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Abstract
Background   People who inject drugs (PWID) and living with the human immunodeficiency virus (PLHIV) are 
at higher risk of suffering marked derangements in micronutrient levels, leading to poor disease and treatment 
outcomes. Consequently, this can be monitored by measuring key biomarkers, such as total circulating (serum) 
25-hydroxycholecalciferol (25(OH)D3), calcium, and alkaline phosphatase (ALP) for timely intervention. Therefore, 
circulating levels of 25(OH)D3 and calcium, and ALP activity were determined in PWID and are highly active anti-
retroviral treatment (HAART)-experienced or -naive, along with those without HIV infection.

Methods  This cross-sectional study compared serum concentrations of 25(OH)D3, calcium, and ALP in Kenyan PLHIV 
and were HAART-naive (n = 30) or -experienced (n = 61), PWID and without HIV (n = 132).

Results   Circulating 25(OH)D3 levels were significantly different amongst the study groups (P < 0.001), and were 
significantly lower in the HAART-experienced (median, 17.3; IQR, 18.3 ng/ml; P < 0.001) and -naive participants 
(median, 21.7; IQR, 12.8 ng/ml; P = 0.015) relative to uninfected (median, 25.6; IQR, 6.8 ng/ml) PWID. In addition, the 
proportions of vitamin D deficiency (55.7%, 40.0%, and 17.4%) and insufficiency (31.1%, 53.3%, and 63.6%) compared 
to sufficiency (13.1%, 6.7%, and 18.9%; P < 0.001) were greater amongst HAART-experienced, -naive, and uninfected 
study groups, respectively. Likewise, serum total calcium concentrations were lower in the HAART-experienced 
relative to HIV-negative (P = 0.019) individuals. Serum ALP activity was also lower in the HAART-experienced in 
contrast to HIV-negative PWID (P = 0.048). Regression analysis indicated that predictors of circulating 25(OH)D3 were: 
age (β = 0.287; R2 = 8.0%; P = 0.017) and serum ALP (β = 0.283; R2 = 6.4%; P = 0.033) in the HAART-experienced PWID, 
and serum ALP (β = 0.386; R2 = 14.5%; P < 0.001) in the HIV-negative PWID.
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Background
People living with HIV (PLHIV) and those injecting illicit 
drugs suffer marked micronutrient and macronutrient 
deficiencies [1–3]. Vitamin D is one of the most impor-
tant micronutrients altered in PLHIV and those inject-
ing drugs [4–6]. Adequate circulating vitamin D levels 
in the body are critical in modulating clinical outcomes 
of HIV infection [7, 8]. Vitamin D is a key regulator of 
bone homeostasis [9, 10]. In addition, it is involved in 
regulating immune responses such as the activation of 
cell-mediated immunity, suppression of leucocyte pro-
liferation, monocyte activation, and cytokine production 
[11]. Vitamin D deficiency has been reported in PLHIV 
[12, 13], and this is associated with low intake, as well as 
the use of efavirenz, nevirapine, tenofovir and ritonavir 
containing antiretroviral regimens [4, 14]. Nonetheless, 
supplementation restores vitamin D status, calcium, and 
alkaline phosphatase (ALP) activity [15]. However, it is 
not clear how concurrent HIV infection, highly active 
antiretroviral therapy (HAART) and injecting drug use 
influence vitamin D status.

Calcium is important in bone mineralisation, but pre-
vious studies reported decreased serum calcium levels 
in PLHIV [15]. HIV infection alters bone metabolism 
through inflammatory responses [16]. For instance, 
pro-inflammatory cytokines such as tumour necrosis 
(TNF)-α function by inhibiting osteoblasts and activating 
osteoclasts, hence elevating circulating levels of calcium 
[17]. Although elevated serum calcium independent of 
low vitamin D levels has been reported in heroin addicts 
[18], the effect of substance use on circulating calcium 
levels is not clear.

ALP is an enzyme produced in the liver and osteoblasts 
that hydrolyses phosphate esters releasing inorganic 
phosphate, and serum ALP activity is elevated in PLHIV 
initiated on HAART presenting with severe hepatotoxic-
ity [19]. Likewise, elevated serum ALP activity predicts 
the degree of hepatic inflammation in chronic hepatitis 
B infection and marijuana-induced hepatotoxicity, as 
well as hepatobiliary and bone diseases [20–23]. In addi-
tion, previous studies on PLHIV showed that elevated 
serum ALP activity was associated with immunodefi-
ciency (CD4 count < 200 cells/µl), laboratory markers of 
bone turnover, and non-nucleoside reverse-transcriptase 
inhibitors (NNRTI; nevirapine and efavirenz) use [24, 
25]. Furthermore, use of nucleoside reverse transcriptase 

inhibitors (NRTIs) such as tenofovir, co-morbidities and 
demographic factors has also been associated with altera-
tions in serum ALP activity in PLHIV [24]. Neverthe-
less, no clear mechanisms have been put forth to explain 
serum ALP elevation in HAART-naive and -experienced 
PWID living with HIV.

Serum 25-hydroxycholecalciferol (also known as cal-
cifediol or calcidiol and abbreviated as (25(OH)D3) con-
centrations are a summation of vitamin D intake and 
sunlight exposure synthesised vitamin D, and as such 
is used as a biomarker of the overall vitamin D status 
because of a longer half-life of 2–3 weeks compared 
to 4–6  h for 1,25-dihydroxycholecalciferol or calcitriol 
(1,25-(OH)2D3) [26]. Vitamin D from sunlight exposure, 
diet, and supplements is hydroxylated in the liver to 
25(OH)D3 and in the kidneys to generate the active form 
1,25-(OH)2D3 [27], which promotes calcium and phos-
phate conservation [28]. Altogether, it appears that the 
homeostatic balance of these bone mineralisation mark-
ers is markedly altered in PWID and living with HIV. 
However, there are no reports from Kenya on the inter-
relationships of serum 25(OH)D3, calcium, and ALP in 
PWID and are living with HIV. Therefore, it is possible 
that the increasing population of PWID in Kenya with a 
high burden of HIV infection suffer marked pathophysi-
ologic derangements which can influence strategies of 
management. Therefore, this study examined the interre-
lationship of serum 25(OH)D3 with calcium and ALP in 
HAART-experienced or -naive, and HIV-negative PWID.

Methods
Selection and description of participants. This cross-
sectional study was conducted as part of a larger study 
investigating the demographic and laboratory factors 
associated with HIV infection amongst PWID in Mom-
basa, a coastal city in Kenya. A detailed description of 
the study site and the population is presented in our 
previous publications [29–32]. A total sample size of 
223 serum specimens from PWID was estimated [33] 
based on a margin of error of 5%, confidence interval of 
95%, response distribution of 82.3%, and a population of 
49,167 PWID in Kenya [34]. The sample size was then 
stratified according to HIV prevalence of 41% in PWID 
[35], and HAART cover of 0.67% in PWID living with 
HIV [36]. Thus, the following three groups of PWID were 
analysed: (1) HIV-negative (n = 132); (2) HAART-naive 
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(n = 30); and (3) HAART-experienced (n = 61). The 
HAART-naive were individuals newly diagnosed with 
HIV infection. The HAART-experienced were individu-
als on HAART, and HIV-negative comprised PWID 
testing negative for HIV infection. Demographic infor-
mation, substance use profile, body mass index (BMI), 
CD4 + T cell counts, including HIV screening and viral 
load determinations, and sample collection procedures 
were previously described [31, 37].

Serum 25-hydroxycholecalciferol, calcium, and 
alkaline phosphatase activity. About 10  ml of blood 
samples were collected by venepuncture into plain vac-
utainer tubes containing a clot activator and used for 
serum preparation. The serum samples were aliquoted, 
and stored frozen at -70o C until used for batched ana-
lyte measurements. Automated clinical chemistry and 
immunoassay analyser (ROCHE COBAS® e601 and 
e501, Lausanne, Switzerland) respectively were used for 
batched measurements of 25(OH)D3, and total calcium, 
while DIRUI CS-4000 (Dirui Industrial Company ltd., 
Changchui, China) auto-chemistry analyser was used for 
determining ALP activity. Serum 25(OH)D3 was used for 
measuring vitamin D status because of a longer half-life 
than the 1,25-(OH)2D3 [26]. In the Arsenazo method, 
total serum calcium is determined at an acidic pH which 
frees complexed and albumin-bound calcium for specific 
binding of calcium ions to arsenazo III (2,2’-[1,8-dihy-
droxy-3,6-disulphonaphthylene-2,7-bisazo]bisbenzenear-
sonic acid). The intensity of the purple-coloured reaction 
product is proportional to the concentration of total cal-
cium present in the sample and was quantified by colo-
rimetry. In addition, calcium estimation was based on 
clinical practice standards [38], as the method measures 
both bound and free calcium. The ROCHE COBAS® 
reagents were supplied by Roche diagnostics through 
a local subsidiary (Sciencescope ltd., Nairobi, Kenya). 
Quality control assays for 25(OH)D3 and calcium were 
performed prior to analysing the samples. All analyses 
were carried out in accordance with the principles of 
good clinical laboratory practices.

Statistical analysis. Statistical data analysis was con-
ducted using IBM SPSS Statistics for Windows, Version 
25.0. Armonk, NY: IBM Corp. Age, weight, height, BMI, 
CD4 + T cell counts, HIV-1 RNA copies, 25(OH)D3, cal-
cium, and ALP were compared across the study groups 
using Kruskal Wallis U tests followed by Dunn’s post-
hoc corrections. Distributions of gender, BMI, immune, 
HIV-1 viraemia, 25(OH)D3, calcium, and ALP status were 
compared amongst the study groups using the Pearson’s 
chi-square tests. To determine the prevalence of micro-
nutrient deficiency, the serum concentrations of 25(OH)
D3 were categorised as sufficient (≥ 30 ng/ml), insufficient 
(21–29 ng/ml) and deficient (< 20 ng/ml) [39]; total cal-
cium was stratified into hypocalcaemia (< 2.2 mmol/L) 

and hypercalcaemia (> 2.6 mmol/L), whereas ALP was 
categorised into low ALP activity (< 53.0 IU/L) as previ-
ously established for Kenyan adults [40]. Linear hierar-
chical regression modelling was performed to determine 
the predictors of circulating 25(OH)D3 concentrations. 
First, the variables were log-transformed towards nor-
mality before regression modelling each study group of 
PWID. In all the study groups, serum concentrations of 
25(OH)D3 were entered as the dependent variable. Cal-
cium plus age, CD4 + T cells, HIV-1 RNA copies, and 
BMI or age, CD4 + T cells, and BMI were entered in the 
models as the predictor variables for the PWID and were 
HAART-experienced, -naive, and were HIV-negative, 
respectively. All tests were two-tailed with statistical sig-
nificance set at P < 0.05.

Results
Demographic, drug use, and clinical profiles of the study 
participants. The demographic and drug use profiles 
of the study participants are presented in Table  1. The 
median age distribution was not significantly different 
(P = 0.441) across the study groups. Gender distribution 
differed significantly across the study groups (P < 0.001), 
and the HAART-experienced group had more females 
(n = 38; 62.3%) relative to HAART-naive (n = 13; 43.3%) 
and HIV-negative (n = 12; 9.1%) PWID. Body height 
(m) was significantly different in between the study 
groups (P < 0.01). CD4 + T cell counts (/µl) were signifi-
cantly different across groups (P < 0.001) with HAART-
experienced (P < 0.001) and HAART-naive (P < 0.001) 
participants presenting with lower counts compared to 
HIV-negative individuals. In addition, proportions of 
immune suppression (CD4 + T cell counts < 500.0/µl) 
were (n = 41; 67.2%) in the HAART-experienced, -naive 
(n = 15; 50.0%), and HIV-negative (n = 26; 19.7%; P < 0.001) 
PWID. Heroin was the most frequently injected sub-
stance in all study groups but the proportion of users 
varied among the study groups [HAART-experienced 
(n = 42; 68.9%); HAART-naive (n = 22; 73.3%) compared 
to the HIV-negative group (n = 120; 90.9%); P < 0.001]. 
Injection cocaine use was reported in less than 30.0% of 
the HIV-infected groups [HAART-experienced (n = 18; 
29.5%); HAART-naive (n = 7; 23.3%) compared to the 
HIV-negative group (n = 9; 6.8%); P < 0.001]. Concomi-
tant injection of cocaine and heroin was reported in less 
than 3.5% of the study participants [HAART-experienced 
(n = 1; 1.6%); -naive (n = 1; 3.3%); and HIV-negative (n = 3; 
2.3%) individuals]. Frequency of drug injection (> twice a 
day) was higher in HAART-experienced (n = 50; 82.0%) 
and -naive (n = 19; 63.3%) individuals compared to the 
HIV-negative (n = 72; 54.5%; P = 0.001] PWID. Finally, 
the duration of injection (> 1 year) was also higher in the 
HAART-experienced (n = 55; 90.2%) and -naive (n = 27; 
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90.0%) patients relative to the HIV-negative (n = 81; 
61.4%; P < 0.001) individuals.

Serum 25-hydroxycholecalciferol, total calcium and 
alkaline phosphatase activity. The circulating concen-
trations of 25(OH)D3, calcium and ALP are shown in 
Table 2. The serum 25(OH)D3 levels differed significantly 
amongst the study groups (P < 0.001). Post-hoc analysis 
indicated that serum 25(OH)D3 levels were significantly 
lower in the HAART-experienced (P < 0.001) and -naive 

(P = 0.015) PWID relative to the HIV-negative PWID. 
Consistent with lower 25(OH)D3 levels, the prevalence 
of vitamin D deficiency was higher in the PLHIV and 
HAART-experienced (n = 34; 55.7%) vs. the -naive (n = 12; 
40.0%) and HIV-negative (n = 23; 17.4%) PWID. However, 
proportions of 25(OH)D3 insufficiency were lower in the 
HAART-experienced (n = 19; 31.1%) compared to -naive 
(n = 16; 53.3%) and HIV-negative (n = 84; 63.6%) PWID. 
Accordingly, the overall prevalence of 25(OH)D3 suffi-
ciency was low in the study groups: HAART-experienced 
(n = 8; 13.1%), HAART-naive (n = 2; 6.7%), and HIV-nega-
tive (n = 25; 18.9%; P < 0.001) PWID. Serum total calcium 
levels were significantly (P = 0.023) different across the 
study groups. Post-hoc analysis showed that serum total 
calcium concentrations were lower in HAART-experi-
enced PWID in comparison to HIV-negative (P = 0.019) 
participants. Consistent with low calcium concentra-
tions, a higher prevalence of hypocalcaemia was present 
in HAART-experienced (n = 22; 36.1%) vs. HAART-naive 
(n = 9; 30.0%) and HIV-negative (n = 33; 25.0% PWID. 
As a result, low prevalence of hypercalcaemia was pres-
ent in all the study groups [HAART-experienced (n = 4; 
6.6%); -naive (n = 1; 3.3%; and HIV-negative (n = 7; 5.3%; 
P = 0.532)]. Likewise, serum activity of ALP was signifi-
cantly different amongst the study groups (P = 0.049). 
Post-hoc analyses showed that serum ALP activity was 
lower in the HAART-experienced PWID relative to the 
HIV-negative PWID (P = 0.048). In addition, no high ALP 
activity was noted in the study groups [HAART-experi-
enced (n = 0; 0.0%); HAART-naive (n = 0; 0.0%); and HIV-
negative (n = 0; 0.0%) PWID].

Predictors of circulating 25-hydroxycholecalciferol 
concentrations. Hierarchical linear regression modelling 

Table 1  Demographic and clinical profiles of the study participants
Characteristic HIV[-]/HAART[-], n = 132 HIV[+]/HAART[-], n = 30 HIV[+]/HAART[+], n = 61 P
Age, yrs. 32.3 (9.9) 30.7 (7.6) 30.3 (8.7) 0.441
Female, n (%) 12 (9.1) 13 (43.3) 38 (62.3) < 0.001
Weight, kg 54.5 (8.8) 54.0 (8.8) 53.0 (7.0) 0.051
Height, m 1.7 (0.1) 1.7 (0.1) 1.7 (0.1)a 0.005
BMI, kg/m2 18.7 (2.8) 18.7 (2.6) 18.8 (2.4) 0.984
  BMI < 18.5 kg/m2 73 (44.7) 16 (36.7) 34 (44.3) 0.975
CD4 + T cells/µl 937.0 (618.0) 495.0 (369.0)c 357.0 (317.5)b < 0.001
<500 CD4 + T cells/µl 26 (19.7) 15 (50.0) 41 (67.2) < 0.001
Log10 HIV-1 RNA copies/ml … 3.5 (2.4) 2.9 (2.4) 0.451
  ≥1000 Log10 HIV-1 RNA copies/ml … 16 (59.3) 29 (48.3) 0.345
Heroin 120 (90.9) 22 (73.3) 42 (68.9) < 0.001
Cocaine 9 (6.8) 7 (23.3) 18 (29.5) < 0.001
Cocaine and heroin 3 (2.3) 1 (3.3) 1 (1.6) …
Frequency of injection > 2/day 72 (54.5) 19 (63.3) 50 (82.0) 0.001
Duration of injection > 1 year. 81 (61.4) 27 (90.0) 55 (90.2) < 0.001
Data are presented as number (n) and proportion (%) of participants for categorical variables, and as medians (interquartile range) for age, CD4 T cell counts and 
log10 HIV RNA copies. HIV, human immunodeficiency virus. HAART, highly active antiretroviral treatment. Across group comparisons were performed using the 
Pearson’s chi-square for proportions, and Kruskal Wallis tests for age, weight, height, BMI, and CD4 + T cell counts. Post-hoc Dunn’s test for multiple comparisons was 
performed for height and CD4 + T cell counts. HIV RNA copies were compared between the HAART-experienced and -naive groups using the Mann-Whitney U test. 
aP = 0.004, bP < 0.001, and cP < 0.001 vs. uninfected people-who-inject-drugs. Values in bold are significant P-values

Table 2  Circulating levels of vitamin D, calcium, and alkaline 
phosphatase activity
Analyte HIV(-)/

HAART(-), 
n = 132

HIV(+)/
HAART(-
), n = 30

HIV(+)/
HAART(+), 
n = 61

P

25-hydroxycholecal-
ciferol, ng/ml

25.6 (6.8) 21.7 
(12.8)b

17.3 (18.3)a < 0.001

  Deficiency 23 (17.4) 12 (40.0) 34 (55.7) < 0.001
  Insufficiency 84 (63.6) 16 (53.3) 19 (31.1)
  Sufficiency 25 (18.9) 2 (6.7) 8 (13.1)
Calcium, mmol 2.3 (0.2) 2.3 (0.2) 2.2 (0.2)c 0.023
  Hypocalcaemia 33 (25.0) 9 (30.0) 22 (36.1) 0.532
  Hypercalcaemia 7 (5.3) 1 (3.3) 4 (6.6)
ALP, U/L 61.0 (33.3) 55.0 (26.0) 53.5 (27.5)d 0.049
  >153 U/L 0 (0.0) 0 (0.0) 0 (0.0) ….
Data are presented as medians (interquartile range) for continuous variables 
and numbers (proportions) of participants for categorical variables. HIV, human 
immunodeficiency virus. HAART, highly active antiretroviral treatment. ALP, 
alkaline phosphatase. Deficiency, 25-hydroxycholecalciferol (25(OH)D3) < 20 
ng/ml; insufficiency, 25(OH)D3 20–29 ng/ml; sufficiency, 25(OH)D3 ≥ 30 ng/ml 
[39]. Hypocalcaemia (calcium < 2.2 mmol/L) and hypercalcaemia (calcium > 2.6 
mmol/L). High ALP activity (ALP > 153.0 U/L for males of all ages, and ALP > 130.0 
and > 170 U/L for females < 45 years and ≥ 45 years old) [40]. Data analysis was 
conducted using the Pearson’s chi-square for proportions and Kruskal Wallis 
tests for 25(OH)D3, calcium, and ALP levels across the groups. Post-hoc Dunn’s 
test for multiple comparisons: aP < 0.001, bP = 0.015, cP = 0.0194, and dP = 0.048 
vs. uninfected people-who-inject-drugs. Values in bold are significant P-values
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for predictors of circulating 25(OH)D3 concentrations 
amongst the HAART-experienced individuals was sig-
nificant (F (6, 54) = 3.661, P = 0.004) with the entire set of 
variables (total calcium plus age, ALP, CD4 + T cells, BMI 
and HIV-1 RNA copies) accounting for 28.9% of the vari-
ance in circulating 25(OH)D3 levels (R = 0.538, R2 = 0.289). 
In addition, age (β = 0.287, P = 0.017), and ALP (β = 0.283, 
P = 0.033) were associated with the 25(OH)D3 concentra-
tions. Squared semi-partial correlations revealed that the 
unique 25(OH)D3 concentrations accounted for by age, 
and ALP was 8.0%, and 6.4%, respectively. The model-
ling for the predictors of 25(OH)D3 levels in the HAART-
naive individuals was, however, not significant (F (6, 
23) = 1.170, P = 0.356; (R = 0.484, R2 = 0.234)). Further-
more, hierarchical regression modelling for 25(OH)D3 
concentrations in the HIV-negative individuals was sig-
nificant (F (5, 126) = 5.026, P < 0.001) with the entire set of 
variables (calcium plus age, ALP, CD4 + T cells, and BMI) 
accounting for 16.6% of the difference in the circulating 
25(OH)D3 concentrations (R = 0.408, R2 = 0.166). Besides, 
ALP activity (β = 0.386, P < 0.001) was significantly asso-
ciated with the 25(OH)D3 concentrations. Squared semi-
partial correlations indicated that the unique quantity of 
variance in 25(OH)D3 concentrations accounted for by 
ALP was 14.5%.

Discussion
The lower levels, including higher proportions of defi-
ciency and insufficiency of serum 25(OH)D3 in the 
HAART-naive and -experienced PWID, suggest HIV 
infection and substance use exacerbation in vitamin D 
deficiency. These findings are consistent with previous 
studies showing lower concentrations of vitamin D and 
high proportions of vitamin D deficiency in PWID liv-
ing with or without HIV [4–6]. The underlying mecha-
nisms for the low levels of vitamin D status in PWID 
include HIV infection- and substance-induced chronic 
inflammation and immunological hyperactivity. This is 
further emphasised by results indicating that low levels 
of vitamin D are associated with seropositivity for hepa-
titis C virus and HIV-infections, both of which are com-
mon chronic inflammatory-associated co-morbidities in 
PWID [4]. The role of inflammation in suppressing the 
vitamin D status, is also possibly related to a shift in the 
oxidative and anti-oxidative balance [41] and over-secre-
tion of inflammatory mediators such as TNF-α interfer-
ing with production of 25(OH)D3 resulting in vitamin D 
deficiency [42]. Additionally, hepatic injury and altered 
metabolism can lead to vitamin D deficiency given that 
antiretroviral drugs such as lopinavir/ritonavir, tenofovir 
disoproxil fumarate and efavirenz are associated with low 
vitamin D levels in PLHIV [43, 44]. Consistent with these 
observations, protease inhibitors, NRTIs and NNRTIs 
promote hydroxylation of vitamin D and its metabolites 

to biologically inactive compounds, leading to vitamin 
D deficiency [45, 46]. Moreover, opioids, antiretroviral 
drugs, and 25-(OH)D are also metabolised via the cyto-
chrome P450 system [47, 48], resulting in interactions 
that possibly alter the availability of 1,25-(OH)2D3.

In the present study, age, calcium, ALP, CD4 + T cell 
count and viral load were the key predictors of serum 
25-(OH)D concentrations in the study groups. These 
findings, in part, mirror previous studies in the USA, 
India, Australia, and Kenya indicating that age, low 
dietary intake of calcium, CD4 + T cells, viral load, opi-
oid dependence and markers of liver injury, such as ala-
nine aminotransferase, ALP and hypoalbuminaemia in 
PLHIV HAART-experienced non-injecting drug users 
and PWID [4, 6, 14, 49, 50]. Furthermore, low vitamin 
D concentrations are common in people of black ethnic-
ity, such as African and black American PLHIV [6, 51]. 
Therefore, a complex interplay of multiple risk factors 
influences the development of vitamin D deficiency and 
insufficiency in PWID.

Hypocalcaemia is common in HAART-naive and 
-experienced PLHIV [52, 53]. Consistent with previous 
findings, our study found lower median serum calcium 
levels in PLHIV HAART-experienced PWID. Previous 
studies indicated that PWID are largely at a high risk of 
under-nutrition [54]. This is possibly due to low dietary 
intake and limited finances, since available resources are 
primarily used to sustain the drug habit [2, 55]. Conse-
quently, this contributes to the low serum calcium con-
centrations observed in PWID. Additionally, low calcium 
levels have been associated with low vitamin D concen-
trations, since vitamin D enhances absorption of dietary 
calcium [56]. Likewise, infection with HIV often leads to 
hypoparathyroidism [56], which is associated with hypo-
calcaemia. Since a majority of the study participants were 
using heroin, it is possible to conclude that they would 
present with low serum calcium levels and subsequently 
higher proportions of hypocalcaemia.

Although ALP appears to have no clinical utility in 
PWID and PLHIV, previous studies showed higher 
serum ALP levels in opioid-dependent individuals [57], 
and predicted the degree of hepatotoxicity in patients 
on HAART in Cameroon at one month and six-month 
follow-ups [19]. However, the current study found that 
serum ALP activity was reduced in the HAART-experi-
enced PWID, which may be attributed to the polysub-
stance use in this population. Nonetheless, few studies 
have examined serum ALP and other hepatic enzyme 
activities in the context of HAART-experienced HIV 
infected PWID. It is important to note that our previ-
ous studies indicated elevated serum aminotransfer-
ases in HAART-experienced people-who-inject-heroin 
[31], and historical studies over three decades ago found 
that at least 18% of cocaine users had elevated serum 
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ALP activity [58]. As such, we are proposing that poly-
substance use elicits varied hepato-pathophysiological 
effects in PWID, warranting further investigations.

Altogether, concomitant reduction in vitamin D, cal-
cium and ALP amongst HAART-experienced PWID 
suggests that substance use, HIV-infection and ARVs 
directly and/or indirectly alter the delicate balance 
of vitamin D, calcium and ALP homeostasis in these 
patients. It appears that mechanistically, the low levels 
of vitamin D drive the suppression of intestinal, renal, 
and bone calcium mobilisation [59]. The implications 
of the dysfunction in these feedback loops include revi-
sion of the clinical protocols regarding renal, liver and 
bone mineral function in PLHIV and injecting drugs. 
One of the strengths of the present study was the con-
current approach to the measurement and linking of 
vitamin D status with calcium and phosphate concen-
trations in HAART-experienced PWID. The limitations 
of this study are, absence of urine analyses for metabo-
lites of vitamin D and substances used, including the 
effect of genetic variability in the vitamin D receptors 
as this would have enabled linking with vitamin D sta-
tus. Another limitation of this study is the fact that this 
was a cross-sectional design. A prospective approach 
would be useful in understanding the dynamics of vita-
min D status including, adherence to HAART and inject-
ing drug cessation. However, the current comparisons of 
HAART-experienced with HAART-naive and HIV-neg-
ative PWID provide valuable insights into the complex 
pathophysiologic mechanisms of HIV infection in PWID. 
The laboratory analysis for vitamin D status was based 
on batched automated measurement of 25(OH)D3 con-
centrations, and the use of local reference ranges which 
were consistent in this population. Even though our 
design was cross-sectional, and possibly limited by con-
founders from self-reported substance use duration, age, 
an important predictor of substance use in coastal Kenya 
[60], was used as a proxy for duration of substance use 
in the regression analyses. Besides, our study population 
was drawn from a southern latitude area amongst the 
native population of the coastal city of Mombasa, Kenya, 
and hence the findings are not generalisable to northern 
latitude populations.

Conclusion
The present study therefore suggests that HIV-1 infec-
tion, HAART and injection drug use concomitantly 
reduce vitamin D levels, calcium and ALP in PWID. 
Additionally, age and serum ALP activity are associated 
with low circulating vitamin D status in PLHIV inject-
ing drugs and initiated on HAART. The findings of this 
study highlight the need for policy review on monitoring, 
supplementation, and rehabilitation of PLHIV injecting 
drugs. Further research is recommended to evaluate the 

effects of newer HAART regimens on serum 25(OH)D3 
in similar cohorts.
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