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ABSTRACT 
 

Cosmology as the study of the Universe as a whole, addresses questions on its origin and 

development and among the unresolved problems in cosmology today is the formation 

and evolution of structures in the Universe. One of the proposed and successful 

cosmological model and tested experimentally in addressing this problem is the 

Friedmann model based on the cosmological principle. This thesis explores the 

fundamental cosmological principle, with a specific focus on the homogeneity and 

isotropy assumptions inherent in the Friedmann model underpinning the standard model. 

The cosmological principle says that the Universe is isotropic and homogeneous on large 

scales. However, current three-dimensional redshift surveys map the Universe depicting 

inhomogeneities at all cosmic scales contrary to the cosmological principle view that 

cosmic matter distribution is statistically isotropic and homogeneous at large length scales. 

Additionally, there has been an ongoing cosmological debate on whether or not the 

analyses showing fractal clustering is carried using proper treatment of data, most notably 

a reliable and accurate amount of available statistical data. These galaxy surveys provide 

limited statistical data depended on our ability to measure distance accurately. The 

uncertainties associated with cosmic distance measures are huge and unresolved to date 

while the availability of huge observational data will wait for the next generation of bigger 

and advanced telescopes. To address this challenge, the research proposed a modified 

Friedmann model describing relativistic dynamics, structure formation and evolution 

based on the distribution of luminous matter in the Universe. In the modified model in 

which the redshift scale factor relation has been modified, it was assumed that there is 

huge and accurate astronomical data for measured redshift, number density of galaxies 

counts per solid angle in a given direction and light intensity counts . Interconnections of 

these three astronomical quantities was found using Einstein Field Equations. Computer 

simulations of the derived analytical results produced and the results related to structure 

formation in a matter―dominated modified Friedmann Universe without dark energy. 

Galaxy formation, evolution and distribution explained with a modified redshift 

formalism and compared to the standard model predictions. Analysis of the results 

suggests that the model can account for cosmic acceleration expansion without the need 

for dark energy. Simulations based on these models have illuminated structure formation 

and evolution processes of the early Universe running into the future. The simulations and 

analytical solutions reveal a unique pattern in the formation and evolution of cosmic 

structures, particularly in galaxy formation. This pattern shows a significant burst of 

activity between redshifts 0 < z < 0.4, which then progresses rapidly until approximately 

z ≈ 0.9, indicating that majority of cosmic structures formed during this period. 

Subsequently, the process slows down considerably, reaching a nearly constant rate until 

around z ≈ 1.6, after which a gradual decline begins. There is a distinctive redshift 

transition around z ≈ 0.9 is observed before the onset of dark―matter―induced accelerated 

expansion. This transition is proportional to mass matter density and geometry of the 

Universe. The model’s ability to explain cosmic acceleration without requiring fine-tuning 

of the cosmological constant highlights its novelty, providing a fresh perspective on the 

dynamic evolution of the universe. 
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CHAPTER ONE 

INTRODUCTION 
 

1.1.Background Information  

The fundamental aim of modern research in cosmology is to understand large length scale 

matter distribution and spacetime structure of the Universe from cosmological 

observations and experimental detection techniques. Many theoretical models explaining 

the distribution of matter in the matter―dominated Universe have been put forward but 

there is still some unresolved problems as none of these has satisfactorily explained matter 

distribution in the Universe (Miguelote & Ribeiro, 1998). 

The three dimensional maps of the Universe suggesting a mismatch from traditional held 

view that matter distribution in  the Universe follows homogeneity and isotropy trend on 

large scale makes this field an open research area that needs further cosmological scrutiny. 

Whereas the two-dimensional projection obtained by observing the sky shows an 

averagely isotropic and homogeneous Universe, the three-dimensional catalogues paint a 

contrasting picture of an inhomogeneous Universe (Conn, et al., 2013). 

General Relativity, which explains gravity differently from Newton’s law set the 

foundational pillar of modern theoretical cosmology (Einstein, 1915). Einstein’s thoughts 

of General Relativity revolutionized the reflection about the nature of spacetime 

structures. General Relativity describes the fundamental interaction of gravity caused by 

spacetime structures being curved by matter and energy using a set of 10 Equations 

(Einstein, 1915).  

Einstein’s field equations without dark energy are expressed as (Lahav, 2017):  

 

 𝐺  = 𝑅  ― 
1

2
𝑔  R =  𝑇     (1.1) 
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where 𝐺  is the Einstein tensor computed from the metric,  𝑅   is the Ricci tensor,  𝑔  

is the metric tensor, 𝑅 is the Ricci scalar, 𝑇  is the stress―energy (energy―momentum) 

tensor describing the matter and includes all the sources of matter that can curve 

spacetime, and 

 

 = 
8  𝐺

𝐶4
        (1.2) 

 

with G as the Newton’s gravitational constant and c is the light speed in free space.  

The exploration of Einstein’s field equations solved in a cosmological setting from a 

purely theoretical physical law (Einstein, 1917) combined with the findings of Edwin 

Hubble (1926) led to the emergent of the cosmological principle. As per this principle, the 

Universe is spatially homogeneous and isotropic when averaged over some large length 

scale. This homogeneity scale has been evolving in time, from a few mega parsecs (MPc) 

at initial stages to tens of MPc presently. 

Friedmann (1922) discovered a non―static solution of the Einstein’s field equations 

hinting for an expanding Universe (Friedmann, 1922). This was independently supported 

by (Lemaitre, 1927) who proposed the distance―redshift relationship that would explain 

cosmic expansion. These discoveried combined with the metric of Robertson and Walker, 

led to the Friedmann―Lemaitre―Robertson―Walker solution (Friedmann model) of 

Einstein’s field equations of General Relativity and which we view as the best fit model 

to describe evolution and dynamics of the Universe (Gomez, 2011).  

The Friedman model follows the cosmological assumption that the Universe is 

homogeneous and isotropic at any given cosmic time, t and describes an expanding 

cosmos. This gives the hyper―surfaces of Einstein Universe to be smooth surfaces with 
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constant time, t and having a preferred time coordinate, t such that the t = constant slices 

are homogeneous and isotropic spaces (Wamalwa, 2016). There exists three kinds of 

hyper―surfaces representing homogenous and isotropic metrics with different large scale 

geometries: with constant curvature k=0 (no curvature) representing the metric of flat 

space (Euclidean space), with constant curvature k=+1 (constant positive curvature) 

representing the metric of closed sphere space and with constant curvature k=―1 (constant 

negative curvature) representing the metric of open hyperbolic space. The three hyper-

surface metric spaces can be combined together uniformly using stereographic projection 

in rectangular coordinate system on the three-dimensional projection space (Wamalwa, 

2016). In case homogeneity or isotropy or both are broken, then the Friedmann model 

cannot give correct predictions of the Universe (Melia & Shevchuk, 2012). Nevertheless, 

the history of observational cosmology shows that each time improved instruments permit 

deeper surveys, the new data reveals inhomogeneous matter distribution on the new scale 

(Mustapha et al., 1997).  

It is claimed that the matter―dominated Universe is model dependent on the description 

of structure formation and the nature of galaxy distribution in space when on the 

application of common cosmological statistical techniques. The available statistical 

galaxy clustering estimation assume that the surveys from which the analysis is made are 

much larger than the scale of homogeneity. If the current surveys appear below the 

homogeneity scale, as a close approximation of the main redshift survey, the distribution 

of galaxy is approximated by a fractal (Amendola & Palladino, 1999).  

Presently, there are huge catalogue compilation that lists objects in the sky and their 

distance from us together with the direction from which their lights reaches us hence, they 

provide us with a three dimensional pictures of luminous matter in spacetime. These 
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pictures suggests inhomogeneous distribution of galaxies at smaller and larger distances 

casting doubt on the cosmological principle view that the Universe is statistically isotropic 

and homogeneous at large scales. However, two dimensional projection obtained by 

observing the sky shows an averagely isotropic and homogeneous Universe in contrast to 

the three-dimensional catalogues that paint an inhomogeneous picture of the Universe 

(Wamalwa, 2016).  

Not long ago (Meszaros, 2019), observed that gamma ray bursts on large length scales of 

gigaparsecs show a strong contradiction with the cosmological principle, which requires 

a transition scale of homogeneity below the gigaparsec scale. However, the author 

acknowledges the limitation of the used data and warns of any premature conclusion to 

dismiss the cosmological principle. This invokes the question as to whether the Universe 

is indeed modeled by the Friedmann or fractal distributions. 

By fractal, we mean an inhomogeneous structure which is self-similar or exhibiting self-

regularity. Given the quantity 𝑁(𝑟) as the characteristic of the distribution that exhibit 

fractal behavior i.e. number of elementary objects (galaxies) and 𝑟 is the scale measure of 

dimension length, the mathematical relation takes the form: 

 

𝑁(𝑟) = 𝐵 𝑟  𝐷𝐹        (1.3) 

 

where 𝐷 is the Fractal dimension and is usually assigned integer values such that: D = 0 

describes a point distribution, D = 1  indicate that galaxies in roughly linear structures 

(filaments) describing a linear distribution, D = 2 describing a roughly sheet-like structure 

distribution describing a surface distribution, and D = 3 describes a uniform distribution 

(space filling distribution of galaxies) (Mureika, 2007). A homogeneous distribution 
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Universe manifest at  D = 3. Fractal dimension D < 3 indicates that galaxies do not fill 

space in a homogeneous fashion implying fractal (inhomogeneity).  

The standard cosmological model predicts that the fractal dimension should approach the 

homogeneous value at D = 3 on large enough scales; transiting from inhomogeneity to 

homogeneity (galaxy distribuiom on small scales is believed to be inhomogeneosu). 

It is clear from the afore―going discussion that the observational data from three-

dimensional catalogues tend to pose a threat to the validity of the Friedmann model and 

the cosmological principle in general. However, these galaxy surveys provide only limited 

statistical data and are depended on our ability to accurately measure redshift as a distance 

indicator. To understand the large scale structure, we need better quality data beyond 

200MPc. The Sloan Digital Sky Survey (SDSS) which is  biggest at the moment only 

surveys a quarter of the sky and gives us data of less than 200MPc (York, et al., 2000). 

Vera Rubin Observatory in Chile with the best camera of 3.6 Gigapixels is expected in 

10-years’ time to image the entire visible night sky in deep exploration of the entire solar 

system and into the extragalactic Universe, revealing cosmic explosions and effects of 

dark matter (Brough, et al., 2020). 

The uncertainties associated with cosmic distance measures are huge and unresolved to 

date (Grijs, 2012) while the availability of huge observational data will wait for the next 

generation of bigger and advanced telescopes (Langa et al., 2017). In contrast to Langa et 

al., (2017), we have modified the redshift relation to account for any unknown 

astrophysical effects. Therefore, the modified redshift relation departs from the standard 

redshift paradigm; a distinctive signature of this work.   

Distance to celestial objects is one of the key astrophysical parameters. There are a variety 

of distance estimation methods to celestial objects based on geometrical, semi-
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geometrical, photometric and kinematics. Each technique has limited range of practical 

use, such as the radar technique for solar system objects, parallax methods for stars on the 

range of a few kilo parsec (kpc), Cepheid standard candles to a few Mega parsec  and 

Type Ia Supernovae to several 1000 Mega parsec. Each method above which makes a step 

in the distance ladder is used to calibrate the next most distant method. Beyond the 

distances which can be reached using the geometrical or semi-geometrical techniques, 

objects with known luminosities are also adopted (Smith et al., 2017). They include 

Cepheids, RR Lyrae, Mira stars and Red Clump (RC) stars. Type Ia Supernovae are 

standardizable candles as their luminosities are not known, but a specific relationship 

between their brightness and the time it takes for them to decay exist. Bright Supernovae 

are known to shine longer than faint Supernovae intrinsically (Humay et al., 1995).  

This thesis sought for appropriate cosmological model to accurately describe luminous 

matter distribution in the Universe. Ultimately, as more data is gathered about distant 

galaxies, such cosmic measurements should become even more accurate, and physicists 

may be able to distinguish better the competing cosmological models (Werner & 

Schermelleh, 2010). This problem was approached by closely following the procedure 

adopted by Langa et al., (2017).  

 

1.2 Statement of the Problem   

The Friedmann model based on the cosmological principle is the cornerstone of modern 

cosmology. The theory has successfully described structure formation and evolution in 

the Universe in agreement with most observations. Nevertheless, as the various 

three―dimensional redshift surveys probe in depth into the Universe, they tend to uncover 

inhomogeneous structures with no transition to homogeneity. These evidences suggests a 



7 
 

violation of the cosmological principle and challenges our understanding of the Universe. 

However, there has been an ongoing cosmological debate on whether or not the analyses 

showing inhomogeneity have been carried using accurate and reliable observational data. 

These theories basing on the contention that the redshift as a common distance indicator 

at cosmological scales might be biased or inconsistent hint that the standard cosmological 

theories (Friedmann model) might not be fully accurate reinforcing the modification of 

the standard redshift relation. In addition to the shift from the Friedmann model, these 

galaxy surveys provide only limited statistical data depended on our ability to measure 

redshift as a distance relation accurately. The uncertainties associated with cosmic 

distance measures are huge and unresolved to date while the availability of huge and 

accurate observational data will wait for the next generation of advanced astronomical 

equipment. Therefore, the Friedmann model adopted in the description of luminous matter 

distribution in the Universe suffers lack of cosmological accuracy. Consequently, 

structure formation predicted by this model may not be an accurate picture of the Universe. 

This research proposed a modified Friedmann model by modifying the standard redshift 

relation for photons in order to describe relativistic dynamics, structure formation and 

evolution based on the distribution of luminous matters in the Universe. This model avoids 

the cosmological constant problem, explains the cosmic accelerating Universe in both 

light intensity, number density of galaxies (or stars), and provides a very natural way to 

solve the coincidence problem. Therefore, assuming there are huge, consistent and 

accurate astronomical data for measured redshift, number density counts of galaxies per 

solid angle in a given direction and light intensity counts of galaxies, interconnections of 

these three astronomical quantities has been determined using Einstein field equations and 

related them to structure formation in a matter―dominated modified Friedmann Universe.   
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1.3 Objectives 

1.3.1 Main Objective 

To study the relativistic dynamics and structure formation of luminous matter distribution 

based on a modified redshift relation in a matter-dominated Friedmann Universe. 

1.3.2 Specific Objectives 

 
1. To derive Friedmann Equations governing dynamics of the Universe within  

Einstein Theory of General Relativity considering isotropy and homogenity.  

2. To formulate a modified redshift relation in the classical equation between 

cosmological redshift and cosmic scale factor for photons within Einstein Theory 

of General Relativity. 

3. To derive light intensity and number density relations with modified redshift using 

Friedmann Equations. 

4. To explain the implications of the modified redshift on structure formation in a 

matterdominated Friedmann Universe. 

 

1.4 Justification  

Astronomical studies are very crucial as they are the cornerstone in describing matter 

distribution in the Universe. The Friedmann model based on the cosmological principle 

has successfully described structure formation in the Universe is therefore the integral life 

of astrophysicists so that the presence of large―scale inhomogeneity in matter distribution 

against the cosmological principle supporting a homogeneous Universe will appear 

revolutionary not only physics but also science in general. Presence of cosmic 

inhomogeneities can provide an alternative explanation of global cosmic acceleration 

without an additional dark energy. This research will also put us in a position to test 
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whether or not luminous matters in the universe are homogeneously or obey fractally 

systems distribution at large scales.  

 

1.5 Significance 

 

The cosmological principle is key to the formation of the standard cosmological model, 

which gives the insights of the dynamics of the Universe. This study is of great 

significance as it will help challenge the existing standard model of cosmology and shift 

the focus to a modified Friedmann model in predicting the future and fate of the Universe. 

With the achievement of the stated objectives, we will be at a better position to describe 

distribution of luminous matter in the Universe and construct the cosmic history of 

structure formation different from the standard model predictions enabling cosmologists 

ascertain whether there is a possible paradigm shift in cosmology and as to whether 

introduction of new Physics knowledge is required.  
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CHAPTER TWO 

LITERATURE REVIEW 
 

2.1 Friedmann Model 

The study of the origin and evolution of the Universe is one of the fundamental open 

questions of modern cosmology. Modern cosmology is an active theoretical and 

experimental field built systematically, with new problems arising at each step, the theory 

has to be added new elements in order to explain the arising problems. Some of the current 

main projects of theoretical physics have something to do with cosmology, whose 

unresolved problems have motivated many published papers. This justifies the need for 

understanding the origin of modern cosmology whose theory, observations and 

experiments are basis of research nowadays (Gomez, 2011). 

The idea of Einstein set the pacestudy of modern theoretical cosmology.  Einstein’s paper 

(Einstein, 1917) inspired new vision of the whole structure of the Universe based on the 

geometrical point of view of gravity, different from the traditional view of gravity as a 

force from which a small group of theoretical physicists started advancing their relativistic 

dynamics cosmological research models based on the new theory of gravitation. 

Friedmann (Friedmann, 1922) published dynamic solutions to Einstein’s field equations 

confirming an expanding Universe. By retaining the cosmological principle assumption 

of a mathematically homogeneous and isotropic four―dimensional cosmos through 

varying the radius of curvature, R, he discovered a dynamic and expanding Universe. 

Lemaitre (Lemaitre, 1927), while scrutinizing Einstein’s fundamental general relativistic 

equations and supported by cosmological observational evidence (Hubble, 1926), 

concluded that the Universe is expanding. Later, Einstein agreed to the claim of a dynamic 

and expanding Universe, refuting his static Universe model on realizing that it was 
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unstable, and could admit dynamic solutions. This confirmed that the Universe is not only 

homogeneous and isotropic on large scale but also expanding (Einstein, 1931). 

FriedmanRobertsonWalker cosmological model is the widely accepted standard model 

in describing the Universe and acts as a door opener for researchers to form other different 

types of cosmological models in describing the Universe (Mohajan, 2013) (hereafter 

referred as Friedmann model). Ever since the earliest cosmological models, the Einstein 

and de Sitter models researchers have been trying to fit observations to the Friedmann 

spatially homogeneous and isotropic family models (Mustapha et al., 1997). The success 

of reproducing a Hubble redshift-distance (Hubble, 1926) have convinced physicists of its 

validity as a large length scale description of the Universe. In approximating the realistic 

description of our actual universe, this model is regarded as a good fit universally (Bolejko 

et al., 2011).  

The cosmological models based on the cosmological principle have had significant 

successes in explaining observational facts and in anticipating new discoveries. Two 

successes that rise above all is the prediction of the cosmic microwave background (CMB) 

which is the electromagnetic radiation that remained after Big Bang and the explanation 

of the cosmic abundance of light elements (Alpher, 2014). The CMB radiation acts as a 

powerful tool in investigating the early universe as the information obtained in it is used 

in constraining the standard cosmological parameters.    

Other theories shifting from the standard Friedmann model anchor on the contention that 

the redshift relation as a distance indicator at cosmological scales might be biased or 

inconsistent (Shamir, 2024). By cosmological redshift it means wavelength of light is 
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stretched (or photons lose energy) by cosmic expansion and light is seen as shifted towards 

the red part of the spectrum. 

 If the redshift scale factor as a distance indicator is complete and fully accurate, the 

standard cosmological theories are incomplete. Similarly, if the standard Friedmann 

model is complete, it is not possible that the distance indicators currently used are fully 

accurate. International Astronomical Union (IAU) Symposium 289 addressed the physics 

researches underlying methods of distance determination across the Universe, exploring 

the various techniques employed and acknowledged the controversy that exist not yet 

resolved, and that all the techniques applied to date suffer by their own unique set of 

uncertainties (Grijs, 2012). The assumption is that this problem can only be resolved with 

immense and direct observational data that does not have distance measurement 

uncertainties in them. With that, we may be in a position to judge whether, the luminous 

matter distribution in the Universe follows Friedmann model or not (Langa et al., 2017). 

Other studies carried out so far on different galaxy surveys claim to have found a transition 

to homogeneity on sufficiently large scales 70100 h1Mpc (Pandey & Sarkar, 2016) 

whereas some studies claim absence of any such transition out to scale of the survey 

(Labini, 2011). The results from these studies clearly indicate that there is no definite 

answer on this issue (Labini, 2011). Therefore, there is a lot of concern to both 

observational and theoretical cosmologists that the present model may be incomplete or 

inaccurate. This concern has shifted the focus to thorough scrutiny through research on 

whether the current Friedmann model is incorrect and if so then what will be its 

implications in cosmology. 
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2.2 Fractal Model 

A fractal is a self-similar structure. The notion of fractal structures of matter distribution 

in the Universe from a mathematical view point is associated with power law functions 

for which the most suitable property is the exponential function; where the amplitude 

provided by the mathematical relation Equation is a connection with the lower cutoffs of 

the distribution (Pietronero & Labini, 1996).  

Several statistical analyses of three-dimensional galaxy catalogues indicates that galaxy 

distribution is distributed fractally with dimension D  2 out to the largest scales for which 

statistically significant data is available, i.e., up to about 100200h1Mpc. These theories 

claim that no data is pointing convincingly towards a homogenization of galaxy 

distribution (i.e., D 3) (Durrer & Labini, 1998). 

The first inhomogeneous model proposed by Lambert (1750) involved a ring of stars 

rotating around a central obscure body, perhaps part of a system of rings rotating around 

another body. Another inhomogeneous model proposed almost at the same time involving 

a distribution of radially decreasing worlds (galaxies). The wave evolution goes from 

inside to outside: while the worlds near the center are already in an advanced stage of 

evolution, and will disappear first, those near the outer boundary are still in the primordial 

chaos (Amendola, 1998). 

In 1820, Hienrich Olbers presented the well-known Olbers’ paradox, already formulated 

by Halley in 1721 and stated that: any homogeneous, static and infinite model should be 

in equilibrium everywhere at the temperature of the star’s surface. However, clearly, this 

is not true, because at night, the sky is dark suggesting that the Universe is either not 

homogeneous or static or the light at the sky has different properties than those we 

experiment on Earth. For instance, the flux of light we experience on Earth reduces faster 
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than the distance square law (Amendola, 1998). The possibility of the sky inducing the 

rotation property in bodies is an evidence that the sky might have different properties than 

those experienced on earth; a ray of polarized light, along the lines of magnetic force suffer 

rotation. The non―reversibility of light in a magnetic medium is also in a rotatory motion 

independent of light propagating through it. Finally, the influences of optical properties 

of the sky may also change the rules of geometry at larger distances in the sky than those 

on earth. 

Charlie (1908) proposed a hierarchical model with the stars arranged in such a way that 

their density as seen from any other star decreases with distance. This model regarded as 

the first fractal model since in this model, the density decreases radially from every star 

as seen from any star. 

The isotropy observed in deeper sky maps is consistent with a Universe that is 

inhomogeneous but spherically symmetric about our earthly position (Peebles, 1998). 

This seems to cast doubt to the validity of the cosmological principle. 

Critical voices in physics claim that the distribution of matter in the Universe is 

intrinsically inhomogeneous from the smallest to the largest observed scales and, perhaps, 

indefinite (Ribeiro & Miguelote, 1998). This notion that galaxies are fractally distributed 

has been a long-standing hot debate in modern cosmology (Durrer & Labini, 1998). 

The recent galactic redshift surveys showing a very inhomogeneous map for the 

distribution of galaxies have stimulated the trend of study of the galactic clustering 

problem which assumes that the large scale structure of the Universe can be described as 

being a self-similar (fractal) system (Ribeiro, 1993).  
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The quasars are the brightest classes of objects in the Universe called Active Galactic 

Nuclei (AGN). They are highly luminous enabling them to be detected out at larger length 

scales. The presence of large quasar groups (LQG) in the quasar distribution (Clowes, et 

al., 2013) with characteristic size of up to 500 h1Mpc at  z 1.3 in the DR7 quasar 

catalogue and claimed that this structure is incompatible with homogeneity at large length 

scale showing possible violation of the cosmological principle (Pandey & Sarkar, 2016). 

The complete Sloan Digital Sky Survey (SDSS) quasi-stellar object (QSO) that maps the 

Universe provides a complete sample that covers only a quarter of the observable Universe 

using clustering statistics (Smith et al., 2017). This volume-limited samples for galaxy 

clustering statistics are in good agreement with many previous sample analysis, 

confirming in particular that the galaxy distribution is well defined by a fractal dimension 

D  2 up to a scale of at least 20 h1Mpc implying a trend towards inhomogeneity (Joyce 

et al., 2005). 

Studies incorporating gamma ray bursts have yielded results that cast doubt on the 

cosmological principle. Although the large scale average of the visible parts of the 

Universe appear isotropic and homogeneous in line with the cosmological principle, 

gamma ray bursts are not isotropic on the sky (Meszaros, 2019).  

Availability of huge amount of observational data for better statistical analysis of the 

large-scale structure of the Universe to determine whether the Universe is compatible with 

fractal scaling of galactic clustering or not has currently been acknowledged by a fractal 

researcher who warns scientists on hurried dismissal of the cosmological principle 

(Meszaros, 2019). 
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To understand the large-scale structure, it is important to focus our research on the trend 

of clustering with scale of better data much beyond 200 Mpc although the current Sloan 

Digital Sky Survey (SDSS) data is about 200 Mpc. The SDSS, which gives approximately 

a quarter of the sky, is the greatest and most high precision galaxy redshift survey (York, 

et al., 2000) now. The current Vera Rubin Observatory in Chile with the best camera of 

3.6 Gigapixels is expected in 10years’ time to image the entire visible night sky in deep 

exploration of the entire solar system and into the extragalactic Universe, revealing cosmic 

explosions and effects of dark matter (Brough, et al., 2020). 

The observed inhomogeneities pose a fundamental challenge to the standard picture of 

modern cosmology. It has been claimed that this inhomogeneities that extend up to the 

present large scale observational limits point to a fractal Universe in which structures at 

small scales get replicated at larger scales (Secrest, et al., 2021). 

The presence of inhomogeneities or fractality of the Universe on very large scales has 

several important consequences to our understanding of many physical quantities as 

defined in the realm of General Relativity. Inhomogeneities can provide an alternative 

explanation of global cosmic acceleration without requiring an additional dark energy 

component (Ellis, 2011). This motivates us to establish the validity of the cosmological 

principle and the standard theory of cosmology in general that is integral part of this work. 

However, to do this, the research need huge (unlimited) accurate experimental data that is 

beyond our present technology that do not have assumptions due to distance measure: 

even the largest Sloan Digital Sky Survey (SDSS) covers only a tiny fraction of the sky 

(Paris, et al., 2017).  
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The three-dimensional catalogues list astronomical objects in the sky and give their 

distance away from us together with the direction from which their light reaches us. These 

three-dimensional pictures reveal an inhomogeneous distribution of galaxies at smaller 

and larger distances contrary to the cosmological view that the Universe is statistically 

isotropic and homogeneous at large scales (> 50Mpc) (Labini et al., 1998). To address 

this challenge, we proposed a modified Friedmann model that describing relativistic 

dynamics, structure formation and evolution based on the distribution of luminous matter 

in the Universe.  

Current observations, such as the unexplained Hubble parameter tensions and large-scale 

anisotropies, pose challenges to the standard Friedmann model and the concordance model 

of cosmology in general. For example, the Hubble parameter determined from the cosmic 

microwave background (CMB) radiation differs from that determined using Type Ia 

supernovae and the redshift of their host galaxies (Seshavatharam & Lakshminarayana, 

2023). Introduction of a new element into the standard model of cosmological may be a 

key relieving Hubble tension. The possible solution to the Hubble constant problem lies 

in modification of scale factor evolution before recombination (Kuzmichev & Kuzmichev, 

2024). 

Given the unsettling findings discussed above, there is a widespread unease regarding the 

validity of current cosmological models. The research explored the contention on whether 

the current Friedmann model is consistent, reliable, inaccurate or incomplete through a 

modified redshift approach and explained the implications of the modified redshift on 

structure formation in a matter-dominated Friedmann Universe. 
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CHAPTER THREE 

MATERIALS AND METHODS 
 

3.1. Einstein Field Equations 

The Einstein Field Equations Equation (1.1) which gives a relation between Einstein 

tensor and energymomentum tensor that describes the total energy content of the 

Universe, all put together gives the dynamics and evolution of the background Universe. 

 

3.1.1. FriedmannLemaitre-RobertsonWalker (FLRW) Metric 

The FLRW cosmological model (Friedmann model) governs the Universe. The 

Friedmann model made an intelligent prediction in cosmology about the Universe as early 

as 1043 seconds after the Big Bang. According to the Friedmann model, cosmological 

principle is valid and forms the basis of the standard model of cosmology. It assumes that 

the space is filled by a homogeneous and isotropic matter on large length scales and is 

described by the following general metric of the functional form: 

 

    𝑐2𝑑𝑡2 −
𝑅(𝑡)2

(1+𝑘𝑟2)2
 𝑑𝑟2                                         (3.1) 

 

where 𝑑𝑟2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 and R(t) is the expansion scale factor representing the 

timedependent evolution of spatial part of the metric (surfaces of constant time, 𝑡) and k 

= (1, +1, 0) determines the geometry of these spatial sections: Open, Closed and Flat 

Universes respectively. Equation (3.1) is the cosmological spacetime metric describing an 

isotropic, homogeneous and cosmologically expanding cosmos.  

The rank 2 covariant metric tensor 𝑔 is obtained as  
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𝑔 =

(

 
 
𝑐2      
0        
0        
0       

     0      
−𝑅2(𝑡)

(1+𝑘𝑟2)2

 0
 0

           0     
      0

       
−𝑅2(𝑡)

(1+𝑘𝑟2)2   

        0

 

0
0
0

−𝑅2(𝑡)

(1+𝑘𝑟2)2   )

 
 

    (3.2)  

 

The FLRW metric can be written as 

 

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 
𝑅2(𝑡)

(1+𝑘𝑟2)2
 𝑑𝑟2      (3.3) 

 

From Equation (3.3),  

 

𝑔00 = 𝑐2        (3.4) 

 

𝑔11 =𝑔22 =𝑔33 = − 
𝑅2(𝑡)

(1+𝑘𝑟2)2
      (3.5) 

 

This implies that 

 

𝑔00 = 
1

𝑐2
        (3.6) 

 

and  

 

𝑔11 = 𝑔22 = 𝑔33 = − 
(1+𝑘𝑟2)2

𝑅(𝑡)2
         (3.7) 

Now curvature scalar and components of the Ricci tensor are needed.  

Consider the non―vanishing values of the Ricci curvature tensor, 𝑅00, 𝑅11 𝑅22 and  𝑅33 

respectively as computed (Wamalwa, 2016) in the form: 
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𝑅00 = − 
3𝑅 (𝑡)

𝑅(𝑡)
       (3.8) 

 

𝑅0
0 = −

3𝑅 (𝑡)

𝐶2𝑅(𝑡)
         (3.9) 

 

𝑅00=  
3𝑅 (𝑡)

𝑐4𝑅(𝑡)
        (3.10) 

 

and also  

 

𝑅11 = 𝑅22 = 𝑅33 =  
𝑅(𝑡) 𝑅 (𝑡)+ 2 𝑅 (𝑡)2 + 8𝑘𝑐2

𝑐2 (1+𝑘𝑟2)2
    (3.11) 

 

𝑅1
1 = 𝑅2

2 = 𝑅3
3 =  

𝑅(𝑡) 𝑅 (𝑡) + 2 𝑅 (𝑡)2 +8𝑘𝑐2

𝑐2 𝑅(𝑡)2
    (3.12) 

 

𝑅11 = 𝑅22 = 𝑅33 =  
8𝑘𝑐2+ 𝑅(𝑡)𝑅 (𝑡) + 2 𝑅 (𝑡)2 

𝑐2 𝑅(𝑡)4
 (1 + 𝑘𝑟2)2   (3.13) 

 

The Ricci curvature scalar is written as 

 

R =𝑅𝑢
𝑢 = (𝑅0

0 + 𝑅1
1 + 𝑅2

2 + 𝑅3
3 )     (3.14) 

 

So that on using Equation (3.9) and Equation (3.12) into Equation (3.14) gives the Ricci 

curvature scalar as 

 

R =𝑅𝑢
𝑢= − 

3 (8 𝑘𝑐2+2 𝑅(𝑡)𝑅 (𝑡)  + 2𝑅  (𝑡)2)

𝑐2𝑅(𝑡)2
    (3.15) 
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The energy-momentum tensor also has components computed as (Wamalwa, 2016)  

 

𝑇00 =  (𝑡)      (3.16) 

 

and  

 

𝑇11 = 𝑇22 = 𝑇33=  
(1+𝑘𝑟2)2

𝑅(𝑡)2
𝑃(𝑡)    (3.17) 

 

where  (𝑡) and 𝑃(𝑡) is the mass density and pressure of the Universe respectively. 

In order to describe the relativistsic dynamics and evolution of the cosmos, consider the 

contravariant forms of the Einstein Field Equations (1.1)  

 

𝐺 𝑣 = 𝑅 𝑣 −  
1

2
𝑅𝑔  =   𝑇     (3.18) 

 

In the next chapter, Equation (3.18) will yield specific Einstein Field Equations for 

describing dynamics and evolution in the matterdominated Friedmann cosmology. 

 

3.2 A Modified Redshift Relation for Light Photons   

The classical relation between cosmological redshift and cosmic scale factor for photons 

is expressed as (Langa et al., 2017) 

 

1 + 𝑧 = 
𝑅(𝑡0)

𝑅(𝑡𝑒)
       (3.19) 

 



22 
 

where 𝑅(𝑡𝑒) is the cosmic scale factor at the time of photon emission, 𝑅(𝑡0) is the cosmic 

scale factor at the time of photon observation and z is the cosmological redshift. The 

relation in Equation (3.19) is herein referred as the standard redshift relation.  Should we 

posit that unknown quantum effects exert a discernible influence on the frequency of light 

photons during their cosmological propagation, but the time dilation of two macroscopic 

events caused by cosmic expansion will not be affected, the aforementioned relation can 

be modified to 

 

1 + 𝑓(𝑧) = 
𝑅(𝑡0)

𝑅(𝑡𝑒)
     (3.20) 

 

where 𝑓(𝑧) is the modified model redshift.  

In contrast to earlier works (Langa et al., 2017), the standard redshift relation has been 

modified and the  relativistic dynamics and structure formation in the matter―dominated 

Friedmann Universe has been explored in the absence of dark energy. In this modified 

model, because of the modification of the redshift relation for photons, cosmic history of 

luminous matter distribution at any cosmic time deviates from the prediction of the 

standard matter―dominated Universe providing a very natural way to solve the 

coincidence problem. This feature also exists in the models with Tolman’s dimming of 

light. In the relativistic dynamic evolution of the Universe, we do not need the vacuum 

energy. This mechanism make quantum vacuum contribute nothing to gravitational pull 

and has been used to solve the cosmological constant problem. The modified redshift 

considered here is more generic and account for any unknown astrophysical effects in the 

Universe not revealed by the standard model. 
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The redshift Equation of photons Equation (3.19) may not be accurate enough to describe 

dynamics and evolution of the Universe. This type of modification proposed by (Tian, 

2017) yielded good results and is therefore not far-fetched.   

The above redshift modification considered with the matter―dominated Friedmann 

Universe has explained the dynamics in the accelerating expansion of the late time 

Universe.   

It is clear from the modified redshift Equation that if  𝑓(𝑧) = 𝑧 , then the modified model 

recovers the standard redshift Equation in its usual form. 

 

3.3 Variation of Light Intensity and Number Density with Modified Redshift   

We assumed to be given huge and direct observational data of the following astronomical 

quantities that have no assumptions about the background geometry or uncertainties in 

distance measurements:  

(i) Light intensity (𝐼) from an astronomical object e.g., a star or galaxy 

(ii) Redshift 𝑧 of the light intensity from the given astronomical object in (𝑖) above in 

a given direction 

(iii)The number density (𝑛) per solid angle of a class of objects in a given direction. 

 

In order to derive a relation between light―intensity and redshift parameter at the 

beginning of light photon (emission) to the end of light photon (observation), suppose that 

an astronomical object such as a star or galaxy emits light at 𝑟(𝑡𝑒) and travels towards the 

origin of our coordinate system such that at time 𝑡 = 𝑡0, it is observed at the origin 

(𝑟(𝑡0) = 0). 

For null geodesics, 𝑑𝑠 = 0, from Equation (3.3) expressed as 
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𝑐

𝑅(𝑡)
𝑑𝑡 = ―

1

1+𝑘𝑟2
 𝑑𝑟    (3.21) 

 

where we have assumed that 𝑑𝑡 is positive and 𝑑𝑟 is negative (application of the principle 

of reversibility of light). Performing integration of Equation (3.21) from time of emission 

𝑟(𝑡𝑒), (𝑡𝑒) to observation time  𝑟(𝑡0), (𝑡0) ), the Equation is expressed as 

 

∫
𝑐

𝑅(𝑡)
𝑑𝑡 

𝑡0
𝑡𝑒

=— ∫
1

1+𝑘𝑟2
 𝑑𝑟

𝑟(𝑡0) 

𝑟(𝑡𝑒) 
     (3.22) 

  

Here, 𝑑𝑟 is the comoving distance that photons travel at time 𝑑𝑡. Equation (3.22) is the 

general Equation for describing dynamics and evolution of the Universe. In the next 

chapter, a solution for 𝑑𝑟 is derived based on this Equation for different geometry of the 

Universe. Combining this solution with derived results of Einstein Field Equations in view  

of the modified redshift Equation (3.20), a general analytical solution on how light 

intensity and number density of galaxies vary with modified redshift has been formulated 

for describing dynamics, structure formation and evolution of observable Universe. 

3.4 Assumptions 

It is assumed that the astronomical objects (stars or galaxies) under considerations are 

distributed uniformly in the Universe such that you can count the number of stars you 

observe in a given redshift.  

In addition, the Universe’s matter content must be a perfect fluid as a necessary and 

sufficient condition for spacetime to satisfy the FLRW model. Meaning that its velocity 

field source should have no rotation, shear and acceleration. 
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3.5 Software use for Result Analysis 

This section gives the procedure of simulating the predictions derived from the analytical 

results; the Equations governing light intensity and number density for the modified 

Friedmann model. The parameter values employed in these simulations are meticulously 

chosen, with constraints derived from cosmological observational data. Variations in 

parameters achieved through a nuanced adjustment in the MATLAB application and shed 

light on the kind of universe expected from the model when MATLAB version R2017b 

(MathWorks-Inc., 2017) simulations are run in the background. There are subtle variation 

in parameters and serves the dual purpose of exploring additional statistically significant 

features of cosmic structures revealing the resilience of the model under slight 

perturbations and for comparison under consistent matter density and curvature of the 

universe.   

All values employed in the codes adhere to existing statistical data. To examine the initial 

effects of cosmic acceleration on galaxy formation in both models, the number density 

curves are individually plotted first. The same procedure is applied for graphing light 

intensity analytical result. To evaluate the impact of introducing the modified model in 

the cosmic background, both the standard redshift and modified redshift models without 

dark energy are plotted on the same scale for comparison. 
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CHAPTER FOUR 

THEORETICAL FRAMEWORK 

 

4.1 The Governing Equations 

4.1.1 Einstein Field Equations 

Einstein Field Equations relates the total energy contents of the Universe with its 

curvature. So according to Einstein Field Equations (1.1), the left―hand side dictates how 

matter and energy curve spacetime and the right hand side tells matter and energy how to 

move through a curved spacetime as introduced in chapter one. 

4.1.1.2 Einstein Tensor Components  

The zero―zero Einstein tensor components are computed as follows. 

Setting ,  = 0, Equation (3.18) becomes 

 

𝐺00 = 𝑅00 − 
1

2
𝑅𝑔00 =  𝑇00      (4.1) 

 

 4.1.1.3  First Friedmann Equation 

By putting all the necessary pieces in one place by substituting Equations (3.6), (3.10), 

(3.15) and (3.16) into Equation (4.1), to get the Einstein Equation. 

𝐺00= − 
3𝑅 (𝑡)

𝑐4𝑅(𝑡)
  +  

3 (4 𝑘𝑐2+ 𝑅(𝑡)𝑅ʹ(𝑡)  + 𝑅 (𝑡)2)

𝑐4𝑅(𝑡)
 =  𝛽 (𝑡)  

=− 
3𝑅 (𝑡) 𝑅(𝑡)

𝑐4𝑅(𝑡)2
 + 

12 𝑘𝑐2 + 3 𝑅 (𝑡)2)

𝑐4𝑅 (𝑡)2
 + 

3𝑅 (𝑡)𝑅(𝑡)

𝑐4𝑅(𝑡)2
 =  𝛽 (𝑡) 

 

 12 𝑘𝑐2 + 3𝑅(𝑡)2 = 𝑐4𝑅(𝑡)2 (𝑡)   (4.2) 

 

4.1.1.4 Second Friedmann Equation  

 

To calculate the second Einstein Equation, set  =   = 1, 2, 3 in Equation (3.18) as  
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𝐺11=𝐺22=𝐺33= 𝑅11— 
1

2
𝑅𝑔11=𝛽 𝑇11       (4.3) 

 

Substituting Equations (3.6), (3.10), (3.15) and (3.16) into Equation (4.3) to get 

𝐺11 = 
8 𝑘𝑐2+ 𝑅(𝑡)𝑅ʹ(𝑡)  +2 𝑅 (𝑡)2)

𝑐2𝑅(𝑡)4
—

 (12 𝑘𝑐2+ 3 𝑅(𝑡)𝑅ʹ(𝑡) + 3 𝑅 (𝑡)2) 

𝑐2𝑅(𝑡)4
 = 

 𝑃(𝑡)

𝑅(𝑡)2
 

= 
―4 𝑘𝑐2― 2 𝑅(𝑡)𝑅ʹ(𝑡) − 𝑅 (𝑡)2)

𝑐2𝑅(𝑡)2
 = 𝑃(𝑡) 

 

  4 𝑘𝑐2 + 2 𝑅(𝑡)𝑅ʹ(𝑡) + 𝑅(𝑡)2 = —   𝑐 2𝑅(𝑡)2𝑃(𝑡)  (4.4) 

 

Equations (4.2) and (4.4) are the first and second specifc Friedmann Equations for 

describing dynamics and evolution of the Universe.  

In the next section, a conservation law is developed based on Equations (4.2) and (4.4) 

paying special attention to conserved observables enabling formulation of a general 

analytical solution.  

4.1.2 Energy Conservation law 

Differentiating Equation (4.2) with respect to 𝑡 gives 

6 𝑅(𝑡)𝑅ʹ(𝑡)= 2𝑐4𝑅(𝑡)𝑅(𝑡) (𝑡) +  𝑐4𝑅(𝑡)2′(𝑡)    (4.5) 

where  𝑅ʹ(𝑡) = 
𝑑 𝑅(𝑡) 

𝑑𝑡
  and 𝑅(𝑡) = 

𝑑 𝑅(𝑡)

𝑑𝑡
 . Multiplying the result above by 𝑅(𝑡) gives 

 

6𝑅(𝑡)𝑅(𝑡)𝑅ʹ(𝑡)= 2𝑐4𝑅(𝑡)2 𝑅(𝑡)(𝑡) +  𝑐4𝑅(𝑡)3′(𝑡)   (4.6) 

 

Lets now multiply Equation (4.4) by 3 to give 
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12𝑘𝑐2 + 6𝑅(𝑡)𝑅ʹ(𝑡) + 3 𝑅 (𝑡)2 =  3 𝑐2𝑅(𝑡)2𝑃(𝑡) 

Scalar multiplication to solutions of homogeneous differential Equations is also a solution. 

Re-organizing this Equation yields 

 

6𝑅(𝑡)𝑅ʹ(𝑡) = −(12𝑘𝑐2 + 3𝑅 (𝑡)2) −3 𝑐2𝑅(𝑡)2𝑃(𝑡)   (4.7) 

  

Applying Equation (4.2) into Equation (4.7) to obtain 

6𝑅(𝑡)𝑅ʹ(𝑡) =   𝑐4𝑅(𝑡)2 (𝑡) − 3 𝑐2𝑅(𝑡)2𝑃(𝑡) 

Multiplying this result by  𝑅(𝑡) gives 

 

6 𝑅(𝑡)𝑅(𝑡)𝑅ʹ(𝑡) = 𝑐4𝑅(𝑡)𝑅(𝑡)2 (𝑡)3 𝑐2𝑅(𝑡)𝑅(𝑡)2𝑃(𝑡)   (4.8) 

 

Subtracting Equation (4.8) from Equation (4.6), gives 

3𝑐2𝑅(𝑡)R(𝑡)2 (𝑡) + 𝑐2𝑅(𝑡)3ʹ(𝑡) = 3𝑅(𝑡)𝑅(𝑡)2𝑃(𝑡) 

Lets rewrite this result to read as 

 
𝑑

𝑑𝑡
(𝑐2 (𝑡)𝑅(𝑡)3) =― 𝑃(𝑡)

𝑑

𝑑𝑡
𝑅(𝑡)3      (4.9) 

 

Equation on the left―hand―side represent the rate of change of total energy in the 

Universe while the right―hand―side is the work it does as it expands ( 𝑃𝑑𝑣). The case 

of interest is the matter―dominated cosmology. In the matter―dominated cosmology, the 

main energy density of the cosmological fluid is in cold non―relativistic matter particles 

which behave like dust: 𝑃 = 0, so Equation (4.9) becomes 
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𝑑

𝑑𝑡
(𝑐2(𝑡)R(𝑡)3) = constant 

 

 (𝑡)R(𝑡)3 = constant,      (4.10) 

 

Equation (4.10) represents the conservation law for the stress―energy momentum tensor 

for a matter―dominated Universe. It says that the total mass contained in the Universe 

remains constant. This shows that the total matter content in the Universe remains constant 

at any given time and therefore, Equation (4.10) describes a matter dominated Friedmann 

Universe. This is in line with the relativistic theory of matter and fields (Noether’s 

theorem) in which there is no preferred direction for motion of matter, otherwise isotropy 

would be broken. 

 

Rewrite Equation (4.2) to read as 

 

12𝑘𝑐2 + 3𝑅(𝑡)2 = 
  𝑐4𝑅(𝑡)3 (𝑡) 

𝑅(𝑡)
 

  

So that upon using Equation (4.10) in this result yields 

 

12 𝑘𝑐2 +  3 𝑅 (𝑡)2 = 
   𝑐4 

𝑅(𝑡)
      (4.11) 

 

Dividing  Equation (4.11) by 3 on both sides gives 

 

4 𝑘𝑐2 + 𝑅(𝑡)2 = 
   𝑐4 

3 𝑅(𝑡)
        (4.12) 

 

Making  𝑅(t) the subject of the formula and rearranging the Equation give 
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𝑅(t) =  √
 𝑐4

3 𝑅(𝑡)
—4 𝑘𝑐2 

Which can also be expressed as 

𝑑𝑅

𝑑𝑡
 =√

  𝑐4 

3 𝑅(𝑡)
— 4 𝑘𝑐2 

 

 𝑑𝑡 = 
𝑑𝑅

√
  𝑐4  

3 𝑅(𝑡) 
 — 4 𝑘𝑐2

      (4.13) 

 

Equation (4.13) is the time taken for a light photon to travel at a distance 𝑑𝑟. 

 

4.2  Light intensity―Modified Redshift Relation 

Lets explore to derive a relation between light―intensity and redshift parameter at the 

beginning of photon (emission) to the end of photon (observation). 

Consider Equation (3.22) and lets solve this Equation for the comoving distance 𝑑𝑟 that a 

photon travels at a time 𝑑𝑡. Substituting Equation (4.13) into Equation (3.22) give 

∫
𝑐 𝑑𝑅

 √
  𝑐4 𝑅(𝑡)2 

3 𝑅(𝑡)
 — 4 𝑘𝑐2𝑅(𝑡)2   

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
= — ∫

1

1+𝑘𝑟2
 𝑑𝑟

𝑟(𝑡0) 

𝑟(𝑡𝑒) 
 

 

 ∫
𝑑𝑅

 √𝑅√
   𝑐2  

3
 — 4 𝑘 𝑅(𝑡)   

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
= —∫

1

1+𝑘𝑟2
 𝑑𝑟

𝑟(𝑡0) 

𝑟(𝑡𝑒) 
   (4.14) 

 

Equation (4.14) is the general Friedman Equation for describing dynamics and evolution 

of the matter―dominated Universe. In the following section, Equation (4.14) has a 

solution for three different curvature scalars of the Universe: 𝑘 = (−1, 0, +1), which 

stand for Open Universe, Flat Universe and Closed Universe respectively. 
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4.2.1 Flat Universe  

Setting 𝑘 = 0, Equation (4.14) becomes 

—∫ 𝑑𝑟
𝑟(𝑡0) 

𝑟(𝑡𝑒) 
 = ∫

𝑑𝑅

 √𝑅√
 𝑐2  

3
    

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
=∫

𝑅
− 
1
2   𝑑𝑅

 √
  𝑐2  

3
    

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
 

This Equation is integrated as  

𝑟(𝑡𝑒)—𝑟(𝑡0) = 
1

√  𝑐
2   

3 
   

∫  𝑅− 
1

2 𝑑𝑅 
𝑅(𝑡0)

𝑅(𝑡𝑒)
= 

1

√  𝑐
2   

3
   

 
𝑅
1
2

1

2

 
0( )

( )

R t

R te  

= √𝑅 
1

√  𝑐
2  

12 
  

 
0( )

( )

R t

R te = √𝑅√
12 

  𝑐2
   

0( )

( )

R t

R te = 
√12 𝑅 

√  𝑐2 

0( )

( )

R t

R te  

 

𝑟(𝑡𝑒)—  𝑟(𝑡0) = 
√12 𝑅(𝑡0) 

√  𝑐2 
 —

√12 𝑅(𝑡𝑒) 

√  𝑐2 
    (4.15) 

 

Rewriting the modified redshift Equation (3.20) in the form  

 

𝑅(𝑡𝑒) = 
𝑅(𝑡0)

1+𝑓(𝑧)
     (4.16) 

 

and apply it in Equation (4.15) while setting 𝑟(𝑡0)= 0, gives 

 

𝑟(𝑡𝑒)= 
√12 𝑅(𝑡0) 

√  𝑐2 
 —

√12𝑅(𝑡0) 

√(  𝑐2 ) (1+𝑓(𝑧))
      (4.17) 

 

4.2.2 Closed Universe 

 

Setting 𝑘 = 1, Equation (4.14) becomes 

0( )

2

( )

1

1
e

r t

r t

dr
r


 =∫

𝑑𝑅

 √𝑅 √
 𝑐2 

3
 − 4𝑅  

 
𝑅(𝑡0)

𝑅(𝑡𝑒)
= ∫

𝑑𝑅

√𝑅 √
 𝑐2 − 12 𝑅

3
   

𝑅(𝑡0)

𝑅(𝑡𝑒)
    (4.18) 
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Making use of the standard integral ∫
1

1+𝑟2
𝑑𝑟=  tan−1 𝑟 and setting 𝑟(𝑡0)= 0, this Equation 

can be integrated as shown: 

tan−1 𝑟(𝑡𝑒)= ∫
𝑑𝑅

√𝑅 √
  𝑐2 

3
(1 —  

12 𝑅

 𝑐2  
)   

𝑅(𝑡0)

𝑅(𝑡𝑒)
 

    

tan−1 𝑟(𝑡𝑒)= ∫
𝑑𝑅

√𝑅 √
  𝑐2  

3
   √1 — 

12𝑅

 𝑐2  
 

𝑅(𝑡0)

𝑅(𝑡𝑒)
    (4.19) 

 

Let sin2  = 
12𝑅

  𝑐2
    𝑅 =(

 𝑐2 

12 
) sin2  

Such that 

𝑑𝑅 =  
 𝑐2   

12
 2 sin  cos   𝑑     i.e.,  𝑑(sin2 ) = 2 sin  cos   𝑑 

and 

√𝑅 = √
 𝑐2  

12 
 sin  

also  

 

√1— 
12 𝑅

 𝑐2 
 =√1—sin2  = cos      (4.20) 

 

Substituting the above Equations into Equation (4.19) yields 

tan−1 𝑟(𝑡𝑒) = ∫
  𝑐2    

12 
 2 sin  cos  𝑑

√ 𝑐
2   

12 
sin √

 𝑐2   

3  
 Cos 

(𝑡0)

(𝑡𝑒)
 =∫

  𝑐2 

6  
  sin cos  𝑑

 𝑐2   

6 
sin   cos 

(𝑡0)

(𝑡𝑒)
 

 

tan−1 𝑟(𝑡𝑒) =∫ 𝑑
(𝑡0)

(𝑡𝑒)
 = 

0( )

( )

t

te



    (4.21) 

 

But from sin2  above, 
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 = sin−1√
12 𝑅

 𝑐2  
     (4.22) 

 

Thus,   

tan−1 𝑟(𝑡𝑒) = 
0( )

( )

t

te



 = sin−1√
12𝑅

 𝑐2  
 

0( )

( )

R t

R te  

 

tan−1 𝑟(𝑡𝑒) =  sin−1√
12 𝑅(𝑡0)

 𝑐2  
− sin−1√

12  𝑅(𝑡𝑒)

 𝑐2  
    (4.23) 

 

Applying the modified redshift Equation (4.16) into Equation (4.23) yields 

 

tan−1 𝑟(𝑡𝑒)=  sin
−1√

12 𝑅(𝑡0)

 𝑐2   
− sin−1√

12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
   (4.24) 

 

 Taking the tangent on both sides of Equation (4.24), and use the standard identity  

tan (A ± B) = 
tanA  ±  tanB

1∓ tanA tanB
 

It is obtained that 

 

𝑟(𝑡𝑒)=  
tan sin−1√

12 𝑅(𝑡0)

 𝑐2   
 — tan sin−1√

12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
       

1 + tan sin−1√
12 𝑅(𝑡0)

 𝑐2   
 tan sin−1√

12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
   

    (4.25) 

 

Lets make use of the following standard identity on this Equation 

tan  = 
sin

cos 
 = 

sin

√1— sin2 
  and given that sin2  = 

12 𝑅

 𝑐2 
 

Equation (4.25) can therefore be rewritten as 

𝑟(𝑡𝑒) = 

√
12 𝑅(𝑡0)

 𝑐2  
     

1

√ 1—  
12 𝑅(𝑡0)

 𝑐2  

 —√
12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧)) 
   

1

√1 — 
12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))

1 +√
12 𝑅(𝑡0)

 𝑐2  
   

1

√1 — 
12 𝑅(𝑡0)

 𝑐2 

 √
12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
  

1

√1 —  
12 𝑅(𝑡0)

(  𝑐2 ) (1+𝑓(𝑧))
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which can be simplified as 

𝑟(𝑡𝑒) = 
√

12 𝑅(𝑡0)

 𝑐2  — 12𝑅(𝑡0)
 —√

12 𝑅(𝑡0)

( 𝑐2 )(1+𝑓(𝑧)) — 12 𝑅(𝑡0)
 

1+12 𝑅(𝑡0) 
1

√( 𝑐2 )— 12𝑅(𝑡0)

  
1

√( 𝑐2 )(1+𝑓(𝑧))— 12𝑅(𝑡0)

 

Which can further be writen in the form:  

 

𝑟(𝑡𝑒) =
√12 𝑅(𝑡0){√( 𝑐

2 )(1+𝑓(𝑧))— 12𝑅(𝑡0) — √ 𝑐
2 — 12 𝑅(𝑡0)}

√( 𝑐2 )— 12 𝑅(𝑡0)  √( 𝑐
2 )(1+𝑓(𝑧))— 12𝑅(𝑡0) + 12 𝑅(𝑡0)

    (4.26) 

 

4.2.3 Open Universe 

 

Setting 𝑘 = —1, Equation (4.14) becomes  

 

0( )

2

( )

1

1
e

r t

r t

dr
r


 = ∫

𝑑𝑅

 √𝑅 √
 𝑐2 

3
 + 4𝑅  

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
   (4.27) 

 

This Equation can be integrated as shown:  

 

tanh−1 𝑟 
0( )

( )

r t

r te  = ∫
𝑑𝑅

 √𝑅 √
 𝑐2 

3
 (1+ 

12 𝑅

  𝑐2 
)  

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
   (4.28) 

 

Setting 𝑟(𝑡0) = 0, gives  

 

tanh−1(𝑡𝑒)= ∫
𝑑𝑅

 √𝑅 √
 𝑐2 

3
 (1 + 

12 𝑅

 𝑐2 
)   

  
𝑅(𝑡0)

𝑅(𝑡𝑒)
    (4.29) 

 

Let  sinh2  = 
12 𝑅

 𝑐2 
    𝑅 =(

 𝑐2  

12 
) sinh2   

Such that 
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𝑑𝑅=  
 𝑐2  

12 
 2sinh  cosh 𝑑     i.e.,  𝑑(sinh2 ) = 2sinh  cosh 𝑑  

and 

√𝑅 = √
 𝑐2 

12 
 sinh   

also   

√1 + 
12 𝑅

 𝑐2 
 =√1 + sinh2    = √cosh2  = cosh  

 

Appropriate substitutions in Equation (4.29) using the above Equations give 

tanh−1(𝑡𝑒) = ∫
 𝑐2  

12  
 2 sinh  cosh  𝑑 

√ 𝑐
2  

12  
 sinh √

 𝑐2   

3  
  cosh  

(𝑡0)

(𝑡𝑒)
 = ∫

 𝑐2  

6  
  sinh  cosh  𝑑

 𝑐2 

6
  sinh  cosh 

(𝑡0)

(𝑡𝑒)
 

 

= tanh−1(𝑡𝑒) = 
0( )

( )

t

te



       (4.30) 

 

But from sinh2  above,  

 

 = sinh−1√
12  𝑅

 𝑐2 
       (4.31) 

 

Thus,  

tanh−1 𝑟(𝑡𝑒) = 
0( )

( )

t

te



  = sinh−1√
12 𝑅

 𝑐2  
 

0( )

( )

R t

R te  

 

= sinh−1√
12 𝑅(𝑡0)

 𝑐2
 — sinh−1√

12 𝑅(𝑡𝑒)

 𝑐2   
     (4.32) 

 

Applying the modified redshift Equation (4.16) into Equation (4.32) yields 

 



36 
 

tanh−1 𝑟(𝑡𝑒)=  sinh−1√
12 𝑅(𝑡0)

 𝑐2  
 — sinh−1√

12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
     (4.33) 

 

Taking the tangent on both sides of Equation (4.33) and using the standard identity 

tanh  (A B)=  
tanhA  ± tanhB

1∓ tanhA tanhB
  

gives 

 

𝑟(𝑡𝑒) = 
tanh sinh−1√

12 𝑅(𝑡0)

 𝑐2 
 — tanhsinh−1√

12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
       

1 + tanh sinh−1√
12 𝑅(𝑡0)

 𝑐2  
 tanh sinh−1√

12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
   

   (4.34) 

 

Let us use the following identity on this Equation. 

tanh  = 
sinh 

cosh 
 = 

sinh 

√1 + sinh2 
  and given that sinh2 =  

12 𝑅

 𝑐2 
  

Equation (4.34) can be rewritten as 

𝑟(𝑡𝑒) = 

√
12 𝑅(𝑡0)

 𝑐2  
    

1

√
 𝑐2 +12 𝑅(𝑡0)

 𝑐2  

 —√
12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))
  

1

√
( 𝑐2 )(1+𝑓(𝑧))+ 12𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))

1 +√
12 𝑅(𝑡0)

 𝑐2  
   

1

√
( 𝑐2 ) +12 𝑅(𝑡0)

 𝑐2 

 √
12 𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧)) 
  

1

√
( 𝑐2 )(1+𝑓(𝑧))+ 12𝑅(𝑡0)

( 𝑐2 ) (1+𝑓(𝑧))

  

which can be simplified as  

𝑟(𝑡𝑒) = 
√

12 𝑅(𝑡0)

 𝑐2 — 12 𝑅(𝑡0)
 —√

12 𝑅(𝑡0)

( 𝑐2 )(1+𝑓(𝑧)) — 12𝑅(𝑡0)
 

1+ 12𝑅(𝑡0) 
1

√( 𝑐2 ) — 12 𝑅(𝑡0)

  
1

√( 𝑐2 )(1+𝑓(𝑧)) — 12 𝑅(𝑡0)

   

Which is further written in the form: 

 

𝑟(𝑡𝑒) =
√12𝑅(𝑡0){√( 𝑐

2 )(1+𝑓(𝑧))+12 𝑅(𝑡0)  — √ 𝑐
2 + 12 𝑅(𝑡0)}

√( 𝑐2 )+12𝑅(𝑡0) √( 𝑐
2 )(1+𝑓(𝑧))+12𝑅(𝑡0) +12 𝑅(𝑡0) 

    (4.35) 
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The above three cases described by Equations (4.17), (4.26) and (4.35) can be written in 

one combined Equation that depends on one function of time, the scale factor 𝑅(𝑡)  as  

 

𝑟(𝑡𝑒)=  
√12 𝑅(𝑡0) {√( 𝑐

2 )(1+𝑓(𝑧))—12 𝑘𝑅(𝑡0) — √ 𝑐
2 —12 𝑘 𝑅(𝑡0)}

√( 𝑐2 )—12𝑘 𝑅(𝑡0) √( 𝑐
2 )(1+𝑓(𝑧))—12𝑘𝑅(𝑡0) + 12𝑘𝑅(𝑡0)

       (4.36) 

 

If it is defined 

 

𝑎∗ =  𝑐2 —12𝑘𝑅(𝑡0)  (4.37) 

 

  𝑏∗ =  ( 𝑐2 )(1 + 𝑓(𝑧))—12𝑘𝑅(𝑡0) (4.38) 

 

and considering that the cosmic time 𝑡𝑒 depends on the evolution of the function 𝑓(𝑧), 

and therefore consider 𝑟(𝑡𝑒) as a function of  𝑟𝑓(𝑧), such that Equation (4.36) can be 

written in new simplified form as 

 

𝑟𝑓(𝑧)=  
√12 𝑅(𝑡0)  (√𝑏

∗ — √𝑎∗ )

√𝑎∗𝑏∗ +12𝑘 𝑅(𝑡0)
     (4.39) 

 

To establish a function relation between light intensity, 𝐼 from an emitting astronomical 

object on the modified redshift, 𝑓(𝑧), consider a star or galax emitting light at an absolute 

luminosity, 𝐿 from a distant source positioned at the comoving radial coordinate 𝑟 = 𝑟𝑒 at 

cosmic time 𝑡𝑒. Consider the light emitted by photons as they travel through the Universe 

towards the origin along the radial direction such that at time 𝑡 = 𝑡0, it is observed at the 

origin 𝑟(𝑡0) = 0) during a time interval  𝑑𝑡𝑒. Suppose that at time 𝑡 = 𝑡0 ,  𝑟(𝑡0) = 0) an 

observer measures the brightness, 𝐼 of that light which he receives at a redshift 𝑓(𝑧) and 

his location of reception of light is given by Equation (4.36). Equation (4.39) is time 
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reversal invariant. This light was emitted in the time interval [𝑡𝑒 , 𝑡𝑒 + 𝑑𝑡𝑒], will pass the 

observer in the time interval [𝑡0, 𝑡0 + 𝑑𝑡0]. During this process, there is photon number 

conservation as the radiation passes the Universe and the photons are redshifted relative 

to the emitted wavelength (increasing wavelength of their spectrum) leading to a decrease 

in their energy by a factor  
1

1 + 𝑓(𝑧)
 .  Consequently, the energy that passes through the 

spherical Universe of radius 𝑟 = 𝑟𝑓(𝑧) during the interval [𝑡0, 𝑡0 + 𝑑𝑡0] is the same as the 

product of  
1

1 + 𝑓(𝑧)
 and the energy emitted during the interval [𝑡𝑒 , 𝑡𝑒 + 𝑑𝑡𝑒]. 

Expressing light intensity, I dependent on luminosity, L of luminous matter in the 

Universe as 

 

𝐼=  
𝐿 𝑑𝑡𝑒

1 + 𝑓(𝑧)  𝑆𝑟𝑓(𝑧))
    (4.40) 

 

where  𝑆𝑟 denotes the surface area of the sphere of radius,  𝑟 = 𝑟𝑓(𝑧) at time 𝑡 = 𝑡0. 

Considering Equation (3.22) and apply the fact that light in the spherical Universe is 

moving in the negative all directions and use the coordinate radius range 𝑟 = 0 to 𝑟 =

𝑟𝑓(𝑧) as 

 

∫
𝑐

𝑅(𝑡)
𝑑𝑡

𝑡0
𝑡𝑒

= ∫
1

1+𝑘𝑟2
 𝑑𝑟

𝑟𝑓(𝑧) 

0 
    (4.41) 

  

The negative sign comes due to the fact that light is moving in the negative all direction.  

If light is emitted at time 𝑡𝑒, will reach the observer at a time 𝑡0. In the same manner, light 

emitted at 𝑡𝑒 + 𝑑𝑡𝑒 will reach the same observer at 𝑡0 + 𝑑𝑡0, and thus Equation (4.41) can 

be expressed as 
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∫  
𝑐

𝑅(𝑡)
𝑑𝑡

𝑡0 + 𝑑𝑡0
𝑡𝑒 + 𝑑𝑡𝑒 

=  ∫
1

1+𝑘𝑟2
 𝑑𝑟

𝑟𝑓(𝑧) 

0 
      (4.42) 

 

or  

 

𝑐𝑑𝑡𝑜

𝑅(𝑡𝑜)
—

𝑐𝑑𝑡𝑒

𝑅(𝑡𝑒)
 +∫

𝑐

𝑅(𝑡)
𝑑𝑡 =

𝑡0
𝑡𝑒

  ∫
1

1+𝑘𝑟2
 𝑑𝑟

𝑟𝑓(𝑧) 

0 
    (4.43) 

    

Substituting Equation (3.22) into Equation (4.43) gives 

 

𝑑𝑡𝑒

𝑅(𝑡𝑒)
 = 

𝑑𝑡0

𝑅(𝑡0)
  ⇒ 

       
  𝑅(𝑡𝑒)

𝑅(𝑡0)
 =  

𝑑𝑡𝑒

𝑑𝑡0
       (4.44) 

  

Which on using the modified redshift Equation (4.16) gives 

 
  𝑅(𝑡𝑒)

𝑅(𝑡0)
 = 
𝑑𝑡𝑒

𝑑𝑡0
 = 

1

1+𝑓(𝑧)
     (4.45) 

 

Given that the surface area of the sphere, 𝑆𝑟𝑓(𝑧) as  

 

𝑆𝑟𝑓(𝑧)=  
4  𝑟2𝑓(𝑧) 𝑅(𝑡0)

2

[1+𝑘𝑟2𝑓(𝑧)]2
     (4.46) 

 

 Substituting Equation (4.44) into Equation (4.40) and applying Equation (4.46) gives 

 

𝐼=  
𝐿 [1+𝑘𝑟2𝑓(𝑧)]

2

(1+𝑓(𝑧))2 4  𝑟2𝑓(𝑧) 𝑅(𝑡0)
2       (4.47) 

 

Substituting Equation (4.39) into Equation (4.47) to obtain the solution  

 

𝐼(𝑓(𝑧)=  
𝐿[ 1 + 𝑘(

√12 𝑅(𝑡0) (√𝑏
∗ — √𝑎∗ )

√𝑎∗𝑏∗+12𝑘(𝑡)𝑅(𝑡0)
 )
2

 ]

2

(1 + 𝑓(𝑧))
2
4𝜋 (

√12 𝑅(𝑡0) (√𝑏
∗ — √𝑎∗)

√𝑎∗ 𝑏∗ + 12 𝑘 𝑅(𝑡0)
)

2

𝑅(𝑡0)
2

     (4.48) 
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1.3 Number Density―Modified Redshift Relation  

Suppose stars or galaxies under considerations are distributed uniformly in the Universe 

such that we can count the number of stars we observe in a given redshift. Number density 

is the number counts of distant astronomical objects enclosed in a given volume. Taking 

𝑁 as the number of stars per unit volume of space with metric given by 

 
𝑑𝑟2+ 𝑟2𝑑2+𝑟2 sin2  𝑑

(1+𝑘𝑟2)2
        (4.49) 

 

 the volume element of the hyper―sphere surface is given as (Wamalwa, 2016)  

 
𝑟2 sin  𝑑 𝑑 𝑑𝑟

(1+𝑘𝑟2)3
    (4.50) 

 

Therefore the number of stars between 𝑟 and 𝑑𝑟 is given as 

 
4 𝑟2𝑑𝑟

(1+𝑘𝑟2)3𝑁
        (4.51) 

 

Consider Equation (4.36) and rewrite it as a function of 𝑓(𝑧) as shown  

 

𝑟(𝑓(𝑧)=  
√12 𝑅(𝑡0) [√( 𝑐

2 )(1+𝑓(𝑧)—12𝑘 𝑅(𝑡0) —√ 𝑐
2 —12𝑘 𝑅(𝑡0)]

√ 𝑐2 —12 𝑅(𝑡0)
  √( 𝑐2)(1+𝑓(𝑧))—12𝑘𝑅(𝑡0)  + 12𝑘𝑅(𝑡0)

  (4.52) 

 

Applications of expansion of powers of 𝑓(𝑧) in this Equation obtains that 𝑟𝑓(𝑧) is 

proportional to 𝑓(𝑧) and Equation (4.52) reduces to 

 

𝑟𝑓(𝑧) = √ 
3 𝑅(𝑡0)

( 𝑐2 —12𝑘 𝑅(𝑡0) 
 𝑓(𝑧)    (4.53) 

 

Differentiating Equation (4.52) with respect to 𝑓(𝑧) gives 
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𝑑𝑟

𝑑𝑓(𝑧) 
 =𝑟′𝑓(𝑧) = 

( 𝑐2)
2
 √3 𝑅(𝑡0)

√𝑏∗  (√𝑎∗𝑏∗ + 12 𝑘 𝑅(𝑡0))
2     (4.54) 

 

 

with the application of   

𝑎∗ = ( 𝑐2 )(1 + 𝑓(𝑧))—12𝑘𝑅(𝑡0) ;  𝑏
∗ = ( 𝑐2)(1 + 𝑓(𝑧))—12𝑘𝑅(𝑡0)

    

Further we can assume the number galaxies to be enclosed within the coordinate 

hyper―sphere in the region of space 𝑟𝑓(𝑧) and 𝑟𝑓(𝑧) + 𝑑𝑓(𝑧)  as  

 

𝑛𝑓(𝑧) 𝑑𝑓(𝑧)= 4 𝑟2𝑓(𝑧)[1 + 𝑘 𝑟2𝑓(𝑧)]3𝑁𝑟′𝑓(𝑧)𝑑𝑓(𝑧)    (4.55) 

 

 

Substituting Equations (4.39) and (4.54) into Equation (4.55) to obtain the solution 

  

𝑛𝑓(𝑧) =  
48   𝑁𝑅(𝑡0) ( 𝑐

2 )
2
 √3 𝑅(𝑡0)  (√𝑏

∗ — √𝑎∗)
2

 [1 + 𝑘 (
√𝑏∗ — √𝑎∗  

√𝑎∗ 𝑏∗ + 12 𝑘 𝑅(𝑡0)
 )
2

]

3

[√𝑎∗ 𝑏∗+12𝑘 𝑅(𝑡0)]
4
       (4.56) 

 

This Equation relates how the number density counts of galaxies evolves with with 

modified redshift 𝑓(𝑧). Combined with the light―intensity-redshift relation Equation 

(4.48) provides important analytical results research. 

In the next section, theories that shift from the standard cosmological model and the 

contention that the redshift of luminous objects as a distance indicator at cosmological 

scales might be biased or inconsistent are studied reinforcing the idea of modifying the 

standard Friedmann model.      

 

4.4 Test Models 

In this section, one and two parameter modification of the standard redshift model is 

considered. These modified models of 𝑧 based on the redshift―scale factor remapping 

concept have proved to be consistent with current astronomical data. In these models, 
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observational data has already been used in reconstructing parameter value constraints and 

slight perturbation of the parameter is implored. The overall goal is to underscore the 

robust theoretical underpinning of cosmic acceleration, irrespective of the ongoing debate 

surrounding the mysteries of dark matter and dark energy. The subtle variation in 

parameters serves the dual purpose of exploring additional statistically significant features 

of cosmic structures and revealing the resilience of the model under slight perturbations. 

The generic effects implied by the modified redshift is investigated in which the standard 

redshift is only a special function of  𝑓(𝑧) i.e.,  𝑧 = 𝑓(𝑧).  

The equality: 

 

𝑧 = 𝑧0       (4.57) 

 

where 𝑧0 is the observed redshift. This a standard assumption in all theoretical 

cosmological analyses and every mapping between the cosmic scale factor and the 

observed redshift is ascribed to gravity and the metric that determine the photon path 

propagation.  

The first model considered is studied by (Bassett et al., 2015) in the form 

 

𝑓(𝑧)  = 𝛼1𝑧0 + 𝛼2(𝑧0)
2    (4.58) 

 

where, 𝛼1 and 𝛼2 are arbitrary parameters. Based on the observed Supernovae (SN) data, 

the modified redshift Equation (4.58) allows an Einstein de Sitter Universe to fit the 

observed Supernovae Hubble diagram as successfully as the standard Friedmann model.  

 

Using Equation (4.57) in Equation (4.58), yields the first modified theoretical parametric 

model as 
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𝑓(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2      (4.59) 

 

where  𝛼1 and  𝛼1 are arbitrary parameters.  

 

The second model is proposed by (Wojtak & Prada, 2017). In this model, the ratio of the 

standard redshift model z to the observed redshift  𝑧0 was idea motivated developing a 

non―parametric model of the form: 

 

𝑓(𝑧) = 𝑧0 + 𝛾(𝑧0)
2       (4.60) 

  

where, 𝛾(𝑧0) is a free function 𝑧0. The standard model and modified model agree 

when 𝛾(𝑧0) = 0 .  

 

Applying Equation (4.57) in Equation (4.60) yields the second modified model as 

 

𝑓(𝑧) =  𝑧 + 𝛾(𝑧)2      (4.61) 

  

where 𝛾(𝑧) is a free function of 𝑧 .  

 

Another modified model is proposed based on modified redshift approach written as 

 

𝑓(𝑧) =  
𝑧

𝜀
      (4.62) 

 

where 𝜀 is a free parameter. This model is capable of allowing for both 𝑧 <
𝑧

𝜀
  and  𝑧 > 

𝑧

𝜀
  

besides recovering the standard redshift at  𝜀 → 1, so that  
𝑧

𝜀
 → 𝑧 . This is an essential 

feature as it ensures that the modified redshift does not affect the interpretation of cosmic 

microwave background observations (CMB). This model together with others above-

mentioned offers an attractive method for observing buildup of cosmic structures and have 
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provided a powerful consistency test of the standard Friedmann model and have been used 

to investigate cosmic acceleration from a phenomenological or dark matter point of view.  

Therefore, the incorporation of these models into cosmological models presents a 

compelling and physically plausible avenue for advancing the understanding of the 

universe and offers a fresh perspective that may help resolve existing anomalies and 

contribute to a complete and more coherent cosmological framework. 

 

The Tolman dimming light term (1 + 𝑧)−4 is another method that can modify the standard 

redshift relation. In a cosmologically expanding Universe, the effects of surface brightness 

of standard candles of luminous astronomical objects receding with redshift will dim by a 

term (1 + 𝑧 )−4 in comparison to similar standard static candles; making standard candles 

at higher redshifts appear dimmer to the observer (Calvi et al., 2014). This dimming term 

affects all cosmological luminous objects and is consistent for all cosmological models 

regardless of the geometry applied provided the redshift luminosity relation is governed 

by the Friedmann model (Sandage, 2010). This make it difficult to detect progressively 

higher redshift galaxies due to effects caused by time dilation, redshifted light and 

geometry of the Universe as per the relation (Calvi et al., 2014). 

 

𝐼𝑂 = 𝐼𝑒  (1 + 𝑧)
−4      (4.63) 

 

where 𝐼𝑂 and 𝐼𝑒 are the observed and intrinsic surface brightness of luminous astronomical 

objects respectively. The contribution of this term need to be accounted for in order to 

make correct predictions of matter distribution in the Universe. The dimming effect has 

contributed to our understanding of ionizing radiations produced by the galaxies and 

therefore cosmological models lacking correction of this term might not be accurate, since 
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the ionizing radiations produced by galaxies are proportional to the number of galaxies 

observed in the actual universe.  

 

Light intensity evolution with redshift without dark energy is given as (Langa et al., 2017): 

 

𝐼 = 
𝐿 [1 + 𝑘 (

√12 𝑅(𝑡0) (√𝑏
∗  — √𝑎∗)

√𝑎∗ 𝑏∗  +  12 𝑘 𝑅(𝑡0)
)
2

]

2

(1 + 𝑧)2 4𝜋 (
√12 𝑅(𝑡0) (√𝑏

∗  — √𝑎∗)

√𝑎∗ 𝑏∗+ 12 𝑘 𝑅(𝑡0)
)
2

𝑅(𝑡0)
2

    (4.64) 

 

where 𝑎∗ and 𝑏∗ are as defined in Equations (4.37) and (4.38) respectively with 𝑧 → 𝑓(𝑧) 

in Equation (4.38). 

Modifying the classical light intensity Equation (4.64) in view of Equation (4.63) gives a 

new formula for light intensity evolution of galaxies as 

 

 𝐼𝑓(𝑧) =
𝐿  [1  +  𝑘 (

√12 𝑅(𝑡0)  √𝑏
∗  —  √𝑎∗

√𝑎∗ 𝑏∗  +  12𝑘 𝑅(𝑡0)
)
2

]

2

(1 + 𝑧)6  4𝜋 (
√12 𝑅(𝑡0) √𝑏

∗  — √𝑎∗

√√𝑎∗ 𝑏∗ +12 𝑘 𝑅(𝑡0)
)

2

𝑅(𝑡0)
2

     (4.65) 

 

Equations (4.65) gives the modified redshift relativistic Friedmann Equation for 

describing dynamics and evolution of the Universe due to dimming of light. The question 

addressed is whether the standard redshift analytical solutions for an expanding Universe 

are consistent with additional hypothesis of dimming term and make comparison with 

modified models stated above.  

In the next chapter, modified cosmological models studied above are investigated in the 

context of structure formation in the Universe.  
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

 

5.1 Structure Formation in a Matter―Dominated Friedmann Universe  

Structure formation and evolution of galaxies can be explained in terms of gravitation 

using the standard Friedmann model within the context of dark matter and dark energy 

scenarios (Lopez-Corredoira, 2017). However, the physical origin of dark energy appears 

to be a big challenging problem of current cosmology. Many authors have tried to explain 

cosmic acceleration by introducing a cosmological constant or dark energy dominated 

epoch. However, the physical origin of dark energy remains a mystery. Additionally, the 

cosmological constant problem, which includes a coincidence, and a fine―tuning problem 

is an important issue. The present values of the densities of dark energy and dark matter 

are of the same order of magnitude. Within the standard model, dark-energy density is 

constant and dark-matter density scales with the inverse third power of the cosmic scale 

factor this appears to be a coincidence since it requires extremely fine-tuned initial 

conditions in the early Universe. Both in the very early Universe and in the far future 

Universe these energy densities differ by many orders of magnitude (120 orders of 

magnitude separating dark energy from the Planck scale). 

In case homogeneity, isotropy, or both are broken, the standard model cannot accurately 

predict the Universe evolution (Melia & Shevchuk, 2012). 

This crossover period of the Universe from a matter―domination epoch to presently 

acceleration domination is one of the most important puzzle problem in cosmology 

referred to as late time transition (Aydiner et al., 2022) It seems unlikely to proceed 

towards a comprehensive theory of cosmology without understanding this critical 

transition.  
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5.2 Graphical Results  

This section embarks on the simulation of predictions derived from the analytical solutions 

of two cosmological models, namely the standard redshift Friedmann model and the 

modified redshift Friedmann model. The Equations governing light intensity and number 

density as functions of redshift are explicitly articulated for both models—Equations 

(4.48) and (4.56) for the modified Friedmann model. Through these simulations, the 

impact of cosmic accelerated expansion on galaxy formation is explained, distinguishing 

between the effects attributed to modified and unmodified redshift models. The overall 

goal is to underscore the robust theoretical underpinning of cosmic acceleration, 

irrespective of the ongoing debate surrounding the mysteries of dark matter and dark 

energy. As shall be seen later, the simulated results presented herein align consistently 

with other empirical findings thereby validating this approach. 

The parameter values employed in these simulations are meticulously chosen, with 

constraints derived from cosmological observational data. Variations in parameters, 

achieved through a nuanced adjustment in the MATLAB application, shed light on the 

kind of universe expected from the model. For instance, parameters such as (𝛼1,𝛼2) = (1, 

0) and (γ,𝛼2) = (1, 0) exhibit no discernible modification of the redshift, rendering both 

the standard and modified model in the absence of dark energy indistinguishable when 

MATLAB version R2017b simulations are run in the background. This is the special case 

when the modified model recovers the standard unmodified model. However, it is 

emphasized that only sufficiently small parameter values permit the formation of a 

universe conducive to hosting observers. Larger positive values induce rapid expansion, 

hindering the formation of gravitational structures, while large negative values precipitate 

a swift collapse, also precluding galaxy formation. The subtle variation in parameters 
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serves the dual purpose of exploring additional statistically significant features of cosmic 

structures and revealing the resilience of the model under slight perturbations. In addition, 

all of the models mentioned above show very little difference in the overall free parameter 

adjustment.  

To experimentally obtain particular parametric values like 𝛼1, 𝛼2 once given observational 

data for the parametric function used and once a model has been chosen, as in our case 

(modified redshift relation for the Friedmann model), all that one needs to do is to fit the 

model onto the observational data to find the values of the model parameters (Bassett et 

al., 2015). This is usually conducted using various statistical methods depending on the 

nature of the data and researcher’s objectives. A number of statistical tools may be used, 

e.g., maximum likelihood estimation (MLE) or Bayesian inference. The best-fit values of 

parameters provide a description of how the redshift scale factor evolves over time 

according to the chosen parametric model, and then one calculates the significance level 

to reject or accept the obtained values. Astronomical observables may include position 

(direction) of light emitted from, e.g., supernovae Type Ia or high-redshift quasars, the 

expansion rate of the universe, or flux among, others (Langa et al., 2017). Other 

parameters of interest may be obtained through normal relationships between physical 

quantities as the need arises. 

For non-parametric models, the same procedure can be adapted to obtain, e.g., 𝛾, except 

that one does not assume a specific function form for the relationship between variables. 

Instead, one aims to capture the data’s underlying structure without imposing pre―defined 

shapes (Wojtak & Prada, 2017). One can then consider a suitable statistical technique such 

as finding a smooth curve or surface that best fits the data points in a way that minimizes 
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some measure of error or deviation. Finally, the confidence levels can be calculated for 

validating the results. 

The choice between parametric and non―parametric approaches often depends on the 

underlying assumptions about the observational data and the desired flexibility in 

capturing the relationship between redshift and other variables (Tian, 2017); in our case, 

number density and redshift. Furthermore, in general, parametric and non-parametric 

values are not the same in cosmology, as they represent different approaches to modeling 

and analyzing cosmological data, except possibly where both types of values are used in 

conjunction to study different aspects of the universe. 

Parameter values used in the modified redshift models are slightly varied for comparison 

under consistent matter density and curvature of the universe (Aydiner et al., 2022). All 

values employed in the codes adhere to existing statistical data. 

To examine the initial effects of cosmic acceleration on galaxy formation in both models, 

graph the number density curves individually. Subsequently, it is observed that the more 

significant disparity in structure formation between the modified and unmodified 

Friedmann models makes it challenging to clearly discern the onset of the accelerated 

expansion of the universe (Wojtak & Prada, 2017). The standard redshift model exhibits 

a greater level of structure formation compared to the modified redshift model. 

Nonetheless, to evaluate the impact of introducing the modified model, both the standard 

redshift and modified redshift models without dark energy are graphed on the same scale 

for comparison.  

The MATLAB codes employed in these simulations adhere to constants such as redshift 

running from z = 0 to z = 5, the density of the universe ranging from ρ(𝑡0) = 3 × 10−27 

kgm−3 to ρ(𝑡0) = 8.78 × 10−25 kgm−3, speed of light c = 3 × 108 m/s, cosmic scale factor 
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R(𝑡0) = 9 × 1025 m (modifiable as needed), gravitational constant G = 6.67 × 10−11 m3 kg⁻1 

s⁻2, and the geometric curvature of the universe, where κ = 0 signifies a Flat Universe, κ 

= +1 designates a Closed Universe, and κ = ―1 represents an Open Universe (Langa et 

al., 2017).  

Figures 5.1―5.3 portray simulation outcomes for the evolution of light intensity for both 

the modified Friedmann model and the standard Friedmann model grounded in Equation 

(4.48). These visual representations offer a nuanced understanding of the intricate 

dynamics governing the evolution of cosmic structures under distinct cosmological 

paradigms. The standard redshift model displays the simulation results in solid lines while 

modified models are in dotted lines.  

 

 

Figure 5.1 The modified redshift 𝑓1(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2 with  𝛼1 = 2.005 and 𝛼2 =

0.005 . The solid curves represent the standard redshift while dotted curves represent the 
modified redshift  𝑓1(𝑧) = 𝛼1𝑧 + 𝛼2𝑧

2 with  𝛼1 = 2.005 and 𝛼2 = 0.005 . 
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Figure 5.2 The modified redshift  𝑓2(𝑧) = 𝑧 + 𝛾(𝑧)
2, where 𝛾(𝑧) is a free function of 𝑧 with 𝛾 =

0.45 . The solid curves represent the standard redshift while dotted curves represent the modified 

redshift  𝑓2(𝑧)= 𝑧 + 𝛾(𝑧)
2, where 𝛾(𝑧) is a free function of 𝑧 with 𝛾 = 0.45 . 

 

 

Figure 5.3 The modified redshift 𝑓3(𝑧) =
𝑧

𝜀
  with  𝜀 = 0.45. The solid curves represent the 

standard redshift while dotted curves represent the modified redshift 𝑓3(𝑧) =
𝑧

𝜀
 with  𝜀 = 0.45 . 
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The number density of galaxies for the modified Friedmann model and the unmodified 

model are also graphed on the same scale in order to assess the overall effects. Figures 

5.4–5.6 display the simulation results of number density of galaxy formation for the 

modified redshift Friedmann model based on Equation (4.56).  

 

Figure 5.4 The modified redshift  𝑓4(𝑧) =  𝛼1𝑧 + 𝛼2𝑧
2 with  𝛼1 = 2.005 and 𝛼2 = 0.005. The 

solid curves represent the standard redshift while dotted curves represent the modified redshift 

 𝑓4(𝑧) =  𝛼1𝑧 + 𝛼2𝑧
2 with  𝛼1 = 2.005 and 𝛼2 = 0.005. 

 

 
Figure 5.5 The modified redshift 𝑓5(𝑧) = 𝑧 + 𝛾(𝑧)

2, where 𝛾(𝑧) is a free function of 𝑧 and =

0.45. The solid curves represent the standard redshift while dotted curves represent the modified 

redshift  𝑓5(𝑧) = 𝑧 + 𝛾(𝑧)
2, where 𝛾(𝑧) is a free function of 𝑧 and = 0.45 . 
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Figure 5.6 The modified redshift 𝑓6(𝑧) =
𝑧

𝜀
 with 𝜀 = 0.45. The solid curves represent the 

standard redshift while dotted curves represent the modified redshift 𝑓6(𝑧) =
𝑧

𝜀
  with 𝜀 = 0.45. 

 

5.3 Discussion 

5.3.1. Light Intensity of Galaxy Distribution 

The attenuation of light intensity with redshift is visually depicted in Figures 5.1–5.3, 

covering various redshift ranges. In Figures 5.1–5.3, a distinct decrease in light intensity 

is evident across different universe models, transitioning from Flat to Open and then 

Closed Universes, regardless of the specific model applied. This attenuation is particularly 

pronounced in the modified redshift model, suggesting a potential phenomenological link 

between cosmic expansion and dark matter. Furthermore, the matter density and the 

curvature of the universe, as demonstrated by the similar attenuation rates between Open 

and Flat Universes within the redshift range of z ≈ 2–2.4 before diverging, influence this 

phenomenon. 

Analyzing the range of redshifts depicted in Figures 5.1–5.3, a discernible exponential 

attenuation pattern in the light intensity from galaxies is observed, regardless of the 
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universe’s geometry (Calvi et al., 2014). Intriguingly, modified light curves closely 

resemble standard redshift curves, indicating a level of universality in light intensity 

dynamics. However, a notable deviation is evident in the evolution of these intensity 

functions, especially in the modified model, diverging from the standard redshift model 

in both early epochs, and in future projections. This temporal disparity aligns with 

theoretical propositions by (Langa et al., 2017), who found that light intensity falls with 

redshift and is affected by dark energy, thereby bolstering the credibility of the modified 

model’s departure from conventional cosmic models.  

Results from (Grodzicka-Kobylka, et al., 2021) regarding light from GRBs also confirmed 

these findings. Moreover, the modified redshift Universe demonstrates a more rapid 

attenuation of light intensity with redshift compared to the standard redshift Universe, as 

depicted in Figures 5.1–5.3. This divergence underscores the accelerated expansion 

posited by the modified model, contributing to the ongoing debate on cosmological 

models. The empirical validation of this accelerated expansion, supported by theoretical 

foundations laid out by (Langa et al., 2017), emphasizes the significance of investigating 

the intricate relationship between theoretical frameworks and observational data. 

The attenuation behavior of light is in line with classical expectations (Lerner, 2018) . As 

redshift increases, the ionizing sources decrease because structure formation slows down 

(Langa et al., 2017).. Furthermore, space expansion and redshifted photons leads to energy 

loss. Furthermore, an analysis of light pulse shapes originating from gamma rays, slow 

and fast neutron events, recorded separately using the Bollinger–Thomas single-photon 

method, showed a trend consistent with our results (Grodzicka-Kobylka, et al., 2021). 
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This advantage also exists with models due to dimming light (Calvi et al., 2014). A graph 

of light intensity with redshift based on Equation (4.65) is as shown below.  

 

 

Figure 5.7 The modified redshift 𝑓7(𝑧) = 𝑧 with Tolman’s correction term. The solid 

curves represent log (I) against standard redshift  𝑧  while the dotted curves represent log 

(I) against modified redshift z with Tolman’s correction term for z = 0 to z = 5 . 

 

Figure 5.7 shows that for both Tolman’s redshift model and standard redshift model, the 

light intensity decreases rapidly with redshift for z = 0 to z = 5 in agreement with earlier 

findings (Lerner, 2018) validating them.   

5.3.2. Number Density of Galaxy Formation  

The data represented in Figures 5.4–5.6 reveal intriguing patterns wherein the modified 

redshift curves initially display accelerated growth, contrasting with the standard redshift 

model. However, both curves stabilize for a duration before diverging. Beyond a redshift 

value of z ≈ 1.6, the modified redshift curves start descending below those of the standard 

redshift. There is a phase of heightened galaxy formation within the redshift range of 0 < 
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z < 0.4 across all universe models. Additionally, a significant proportion of galaxy 

formation appears to have occurred during 0 < z < 0.9, persisting, albeit at a slower pace, 

until around z ≈ 1.6. This observation is consistent with Marr’s findings (Marr, 2023), 

who studied galaxy number counts in various bands (K, H, I, R, B, U) from the Durham 

Extragalactic Astronomy and Cosmology catalogue. In the model, bar graphs revealed a 

similar relationship between number density and redshift. Studies of initial formation and 

evolution of spiral galaxies dataset in the CANDELS fields for the number density of 

galaxies against redshift in the range 1 < z < 3 further confirms our findings (Bentabol, et 

al., 2022). 

Around z ≈ 0.9, the rate of galaxy formation in the modified redshift model decreases, 

unlike the relatively steady formation rate in the standard redshift model. This discrepancy 

suggests that the modified redshift model, indicative of a universe propelled by dark 

matter dynamics, fosters galaxy formation especially in the beginning. This finding agrees 

with (Junwe et al., 2023), who investigated the impact of dark matter on galaxy formation 

using N-body simulations. He found that baryonic matter gravitates towards great 

potential wells of dark matter halos where galaxies form initially rapidly before slowing 

down later. However, the rate of formation is intricately tied to both the matter density of 

the universe and its curvature characteristics.  

In examining the early stages of the universe, characterized by the initial burst of galaxy 

or star formation, a remarkable uniformity is observed among our models. The 

accelerating expansion of space, a key determinant in rendering any future accretion 

negligible, serves as a unifying factor at this emerging cosmic era (Bentabol et al., 2022). 
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The indistinguishability of each model at early times lays the foundation for understanding 

the subsequent divergences in their evolutionary trajectories (Bassett et al., 2015). 

The historical divergence among these models becomes conspicuous in the late stages, 

primarily attributable to the onset of dark-matter―powered accelerated expansion (Junwe 

et al., 2023). A notable consequence of this divergence is the elimination of the 

coincidence problem. Scenarios where λ equals zero equates to the era of matter growth 

that propels the cosmic accelerating force responsible for the late―time spatial 

acceleration (Tian, 2017). In the modified case, the departure from the standard redshift 

Friedmann model continues throughout all cosmic epochs, marking a significant 

achievement in this research.  

The number density of galaxy formation exhibits a rapid rise, culminating around z ≈ 1.6, 

followed by a gradual decline. The proposed model seems to undergo a phase of 

deceleration favoring galaxy formation in the early evolution of the universe, transitioning 

into an acceleration phase late times. This critical transition from early deceleration to 

late―time acceleration is pivotal, as the decelerating phase is important for structure 

formation, while the slowdown of large-scale structure growth signifies the onset of 

dominant accelerating cosmic expansion (Aydiner et al., 2022). This observation is in line 

with recent work that suggests that dark matter provides the initial seed for star formation 

(Milakovic et al., 2023) further boost these findings. 

As galaxies disperse due to the expanding universe, the processes of accretion and 

merging decelerate significantly, leading to a substantial reduction in the galaxy formation 

rate after peaking for future epochs (Riess et al., 1998). The total number density is 

predominantly dictated by contributions from the peak, stabilizing into a plateau around z 

≈ 1.6 depending on the curvature characteristics and matter density. Figures 5.4–5.6 
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underscore that the universe, largely, has already produced the majority of its eventual 

structures, contributing only marginally to future developments. 

The number density of galaxies increases with redshift with a remarkably constant value 

after peaking for the standard model for future epochs, while that of the modified model 

declines slowly thereafter peaking. The drop in galaxy number may be attributed to a fast 

increase in light intensity attenuation; producing strong repulsive forces at high redshifts 

(see light intensity curves in Figures 5.1–5.6). For future epochs, gravitational forces may 

play a role in controlling the rate of decline, with the repulsive forces originating in light 

attenuation being negligible. 

 

5.3.3. Transition from Decelerating to Accelerating Expanding Universe  

This section concentrates on identifying the suppression point within the structure 

amplitude, a key aspect of our simulation concerning the number density of galaxies. This 

investigation aids in predicting the transition point between deceleration and acceleration 

in our modified cosmological model. 

A comprehensive analysis of Figures 5.4–5.6 reveals a significant trend in galaxy 

formation. In the early stages of the universe, galaxies form rapidly, experiencing a burst 

of stellar or galactic activity between redshift 0 < z < 0.4. This rate peaks around z ≈ 0.9 

before slowing down significantly, maintaining a relatively constant level of galaxy 

formation until z ≈ 1.6 where this process starts to decline, as evident in Figures 5.4–5.6. 

This result agrees with (Bentabol et al., 2022), who found that the onset of cosmic 

acceleration was consistent with observations of distant spiral galaxies exhibiting a 

gradual decline or near constancy in galaxy formation over time.  
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The universe may have undergone a shift from a phase of decelerating expansion after its 

climax to accelerated expansion. The universe undergoes a series of redshift transitions, 

as demonstrated by (Riess et al., 1998), who noted the universe’s mass-energy content 

transitions from matter domination to an acceleration-dominated state. The persistence of 

accelerated expansion requires overcoming gravitational attraction forces exerted by the 

cosmological fluid, primarily composed of ordinary matter. 

In this model framework, the transition from deceleration to acceleration expansion occurs 

at a specific redshift. These findings suggest that a transition from matter domination to 

acceleration expansion is feasible only if the energy effects driving the universe into 

acceleration begin in an epoch z ≈ 0.9. This value is in fair agreement with the best―fit 

value of 0.732 < z < 0.966 (Kumar et al., 2023). However, any observed disparities with 

other models could stem from variations in models or underlying assumptions used. 

However, pinpointing the accurate redshift transition point requires calibrating model 

parameters against cosmological data. (Aydiner et al., 2022) predicts a plausible temporal 

transition from a matter―dominated universe to a dark―energy-dominated universe, 

emphasizing the importance of fitting model parameters to observational data for precise 

and reliable cosmological predictions. 

 

5.3.4. Comparing the Modified Redshift Friedmann Cosmological Models 

Within this section, the primary focus is on comparing the inherent properties of three 

modified cosmological models: the modified redshift Friedmann models. The simulation 

of the three modified models are on the same scale in order to assess the implications of 

the modified models on luminous matter distribution in the modified Friedmann Universe. 
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Figure 5.8 shows the simulation of light intensity of the three modified models. 

 

Figure 5.8 Log (I) against the modified redshift 𝑓8 (𝑧). The solid curves represent the 

modified redshift 𝑓1(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2, the dotted curves represent the modified redshift 

𝑓2(𝑧)= 𝑧 + 𝛾(𝑧)
2 while the dotted curves represent the modified redshift 𝑓3(𝑧) =

𝑧

𝜀
 . The 

parameter constraints remains as earlier defined.  

 

The solid curves portray the simulated result of light intensity modified redshift models: 

𝑓1(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2, 𝑓2(𝑧)= 𝑧 + 𝛾(𝑧)

2 and 𝑓3(𝑧) =
𝑧

𝜀
  illustrated by the red, blue and 

green colours respectively for the different curvature scalars based on Equation (4.48). 

The dotted curves represent Open Universes while the dashed curves represent Closed 

Universes. 

The observed attenuation behavior of light is in line with classical expectations with the 

disparity arising from the variation of the Universe geometry. 

The number density of galaxies with modified redshift of the three modified models 

adopted are also on the same scale based on Equation (4.56). The solid curves Figure 5.9 

portray the simulated result of number density of galaxies of the modified redshift models 
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adopted above 𝑓(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2, 𝑓(𝑧)= 𝑧 + 𝛾(𝑧)2 and 𝑓(𝑧) =

𝑧

𝜀
  represented by red, 

blue and green colours respectively for the different geometry of the universe and are all 

based on Equation (4.56). The dotted curves represent Open Universes while the dashed 

curves represent Closed Universes. 

 

Figure 5.9 Log (n) against the modified redshift 𝑓9(𝑧). The solid curves represent the 

modified redshift 𝑓1(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2, the dotted curves represent the modified redshift 

𝑓2(𝑧)= 𝑧 + 𝛾(𝑧)
2 while the dotted curves represent the modified redshift 𝑓3(𝑧) =

𝑧

𝜀
 . The 

parameter constraints remains as earlier defined.  

 

While different simulations of the modified Friedmann model show varied galaxy 

formations, both models demonstrate a consistent overall galaxy formation history (see 

Figure 5.9). Graphical representations illustrate a notable disparity between the 

trajectories outlined by the three modified redshift models. This clear distinction serves as 

empirical evidence of the influence of dark matter driving accelerated expansion. Despite 

this gap, both cosmologies share a commonality in the culmination of galaxy formation in 

the early universe. Briefly, while both models statistically aligns with each other, a 

distinctive trajectory emerges at all stages of the universe due to the influence of the 
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geometry of the Universe. Structure formation is more in a Flat Universe followed by 

Open and then Closed Universes. Despite subtle variations in underlying mechanisms, 

these models converge on the same analytical outcome concerning the magnitude of 

observed structure formation. Indeed, Figures 5.9 illustrate trajectories of different 

structures formed by modified redshift models, indicating a notable disparity and 

suggesting the pivotal role of geometry of the Universe and dark matter in late-time 

acceleration. These findings underscore the complexity of cosmic dynamics and highlight 

the intricate interplay between various factors influencing the evolution of our expansive 

Universe. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary Conclusions 

The present astronomical inquiry stands as a diligent effort to scrutinize the fundamental 

principle of cosmology, specifically addressing the homogeneity and isotropy 

assumptions inherent in the Friedmann model. Extensive research has dedicated to testing 

spatial isotropy through a spectrum of techniques and probes. Nevertheless, the 

homogeneity hypothesis presents a formidable challenge, prompting a focused 

investigation (Kim et al., 2022). This study focused on three fundamental astronomical 

quantities: number density, light intensity, and redshift. It explores the interrelationship 

between these quantities in both the standard redshift Friedmann model and its modified 

form proposed within the research. The study extends the groundwork laid by prior 

research on the Friedmann model (Langa et al., 2017). The driving force arises from a 

modification of the conventional redshift, providing a fresh perspective on the Friedmann 

Equations. This reinterpretation grounded in a phenomenologically modified redshift 

model, deliberately devoid of dark energy through the elimination of the cosmological 

constant. 

The modified redshift, as introduced in this study, serves as a novel instrument for 

characterizing the distribution of luminous matter within the cosmic framework validating 

the Friedmann model particularly in investigation the growth of large-scale cosmic 

structures. 

This parameter emerges as a discerning factor, keen to differentiate between the 

General―Relativity-backed standard redshift Friedmann model and the alternative 
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scenarios rooted in its modified form. The overall goal is to establish a framework for 

discerning between competing cosmological models. 

Distinct phenomenologically modified redshift models, namely parametric and 

non―parametric models systematically explored within the context of a 

matter―dominated Friedmann Universe. The analytical prowess of this study 

demonstrated through the rigorous solution of relativistic dynamic Friedmann Equations 

as given in Equations (4.48), (4.56) and (4.65). Compared to earlier research (Langa et al., 

2017), Equations (4.48), (4.56), and (4.65) are more generalized form, describing the 

relationship between light intensity and redshift, as well as the relationship between 

number density and redshift. These solutions, in turn, shed light on the light intensity and 

number density of galaxies, describing their evolution as functions of the modified redshift 

as seen in Figures 5.1–5.3 and Figures 5.4–5.6, respectively. 

Simulations meticulously executed utilizing MATLAB applications. The simulation spans 

the redshift range from 0 to 5, revealing intriguing dynamics. The simulation reveals a 

unique pattern of galaxy formation, marked by a significant burst between redshifts 0 < z 

< 0.4. This burst then transitions into a gradual rise up to z ≈ 0.9, after which galaxy 

formation proceeds slowly at a nearly constant rate until z ≈ 1.6. Thereafter, a decline in 

structure formation becomes possible, as illustrated in Figures 5.4–5.6. Furthermore, 

simulations without dark energy unveil a phase crossover point in the cosmic galaxy 

formation rate, marking the transition from deceleration to accelerating expansion at 

redshifts around z ≈ 1.6, as seen from Figures 5.4–5.6. Our number density relation is in 

excellent agreement with other works (Bentabol, et al., 2022). 



 

65 
 

Simulations of light intensity functions reveal light attenuation with redshift evident in 

Figures 5.1–5.3, which is in fair agreement with the GRB results and light pulse 

distribution shapes (Grodzicka-Kobylka, et al., 2021). The modified redshift universe 

shows that light intensity distribution attenuates more rapidly with the standard redshift 

as compared to the modified redshift model (Figures 5.4–5.3). 

A critical observation emerges concerning the differential impact of the standard model 

on structure formation. The study posits that the standard model exhibits a less pronounced 

effect on late―time structure growth compared to the modified model in agreement with 

observational evidence. This nuanced disparity underscores the prowess of the modified 

model. This work attributes the expansion of the universe beyond z > 0.9 to dark 

matter―powered cosmic acceleration (Figures 5.4–5.3). Despite differences in the rate of 

structural growth, the impact of accelerated expansion becomes only significant after 

majority of structure formation.   

The thesis concludes with a resolute stance against the necessity of introducing the 

cosmological constant in the standard cosmological scenarios. The modified Friedmann 

model adopted here has characteristics of a positive cosmological constant in the context 

of the standard redshift model eliminating the need for a cosmological constant, and 

eliminating the necessity for fine-tuning at an implausibly small degree. The relentless 

acceleration of the universe in its later stages is firmly established and almost model-

independent theoretical certainty, unaffected by ongoing debates about the nature of the 

cosmological constant. 

The proposed modified model’s ability to capture most of the discernible signatures of 

cosmic acceleration accurately underscores its novelty. Therefore, the expansion evolution 

of the universe might be a result of the imbalance of gravitational forces and dark matter. 
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The call for future inquiry echoes a commitment to testing with future accurate 

cosmological data. This paper, rooted in the analysis and scrutiny of cosmological models, 

contributes to the ongoing debate on the dynamic evolution of our universe.  

 

6.2 Recommendations for Further Work 

The modified redshift cosmological model adopted here has the potential to solve physical 

cosmology problems such as singularity, cosmic coincidence, time evolution of the 

Universe, future and fate of the Universe. Therefore, the modified redshift model deserve 

more attention for further studies since it is more general to many linear or non-linear 

interacting components. With this motivation, it is believed that the method presented in 

this study provides a good mathematical tool to study the apparent late time acceleration 

expansion of the Universe by obtaining a metric-dependent solutions and discuss the open 

problems mentioned above.  The proposed modified model’s ability to capture most of the 

discernible signatures of cosmic acceleration accurately underscoring its novelty. The call 

for future inquiry echoes a commitment to testing with future accurate cosmological data.  

In particular determine whether or not there was a singularity in the early Universe after 

the end of inflating period. There are hints of an existing singularity in the plots above; 

the light intensity curves Figures 5.1—5.3 take infinite values for light intensity around 

𝑧 ≈ 0.  

In order to get a better picture about early and future time dynamics of the Universe, the 

modified  model should be extended to the multiple scalar parameters reconstructed from 

observational data. Additionary, some open problems in the present cosmology such as 

the observed values of vacuum energy density and the theoretical large values of zero 
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point energy obtained by Quantum Field Theory need further study. Careful scrutiny of 

the key assumption of supernova cosmology may also stem other potential problems.  

Based on the current observational data, it is quite clear that the modified model just like 

the standard model exhibit the same characteristic behavior of light intensity and number 

density of galaxy formation and evolution with redshift. This consistency test is a 

confirmation of the validity of the standard Friedmann model. However, there still doubts 

on the quantity of data available and the present technology. Future galaxy survey 

experiments such as the recent detections of gravitational waves by the LIGO-Virgo 

collaborations; with improved sensitivity configurations together with the advent of the 

forth-coming detectors such as Einstein Telescopes will provide enormous data in many 

astronomical fields and are expected to improve the quality of data for a final say on this 

matter revealing cosmic explosions and effects of dark matter (Brough, et al., 2020). 
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APPENDIX 

 

Appendix A  

 

In the MATLAB codes, the following values have been used: redshift from z = 0 to z = 5, 

density of the Universe from ρ(𝑡0) = 3× 10−27 kgm−3 to ρ(𝑡0)  = 8.783 × 10−25 kgm−3, speed 

of light  c = 3 × 108 m/s, cosmic scale factor R(𝑡0)  = 9 × 1025 m (but can be varied  

appropriately too), the gravitational constant G = 6.67 × 10−11 m3 kg−1 s−2,  curvature scalar 

of the Universe κ = −1, 0, 1. In all specified modified redshift models, required parameter 

values are given that have been reconstructed from observational data hence they can be 

compared for same matter density and curvature. All the values used in our codes are in 

line with available statistics. 

 

 

 

 

 

 

 

 

 

 



 

73 
 

Appendix B 

MATLAB codes for the model 𝑓(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2 with  𝛼1=episilon1=2.005 and 𝛼2 

=episilon2 =0.005 and standard redshift for light intensity with redshift. 

clc 

clear 

close all 

% Case 1: k=0, Flat Universe 

Figure(1) ;clf 

rho = 3*10^(-27);  

c = 3*10^8;  % speed of light 

R = 9*10^25; % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa =0; % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =beta*c^2*alpha-12*kappa*R; 

a2 =((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z).^2*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,'b-','LineWidth',1) 

xlabel('\fontname{Times New Roman}Redshift (z)','FontSize',12) 

ylabel('\fontname{Times New Roman}Log(I)','FontSize',11) 

title('\fontname{Times New Roman}Light intensity against redshift (z)','FontSize',12) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

set(gca,'xtick',0:1:5) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

hold on 

% Case 2: k=-1, Open Universe 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa=-1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =(4*pi*(1+z).^2)*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d);% Gives values of intensity of light 

plot(z,I,'g-','LineWidth',1) 

% Case 3: k=+1, Closed Universe 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa=1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 = ((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 
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d1 =(4*pi*(1+z).^2)*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,'r-','LineWidth',1) 

legend('\rho= 3 × 10^{—27}, \kappa= 0','\rho=5 × 10^{—27}, \kappa= —1','\rho= 8.78 × 

10^{—25}, \kappa= 1','Location','NorthEast') 

% modified models 

% Case 1: k=0, Flat Universe 

rho = 3*10^-27;  

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon1 = 2.005; 

epsilon2 = 0.005; 

kappa = 0;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+epsilon1*z+epsilon2*z.^2))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 =(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+epsilon1*z+epsilon2*z.^2).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':b','LineWidth',1)  

% Case 2: k=-1, Open Universe 

rho = 5*10^-27; 

c = 3*10^8;  % speed of light 

R = 9*10^25; % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon1 = 2.005; 

epsilon2 = 0.005; 

kappa = -1;% the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 = ((beta*c^2*alpha)-(12*kappa*R)); 

a2 = ((beta*c^2*alpha)*(1+epsilon1*z+epsilon2*z.^2))-(12*kappa*R); 

n1=(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = (sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+epsilon1*z+epsilon2*z.^2).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':g','LineWidth',1) 

% Case 3: k=+1, Closed Universe 

rho = 8.78*10^-25; 

c = 3*10^8;  % speed of light 

R = 9*10^25;% cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon1 = 2.005; 

epsilon2 = 0.005; 

kappa =1;% the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 = (beta*c^2*alpha)-(12*kappa*R); 

a2 = ((beta*c^2*alpha)*(1+epsilon1*z+epsilon2*z.^2))-(12*kappa*R); 

n1=(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = (sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+epsilon1*z+epsilon2*z.^2).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':r','LineWidth',1) 

hold off 
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Appendix C 

 

MATLAB codes for the model 𝑓(𝑧) = 𝑧 + 𝛾(𝑧)2, where  𝛾(𝑧) is a free function of 𝑧 with  

𝛾 = episilon = 0.45 and the standard redshift for light intensity with redshift. 

clc 

clear 

close all 

% Case 1: k=0, Flat Universe 

Figure(1) ;clf 

rho = 3*10^(-27);  

c = 3*10^8;  % speed of light 

R = 9*10^25; % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa = 0;% the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =beta*c^2*alpha-12*kappa*R; 

a2 =((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z).^2*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,'b-','LineWidth',1) 

xlabel('\fontname{Times New Roman}Redshift (z)','FontSize',12) 

ylabel('\fontname{Times New Roman}Log(I)','FontSize',11) 

title('\fontname{Times New Roman}Light intensity against redshift (z)','FontSize',12) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

set(gca,'xtick',0:1:5) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

hold on 

% Case 2: k=-1, Open Universe 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11;% Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa=-1; % the curvature parameter of the universe,gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =(4*pi*(1+z).^2)*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d);% Gives values of intensity of light 

plot(z,I,'g-','LineWidth',1) 

% Case 3: k=+1, Closed Universe 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa=1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 = ((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 
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n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =(4*pi*(1+z).^2)*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,'r-','LineWidth',1) 

legend('\rho= 3 × 10^{—27}, \kappa= 0','\rho=5 × 10^{—27}, \kappa= —1','\rho= 8.78 × 

10^{—25}, \kappa= 1','Location','NorthEast') 

% modified model 

% Case 1: k=0, Flat Universe 

rho = 3*10^-27;  

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon = 0.45; 

kappa = 0;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 =((beta*c.^2*alpha)*(1+z+epsilon*z.^2))-12*kappa*R; 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 =(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z+epsilon*z.^2).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':b','LineWidth',1) 

% Case 2: k=-1, Open Universe 

rho = 5*10^-27; 

c = 3*10^8;  % speed of light 

R = 9*10^25; % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon = 0.45; 

kappa = -1; %the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 = ((beta*c^2*alpha)-(12*kappa*R)); 

a2 =((beta*c.^2*alpha)*(1+z+epsilon*z.^2))-12*kappa*R; 

n1=(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = (sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z+epsilon*z.^2).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':g','LineWidth',1) 

% Case 3: k=+1,Closed Universe 

rho = 8.78*10^-25; 

c = 3*10^8;  % speed of light 

R = 9*10^25;% cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon = 0.45; 

kappa =1;% the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 = (beta*c^2*alpha)-(12*kappa*R); 

a2 =((beta*c.^2*alpha)*(1+z+epsilon*z.^2))-12*kappa*R; 

n1=(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = (sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z+epsilon*z.^2).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':r','LineWidth',1) 

hold off 
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Appendix D 

 

MATLAB codes for the modified redshift (𝑧)  =
𝑧

𝜀
 , with  𝜀 = 0.45 and the standard 

redshift model for light intensity with redshift. 

clc 

clear 

close all 

% Case 1: k=0, Flat Universe 

Figure(1) ;clf 

rho = 3*10^(-27);  

c = 3*10^8;  % speed of light 

R = 9*10^25; % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa = 0; % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =beta*c^2*alpha-12*kappa*R; 

a2 =((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z).^2*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,'b-','LineWidth',1) 

xlabel('\fontname{Times New Roman}Redshift (z)','FontSize',12) 

ylabel('\fontname{Times New Roman}Log(I)','FontSize',11) 

title('\fontname{Times New Roman}Light intensity against redshift (z)','FontSize',12) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

set(gca,'xtick',0:1:5) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

hold on  

% Case 2: k=-1, Open Universe 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa=-1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =(4*pi*(1+z).^2)*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d);% Gives values of intensity of light 

plot(z,I,'g-','LineWidth',1)  

% Case 3: k=+1, Closed Universe 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

kappa=1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 = ((beta*c^2*alpha)*(1+z))-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 
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n =L*(1+kappa*n1).^2; % Numerator 

d0 = ((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =(4*pi*(1+z).^2)*R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,'r-','LineWidth',1) 

legend('\rho= 3 × 10^{—27}, \kappa= 0','\rho=5 × 10^{—27}, \kappa= —1','\rho= 8.78 × 

10^{—25}, \kappa= 1','Location','NorthEast') 

% modified models 

% Case 1: k=0, Flat Universe 

rho = 3*10^-27;  

c = 3*10^8;  % speed of light 

R = 9*10^25;  % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon = 0.45; 

kappa = 0;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 =(beta*c^2*alpha)-(12*kappa*R); 

a2 =(beta*c^2*alpha)*(1+z./epsilon)-(12*kappa*R); 

n1=((sqrt(12*R)*(sqrt(a2)-sqrt(a1)))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 =(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z./epsilon).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':b','LineWidth',1)  

% Case 2: k=-1, Open Universe 

rho = 5*10^-27; 

c = 3*10^8;  % speed of light 

R = 9*10^25; % cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon = 0.45; 

kappa = -1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 = ((beta*c^2*alpha)-(12*kappa*R)); 

a2 =(beta*c^2*alpha)*(1+z./epsilon)-(12*kappa*R); 

n1=(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = (sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z./epsilon).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':g','LineWidth',1) 

% Case 3: k=+1, Closed Universe 

rho = 8.78*10^-25; 

c = 3*10^8;  % speed of light 

R = 9*10^25;% cosmic scale factor equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

z =0:0.0001:5; 

L = 1; 

epsilon = 0.45; 

kappa =1;  % the curvature parameter of the universe, gives value of k 

beta = 8*pi*G*c^-4;  

alpha = rho*R^3;  

a1 = (beta*c^2*alpha)-(12*kappa*R); 

a2 =(beta*c^2*alpha)*(1+z./epsilon)-(12*kappa*R); 

n1=(sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

n =L*(1+kappa*n1).^2; % Numerator 

d0 = (sqrt(12*R)*(sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+(12*kappa*R))).^2; 

d1 =4*pi*(1+z./epsilon).^2 *R.^2; 

d = d0.*d1; % Denominator 

I = log(n./d); % Gives values of intensity of light 

plot(z,I,':r','LineWidth',1) 

hold off 
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Appendix E 

 

MATLAB code for the model 𝑓(𝑧) = 𝛼1𝑧 + 𝛼2𝑧
2 with  𝛼1 =episilon1= 2.005 and 

𝛼2 =episilon2= 0.005 and standard redshift model for the number density with redshift. 

clc 

clear 

close all 

% Case 1: k=0, Flat 

Figure(1);clf 

z= 0:0.0001:5; 

% Defining constants 

rho = 3*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =0; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a = beta*c^2*alpha-12*kappa*R; 

b = ((beta*c^2*alpha)*(1+z))-12*kappa*R; 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 = (1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a*b)+12*kappa*R).^4; 

d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-b','LineWidth',1) 

xlabel('\fontname{Times New Roman}Redshift (z)','FontSize',12) 

ylabel('\fontname{Times New Roman}Log(n)','FontSize',12) 

title('\fontname{Times New Roman} Number density against redshift (z)','FontSize',12) 

set(gca,'xtick',0:1:5) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

hold on  

% Case 2: k=-1, Open 

z = 0:0.0001:5; 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =-1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a = beta*c.^2*alpha-12*kappa*R; 

b = ((beta*c.^2*alpha)*(1+z))-12*kappa*R; 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 = (1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a*b)+12*kappa*R).^4; 

d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-g','LineWidth',1) 

% Case 3: k=1, Closed 

z = 0:0.0001:5; 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a =(beta*c.^2*alpha)-12*kappa*R; 

b =((beta*c.^2*alpha)*(1+z))-12*kappa*R; 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 =(1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a*b)+12*kappa*R).^4; 
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d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-r','LineWidth',1) 

legend('\rho=3 × 10^{—27}, \kappa= 0','\rho=5 × 10^{—27}, \kappa= —1 ','\rho= 8.78 × 

10^{—25}, \kappa= 1 ','Location','SouthEast') 

% Modified model 

% Case 1: k=0, Flat 

z = 0:0.001:5; 

% Defining constants 

rho = 3*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =0; % Gives the value of k 

epsilon1 = 2.005; 

epsilon2 = 0.005; 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a1 =(beta*c.^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+epsilon1*z+epsilon2*z.^2))-(12*kappa*R); 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 =(1+kappa *((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':b','LineWidth',1) 

% Case 2: k=-1, Open 

z = 0:0.001:5; 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10.^8;  % speed of light 

kappa =-1; % Gives the value of k 

epsilon1 = 2.005; 

epsilon2 = 0.005; 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha=rho*R^3; 

a1 = (beta*c.^2*alpha)-12*kappa*R; 

a2 = ((beta*c^2*alpha)*(1+epsilon1*z+epsilon2*z.^2))-(12*kappa*R); 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 = (1+kappa *((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':g','LineWidth',1) 

% Case 3: k=+1, Closed Universe = 0:0.001:5; 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10.^8;  % speed of light 

kappa =1; % Gives the value of k 

epsilon1 = 2.005; 

epsilon2 = 0.005; 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a1 =(beta*c.^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+epsilon1*z+epsilon2*z.^2))-(12*kappa*R); 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 =(1+kappa*((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':r','LineWidth',1) 

hold off 
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Appendix F 

 

MATLAB codes for the modified redshift 𝑓(𝑧) = 𝑧 + 𝛾(𝑧)2, where  𝛾(𝑧) is a free function 

of  𝑧 with 𝛾 =episilon=0.45 and the standard redshift for number density with redshift. 

clc 

clear 

close all  

% Case 1: k=0, Flat 

Figure(1);clf 

z= 0:0.0001:5; 

% Defining constants 

rho = 3*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =0; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a = beta*c^2*alpha-12*kappa*R; 

b = ((beta*c^2*alpha)*(1+z))-12*kappa*R; 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 = (1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a*b)+12*kappa*R).^4; 

d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-b','LineWidth',1) 

xlabel('\fontname{Times New Roman}Redshift (z)','FontSize',12) 

ylabel('\fontname{Times New Roman}Log(n)','FontSize',12) 

title('\fontname{Times New Roman} Number density against redshift (z)','FontSize',12) 

set(gca,'xtick',0:1:5) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

hold on 

% Case 2: k=-1, Open 

z = 0:0.0001:5; 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =-1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a = beta*c.^2*alpha-12*kappa*R; 

b = ((beta*c.^2*alpha)*(1+z))-12*kappa*R; 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 = (1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a*b)+12*kappa*R).^4; 

d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-g','LineWidth',1) 

% Case 3: k=1, Closed 

z = 0:0.0001:5; 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a =(beta*c.^2*alpha)-12*kappa*R; 

b =((beta*c.^2*alpha)*(1+z))-12*kappa*R; 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 =(1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a*b)+12*kappa*R).^4; 
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d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-r','LineWidth',1) 

legend('\rho=3 × 10^{—27}, \kappa= 0','\rho=5 × 10^{—27}, \kappa= —1 ','\rho= 8.78 × 

10^{—25}, \kappa= 1 ','Location','SouthEast') 

% Modified model 

% Case 1: k=0, Flat 

z = 0:0.001:5; 

% Defining constants 

rho = 3*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =0; % Gives the value of k 

epsilon = 0.45; 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a1 =(beta*c.^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z+epsilon*z.^2))-(12*kappa*R); 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 =(1+kappa *((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':b','LineWidth',1) 

% Case 2: k=-1, Open 

z = 0:0.001:5; 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10.^8;  % speed of light 

kappa =-1; % Gives the value of k 

epsilon = 0.45; 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha=rho*R^3; 

a1 = (beta*c.^2*alpha)-12*kappa*R; 

a2 = ((beta*c^2*alpha)*(1+z+epsilon*z.^2))-(12*kappa*R); 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 = (1+kappa *((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':g','LineWidth',1)  

% Case 3: k=+1, Closed Universe = 0:0.001:5; 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10.^8;  % speed of light 

kappa =1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

epsilon = 0.45; 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a1 =(beta*c.^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z+epsilon*z.^2))-(12*kappa*R); 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 =(1+kappa*((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':r','LineWidth',1) 

hold off 
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Appendix G 

 

MATLAB codes for the modified redshift (𝑧)  =
𝑧

𝜀
 , with  𝜀 = 0.45 and the standard 

redshift model for number density with redshift. 

clc 

clear 

close all  

% Case 1: k=0, Flat 

Figure(1);clf 

z= 0:0.0001:5; 

% Defining constants 

rho = 3*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =0; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a = beta*c^2*alpha-12*kappa*R; 

b = ((beta*c^2*alpha)*(1+z))-12*kappa*R; 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 = (1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a*b)+12*kappa*R).^4; 

d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-b','LineWidth',1) 

xlabel('\fontname{Times New Roman}Redshift (z)','FontSize',12) 

ylabel('\fontname{Times New Roman}Log(n)','FontSize',12) 

title('\fontname{Times New Roman} Number density against redshift (z)','FontSize',12) 

set(gca,'xtick',0:1:5) 

set(gca, 'XMinorTick','on', 'YMinorTick','on') 

hold on 

% Case 2: k=-1, Open 

z = 0:0.0001:5; 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =-1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a = beta*c.^2*alpha-12*kappa*R; 

b = ((beta*c.^2*alpha)*(1+z))-12*kappa*R; 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 = (1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a*b)+12*kappa*R).^4; 

d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-g','LineWidth',1) 

% Case 3: k=1, Closed 

z = 0:0.0001:5; 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a =(beta*c.^2*alpha)-12*kappa*R; 

b =((beta*c.^2*alpha)*(1+z))-12*kappa*R; 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2 *sqrt(3*R)*(sqrt(b)-sqrt(a)).^2;%numerator 

d0 =(1+kappa*((sqrt(b)-sqrt(a))./(sqrt(a*b)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a*b)+12*kappa*R).^4; 
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d = d0.*d1; % Denominator 

n=log(n0./d); 

plot(z,n,'-r','LineWidth',1.3) 

legend('\rho=3 × 10^{—27}, \kappa= 0','\rho=5 × 10^{—27}, \kappa= —1 ','\rho= 8.78 × 

10^{—25}, \kappa= 1 ','Location','SouthEast') 

% Modified model 

% Case 1: k=0, Flat 

z = 0:0.001:5; 

% Defining constants 

rho = 3*10^-27; % Upper density of the universe 

c = 3*10^8;  % speed of light 

kappa =0; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

epsilon = 0.45; 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a1 =(beta*c.^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z./epsilon))-(12*kappa*R); 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 =(1+kappa *((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':b','LineWidth',1) 

% Case 2: k=-1, Open 

z = 0:0.001:5; 

% Defining constants 

rho = 5*10^-27; % Upper density of the universe 

c = 3*10.^8;  % speed of light 

kappa =-1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

epsilon = 0.45; 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha=rho*R^3; 

a1 = (beta*c.^2*alpha)-12*kappa*R; 

a2 = ((beta*c^2*alpha)*(1+z./epsilon))-(12*kappa*R); 

n0 = 48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 = (1+kappa *((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 = (sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':g','LineWidth',1) 

% Case 3: k=+1, Closed Universe = 0:0.001:5; 

% Defining constants 

rho = 8.78*10^-25; % Upper density of the universe 

c = 3*10.^8;  % speed of light 

kappa =1; % Gives the value of k 

R = 9*10^25; % cosmic scale factor, equal to value of R(to) 

G = 6.67*10^-11; % Gravitational constant 

N = 1; % Number of galaxies per unit volume 

epsilon = 0.45; 

beta = 8*pi*G*c^-4; % Gives the value of beta 

alpha = rho*R^3; 

a1 =(beta*c.^2*alpha)-(12*kappa*R); 

a2 =((beta*c^2*alpha)*(1+z./epsilon))-(12*kappa*R); 

n0 =48*pi*N*R*(beta*c.^2*alpha).^2*sqrt(3*R)*(sqrt(a2)-sqrt(a1)).^2;%numerator 

d0 =(1+kappa*((sqrt(a2)-sqrt(a1))./(sqrt(a1*a2)+12*kappa*R)).^2).^3; 

d1 =(sqrt(a1*a2)+12*kappa*R).^4; 

d = d1.*d0; % Denominator 

n=log(n0./d); 

plot(z,n,':r','LineWidth',1) 

hold off 


