and |1 + J | =p(n−1)r+rh is an abelian p − group. It is also clear that 1 + J is
a normal subgroup of its group of units R∗. If we let n ≥ 2 then the ideals
J, J2, J3, ..., Jn−1 and Jn in R form a chain J ⊃ J2 ⊃ J3 ⊃ ... ⊃ Jn = (0) and
consequently the subgroups 1 + J, 1 + J2, 1 + J3, ..., 1 + Jn = {1} form a chain
1 + J ⊃ 1 + J2 ⊃ 1 + J3 ⊃ ... ⊃ 1 + Jn−1 ⊃ 1 + Jn = {1}. Given the fact that
1 + J i for i = 1, ..., n form the normal subgroups of the unit group R∗, we can
express the unit group R∗ as follows:
R∗ ∼= (R∗/1 + J)× (1 + J). It is seen that the expression is a direct product
of two subgroups. The subgroup (R∗/1 + J) which is cyclic of order pr − 1
isomorphic to Zpr−1. The aim of this paper is to determine the structures of
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quotient groups of the subgroups of 1 + J .
Now, 1 + J is an abelian p−subgroup of the unit group R∗. The group 1 + J
has a normal series {1} = 1 + Jn � 1 + Jn−1 � ... � 1 + J2 � 1 + J with the
factor groups (1 + J/1 + J2), (1 + J2/1 + J3)...(1 + Jn−1/1 + Jn) isomorphic
to the additive groups J/J2, J2/J3...Jn−1. When n ≥ 3 then 1 + J is not a
composition series since 1 + J2 is not maximal in 1 + J , so that 1 + J/1 + J2

is not simple. By Lagrange’s theorem
|1 + J | = |(1 + J/1 + J2)|.|(1 + J2/1 + J3)|...|(1 + Jn−1/1 + Jn)| = p(n−1)r+rh

for n ≥ 2 .
We therefore give the structure of (1+J/1+J2) and (1+J l/1+Jm) for m ≥ 3
and 2 ≤ l < m.

Proposition 2. Let 1 ≤ i < l, then 1 + J l � 1 + J i.

Proof. It suffices to prove that 1 + J l is a subgroup of 1 + J i.
Let 1 + plr0, 1 + pls0 ∈ 1 + J l. Then (1 + pls0)

−l = 1 − pls0 + p2ls20 − p3ls30 +
...+ (−1)n+1pl(n−1)sn−1

0 so that
(1+plr0)(1+pls0)

−1 = (1+plr0)(1−pls0+p2ls20−p3ls30+....+(−1)n+1pl(n−1)sn−1)
= 1+pl((r0−s0)+pl(s20−r0s0)+...+(−1)n+1pl(n−2)(sn−1

0 −r0sn−2)) ∈ 1+J l.

The following results can be easily established.

Proposition 3. Let l, s ∈ Z+ {1}, 1 + J l and 1 + Js be subgroups of 1 + J.
Suppose θ : 1 + J l → 1 + Js is a homomorphism, then kernel of θ is a normal
subgroup of 1 + J l.

Proposition 4. Let R be the ring given by the construction.
i) When r = 1 and n ≥ 3 then 1+J/1+J2 ∼= (Zp)h+1 and 1+J l/1+J l+1 ∼= Zp
for 2 ≤ l ≤ n− 1.
ii) If 1 ≤ l ≤ m ≤ t ≤ n, then the p− group 1 + J is a direct product of the
subgroups 1 + plR0 by 1 +

∑h
i=1⊕R0/pR0 and

(1 + J l/1 + Jm) ∼= (1 + J l/1 + J t)/(1 + Jm/1 + J t)

Corollary 1. Let 1 ≤ i < s ≤ n. Then

R∗/1 + J i ∼= (R∗/1 + Js)/(1 + J i/1 + Js)

From the constructed ring in section 2, the quotient Jn−1/Jn is a vector
space over the ring R/J ∼= Fp.

Lemma 1. Let J be the Jacobson radical of the ring R constructed
in section 2, then the quotient Jn−1/Jn for n ≥ 2 is a vector space over
GF (p) ⊆ R/J . see [2].
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Proof. Given that J is a maximal ideal inR, the quotient ringR/J is a field.
For any prime integer p, let Fp be a prime subfield of R/J . Let y1, y2 ∈ Jn−1

such that y1 +Jn and y2 +Jn belong to Jn−1/Jn, then for each a ∈ Fp we have
that a((y1+Jn)+(y2+Jn)) = a((y1+y2)+Jn) = (a(y1+y2))+Jn which belongs
to Jn−1/Jn. Now |R| = |R/J |.|J/J2|, ..., |Jn−1/Jn|.|Jn| = pnr+rh. Thus R is
indeed finite.

Remark 4. Finiteness of R implies that J is nilpotent say Jn = (0).

4. Main results

Theorem 3. Let R be the ring constructed in section 2. Suppose J is
the Jacobson radical of R, then the quotient group 1 + J/1 + J2 ∼= (Zrp)h+1 for
every prime integer p and positive integer r.

Proof. Let τ1, ..., τr ∈ R0 such that τ1, ..., τr ∈ R0/pR0 form a basis for
R0/pR0 regarded as a vector space over its prime subfield Fp.
For ν = 1, ..., r , consider the element (1 + pτν)(1 + J2) ∈ (1 + J/1 + J2).
Then ((1+pτν)(1+J2)p = (1+pτν)

p(1+J2) =(1+p2τν+, ...,+p
pτ pν )(1+J2) =

1 + J2 since characteristic of R = p2.
Next consider the element (1 + τνu1)(1 + J2) ∈ (1 + J/1 + J2).
Then ((1+τνu1)(1+J2)p = (1+τνu1)

p(1+J2) = 1+J2 since 1+pτνu1 ∈ (1+J2).
Next, the element ((1 + τνu2)(1 + J2)p = (1 + J2).
Continuing in a similar manner up to the element (1 + τνuh)(1 +J2) we obtain
((1 + τνuh)(1 + J2)p = (1 + J2). If we let

Tν = {((1 + pτν)1 + J2)a|a = 1, ..., p}

S1ν = {((1 + τνu1)1 + J2)b1|b1 = 1, ..., p}

S2ν = {((1 + τνu2)1 + J2)b2|b2 = 1, ..., p}
...

Shν = {((1 + τνuh)1 + J2)bh|bh = 1, ..., p},

we see that they are all subgroups of the group (1 + J/1 + J2) and they are of
the orders indicated by their definition. Since∏r

ν=1 | < (1 + pτν)(1 + J2) > |.
∏r

ν=1

∏h
i=1 | < (1 + τνui)(1 + J2) > | = pr(h+1)

and the intersection of any pair of the cyclic subgroups gives the identity group
(1 + J2), the product of the (h+ 1)r subgroups Tν , S1ν , S2ν , ..., Shν is direct so
their product exhausts the group (1 + J/1 + J2).

Theorem 4. Let R be the ring constructed in section 2. Suppose J is
the Jacobson radical of R, then for n ≥ 3, 2 ≤ ` < m the quotient group
(1 +J `/1 +Jm) ∼= Zr

pm−` for every prime integer p and positive integers r, `,m.
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Proof. Let τ1, ..., τr ∈ R0 such that τ1, ..., τr ∈ R0/pR0 form a basis for
R0/pR0 regarded as a vector space over its prime subfield Fp.
Consider the element (1 + p`τν)1 + Jm ∈ (1 + J `/1 + Jm) for 1 ≤ ν ≤ r. Then
((1 + p`τν)1 + Jm)p

m−`
= ((1 + p`τν)

pm−`
)1 + Jm= (1 + pmτν ...+ (p`τν)

pm−`
)1 +

Jm = 1 + Jm, because 1 + pmτν + ... + (p`τν)
pm−` ∈ 1 + Jm. Now, o((1 +

p`τν)1 + Jm) = pm−`, since it is the smallest positive integer so that ((1 +
p`τν)1 + Jm)p

m−`
= 1 + Jm. This assertion is easily verified by considering

((1 + p`τν)1 + Jm)p
m−`−1

=(1 + pm−1τν + ... + (p`τν)
p−m−1)1 + Jm 6= 1 + Jm

because 1 + pm−1τν + ...+ (p`τν)
p−m−1 is not an element of 1 + Jm. Therefore

1 + J `/1 + Jm =< (1 + p`τν)1 + Jm > ∼= Zr
pm−` .
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