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ABSTRACT

Distance-related parameters have applications in the field of pharmaceutical chemistry,
network discovery, robot navigation, and optimizations. Cyclic structures exhibit signifi-
cant topological features that have become important research areas in the field of
computer science and mathematics. Due to the inherent algebraic relationship between
graph numbers and distance related parameters, this paper characterizes variants
of distance related parameters and graph numbers associated with the zero divisor
graphs akin to cyclic structures obtained from classes of completely primary finite rings.
In particular, we investigate the local fractional metric dimension and provide certain
results concerning graph indices namely the Weiner index and the Zagreb index.
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1 Introduction

The graph distance related parameters has been extensively studied by various authors. Among others,
Harary and Melter [10] studied the problem of finding the metric dimension of a graph, [12] showed
that the metric dimension of a graph is an NP-complete problem. Distance-based parameters for
networks play a vital role in various fields including pharmaceutical chemistry [5], network discovery [4],
robot navigation, and optimizations [12]. Besides, many real-life large-scale systems having substantial
topological features can be modeled as complex networks such as social networks, information networks,
technological networks, and biological networks. This representation has innovative impacts to information
processing and co-ordination of these large-scale networks. Management of large-scale networks such
as Internet with their tremendous growth and heterogeneity is a challenging mathematical problem which
have profound implications for the efficient design of future communication networks. Complex networks
are composed of building blocks, and if the building blocks are considered as symmetric networks, then
complexity of these networks can be reduced for better analysis and interpretation. The concept of
undirected zero-divisor graph of a commutative ring was first studied by Beck in [3] showed that all the
elements of a ring R were the vertices of the graph, and he was mainly interested in coloring. This work
was further studied by Anderson and Naseer [2]. A different approach of associating a graph Γ(R) to R
with vertices as Z∗(R) = Z(R)\{0} was given in [1]. Two vertices x, y ∈ Z∗(R) of Γ(R) are adjacent if
and only if xy = 0. They believed that this better illustrates the zero-divisor structure of the ring. The
zero-divisor graph of a commutative ring has also been studied in [1, 3, 6, 15] and was extended by
Redmond [20] to noncommutative rings. Redmond [15] also extended the zero-divisor of a commutative
ring to an ideal-based zero-divisor graph of a commutative ring. For a given ideal I of R, he defined an
undirected graph ΓI(R) with vertex set {x ∈ R − I | xy ∈ I for some y ∈ R − I}, where distinct vertices
x and y are adjacent if and only if xy ∈ I.

A simple graph G(V,E) consists of a finite nonempty set V (G) of objects called vertices together
with a set E(G) of unordered pairs of distinct vertices of G called edges. A graph G is connected if there
is a path between every two distinct vertices of G. The distance from a vertex v to u denoted by d(v, u) is
the length of the shortest path from v to u(d(v, v) = 0 and d(v, u) = ∞, if there is no such path) [13]. The
diameter of G is diam(G) = sup{d(v, u) | v, u ∈ V (G)}. The neighborhood N(v) of a vertex v denotes
the set all vertices of G adjacent to the vertex v and N [v] = N(v) ∪ {v}.

The concept of the metric representation and the metric dimension in terms of the locating number
in a zero-divisor graph associated with a commutative ring with unity was introduced in [8] and had
been further studied in [7]. Feng and Wang in [8] discussed various properties of the locating set
and the locating number which includes the characterization of all finite commutative rings with unity,
examination of two equivalence relations on the vertices of Γ(R), relationship between the locating set
and the cut vertices of Γ(R), investigation of the locating number in Γ(R) when R is a finite product of
the integral domains and so on.

Let Gk be a graph on infinite number of vertices with vertex set V (Gk) = {v}∪
{
v
(1)
1 , v

(1)
2 , . . . , v

(1)
k

}
∪{

v
(2)
1 , v

(2)
2 , . . . , v

(2)
k

}
∪ · · · ∪

{
v
(i)
1 , v

(i)
2 , . . . , v

(i)
k

}
∪ · · · for i ≥ 1, and the edges are defined by the rule

vv
(1)
t , (1 ≤ t ≤ k), and v

(j)
1 v

(j+1)
1 , v

(j)
2 v

(j+1)
2 , . . . , v

(j)
k v

(j+1)
k for all j = 1, 2, 3, . . .. For k = 1, G1 is an infinite

tree with vertex set V (G1) = {v}∪
{
v
(1)
1

}
∪
{
v
(2)
1

}
∪· · ·∪

{
v
(i)
1

}
∪· · · for i ≥ 1, and the edges are defined

by vv
(1)
1 and v

(j)
1 v

(j+1)
1 for all j = 1, 2, 3, . . .. Notice, here that the infinite tree G1 is rooted at the vertex v.
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For k = 2, G2 is a graph with vertex set V (G2) = {v} ∪
{
v
(1)
1 , v

(1)
2

}
∪
{
v
(2)
1 , v

(2)
2

}
∪ · · · ∪

{
v
(i)
1 , v

(i)
2

}
∪ · · ·

for i ≥ 1, and the edges are defined by vv
(1)
t , (1 ≤ t ≤ 2), and v

(j)
1 v

(j+1)
1 , v

(j)
2 v

(j+1)
2 for all j = 1, 2, 3, . . .

[11]. Clearly, G2 is a tree rooted at the vertex v with two infinite branches. The infinite trees Gk are often
denoted by Pk,1 to indicate trees rooted in v with k infinite branches. It is straight forward to prove that
dimM (P1,1) = 1 and dimM (P2,1) = 2.

In this paper, we characterize variants of distance related parameters and graph numbers associated
with the zero divisor graphs akin to cyclic structures obtained from classes of completely primary
finite rings. In particular, we compute the local fractional metric dimension and provide certain results
concerning graph indices namely the Weiner index and the Zagreb index. We also explore the connection
between graph number and the metric dimension of the zero divisor graph. We investigate these
parameters in R = Γ (R1 ⊕R2 ⊕ . . .⊕Rn), where R1, R2, . . . , Rn are n finite commutative rings each
having unity 1 and none of Ri, (1 ≤ i ≤ n).

2 Preliminaries

The following results are useful in the sequel.

Theorem 2.1. Let R be a commutative ring with unity 1 (not a domain). Then dimM (Γ(R)) is finite if and
only if R is finite.

Proof. Suppose R is finite. Then, it is clear that dimM (Γ(R)) is finite. Now, suppose dimM (Γ(R)) is
finite. Let S be the metric basis for Γ(R) with |S| = k, where k is some non-negative integer. The
diameter of Γ(R) is not more than 3 . Therefore, d(x, y) ∈ {0, 1, 2, 3} for every x, y ∈ Z∗(R). For each
x ∈ Z∗(R), the metric representation D(x | S) is the k coordinate vector, where each coordinate is in
the set {0, 1, 2, 3}. Thus there are only (3 + 1)k possibilities for D(x | S). Since D(x | S) is unique for
each x ∈ Z∗(R), so |Z∗(R)| ≤ 4k. This implies that Z∗(R) is finite and hence R is finite.

Theorem 6.1 in [14] gives the metric dimension for the zero-divisor graph Γ (R1 ×R2 × . . .×Rn),
where R1, R2, . . . , Rn are integral domains, and also gives bounds for the metric dimension of the zero-
divisor graph Γ (

∏n
i=1 Z2). Special emphasis has been given to the graph Γ (

∏n
i=1 Z2) of a finite Boolean

ring, and it is shown that dimM (Γ (
∏n

i=1 Z2)) ≤ n, dimM (Γ (
∏n

i=1 Z2)) = n − 1, for n = 2, 3, 4, and
dimM (Γ (

∏n
i=1 Z2)) = n, for n = 5 [14]. We need to know as how the metric dimension behaves with

respect to the product R1×R2×· · ·×Rn, where R1, R2, . . . , Rn are n finite commutative rings with each
having unity 1 .

Lemma 2.2. A finite commutative ring R with unity 1 has exactly one unit if and only if R ∼=
∏n

i=1 Z2 for
some positive integer n.

Proof. Clearly, the ring listed has only one unit. Suppose R has exactly one unit. If R is a local ring
with maximal ideal M , then |R| = pk and |M | = pm for some prime p and integers 0 ≤ m < k. Then,
1 = |U(R)| = |R| − |M | only when |R| = 2 and |M | = 1. If R is not local, then R can be written as the
finite product of local rings that is R ∼= R1 ×R2 × . . .×Rn, where R1, R2, . . . , Rn are finite local rings. If
any Ri has more than one unit, then R would have more than one unit.
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Theorem 2.3. Let R1, R2, . . . , Rn be n finite commutative rings (not domains) each having unity 1
with none of Ri, 1 ≤ i ≤ n, being isomorphic to

∏n
i=1 Z2 for any positive integer n. Then for a finite

commutative ring R with unity 1 and for a finite field Fq on prime q number of elements,

(a) dimM (Γ (R1 ×R2 × · · · ×Rn)) ≥
∑n

i=1 dimM (Γ (Ri)),

(b) dimM (Γ (R× Fq)) = |Z∗ (R× Fq)| − 2n+1 +2 or |Z∗ (R× Fq)| − 2 or at least |U(R)|+ (|Z∗(R)|+
1) q − t− 3, where t is any positive integer.

3 A Survey on the Distance Parameters of Cyclic Structures

Let Cn be a cyclic network with the vertex and edge set given by V (Cn) = {ai | 1 ≤ i ≤ n} and E (Cn) =
{aiai+1 | 1 ≤ i ≤ n}, respectively, with indices taken mod n.
The local fractional strong metric dimension of certain complex networks is computed.

Theorem 3.1. For n ≥ 3,

lsdimf (Cn) =

{
1, if n ≡ 0(mod2);
n

n−1 , if n ≡ 1(mod2).

Proof. To prove the above claim, we consider the following cases: Case 1(n ≡ 0(mod2)) We take note
that, γ (Cn) = |V (Cn)| = n and β (Cn) = |∪L (Cn)| = |V (Cn)| = n. Hence, we conclude

lsdimf (Cn) =

β(Cn)∑
s=1

1

γ (Cn)
= 1.

Case 2(n ≡ 1(mod2)) Here, γ (Cn) = (n− 1) and β (Cn) = |∪L (Cn)| = n. We have

lsdimf (Cn) =

β(Cn)∑
s=1

1

γ (Cn)
=

n

n− 1
.

Theorem 3.2. For n ≥ 6, lsdimf (Cn(1, 2)) = n/2(⌈m+ 1/2⌉).

Proof. Clearly, γ (Cn(1, 2)) = |S {ar, ar+1}| = |S {ar, ar−1}| = 2(⌈m + 1/2⌉) where 1 ≤ r ≤ n and m =
⌈n− 5/4⌉. Moreover, β (Cn(1, 2)) = |∪L (Cn(1, 2))| = n. Therefore, we have

lsdimf (Cn(1, 2)) =

β(Cn(1,2))∑
s=1

1

γ (Cn(1, 2))
=

n

2(⌈m+ 1/2⌉)
.
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Theorem 3.3. For n ≥ 6,

lsdimf (M2n) =

{
1, if n ≡ 1(mod2);
n

n−1 , if n ≡ 0(mod2).

Proof. The proof of this theorem is subdivided into the following two cases:
Case 1 (n ≡ 1(mod2))
We have γ (M2n) = |V (M2n)| = 2n and β (M2n) = |∪L (M2n)| = |V (M2n)| = 2n. Hence the following
can be concluded:

lsdimf (M2n) =

β(M2n)∑
s=1

1

γ (M2n)
= 1.

Case 2 (n ≡ 0(mod2))
In this case by considering γ (M2n) = 2(n− 1) and β (M2n) = |∪L (M2n)| = 2n. Hence, we have

lsdimf (M2n) =

β(M2n)∑
s=1

1

γ (M2n)
=

n

n− 1
.

Theorem 3.4. For n ≥ 6,

lsdimf (G
n
m) =

{
1, if n ≡ 0(mod2);
n

n−1 , if n ≡ 1(mod2).

Proof. Proof. The proof can be segregated into the following two cases:
Case 1 (n ≡ 1(mod2))
γ (Gn

m) = m(n− 1) and β (Gn
m) = |∪L (Gn

m)| = |V (Gn
m)| = mn.

We have

lsdimf (G
n
m) =

β(Gn
m)∑

t=1

1

γ (Gn
m)

=
n

n− 1
.

Case 2 (n ≡ 0(mod2))
In this , γ (Gn

m) = mn and β (Gn
m) = |∪L (Gn

m)| = mn. Hence we conclude that

lsdimf (G
n
m) =

β(Gn
m)∑

s=1

1

γ (Gn
m)

= 1.

Licensed Under Creative Commons Attribution (CC BY-NC)

85



Vol.4 (Iss.2),pp.81-95, 2024, ISSN:2788-5844 http://sciencemundi.net

4 Some Cyclic Structures obtained from Γ(R)

The following graphs represent cyclic structures associated with graph networks obtained from classes
of completely primary finite rings. Consider a finite ring R of idealization given by R = R0⊕U⊕V ⊕W⊕Y
where U, V,W and Y are R0−modules generated by various basis elements ui, vj , wk and yl. If R is
closed under product given by

(
r◦ +

e∑
i=1

riui +

f∑
j=1

sjvj +

g∑
k=1

tkwk +

h∑
l=1

zlyl
)(
r
′

◦ +

e∑
i=1

r
′

iui +

f∑
j=1

s
′

jvj +

g∑
k=1

t
′

kwk +

h∑
l=1

z
′

lyl
)

= r◦r
′

◦ + pa
e∑

i,m=1

(
rir

′

m + pR0) +

e∑
i=1

[
r◦r

′

i + rir
′

◦ + pR0

]
ui +

f∑
j=1

[(
r◦ + pR0

)
s
′

j + sj
(
r
′

◦ + pR0

)
+

e∑
ν,µ=1

(
rνr

′

µ + pR0

)
]vj +

g∑
k=1

[
(r◦ + pR0

)
t
′

k + tk
(
r
′

◦ + pR0

)
+
∑
i,j

(
ri + pR0

)
s
′

j + sj
(
r
′

i + pR0

)
]wk+

h∑
l=1

[
(r◦ + pR0

)
z

′

l + zl
(
r
′

◦ + pR0

)
+
∑
i,k

(
ri + pR0

)
t
′

k + tk(r
′

i + pR0

)
+

f∑
κ,τ=1

(
sκs

′

τ + pR0

]
yl

where a = 1, 2, 3 or 4 depending on whether charR = p2, p3, p4 or p5. This multiplication turns R into a
commutative ring with identity (1, 0, 0, 0, 0) [9].
Given a zero divisor graph Γ(R) with vertex set V (Γ(R)). If x and y are any two vertices of the graph,
then x and y lie in the edge of the graph E(Γ(R)) if and only if xy = 0. Using this adjacency property,
we have the following cyclic representation of the geometries of Γ(R) for various characteristics.

Example 4.1. If R is the ring of the construction above, where R = R0 ⊕ U ⊕ V ⊕ W ⊕ Y then for
charR = p = 2
R = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 then the zero divisors will be
Z(R) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 In this case p = 2, r = 1, e = 1, f = 1, g = 1 and h = 1.
So the Γ(R) is 4− partite with dim(Γ(R)) = 2, gr(Γ(R)) = 3 and b(Γ(R)) = 1

4 .
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When charR = p = 2 the graph is as follows;

v1(0,0,0,0,1)
v2(0,0,0,1,0)

v3(0,0,0,1,1)

v4(0,0,1,0,0)

v5(0,0,1,0,1)

v6(0,0,1,1,0)

v7(0,0,1,1,1)
v8(0,1,0,0,0)v9(0,1,0,0,1)

(0,1,0,1,0)v10

(0,1,0,1,1)v11

(0,1,1,0,0)v12

(0,1,1,0,1)v13

(0,1,1,1,0)v14

(0,1,1,1,1)v15

Example 4.2. Let Z(R) = 2Z(R) = Z4⊕Z2⊕Z2⊕Z2⊕ (Z)2. In this case p = 2, r = 1,e = 1 f = 1,g = 1,
g = 1 and h = 1. Then the set of vertices V (Γ(R)) is given by

Let Z(R) = 2Z(R) = Z4 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ (Z)2. In this case p = 2, r = 1,e = 1 f = 1,g = 1, g = 1
and h = 1. Then

Γ(R) is 8− partite with diam(Γ(R)) = 2, gr(Γ(R)) = 3 and b(Γ(R)) = 7
24 .
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When charR = P 2 the graph is as follows;

(0,0,0,0,1)v1

v2(0,0,0,1,0)
v3(0,0,0,1,1)

v4(0,0,1,0,0)
v5(0,0,1,0,1)

v6(0,0,1,1,0)

v7(0,0,1,1,1)

v8(0,1,0,0,0)

v9(0,1,0,0,1)

v10(0,1,0,1,0)

v11(0,1,0,1,1)

v12(0,1,1,0,0)

v13(0,1,1,0,1)

v14(0,1,1,1,0)
v15(0,1,1,1,1)

v16(2,0,0,0,0)
v17(2,0,0,0,1)

(2,0,0,1,0)v18
(2,0,0,1,1)v19

(2,0,1,0,0)v20

(2,0,1,0,1)v21

(2,0,1,1,0)v22

(2,0,1,1,1)v23

(2,1,0,0,0)v24

(2,1,0,0,1)v25

(2,1,0,1,0)v26

(2,1,0,1,1)v27

(2,1,1,0,0)v28

(2,1,1,0,1)v29

(2,1,1,1,0)v30
(2,1,1,1,1)v31

Example 4.3. Let Z(R) = 2Z(R) = 2Z8⊕Z2⊕Z2⊕Z2⊕(Z)2. In this case p = 2, r = 1,e = 1 f = 1,g = 1,
g = 1 and h = 1. Then

Γ(R) is 16− partite with diam(Γ(R)) = 2, gr(Γ(R)) = 3 and b(Γ(R)) = 5
16 .
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When charR = p3 the graph will appear as below;

(0,0,0,0,1)v1

v2(0,0,0,1,0)
v3(0,0,0,1,1)

v4(0,0,1,0,0)
v5(0,0,1,0,1)

v6(0,0,1,1,0)

v7(0,0,1,1,1)

v8(0,1,0,0,0)

v9(0,1,0,0,1)

v10(0,1,0,1,0)

v11(0,1,0,1,1)

v12(0,1,1,0,0)

v13(0,1,1,0,1)

v14(0,1,1,1,0)
v15(0,1,1,1,1)

(2,0,0,0,0)v16(2,0,0,0,1)v17
(2,0,0,1,y)v18

(2,0,1,w,y)v19

(2,1,v,w,y)v20

(4,0,0,0,0)v21

(4,0,0,0,1)v22

(4,0,0,1,y)v23

(4,0,1,w,y)v24

(4,1,v,w,y)v25

(6,0,0,0,0)v26

(6,0,0,0,1)v27

(6,0,0,1,y)v28

(6,0,1,w,y)v29
(6,1,v,w,y)v30

Example 4.4. Let Z(R) = 2Z16 ⊕Z2 ⊕Z2 ⊕Z2 ⊕ (Z)2. In this case p = 2, r = 1,e = 1 f = 1,g = 1, g = 1
and h = 1. Then

Γ(R) is 32− partite with diam(Γ(R)) = 2, gr(Γ(R)) = 3 and b(Γ(R)) = 31
96 .
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When charR = p4 the graph is as follows;

v1(0,0,0,0,1)

v2(0,0,0,1,0)
v3(0,0,0,1,1)

v4(0,0,1,0,0)
v5(0,0,1,0,1)

v6(0,0,1,1,0)
v7(0,0,1,1,1)

v8(0,1,0,0,0)
v9(0,1,0,0,1)
v10(0,1,0,1,0)
v11(0,1,0,1,1)

v12(0,1,1,0,0)

v13(0,1,1,0,1)

v14(0,1,1,1,0)

v15(0,1,1,1,1)

v16(2,0,0,0,0)

v17(2,0,0,,1)
v18(2,0,0,1,y)

v19(2,0,1,w,y)

v20(2,1,v,w,y)

v21(4,0,0,0,0)
v22(4,0,0,0,1)

v23(4,0,1,w,y)
v24(4,1,v,w,y)

v25(6,0,0,0,0)
v26(6,0,0,0,1)

v27(6,0,0,1,y)(6,01,w,y)v28

v29(6,1,v,w,y)(8,0,0,0,0)v30

(8,0,0,0,1)v31
(8,0,0,1,y)v32

(8,0,1,w,y)v33

(8,1,v,w,y)v34

(10,0,0,0,0)v35

(10,0,0,0,1)v36

(10,0,0,1,y)v37

(10,0,1,w,y)v38

(10,1,v,w,y)v39

(12,0,0,0,0)v40

(12,0,0,0,1)v41

(12,0,0,1,y)v42
(12,0,1,w,y)v43

(12,1,v,w,y)v44
(14,0,0,0,0)v45

(14,0,0,0,1)v46
(14,0,0,1,y)v47

(14,0,1,w,y)v48
(14,1,v,w,y)v49

Example 4.5. Let Z(R) = 2Z16 ⊕Z2 ⊕Z2 ⊕Z2 ⊕ (Z)2. In this case p = 2, r = 1,e = 1 f = 1,g = 1, g = 1
and h = 1. Then

Γ(R) is 64− partite with diam(Γ(R)) = 2, gr(Γ(R)) = 3 and b(Γ(R)) = 21
64 .
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When charR = p5 the graph is as follows;

v1

v2 v3 v4 v5 v6 v7
v8

v9
v10

v11
v12
v13
v14
v15
v16
v17
v18
v19
v20
v21
v22

v23
v24

v25
v26
v27
v28
v29
v30

v31
v32

v33
v34

v35
v36

v37v38
v39v40

v41
v42

v43v44v45v46v47v48
v49v50

v51v52
v53

v54
v55

v56

v57

v58
v59

v60
v61

v62
v63

v64
v65

v66

v67

v68

v69

v70

v71

v72

v73

v74
v75

v76

v77

v78
v79
v80
v81
v82
v83

v84
v85
v86 v87

v88
v89 v90

Remark 4.1. The graphs provided in the above examples represent complex structures akin to cyclic
structures and their metric dimensions and local fractional metric dimensions obey the bounds provided
in the previous section of this paper.
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5 Graph Numbers

5.1 The Wiener Index of Γ(R)

The Wiener index denoted as W and also known as the path number or the Wiener number is a graph
index defined on a graph by n nodes and defined as

W =
1

2

n∑
i=1

n∑
j=1

(d)ij

where (d)ij is the graph distance matrix. The Wiener index W (Γ(R)) of the graph G with vertex count
| V (Γ(R)) | has a relationship with the average disorder number of the zero divisor graph A(Γ(R)) =
2W (Γ(R))
|V (Γ(R))| and the average distance µ(Γ(R)) between the vertices of Γ(R) which is given by

µ(Γ(R)) =
W (Γ(R))(
| V (Γ(R)) |

2

) .

In Topological Graph Theory, computations for Wiener indices for cyclic carbon-chained organic
compounds and its applications is fundamental. The index is useful in determination of the boiling points
and polarity number of alkanes and their branched isomers. Further, the most and common natural
field in the application of the Wiener index is the quantitative structure relationships especially in the
estimation of emission spectra of the ultra violet radiations of α and β-unsaturated ketone. We therefore
present the following results on the Wiener index of Γ(R) and other results describing average disorder
number and the average distance indices of Γ(R) due to their close interdependence with the Wiener
index.

Proposition 5.1. Let Γ(R) be the zero divisor graph of the classes of 5-index zero finite rings. Then for
any prime integer p, r ∈ Z+ and s fixed, the Wiener index, W (Γ(R))

=


1
2 (2p

(
2(s2+3s)

2 −1)r + p2(
(s2+3s)

2 −1)r − p(
(s2+3s)

2 )r − 7p(
(s2+3s)

2 −1)r + 2), if char(R) = p;
1
2 (2p

(
2(s2+3s)

2 +2)r + p2(
(s2+3s)

2 )r − p(
(s2+3s+2)

2 )r − 7p(
(s2+3s)

2 )r + 2), char(R) = p2;
1
2 (2p

(
(2s2+8s+4)

2 )r + p2(
(s2+3s+2)

2 )r − p(
(s2+5s+2)

2 )r − 7p(
(s2+3s+2)

2 )r + 2), char(R) = p3;
1
2 (2p

(
(2s2+10s+6)

2 )r + p2(
(2s2+10s+4)

2 )r − p2(
(s2+5s+4)

2 )r − 7p(
(s2+5s+2)

2 )r + 2), char(R) = p4, p5.

Proposition 5.2. Let Γ(R) be the zero divisor graph of the classes of 5-index zero finite rings and
W (Γ(R)) be its Wiener index. Then for any prime integer p, positive integer r and s fixed, the average

Licensed Under Creative Commons Attribution (CC BY-NC)

92



Vol.4 (Iss.2),pp.81-95, 2024, ISSN:2788-5844 http://sciencemundi.net

distance of Γ(R)

µ(Γ(R)) =



1
2 (2p

(
(2(s2+3s)

2
−1)r+p2(

(s2+3s)
2

−1)r−p(
(s2+3s)

2
)r−7p(

(s2+3s)
2

−1)r+2)

(p(
(s2+3s)

2
)r−1)(p(

(s2+3s)
2

)r−2)

, for char(R) = p;

1
2 (2p

(
2(s2+3s)

2
+2)r+p(

2(s2+3s)
2

)r−p(
(s2+3s+2)

2
)r−7p(

(s2+3s)
2

)r+2)

(p(
(s2+3s+2)

2
)r−1)(p(

(s2+3s+2)
2

)r−2)

, char(R) = p2;

1
2 (2p

(
(2s2+8s+4)

2
)r+p2(

(s2+3s+2)
2

)r−p(
(s2+5s+2)

2
)r−7p(

(s2+3s+2)
2

)r+2)

(p(
(s2+5s+2)

2
)r−1)(p(

(s2+5s+2)
2

)r−2)

, char(R) = p3;

1
2 (2p

(
(2s2+10s+6)

2
)r+p2(

(2s2+10s+4)
2

)r−p2(
(s2+5s+4)

2
)r−7p(

(s2+5s+2)
2

)r+2)

(p(
(s2+5s+4)

2
)r−1)(p(

(s2+5s+4)
2

)r−2)

, char(R) = p4, p5.

Proposition 5.3. Let Γ(R) be the zero divisor graph of the classes of 5-index zero finite rings. Then for
any prime integer p, positive integer r and s fixed, the average disorder number of the zero divisor graph

A(Γ(R)) =



2p(
(2(s2+3s)

2
−1)r+p2(

(s2+3s)
2

−1)r−p(
(s2+3s)

2
)r−7p(

(s2+3s)
2

−1)r+2

(p(
((s2+3s)

2
)r−1)

, for char(R) = p;

3p(
2(s2+3s)

2
+2)r+p(

2(s2+3s)
2

)r−p(
(s2+3s+2)

2
)r−7p(

(s2+3s)
2

)r+2

(p(
((s2+3s+2)

2
)r−1)

, char(R) = p2;

3p(
(2s2+8s+4)

2
)r+p2(

(s2+3s+2)
2

)r−p(
(s2+5s+2)

2
)r−7p(

(s2+3s+2)
2

)r+2

(p(
((s2+5s+2)

2
)r−1)

, char(R) = p3;

3p(
(2s2+10s+6)

2
)r+p2(

(2s2+10s+4)
2

)r−p2(
(s2+5s+4)

2
)r−7p(

(s2+5s+2)
2

)r+2

(p(
((s2+5s+4)

2
)r−1)

, char(R) = p4, p5.

5.2 The Zagreb Indices of Γ(R)

Let G = Γ(R) be a simple graph such that G = (V,E) whose vertex set V (G) consist of elements
{v1, · · · , vn} such that | V (G) |= n and the set of edges E(G) of order m. Given that the minimum
degree of G is denoted by δ(G) and ∆(G) the maximum degree. Let di = deg(vi)Γ(R), i = 1, 2, · · · , n
be the vertex degrees of vi ∈ Γ(R) so that di ≥ d2 ≥ · · · ≥ dn. The first Zagreb index is the sum of
the squares of degrees of the vertices and the second Zagreb index is the sum of the products of the
degrees of the pairs of adjacent vertices. We denote the first and second Zagreb indices of Γ(R) by
Z1(Γ(R)) and Z2(Γ(R)) respectively. Therefore,

Z1(Γ(R)) =
∑

vi∈V (Γ(R))

d2i ,

Z2(Γ(R)) =
∑

vi−vj∈E(Γ(R))

didj .
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5.2.1 The First Zagreb Index, Z1(Γ(R))

Proposition 5.4. Let Γ(R) be the zero divisor graph of the classes of 5-index zero finite rings and Γ(R)
be a zero divisor graph of order p(e+f+g+h)r −1 with m edges. If ∆(Γ(R)) and δ(Γ(R)) are the maximum
and minimum degrees of Γ(R) then for any prime integer p, r ∈ Z+,

(i) Z1(Γ(R)) ≥ ((∆(Γ(R)))2+(2m−∆(Γ(R))))2

(p(e+f+g+h)r−2)
+ 2(p(e+f+g+h)r−3)

(p(e+f+g+h)r−2)2
.(∆2(Γ(R))− δ(Γ(R)))2, where ∆2(Γ(R)) is

the second maximum degree of Γ(R).

(ii) Z1(Γ(R)) ≤ 4m2+2((∆(Γ(R)))2−4m((∆(Γ(R)))−((p(h+(k−1)r)−2)((p(h+(k−1)r)−3))[ T (Γ(R))
(p(e+f+g+h)r−2)∆(Γ(R))

(I(Γ(R)))−
1

∆(Γ(R)) ]
2

p(e+f+g+h)r−3 .

Proposition 5.5. Let R be the classes of rings with h as the dimension of the modules in R′. Let Γ(R)
be a zero divisor graph such that | Γ(R) |= p(h+(k−1))r − 1 with m edges. If ∆(Γ(R)) is the maximum
degree of each vi ∈ Γ(R) then for any prime integer p, r ∈ Z+,

Z1(Γ(R)) ≤ (p(e+f+g+h)r − 1)m−∆(Γ(R))((p(h+(k−1))r − 1)−∆(Γ(R))) +
2(m−∆(Γ(R)))

p(e+f+g+h)r − 3

5.2.2 The second Zagreb Index, Z2(Γ(R))

Proposition 5.6. Let Γ(R) be the zero divisor graph of the classes of rings such that | V (Γ(R)) |=
p(h+(k−1))r − 1 and ∆(Γ(R))), δ(Γ(R)) its maximum and minimum degrees respectively. If m is the
number of edges of ∆(Γ(R)) then for any prime integer p, positive integers r, k,

(i) Z2(Γ(R)) ≥ 2m2 − m(p(h+(k−1))r − 2)∆(Γ(R)) + 1
2 (∆(Γ(R)) − 2)[(∆(Γ(R)))2 + (2m−∆(Γ(R)))2

p(h+(k−1))r−2
+

2(p(e+f+g+h)r−1)
(p(e+f+g+h)r−2)2

(∆(Γ(R))− δ(Γ(R)))2].

(ii) Z2(Γ(R)) ≥ 2m2 −m(p(e+f+g+h)r)δ(Γ(R))+ 1
2 (δ(Γ(R))−1)[m(p(e+f+g+h)r)−∆(Γ(R))(p(e+f+g+h)r −∆(Γ(R))+

2(m−∆(Γ(R)))2

p(e+f+g+h)r−3
].

6 Conclusion

In conclusion, the study succeeds in presenting some findings related to the metric dimensions, Weiner
index, and Zagreb index of Γ(R) of interest.
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