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ABSTRACT

The study of finite completely primary rings through the zero divisor graphs, the unit groups and
their associated matrices, and the automorphism groups have attracted much attention in the
recent past. For the Galois ring R' and the 2-radical zero finite rings, the mentioned algebraic
structures are well understood. Studies on the 3-radical zero finite rings have also been done for
the unit groups and the zero divisor graphs I'(R). However, the characterization of the matrices
associated with these graphs has not been exhausted. It is well known that proper understanding
of the classification of zero divisor graphs with diameter 2 and girth 3 can provide insights into
the structure of commutative rings and their zero divisors. In this study, we consider a class of
3-radical zero completely primary finite rings whose diameter and girth are 2 and 3 respectively.
We enhance the understanding of the structure of such rings by investigating their Adjacency,
Laplacian and Distance matrices.
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1 Introduction

Throughout the paper, R represents 3-radical zero completely primary finite ring, I'(R) is the zero
divisor graph of R and R’ = GR(p*", p*) denotes the Galois ring of order p*" and characteristic
pt for some positive integers k,r. Z(R) and J(R) are subsets of zero divisors and Jacobson
radical respectively. R* denotes the unit group of R. Unless stated otherwise, other notations are
standard.

A finite unital ring R is called completely primary if the subset of its zero divisors forms a
maximal ideal[16]. These classes of finite rings have been used in the classification of all other
classes of finite rings with identity 1 # 0. The Galois rings, the maximal submodules of finite
rings are the trivial classes of completely primary finite rings vital in the classification of rings
of idealization. They have been studied by a number of authors for the structures of their unit
groups and zero divisor graphs up to isomorphism, (see for example[3, 9]) among others. The
2-radical zero completely primary finite rings have also been classified using the unit groups, the
zero divisor graphs, the automorphisms of the graphs and the adjacency and incidence matrices,
[3, 10, 14]. In this paper, we investigate the matrices of zero divisor graphs of a class of finite
rings with the unique maximal ideal Z(R) such that for any fixed s, t = **I) where s and ¢
are the dimensions of R’-modules U and V respectively. This is an extension of the studies in
[3, 4, 5]. Indeed, in [5], a classification of such classes of rings R with Jacobson radical J(R)
satisfying the condition (J(R))? = (0) and (J(R))? # (0) was considered where the enumeration
problem was solved for all characteristics of R. Further, a case of the ring whose characteristic
is p*, 1 < k < 3 was considered in [4] by determining the structures of R*,for R = R ¢ U ¢V
where U and V' are R’-modules generated by s and ¢ generators where t = @ for any fixed
s. Another classification attempt was done in [3] where the automorphisms of R were obtained
when characteristic of R = p. From this study, a characterization was done for the cases in which
IF is the Galois field GF(p") and 1 < t < s* for a fixed s, t-dimensional F spaces U, V respectively
and (aj;) € M,,(F) are ¢ linearly independent matrices. The studies mentioned however, did
not provide a classification on the structures of zero divisors and by extension, their graphs and
matrices associated with the graphs.

The concept of zero divisor graphs has also attracted active research since its inception by
Beck as demonstrated in [2]. Other researchers broadened the study based on their choices of
zero divisors from R or annihilator ideals of R as evident in [1] and [13]. Other ring characterization
via the automorphism of their zero divisor graphs have also been done by some researchers. In
[9, 10] and [11], a classification of the automorphisms of the graphs of these classes of rings was
obtained for all the characteristics.

Matrices being fundamental in the interpretation of graphs, Katja in [8] computed the eigenvalues
of graphs associated with zero divisors of finite rings. The study determined computations for

Licensed Under Creative Commons Attribution (CC BY-NC)



Vol.4 (Iss.1),pp.1-31, Mathematics(2024) ISSN:2788-5844 http://sciencemundi.net

nullity, spectrum of I'(R) and the graph product properties. Some independent studies have
focused on adjacency matrices of zero divisor graphs of finite completely primary rings. For
instance, the research done in [14] was on the characterization of the adjacency and incidence
matrices of a class of finite rings of square radical zero. Given an adjacency matrix A and a degree
matrix D, the Laplacian matrix is an n x n matrix L such that L = D — A. Some ring classifications
have also been done via the Laplacian matrices of their zero divisor graphs. For instance, a study
on the ring of integers modulo n was performed in [17] through a research on the nature of their
Laplacian eigenvalues. The study involved finding the Laplacian spectrum structures of I'(Z,,) for
n = pM¢™? where p is a prime integer greater than ¢ and for positive integers N; and N,. This
research was limited only to rings of integers modulo n. Research on distance matrices of classes
of finite rings have been done in [12, 15, 18] and [19] among others. In this paper, we focus on
a class of 3-radical zero finite completely primary rings and provide an analysis of some graph
geometric properties of I'( R). An investigation on the structures of their Adjacency, Laplacian and
Distance matrices is also conducted.

2 Preliminaries

The following results will be useful in the sequel.

Theorem 2.1. [16] Let R be a finite ring with multiplicative identity 1 # 0, whose set of zero divisors
forms an additive group J. Then,

(i) J is the Jacobson radical of R.
(i) | R |=p™, and| J |= p™~Yr for some prime integer p and some positive integers n, .
(i) J" = (0).

Theorem 2.2. [6] Let R be a completely primary finite ring of order p™" with unique maximal ideal
J such that| R/J |= p",Char(R) = p*. If R, is the maximal Galois subring of R, then there exist
x1, ..,z € J and oy, ...,0n € Aut(R,) such that R = R, ® Rox;®, ... ® Rox, and x;r = r%x; for
everyr € R, andeachi=1,2,.... h.

Theorem 2.3. [4] If F is the Galois field GF(p") and 1 < t < s* for a fixed s,t — dimensional
F-spaces U,V respectively and (af;) € M,,,(F) aret, linearly independent matrices. Then
Aut(R) = [Myxs(F) x (U B V)] xg, [Aut(F) xg, (GL(s,F) x GL(t,F))] where {01, ..., 0,} is the set of
automorphisms of IF.
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3 The 3-Radical Zero Completely Primary Finite Rings of
characteristic p

The following construction can be obtained in [7].

3.1 Construction |

Given a prime integer p and r, a positive integer, let R = F = GF(p") be a Galois field of order
q = p". Suppose U,V are finitely generated F—spaces with nonnegative number of elements s
and t in the generating sets {us} and {v;} respectively such that for ¢t = S(S“ and s fixed,

R=F, @3 Fu;®37;,_, Fouu; is an additive abelian group.

Consider two elements (ao + > 7_; aju; + Y7 iy ajuguy) and (bo + > 7 biug + Y7 i bjusuy) in R
and define multiplication on R by:

ao—l—ZauquZajuuj b +Zbu,+2buu]

1,j=1 i,j=1

= aobo + Z (aob]?) 4+ a;(bo + pR')7")u; + Z (aob; + a;j(bs)” + Z a;;a;(bj)7 )uu;.

=1 4,j=1 1,j=1

where ¢; is an F automorphism and («;;) is a t-linearly independent matrix of dimension s.
Whenever o; = idy, an identity automorphism, then, the multiplication defined above turns R into
a commutative ring with identity (1,0,---,0,0,---,0). Thus, for the rings discussed in this section,
we assume that o; = idp.

The next result which characterizes the structures of the zero divisors Z(R) of R and its proof can
be obtained from [5].

Proposition 3.1. Let R be a ring of construction | and Z(R) be the set of its zero divisors then:
() Z(R) =3 i Fous ® 377, Fouuy,
(i) (Z(R))* = 327 ;-1 Fquauy,
(ifi) (Z(R))* = (0).
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3.2 The Graphs I'(R) and Matrices obtained from Classes of Rings in
Construction |

Here we determine some graph algebraic properties, formulate the matrices from the graphs and
investigate the matrix algebraic properties.

Proposition 3.2. Let R be a ring of construction | and the invariants p, s andr be positive integers.
Then, the following properties hold:

) |V{IT(R) |=p

(i) T(R) is an incomplete graph.

52 S
(=2 _q,

(iii) The diam((T(R)) = 2.

(s2+43s)

(iv) The minimum degree, 6(T'(R)) = pt" = )" — p(<s ENT

— 1.
(v) The girth(I'(R)) = 3.

Proof. (i) Since char(R) = p, pu; = pu;u; = 0, and we have that

| Fou; |=p", | Fugu, |= p, forany i, j,=1,2,--- , s we obtain | Z(R) |= p! el
32 3s

Therefore, | Z(R)* |=| Z(R)\{0} |= p“ =) — 1. Since | Z(R)* |=| V(I'(R)) |, it follows that

(<2+3 )y

[ V('(R)) |= -1
(i) Easily follows from the fact that (Z(R))? # (0).

(iii) From (ii), T'(R) is incomplete and with the fact that Ann(Z(R)) = (Z(R))?, the result follows.
(iv) Let V. = {v1,v9, -+ ,v RErE } be the whole vertex set of I'(R). Let K, S C V such that

p

52 3s 32 3s
( -2"-3)) ( 42-5)71)74_

K C ann(Z(R))". This implies | K" |= p' ES2r ) 5 = (pf 1)
1) = p(EEhr g (e gy (g (e

+35 +35

Therefore, §(I'(R)) = p(“ =) — p(“=*>=Dr _ 1 due to the minimal degree of the elements
of S and for the avoidance of self loop for each vertex v € S.

(v) Taking two vertices vy, v; € Z(R) — (Z(R))* where vyv, = 0, clearly each vy, v, is adjacent to
some vz € (Z(R))% Thus v, — vy — v3 — vy is the least polygon in T'(R).
]
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Next, we investigate the properties of the Adjacency, Laplacian and Distance matrices.

Proposition 3.3. Let R be a ring given in construction | and T'(R) be its zero divisor graph. Then,
the adjacency matrix associated with T'(R) is of trace 0 with a spectral radius p" + 1. Furthermore,
for an adjacency matrix [A] NEIERIN. the following properties hold:

ptT 2 )1

(I) A s243s is symmetric.
( ) Y
p( 7 )1

(52+35)

(i) rank ([A] (opsy. ) =p" 2 " —2p".
p(‘gi)T_l

(i) Tr ([4] cpo, ) =0

p

(IV) D@t([A] ((S2+33))r ) =0.
O

++/2 and 0. when p=2;
0, of multiplicity 2p” — 1;
v) The eigenvalues )\ ([A] (.24s. = -1,
(v) The eig (4] c2gon,,_) L whenp £ 2.
p"+ 1.

Proof. (i) Since every row vector
(afllv aiz, - ,a (s243s) )7 <a217 A2, ,0a (s243s) )7 )
1p 2 ") 200 2 T

.’a

(a’ m ; a (s2+3s) RO
e D L (L B Bp: (¢
the corresponding element through the leading diagonal to every column

(2 135) 2135, ) OF[A] (2,59 isareflection of
2 )T,1 p( 2 >T,1) p(f)rfl

a s243s
an 1(p(%>r—1)

a21 a 5243s
2(])(7( Sy

)

@ (s2435)
(2 1)1 A (s243s), ((s2438) )
=D A

which implies that [A] NEEEN [A]T . Hence the symmetry of [A] NEITRI.
p 2z -1 -1 plz )1

52 S
P2
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(if) Upon carrying out a row operation on

we obtain the matrix

[A]p( (52+35) )r—]_ =

p

O s2+35
p((‘zf))”—l

Let V = {’1}1,?)2,1}3,"'

v =

0

, U2 =

—_

0

9 v ( (32"'33) r
P 2

, U3 =

0
1

0 (2436
((s -2!—3.5))T

o O = O

O = OO

1 1 1 1
0 1 1 1
0 1 1 1
Lol 0 0 0 g
p 2z )=
: 0
O Op( (52;33) )T,I
0 0
0 0
0 0
L0 0 (2
p( 2 )T_2p7'
0

0 ( (s2+3s) )r
P 2 —1

2p"

} be the linearly independent set of vectors such that
-2

O = O O

° (% s2+3s
N

set spans the matrix space implying that the

rank([A] (2435) )
N |

(i) Given that [A] (24, is the adjacency matrix for I'( R), it is justifiable that
[
TT’([A]p((s?%Ss)

)T,1

pl 2

(s2+33) )T‘

7

— 2p".

)=ai; +ax+ta+--+a (2 (s2+3s) .
e S N S|

0

0
1

((s2+3s)>
- p 2z T=2pr

0

O 32+3S
EGE DI

)

(s2+3s)

Since I'(R) is a simple graph with no self loop for v; = 1,2,--- ,p(—= )"
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(s2+3s)>,.
diagonal entries are 0. Therefore, > 7 | e =0.
. <(52;35) )7‘ 1 .
Further, since Tr([A] (250) ) =20 ~~ A,. Therefore, the sum of eigenvalues \; =
pl 2 )1
—1—p"+p" +1 =0 and the spectral radius is p" + 1.
(iv) Consider [B] (.2.s. = [A] 20 [CT 24 where [C] (.24, is the cofactor
p(‘gi)r_l p(‘gi)r_]_ (‘27)7",1 p(‘gi)r_]_
matrix of [A] (230 then b;; = >, aucji for ¢y, is the jk minor of [A] NEITEN If i = 7,
A | pl 2z )71

(

P

it corresponds to the determinant computation of [A] NEIERY along the i'* row. Hence
G2439),,

p
bii — det( [A] ( (s2+3s) ) ) .
P2 -1

If : # j, this corresponds to the determinant computation of a matrix equal to [A]
p
except that the row j has been overwritten by the contents of i row. But the determinant of a

matrix with duplicated row is 0, hence b;; = 0. = [A] NEITRN [C]T((SQHS)) = det([A] JETERS j
pt 2 -1 pl2 ) pt 2 )T—1

5‘2 S
(e=g3edy,

If det([A] NEITRY ) # 0 then we can write
2 1

Ad] [A] (@)T

B _ P 2 -1

p(ﬁgﬂ)r—l det([A] ((2439)), ) det([A] (289, )
p ) p 2 -1

cT ¢
A =] < [A]7!
det([A] (%@)ril) [ ]

p

i.e det([A] ((SQ;SS)VA) #0=[A"" 1 exists . Consequently, if [A]

T is singular
» N e
then det([A] (s2+3s) ):0
P

T*

p

(v) For p = 2, we can obtain the eigenvalues by solving the equation | A\ — A |[= 0 = A3 —2)\? =
0=>AN—=2)=0= A =0and A\ = £2.
For p # 2,
| \I — A |= 0 results to a characteristic equation of the form A\?" =1 (—(p" + 1) + A\)(1+ \)(p" +
A) = 0. Solving for X in every factor results to \?*' ! = 0 = X\ = 0 of multiplicity 2p" — 1.
For the second factor, (—(p" +1)+ ) =0= A =p "+ 1. For (1+)) =0,A=—1and
(Pr+AN)=0=A=—p".

]
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Proposition 3.4. Consider [A] NEIERIN the adjacency matrix associated withT'(R) where R is a
p 2 T—1

ring of construction I. Then for any fixed s # 1,r € Z* and p, prime integer, the following properties
hold:

() [A] (2139 is symmetric.
O A

2 -
(s —535) 71)7,

(i) rank ([A] e ) =0
D 2 -1

(”i) TT ([A] ((Sz+38))r ) - O
p 2z -l

(iv) Det([A] ((2433)) ) =0.
pr 2 -1

—1, of multiplicity p"; 2
(v) Forp=2, /\[A]p( RN 0, of multiplicity pt“—=">-1r _ 1;
1+ 4/pFDr 4 - g
Forp > 3,
The eigenvalues A[A]p( @y, =
-1, of multiplicity p“>2-1r _ 2
0, of multiplicity 2p( =0 _ 1;
p((szﬂ’l)rf2i\/9p(@“”f4p< (32;33))T78p<(82;33)71)T+4
2 9

Proof. The proof for (i) to (iv) have similar steps to the ones in Proposition 3.3.
(v) For p = 2, the equation | [A] JEIES — M 2, |= 0 yields the characteristic
pl 2 )T

equation for the adjacency matrix [A]Zp((:z;s))rl. Let the eigenvalues of [A]p“sz%gs)h1 be
A, Ao, - - ’Ap<<52+3‘°’)>7“_1' We can obtain the characteristic equation of the adjacency matrix
as ,

e ;33)71)_1(1 AN = 2) — (p(@z%ﬂ)r +p((32+35)*1)7")) —0
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((€ +3s) -r_y

= 0T = 0 = A\ = 0 of multiplicity pt“ =" — 1,(1+A\)” =0 = A\ = —1 of
multiplicity p". By solving the quadratic equation

2 s 52 s . .
A2 — 2\ — (p(Fr 4 p(UE* =1y = 0 in the last factor, we obtain

2+ \/4 4 ap D gy (TER e g 4 \/4(p<“2+3‘”>’“ +pEF2 0 4y

2 B 2
((52+33))T ((52+33) r :
_ 2= 2y/p ;p 1 fp R |
For p # 2, we generally obtain the polynomial equation which when factorized results
2 (s
to )\2p(@,1)r_1( + )\) + (s°43s) 1)7«_2(()\2 . ( ((s +3s) —1r 2))\ . (2p (s +35)+1)T _ p((52;3s))r .

s243s (s +3s) .
P =0y = . Solvmg the equation gives the eigenvalues as A" * "“1=0= \A=0

(13s) ),
( -2 g = N = —1 of

of multiplicity 2p(“="-Y" — 1. The second factor (1 + \)”

multiplicity p“=">-1 — 2. Finally, solving the quadratic part results to

(P20 ) £/ (TR 22 g g(ap e (g (o
. .

Expanding the discriminant yields the expression
2 2 2
P2 g (S0 gy gy (e r g (S5 (U o4 that

A:

(p( (52;—35)71)74 _ 2) :|: \/Qp( (82;3S)+1)r _ 4p((5242-3s))r . 8p((82;38)71)r i 4

A= 2

Proposition 3.5. Consider [L] (230), the Laplacian matrix associated with T'(R) of the ring in
Pl 2 -1
Construction I. Then for any positive integer r, prime integer p, the following properties hold:

() [L] (243 is symmettric.
p(‘gi)Ti]_

.. ((52+33))T
(Il) rank([L] ((32;35)”71) =p\ 2 — 2.

p

Licensed Under Creative Commons Attribution (CC BY-NC)

10



Vol.4 (Iss.1),pp.1-31, Mathematics(2024) ISSN:2788-5844 http://sciencemundi.net

4, whens =1,p=2;

(e +3s)

i) Tr([L] coren )=
( ) ([ ]p(ﬁgﬁ)r_l) { <p7~ _ 1)(2]?( )T —p — 2)7 for any s,p > 2.
(IV) Det([L] (s243s) ~ ) - O

p(ji)ril

(v) The eigenvalues \[L] (s, aAre 0,1 and3 whens=1,p=2.
|

0,
For any s,p > 2 the eigenvalues \|L)] REE B p(@)r —1, of multiplicity p" — 1;
g -1, of multiplicity 2p™ — 1.

Proof. (i) Can be drawn from the previous proposition since the steps are similar.
(i) We conduct a row operation on [L] NEITEI ¢ obtain the matrix
p 2 -1

1 0 0 0 |

01 0 0 .o =1

0 0 |

: 1 (s243s) O 1 _1
p(f)T,Q

00 . : .00

. (s2+3s) . .
This results to p* = )" — 2 non-zero rows in [L] .24, , hence its rank.
p ( )
p(‘gi)T_l

(iii) For p = 2 and s = 1, the I'(R) obtained has only 1 vertex of maximum degree 2 and 2 vertices
of minimum degree 1. This leads to a Laplacian matrix of order 3 x 3 whose main diagonal entries
are 2,1 and 1 hence a trace of 4.

Forany s,p > 2,

| Z(R)* |= p 5™ 0y and each v; € Ann(Z(R)*) has degree p' —2and | Ann(Z(R)*) |=
p" — 1. Therefore any v; ¢ Ann(Z(R)*) is of degree p” — 1 because every such v; ¢ Ann(Z(R)*
is only adjacent to v; € Ann(Z(R)*).

Partitioning the vertices of I'( R) into disjoint subsets V; and V; such that

Vi ={vjlv; ¢ Ann(Z(R)")} and V2 = {vi|v; € Ann(Z(R)")},

(s2+3 )y

s s 32 s .
Vo |=p'—1and | Vi |= p 2 1 (pr—1) = p“ D _ . Since the trace, Tr([L] o.s ) =
p )
(g0, . . . .
r ~ l;;, where every [;; is an element of the diagonal matrix [D] (e, whose entries

p
(s2 +3S))

are degrees of vertices in I'(R), we have that 7'r([L] NEITRN ) = (pt
pz -1

=2)(p" = 1)+ (p —

Licensed Under Creative Commons Attribution (CC BY-NC)
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(s2+3s)

92 S
L)(p —p"). This results to (pr—l)(p(%)r 2_|_p( +p) = (p — 1)(2]?( 2 )T_pr_2>.
(iv) Steps in obtaining the singularity of [L] (24, are similar to the one in proposition 3.4.
PG e L

((32%3)),. (s? +3 (7485)y,.

(v) For p =2, s = 1, the eigenvalues for the 3 x 3 Laplacian matrix are easy to obtain.
When p > 2 for any s, the equation | ()\I (2gs), T (L] (2, ) |= 0 gives the characteristic
—z )1

(s +35))

polynomial equation of the form —\((—(p! — 1) + AP 7 (=(p" = 1)+ A)* 1) = 0. On solving

s2 s r
each factor, we obtain —\ = 0 = X\ = 0. For the factor (—(p(“ =" — 1) + A\ -1 = 0, we have
82 S . T
that \ = (p(< 2 1) of multiplicity p” — 1. Finally, (—(p" = 1) + \)?* ' =0 = A =p" — 1, of
multiplicity 2p" — 1. This establishes (v). O

Next, we take an analysis of the distance matrix of I'(R) of the ring in Construction I. Recall
that the distance matrix of a graph G having » vertices is a symmetric matrix [d;;] whose entry d;;

is defined as d;; = { g(vi’ vj); :]': z i ?}

The following result describes the matrix algebraic properties of [d;;] of this class of rings.

Proposition 3.6. Consider [d;] NEITRN distance matrix associated withI'( R) of R in Construction
2
I. Forr € Z*,p prime,

4, whenp =2s=1;

(i) Det([d m]p e, )= { (e

—1)%, foranys,p > 2.

(i) Tr(ldig] 240, ) =0.

p

3, whenp=2s=1;

92 S
PSP 1 forany s, p > 2.

(iii) rank([d;;] ((2439) )= {
pz )T

(iv) When p = 2,5 = 1 the eigenvalues \[d;j] .2.s, — arel++/3 and?2
O L]
For any s,p > 2, the eigenvalues \[d,;]| NEITRY
A |

-1,
— ", multiplicity p( D 4+ 1);
H(pFDr 1 2) £ [T g gy

I
—
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N D =

0 1
Proof. (i) When p =2, s = 1, we obtain the distance matrix | 1 2
1 0

Expanding the matrix along the first row, we clearly obtain the determinant to be 4.
When p > 2 for any fixed s, we obtain the distance matrix to be of the form

R T R
p(T)T_l
1 0 1 1
gy,
r1r 2 0 2 - 2
1 1 -~ 2 ... 0
Expanding along the first row, we obtain the determinant to be —(p(“ "7 — 1)(pt“ =" — 1) =
2, -
—(p=r 12,
(ii) Due to the fact that d(v;, v;) = 0, this results to a distance matrix [d;;] NETEN with 0’s entirely
p 2 -
((524533))7‘ 1
in the main diagonal. Therefore, T'r(|d;;] NEITRY )=>"r (v, v;) = 0.
pl 2 Tl

(iii) When p = 2, s = 1, the rank of the matrix in (i) is clearly 3.
When p > 2 for any fixed s, we can obtain the rank of the distance matrix [d;;] NEITRY by
Pz )T

conducting a row operation on it which reduces to the echelon form

0 0 1 0 2

0 0 0 1 0 —1

0 0 v --- 0 1 —1 (243
pC2 )T 9

0 0 0 0 1 (s2+435)
pC T )1

(s2+3s) . . )
> )" — 1 linearly independent vectors which
243s .
2 )" — 1 nonzero rows, hence its rank.

From the reduced echelon form above, there are p'

span the row space of [d;;] NEITRY resulting to p ¢
plz -1

)
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|: 0, results to the characteristic equation

(iv) Solving the equation | A — [dyj] (g0
p

+35

(1+X)((p" )+/\) e N —(pt—= (e Dr42)A—(p"—1)) = 0. We obtain the eigenvalues by
finding the solution for \ in every factor of the equation as follows: Clearly, (A + 1) =0=\=-1.

(52+3s) . -
Further, ((p" — 1) + )\)P( >+ +1) = 0, we obtain A = 1 — p" of multiplicity phr 4 (pr+1).
Finally, for the quadratic part (\2 — (p(© 2 4 2)A — (p" — 1)) = 0, we can obtain
32 S 82 S
A= M 12 £ o g - 1)
which on expansion yields \ = %((p(“ 5 4 9) £ \/p B 4 gy 4y 4 4(pr — 1)) and

32 S S S S
simplifies to A = L((p(" =" +2) + \/p GOSN 4 g5 4 g, O

4 The 3-Radical Zero Finite Completely Primary Rings of
characteristic p?

4.1 Constructionll

Let R = GR(p*, p?) be a Galois ring of order p* and of characteristic p?>. Let U and V' be finitely
generated R’-modules with {uy, us, -+ ,us} and {vy, ve,- - - , v, } being the generating set such that
the nonnegative integers s,t are the number of elements in the generating sets. Then for fixed s
andt =X R = R'@Y | Ru®Y 5, R'uu; is an additive abelian group. Define multiplication

in R by
ao+2auz+2a3uuj ) (bo +Zbu,+2buu]

2,7=1 2,7=1

aobo —l—z (ao + pR)b; + ai(bo + pR)7 )u; + Z aob; +a;j(b.)” + Z aliai (b)) usuy.
i=1 i,j=1 ,5=1

R is thus turned by the multiplication into a commutative ring with identity (1,0,---,0,0,---,0).

For the rings discussed in this section, we shall consider o, = idg. The following Proposition
and its proof can be obtained from [5].
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Case l: when pu;, =0

Proposition 4.1. Consider R from Construction Il and let pu; = 0. Then zero divisors set Z(R)
satisfies the following properties:

() Z(R) =pR @© 3 ;_ Rui ® Y77 i Rujuy.
(i) (Z(R))? = Ef,j:l Rlugu;.
(iii) (Z(R))* = (0).

4.2 The Graphs I'(R) and Matrices obtained from Classes of Rings in
Construction |l

Proposition 4.2. Consider R from Construction Il. Then for p prime, r € Z* and pu; = 0, T'(R)
has the following properties:

s2+3s
( +g +2))7‘ . 1

(i) | V(C(R)) |=p!
(i) T'(R) is an incomplete graph.
(iii) diam((I'(R)) = 2.

52 3s 52 3s
(( +g +2))7. ( 42-5))74_1.

(iv) The minimum degree, 6(T'(R)) = p —

(v) girth(I'(R)) = 3.

Proof. (i) Since char(R) = p?, pu; = 0, and we have that | R'u; |= p",| Ruu; |= p",| pR' |=p"
€2 s+2
which is true for every i,j = 1,---s. We obtain | Z(R) |= p((‘+73+))7". Therefore, | Z(R)\{0} |=
52435 . s2+3s
U~ since | Z(R)* |=| V(TD(R)) |=| V(D(R)) |= 5 — 1,
(ii) Follows eaasily from the fact that (Z(R))? # (0).
(iii) From the incompleteness of T'(R) in (ii), Ann(Z(R)) = (Z(R))?, there exist some two non
adjacent vertices z,y € V(I'(R)) so that for some z € Ann(Z(R)), the supremum distance
d{z,y} = 2 hence the diameter.
(iv) Let V. = {vg,v9, -+ ,v (P3e42) } be the vertex set for I'(R). Let K, S C V such that
plm 2 )1

(s2+3s)

K Cann(Z(R))*. This implies | K |=pl"= )" —1and | S |= (p

)T
2
(s +:23s+2> )

§2 S
1) = -1 =

Licensed Under Creative Commons Attribution (CC BY-NC)
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(32+3s+2) (32+35) (32+35+2) (52—4-33)
(—=—)r =) 2

+ 1 which simplifies to Pl m — pt=)". Therefore, §(I'(R)) =
p((b L s ") —1=pl (e, m—pl S99 due to the minimal degree of the elements
of S and for the avoidance of self loop for each vertex v € S. Hence minimum degree 6(I'(R)).

(v) Follows from Proof (v) in Proposition 3.2. [

—1—p(

+3s+2) ) +3.s) )

Proposition 4.3. Consider [A] NEIEHTII the adjacency matrix associated with T'(R) for R in
plT 2 )1
Construction Il. Then for any fixed s,r € Z* and p prime,

() [A] (213019 is symmetric.
N B

s2+3s
(i) rank ([A] (21ss49) )= p(%)r - L
Tz )
(i) Tr ([A] 24aeny ) =0
D 2 -1
(v) Det([A] 24aen ) =0
D 2 -1

(v) Forp =2, the eigenvalues \[A] (Pt
P 2 "

—1, of multiplicity p";
2 S
of multiplicity p“=">r — 1;
1 :l: \/p((82+35+2))r I p( (52;‘35))7“ + 17
For p # 2, eigenvalues \[A] REITHEN
I T L
32 3s
1, of multiplicity p' =" — 2;
_J o, of multiplicity 2p“=">r — 1;
(52+35) r 2 (s243s) , (s243s) . (s243s+2) ,

(p< 2 ) _2):|: P ( 2 ) —8]7( 2 ) +4p( 2 ) +4

2 7

Proof. (i) The steps in the proof for (i),(iii) and (iv) are clear. We provide proofs for (ii) and (v) as
follows:

Licensed Under Creative Commons Attribution (CC BY-NC)
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(if) Upon carrying out a row operation on

01 1 1 1
1 0 1 1 1
0 1
Al ezgeen, =111 1 0 0 0 ety |
- o --- :
00 -+ oo un 0
we obtain its reduced echelon form matrix as
1 0O 0 O 0
0 1 0 O 0
: 0O 1 0 0
000 1 0 -0 2y,
P 2
0
O ((52+35+2) yr 0 Cee e e 0 ((S2+3S+2))T
P 2 —2 j2 2 -1
Let V= {v, 09,03, ,U (243, be the linearly independent set of vectors such that v; =
P
0
1 0 0 .
0 1 0
. 1 1 ((S2+3S))T
Uy = vs= [ o [V e = p 20 ~1 |. Clearly, the set V spans
p 2z "
0 0 0 0 ((52+35+2))T
p 2 -1

(s2+3s)

) ) = P( T T —1.

-1

(v) Forp = 2, | AI NEITETN [A] NEINTIS |= 0 yields the characteristic equation for the
plm 2 )T pl 2 )1

the whole of the matrix space. Therefore the rank([A] NEITET)
P 2

adjacency matrix [A] NEITRT I Let the eigenvalues of [A] (st be A\, Ag, -+, A NEITRES
pl 2 )1 plm 2z )T-1 plT 2

T*

We can obtain the characteristic equation of the adjacency matrix as
(52+3S) ” - 2436 (S2+38) ”
AT )P (2 — 20 — (pt +pE)) = 0. - T 1= 0= A =0o0f
(52+35)

multiplicity p =" " —1, (1+\)?" = 0 = X\ = —1 of multiplicity p". By solving the quadratic equation

2
s“+3s5+2)
2 )r
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(52+33+2) ) (s2+35)
2 T+4p(7)’f

. . 21\/ 4+4p! 2
A2 —2)\— (p' = 0 in the last factor, we obtain \ = b . =
(s243s+2) (s243s) \/ (s243s542) (s2+3s)
( )T ( )T ( )74 ( )T s243s s243s
21\/4(;; 2 +p 2 +1) _ 24+2\/p 2 +p T2 +1 — 14+ \/p(( +g +2>)T —l—p(( ;3 ))T i

2
For p #£ 2,
we generally obtain the polynomial equation which when factorized results to

)\2]1((é 7 ))T—l 1 A p((szérgé;) A2 —
(L+A) 2(( ('

equation gives the eigenvalues as \%

5’2 & S2
(s +§9+2) )r +p( ( ;33) )r)

(s +3s)

—pl= ")) = 0. Solving the

+3 243542
(5743s) )7‘ s 25 ))

—2)A - (p¢
(92+39)

(=) 1

= 0= \=0of multiplicity 2p“=*Hr _ 1. The

(s ;35))

second factor (1 + \)? = 0 = A = —1 of multiplicity p S ) Finally, solving the

quadratic part results to
52 S 82 S 82 S 52 S
\ (p(#”qu):t\/(p(( ;3 ))Lz)2+4(p<( +g +2))Lp(( ;3 )>T)

- .
. . .. . . (s243s)
Expandlng the discriminant yields the expression p2“ =" — 4p(

(s +3)
4p( " s0 that
(» (L2gEa), 2)1\/ 222y, o (gBa),, (2D,
2

S S S2 S
( ;3)) (( +g +2))T B

+4 +4p

A:

Proposition 4.4. Consider [L| NEIENTI the Laplacian matrix associated withT'( R) in Constructior
P 2 "—1
Il such that pu; = 0. Then forr € Z*, p prime and for a fixed s,

() (L]  (s248519) is symmetric.
p(ﬁi)rfl

” (243542) )
(Il) rank ([L] (w)r 1) :p( 2 r_ 9
p —
(2s2435) ) o((2430) ), ((2E8s42) ) GO
(iii) Tr([L] (g, = 2pl~ 2 —2p* 2 —2pt 2 —p= ) 42,
p —
(v) Det(L] (oupern, )= 0.
pl 2 —1
0,
§2 S s
(v) The eigenvalues A[L] (zis..z,, = p(w) —1, S
Pt ! (s%43s) +33) L 2135)
pUz ) —1, of multiplicity p© = )" — 1.
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Proof. (i) We prove (ii) to (v) as follows, (i) is clear.

(i) Carrying out an elementary row operation on [L] NEIERTIN obtain a matrix with an
p 2z -l
echelon form

10 .- 0 —1
0 1 0 0 —1 (s2+43s)
O L
00 1 0 0 —1 (s2+43s)
p(‘gi)rfl
O O 0 1 O O _1 (32+33)
p(ﬁi)”'
00 0 0 1 0 0 —1 (2ieess
p(f)rfg
00 0 0 0 1 0 - =1 (213549
p(fﬁ_z
oo o0 0 0 0 0 0 0
o0 o o0 o0 0 0 O 0

( (s2+§s+2) )r

This results to p — 2 non-zero rows in [L] NEIEREIN hence the rank.
(243542,

p
(ii) Since | Z(R)* = i
(=9 _2and | Ann(Z(R)") |= p'

p " — 1 because every such v; ¢ Ann(Z(R)*) is only adjacent to v; € Ann(Z(R)*).
Partitioning V' € T'(R) into disjoint subsets V; and V5, such that
Vi =A{v;lv; ¢ Ann(Z(R)*)} and Vo = {v;|v; € Ann(Z(R)*)}.

(-q2+33) <32+3S+2) (32+35)
Therefore, | Vo |=p" 2 " —1and | Vi |=p 2 m —p=r,
((SQJF#)T

— 1, each v; € Ann(Z(R)*) has degree

(s +33)

— 1. Therefore any v; ¢ Ann(Z(R)*) is of degree
((32—20—35))

Since the trace, Tr([L] (245549, )= -t d;, and every d;; is an entry of the diagonal
p(ﬁi)’”,l

=1
matrix [D] 242, Whose diagonal are entries of the degrees of v; V(I'(R)) thus
2 )1

p(
Tr(L] g, ) = (O =9 - 1) (T (T ),
Upon expansion and simplification of this equation, we obtain
N e D T B N R C I L T
Qp(@)r _ 2p((52’+++2))r p(< (2439)), 2p2((s L Qp(2(522+33> I op? o((439)y, QP(WV _
(52 4o
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2
PR ({etget2)y, o , .
(iv) Simplifying | [L]p(<32+38+2>)T_1 By P Ya;;(=1)"7 | 1;; | on the Laplacian matrix

where [;; are minors to [L] NEIERTIS and a;; are the row or column elements from the row or the
P Tl
column of operation, we then establish the singularity of [L] (.2,s..0
p(‘gi)f‘_l

—[L] 213299, ) |= O gives the characteristic polynomial equation

(v) Solving | (A (2iaese) (e,
p 2 -1 p 2 -1

of the form;

2 2.
((s +3s) ) ((s ;35) yr

((,5 +3s+2) ((a +Sa))

—A(=p D14 = —1+A)7 =0

On solving each factor, we obtain —\ = 0 = \ = 0. For the factor

52 s 7(52-5»33) r s243s . . s243s
(—(p 2 ) +a)pt 7 "1 = 0, we have that \ = (p(™3")" — 1) of multiplicity p(“ =" —1.
Finally, (—(p(“ 527 — 1) 4 ) = 0 = A = p(“5*)r _ 1 this establishes (v).

]

Proposition 4.5. Consider [d;;] NEIENTII the distance matrix associated with I'(R) for the ring
plm 2z )T-1
in Construction Il such that pu; = 0. Then forr € Z*,p, prime and s fixed,

(i) [di;] JEITETy is a singular matrix.
p 2 "1
(ii) TT([d’L]] ((32"'35"’2) Yr ) = 0'
P 2 -1

p( (s2+§s+2) )

(iii) rank([d;;] NEITETI )= T—2.
P 2 -1

0,
e

iv) Eigenvalues \d;;] (... = ’ infini

(iv) Eig [ a]p(&%w_l —1, of multiplicity p",
—p", of multiplicity p™ + 1.

Proof. (i) The proofs for (i), (ii) and (iii) are clear.
(iv) Solving the equation | A — [d,;] NEEEN |= 0 results to the characteristic equation
p 2 -
—(—p! T+ A1+ AP (p" + AP = 0. We obtain the eigenvalues by solving every factor

of the equation as follows: Clearly, A = 0. Further, —(— p(M +AN)=0=A=p w”.
For (1 + \)P" = 0, A = —1 of multiplicity p". Finally, (p" + \)P"*1 = 0 = X\ = —p" of multiplicity
p"+ 1 O
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Case ll: when pu; # 0

Proposition 4.6. Consider R from Construction Il such that pu; # 0. Then the zero divisors set
Z(R) satisfy the following properties;

() Z(R) =pR @&, R'u; & Zf,j:l Rluju;.
(i) (Z(R))* =pR @77, R'uu;.
(iii) (Z(R))* = (0).

Proposition 4.7. Let R be the 3-radical zero completely primary finite ring of characteristic p* in
Construction Il such that pu; # 0 and T'(R) be its zero divisor graph. Then forr € Z*,p prime and
s fixed,

(s +53+2) )7‘

() | V(C(R)) |=p' L.

(i) T'(R) is incomplete.
(iii) diam(I'(R)) = 2.

2 2
((S +SS+2))T ((S +;’>S+2))

(iv) §('(R)) = p 1

(v) girth(I'(R)) = 3.

-Pp

Proof. (i). Given that Z(R) = pR' © Y ;_, R'w; © )7 ;_, R'uyu; and since

| R |= p*, | Ru; |=p*, | Ruwu; |= p"fori,j =1,2,--- s it implies that | Z(R ) = p!
Moreover, since | Z(R)" |=| Z(R) — {0} | it means that | V(I'(R)) |=| Z(R)* |= p{“~5r _ 1.
(ii). Since (Z(R))* # (0), it follows that not all vertices v;, v; € V(I'(R)) are connected by an edge.

This expalins incompleteness of I'(R).
(iii). There exist non adjacent vertices v;, v, € V(I'(R)) due to (ii) so that for some vertex

2
s“+5542)
( 5 )7’.

v; € Ann(Z(R)) = (Z(R))2 the longest path of the graph is v; — v; — v,. Which establishes (iii).
(iv). As established in (i), | V(T'(R)) |= p %) _ 1. Clearly | Ann( (R)) — {0} |=
| Ann(Z(R))* |=p (w —1. The minimum degree from the graph can be obtained by computing

the order | V/(I'(R)) \ Ann(Z(R))" |= (p"" 5 — 1) — (o5 1) = p5 8

s s s s243s .
p= S e (7( S _ (=5 For avoidance of self loop, we have that 5(I(R)) =
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§2 S 82 &
((~ +g +2))T (( +gs+2))r _1

(v) Follows from Proof (v) in Proposition 3.2.

Proposition 4.8. Consider [A] (54 and [L] NEIEHEN (¢ be respectively the adjacency
plm =2 )1 plT 2 )1

r_

and Laplacian matrices for T'(R) for the ring in Construction Il such that pu; # 0, r € Z*, p prime
and s fixed. Then

() [A] (2i5012) and [L] (254 are both symmetric.
[ S I s e L

( (s2+gs+2) ( (52+§)s+2) )T‘

(if) rank([A] ((245542) ) )="p )" and rank([L] NEIERTI Y=p _9
o2 -1 pl 2 -1
(ii)) Det([A] (2igern )= Det([L] (24gn ) =0.
P2 -1 pl 2 -1
(V) Tr((A] (2ins, ) =0,
p 7 -l
2 2 2 9
TT([L] NI, ) _ QP(W)T _9 (W)T _p(%)r . (W)r +2.
oz -l

(v) The eigenvalues \[A] JETENT
p 2 1

82 S
-1, of multiplicity pt“=5"r — 9,
92 el
— 0 of multiplicity p“—="r — 1,
P +1)+VQ .
where Q = (p" +1)% + p(“zf“’“))r 4 p(“‘a*iis”))r 4 phr
(vi) The eigenvalues of L] EERE
p —
0,
52 kd . . . 52 S
= pFEr 1 of multiplicity pt T — 1,

(s243s42)

(v — 1), of multiplicity p*—=r — 1.

2
43542
(s 23 ) )7‘
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Proof. Proofs for Properties (i) to (iii) of [A] (21519 and [L] (215.19 are clear.
p(ﬁiﬁ”,l p(‘gi)’”fl

We proceed to provide proof for (iv), (v) and (vi) as follows.
(iv). For the adjacency matrix, [A] NEIENTII the result is clear since diagonal entries are all 0's.
plm =2 )1

( (.s +5s+2) v

(s2+455+2) 2

Since the order is p~—2 )" — 1, it follows that >,

elements of the matrix [A] NEITHTS
P T

a; = 0 where a;; are the diagonal

2(s2455+2) (s2+5s5+2) (s2+3s+2)

82 S
We ShOW that TT([L] (g2+59+2) ) — 2p( 2 )7’ — 2p( 2 )T — p( 2 )T - p((%w)r _.I_ 2‘
N
Since | Z(R)* |= p""F*) —1 =| V(T(R)) |. it is established that | Ann(Z(R)*) |= p(“~ 5 —1

52 3s . . . . .
and any v; ¢ Ann(Z(R)*) is of degree p(( 5 1 since v; is only adjacent to the vertices in

Ann(Z(R)*). In the same manner, each v; in the set Ann(Z(R)*) is connected by an edge with

v; € V(I'(R)). Therefore, deg(v;) = P32 9 for avoidance of self loop.

Let the partitions of the vertex set in I'(R) be V; and V;, such that

Vi ={v; €2Z(R)*|vi ¢ Ann(Z(R)*)} a2nd Vo ={v; € Z(]g)* v € Ann(Z(R):)} =
| Vl ‘: p((s +:st+2))r _1and ‘ V2 ’: p((s +gs+2))7. _1_ (p((s +:st+2))r . 1) _ p((s +gs+2))7,
Since the trace of [L]p(<52+gs+2>>r71 is the sum of the diagonal entries of the degree matrix

( (52 +(255+2) )T‘

2
( (s“+5s+2) )r

[D] (Papet)) that is Tr([L] (2ser2) 1) = >0 ~!d;; which is equivalent to sum of
p - p -

degrees of the vertices in I'(R) where d;; are the diagonal entries of [D] NERTETIN. We have
pl 2 -1
that

(s2+3s+2) - (s2+455+2) - (s2+43s+2) - (s2+55+2) - (s2+3s5+2) -
P )T ) (T Ty
p(2(52+255+2)) - Qp( +35+2)) p( (S2+35+ )) i 9 4 p(2(s +55+2)) _ (2(52+235+2) Yo ((52+§,5+2> )r 4 p((52+;2,»5+2))r

which simplifies to

2, ¢ 2 2 - 2, -
(2(3 +205+2)) ((s +gs+2) )T . ((s +;s+2) )7’ (2(s +23s+2) )T‘
p p

T

—p + 2. Hence the trace of [L] NETTRTN
2 -

p

(v). Simplifying the equation | AT (.2 5., —A] (2i5e0 = 0 results to the characteristic
(G P S,
polynomial equation

2
( (s“+3s+2) )

e e € IR §

((s +3

+2))
"IN = 2(p" + DA~ (p
Licensed Under Creative Commons Attribution (CC BY-NC)
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(s24+35+2) ” s243s
T Z 0 = ) = 0 of multiplicity p(“— 3

From the factorization components, —\? 1.
. (PH3st2)) o (s2+3s5+2)
Similarly, (1 + \)? 2 =0 = X\ = —1 of multiplicity p¢——=2 )" — 2.

52 S 52 S 52 S
For the quadratic part, A2 — 2(p" + 1)\ — (pt" =0 4 p(=52r 4 p(=5" ) — g =

(32+55+2) )’I’

2+ 1) £ /40 + 1)2 + 450
2

2 S 52 S 52 S
Sy (D (B

27 +1) £ /A + 12 + p =
2

2 2 2
(s +SS+4) ) +p((s +gs+2))r +p( (s +gs+2) Yr

5'2 S 32 S
(#) (#)T

+ 4p "+4p

T Y R P

(s2+3s5+2)

=+ 1) £V 1 p
(vi). From the characteristic equation | AJ NEILEE N L] NEITHE)
p - p

—((=(f

(s24+5542) (s24+5s+4)
e E

: |= 0, we obtain
-1

(s2+3s5+2)

1)+ AP0 (pf

2 2
2 5610 23542
(s +2.5+ ))7" (s 2.5 >)7‘

— 1)+ A)?""1)X\ = 0. Solving \ for each factor

(s%+55+2) (Pegetn)), (s245542) o
results to (—(p{—=2 " — 1) + \)? =0= A=p =2 )" —1 of multiplicity
s243s s243s (52+35+2) T s243s .
P 1 Further, (—(pETr 1y 4 APt 2 T 2 0= A = p _ L with a
32 3s . H
multiplicity of p(“=2")r — 1, and finally, A\ = 0. Hence the eigenvalues of [L] NEIHTIN.
pl——z )T
O]

Proposition 4.9. Given [d;;] NEIEHTI the distance matrix of associated with I'( R) of the ring in
p 2 1
Construction Il. The point spectrum, o ,pint([d;;] NEIENTIR ) is described by the following eigenvalues:
2z -l

(32+35+2)

—1, of multiplicity pt—= )" — 2;

32 3s
(s“43 +2)),,, . 1;

A=4 -1, of multiplicity p'
(p( (52+:2;5+2))r 1 2) :I: \/p(2(52+235+2))r + p( (52+:235+2))r,

Proof. Simplifying the equation | Al — [d;;] (245649 |= 0 results to the polynomial equation of
p— =z )

the form , ,
(s“+3s+2) . (s“4+3s+2) » s2143s
SR A O — (2p TR + (3
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(.92+3s+2) »
Finding the values of X in each factor yields —(1 + A)p< 22 2 0 = A = —1 of multiplicity
(52+3s+2) ,
r — 2. Further, (pr + AP > -1

2
(s +gs+2) )7‘)

(32+35+2)

= 0= )\ = —p" of multiplicity p"—=2 )" — 1.
(52+35+2) .
2 )" 4+4) = 0, we obtain

((s2+3s+2)
2

For the quadratic part A2 — (2p( A+ (3p!

(52+35+2) (s2+35+2) (s2+35+2)
(2p(f)7‘+4):|:\/(2p( T T 44)2—a3pT 2 )T 44)

A= 2

((52+3s+2) ) (2(52+35+2) r ((s2+35+2) ) (s243s+2 (s2435+2) r
2p 2 2 +8p 2 + —16)

gpt 2 ))T+16—12p( 2

_( +4)i\/(4p

o 2

s243s+2 2(s2+43s+2 5243542 5243542
(2p(7< 2 >>T+4):t 4;&7< 2 >>r+16p(( 2 >)T—12p(7( Sy,

2

2, - B -
(2p = ) ﬂﬂww - gpE),
2

(29 g 2\/ PPy | (L),
2

— (T )4 Ww» I
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5 The 3-Radical Zero Finite Completely Primary Rings of
Characteristic p’

5.1 Construction lli

Let R = GR(p*,p?) be a Galois ring of order p*" and characteristic p>. Let U and V' be finitely
generated R’-modules with the generating sets {uj,us, -+ ,us} and {vy, v, -+ , v} respectively
such that s and t are the number of elements in the generating sets. Suppose ¢t = S(S“ for a fixed
s, R=R &> | Ru &) ;. ._, Ruu;is an additive abelian group. Define multipllcatlon on R by

i,7=1

(o + Z TiU; + Z ;) (Yo + Z Yih; + Z Yju;;)

i,j=1 i,0=1

Totfo + O (o + pR)yi + i(yo + pR) s + Y (woyy + 7(ye) 7 + Y agjai(y;) ™ Jus;.

i—1 i,j=1 i,j=1

The multiplication given turns R into a commutative ring with identity (1,0,---,0,0,---,0) if 0, =
idr. From this multiplication, the set Z(R) of zero divisors satisfy the following properties;

(l) Z(R) = pR/ D Z?:l R’ui + szzl R’uiuj,
(i) (Z(R)? =p*R' & 327 -, R,
(i) (Z(R))* = (0).

For the rings considered in this section, o; = idy.

5.2 The Graphs I'(R) and Matrices from Classes of Rings in
Construction Il

Proposition 5.1. Given R, the ring of Construction Ill and I'(R) be the associated zero divisor
graph. Then for any prime integer p,r € 7" and s-fixed.

(5 +55+4) )7‘

(i) | V(C(R)) |=p' 1.
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§2 S S2 &
((« +g +4)) (( -2"-59))7,.

(i) A(T(R)) = "—2andé(I'(R)) =p

(iii) T'(R) is incomplete.
(iv) diam(I'(R)) = 2.
(v) girth(T'(R)) = 3.

Proof. (i) Since char(R) = p3, | R’ |= p* and | pR’ |= p*". Consider pu; = 0 fori=1,2,--- ,s and
| Rugu; |= pvinj = 1,2, s we have that | Z(R) |= p““ )" and | Z(R)\ {0} |-

% (s +5€+4)
| (Z(R))* |=| V(T(R)) |= p! -1
(i) Let v, 72, -+ , 7 € R with 4y = 1 such that¥,,--- ,7, € R forms a basis for R’ over its prime
subfield R’ /pR’. From the multiplication defined on R,
Ann(Z(R)) = {p*ro + D0 arviwi + oy biviuusla;, by € R a; + b = 0(mod p)}. With the fact

92 s . 52 s

that | V(D(R)) |= p“= 3" — 1, any vertex v; € Ann(Z(R))* is of degree p(“~2=)" — 2 due to
avoidance of self loop. Hence the maximum degree A(I'(R)).
Partitioning V(I'(R)) into disjoint subsets V1 and V; such that V; = {v]v; € Ann(Z(R))*} and
Vo = {vjlv; ¢ Ann(Z(R))*}, | Vi |=p (20 This implies that the vertices of minimum degree

are only adjacent to v; € Ann(Z(R))* and since | V; |= p(“ 5™, §(I(R)) = pl 5"
(iii) to (v) are clear. O

r

The results in the sequel describe the algebraic properties of the matrices associated with
['(R) of the ring in Construction Il1.

Proposition 5.2. Given [A] (25t and L] NETERTI the adjacency and Laplacian matrices
[ A | pl 2z )T
of I'(R) respectively for the ring in Construction Ill. Then for a prime integer p,r € 7" and s fixed,

() Det([A] oipovn, ) = Det([L] oinry, ) =0,
P 2 —1 2 —1

p

243s 2455 s243s
( +§ +2) (( +;) +2))T+p(( +§ +2))T

(i) rank([A] (2ise1a) ) = pl +
p( 2] )7'_1

1.

" +2 and rank([L] NEIERT ) =
p 2 -1
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(iii) Eigenvalues \[A] (2i5.10 =
I%f)"‘_l

2.
0, of multiplicity p“=5"r 4+ pr +1;
Lo ((52+:ss+2) ) .
~1, of multiplicity p -2,
2 3s . )
e of multiplicity p";

(32+33+2)

pU 2 M+ 1t

Where

o= VD 4 1) = (S
(iv) Eigenvalues A[L] (g, =
P _

(s2+43s5+2)

0, of multiplicity p' r—2;
2455 s243s
3 of multiplicity p“=3= 4 p(“5*r 1 1;
2, 4, e
1 _2p<w»; 2 of multiplicity p" ;
pEE ) L (S

Where

e = /(I | (R ((Eaety o (R, g ey,

Proof. We provide proofs for (iii) and (iv) since the steps for proofs in (i) and (ii) are clear.

(iii) Solving the determinant | AT —[A] (25ea) |= 0, we obtain the characteristic polynomial
plm 2 )1

)r
equation of the form
(Paset),  ((sP430)),
)\ +p O+ AP
2 2, = 2
(p( (e +;5+4) )T _I_ p( o +;S+2) )T _|_ p( (e +SS+2> )7”)) = 0

Finding the value of A\ from each factor in the above equation results to
((s2+5s+2) ) ((32+35) )r
—\P 2 +p 2

(1+X)P

Licensed Under Creative Commons Attribution (CC BY-NC)

(s2+3s+2)
C—7—)r_9

2 S T 52 S
(P L (2 — o o DA+

(s2+55+2) ) (s2+3s)
+

1 — 0 = X = 0 of multiplicity p{™—2 pr 1,

2

2
((CBa2)y, (s2+35+2) (s24+3542) )

= 0 = \ = —1 of multiplicity p‘"—=2 )" — 2 and the factor (p™ 2 + AP =
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(s2+43s5+2)
2

0= \=—p )" of multiplicity p".

. (s2+35+2) (52+55+4) (52+55+2) (52+35+2)
The quadratic part A2 — 2(p" 2 "+ p" + DA+ (p" 2 7 4+pt—=2 4 p—2 7)) =0 can
be solved as
(s2+3s5+2) (s243s+2) (9 +5s54+4) (s245s42) (s2+43s42)

A= 2(p(‘27)r+pr+l) \/4(p(ﬁ7)r+lﬂr+1)2 4(10 2 74 2 74 2 )r)

= 3 .

(s2+3s+2) (s2+3s42) (s245542) (s2455+2) (s2+3s42)
LA I~ 0 e (A S » il el VAN S S o MU ID))
5 .

Simplifying this equation yields

A= (O 1) £ \/(p((su%ﬂ))r o 1)2 — (pUTEE g (I (S

(iv) Similarly, we can provide proof for eigenvalues of [L] NEITRS by solving the equation
pt 2z "1
| AT —[L] JEITETy |= 0 which results to the polynomial equation
p 2 -1

32+55 2 s2+33 52 3s5+2
(g, (s, /\(%)T_Q

52 S 32 S 52 S
~(( LAy (P DA (2 =2(p 7
2 2
(PFEr p gp R gy (S ) g,
S . . ((S +§s+ ))r ((S ))r ( +5s+2) )7‘
olving the equatlon leads to (—1+\)? =0=2x=1 of multlpI|C|typ 2 +
S S w T . . . . 0 .
p(( 2y "+, AT 2 ) = )\ = 0 of algebraic multiplicity p S B} Similarly,
s s I s243s T .
((p(i( S 1) p A =0 = A =1 — p("2)r of multiplicity p”. The quadratic part
2 2 S 52 S 82 S 32 S
)\2 . 2<p((s +gs+2))r +p((s ;3‘))7"))\ 4 (p(( +§ +4) )r + 2]?(( +;> +2))7" + 2p(( +i25 +2))r . 1) —0can be Solved
as follows;
\ 2" (s2+gs+z))T+p((52;35)%&\/4(1)( <52+Ss+2) " <52;35))T)2_4(p( (52+§S+4))r+2p((52+§5+4) )T+2p(<52+++2))r_1)
o 2
B 2(p< (52+gs+2) >T+p< (52;35))T):|:2\/( ((5 +35+2) ((5 +35)> ") (p( (52+gs+4))T+2p((s2+25+2))r+2p< (52+§s+2))r_1)
2
( (s2+35+2) )7‘ ( (32+3$) )7‘
where ¢ — \/(p( (s2+gs+2) )r +p( (s2J2r3s))T)2 . (p( (s2 +5s+4 ) 1 2p( (s2 +Ss+2))r + 2p(<52+35+2>)r _ 1)‘ 0
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6 Conclusion

This research has succeeded in representing the zero divisor graphs I'(R) from classes of 3-
radical zero completely primary finite rings using the Adjacency, Laplacian and Distance Matrices
which have been analyzed for some of their algebraic properties.
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