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Abstract: Severe malarial anemia (SMA, Hb < 6.0 g/dL) is a leading cause of childhood morbidity
and mortality in holoendemic Plasmodium falciparum transmission zones. This study explored the
entire expressed human transcriptome in whole blood from 66 Kenyan children with non-SMA
(Hb ≥ 6.0 g/dL, n = 41) and SMA (n = 25), focusing on host immune response networks. RNA-
seq analysis revealed 6862 differentially expressed genes, with equally distributed up-and down-
regulated genes, indicating a complex host immune response. Deconvolution analyses uncovered
leukocytic immune profiles indicative of a diminished antigenic response, reduced immune priming,
and polarization toward cellular repair in SMA. Weighted gene co-expression network analysis
revealed that immune-regulated processes are central molecular distinctions between non-SMA
and SMA. A top dysregulated immune response signaling network in SMA was the HSP60-HSP70-
TLR2/4 signaling pathway, indicating altered pathogen recognition, innate immune activation, stress
responses, and antigen recognition. Validation with high-throughput gene expression from a separate
cohort of Kenyan children (n = 50) with varying severities of malarial anemia (n = 38 non-SMA and
n = 12 SMA) confirmed the RNA-seq findings. Proteomic analyses in 35 children with matched
transcript and protein abundance (n = 19 non-SMA and n = 16 SMA) confirmed dysregulation in
the HSP60-HSP70-TLR2/4 signaling pathway. Additionally, glutamine transporter and glutamine
synthetase genes were differentially expressed, indicating altered glutamine metabolism in SMA.
This comprehensive analysis underscores complex immune dysregulation and novel pathogenic
features in SMA.

Keywords: RNA-seq; proteomics; host immune response; childhood innate immunity; differential
gene expression; heat shock proteins; toll-like receptors; glutamine transporters; glutamine synthetase
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1. Introduction

Malaria remains a significant threat to public health globally, with an estimated
249 M cases and 608,000 deaths, with the majority (80%) of malaria-related mortality
occurring in children under five years in the African Region [1]. In holoendemic Plasmodium
falciparum transmission regions, such as western Kenya, children are vulnerable to severe
malaria anemia [SMA, hemoglobin (Hb) < 6.0 g/dL], a primary manifestation of severe
malaria. In contrast, cerebral malaria (CM) is rare in the region [2,3]. The etiology of
SMA includes hemolysis [destruction of infected and uninfected red blood cells (RBCs)],
splenic sequestration of RBCs, dyserythropoiesis, and bone marrow suppression, often
complicated by co-infection with other pathogens [4]. Our previous studies showed that
genetic variation and dysregulation in innate immune response genes, such as C3, C5,
CSF2, IFN-γ, IL-1β, IL-7, IL-10, IL-12, LAIR1, NCR3, and RANTES, play a crucial role in the
pathogenesis of SMA [2,5–11].

Studies from our group have also shown that additional innate immune response
genes were altered in children with SMA, including down-regulation of heat shock protein
70 (HSP70) transcripts driven by leukocytic phagocytosis of malarial pigment [hemozoin
(Pf Hz)] [12]. Human HSPs are a large superfamily of molecular chaperones that are cy-
toprotective and anti-inflammatory through their ability to correct and avoid misfolded
proteins for proper proteostasis within cellular compartments [13]. Family members in-
clude HSP60 (encoded by HSPD1) and HSP70, with distinct members encoded by separate
genes [HSP70-1 (HSPA1A), HSP70-2 (HSPA1B), HSP70-4 (HSPA4), HSP70-4L (HSPA4L),
and HSP70-5 (HSPA5)], among others [14]. HSPs are vital for maintaining cellular home-
ostasis under physiological and stress conditions such as hypoxia and heat shock [15].
HSPs are known immunomodulants that regulate the production and release of various
cytokines (e.g., IL-1β, IL-6, IL-10, IL-12, TNF-α, and IFN-γ) [16,17], a group of inflamma-
tory mediators we have shown that are dysregulated in children with SMA [4,5,18–24].
Moreover, HSPs act as danger-associated molecular patterns (DAMPs), activating signaling
cascades when released extracellularly into circulation by necrotic and stressed cells [25,26].
Extracellular HSP60 and HSP70 can activate immune responses by binding to toll-like
receptors (TLR) 2 and 4, essential pattern recognition receptors (PRRs) of innate immu-
nity responsible for recognizing pathogen-associated molecular patterns (PAMPs) and
DAMPs [27–29]. Known PAMPs in malaria include Plasmodium glycosylphosphatidylinosi-
tols (GPIs) that bind avidly to TLR2 and less stringently to TLR4 [30,31]. Upon recognizing
PAMPs, TLRs form homodimers or heterodimers to transduce the TLR 2/4 signaling
through the myeloid differentiation primary response 88 (MyD88) pathway for activation
of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and subsequent
production of pro-inflammatory cytokines and type I interferons [32,33]. TLR4 can also
signal through the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway
to activate interferon regulatory factors (IRFs) and produce type I interferons [32,33]. When
TLR2/4 is activated, extracellular HSP60 and HSP70 can enhance antigen presentation by
increasing the expression of major histocompatibility complex (MHC) II molecules, thereby
coordinating innate and adaptive immune responses [25,34–38].

L-glutamine (GLN), the most abundant amino acid in the human body, is a key
molecule for up-regulating HSP70 [39]. GLN is a conditionally essential amino acid re-
quired for proper immune cell function, regulation of cytokine balance, and antioxidant
defense [40]. We have previously shown that circulating GLN is significantly reduced in
children with SMA and that low GLN levels strongly predict SMA development [12]. These
investigations further demonstrated that GLN treatment of peripheral blood mononu-
clear cells (PBMCs) overcame Pf Hz-induced suppression of HSP70 gene transcription and
translation, reduced NF-κB activation, and mitigated the overexpression of IL-1β, IL-6,
and TNF-α [12]. Moreover, recent investigations demonstrated that supplementation of
cultured RBCs with amino acids, including GLN, reduces the oxidative stress induced by
infection with P. falciparum [41].
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Since GLN is hydrophilic and cannot directly traverse the plasma membrane, spe-
cific transmembrane transporters are required to bring GLN into and out of cells. The
GLN transporters are part of a larger class of solute carriers (SLCs) and are composed of
four families with different members within each: SLC1 (SLC1A5), SLC6 (SLC6A14 and
SLC6A19), SLC7 (SLC7A5, SLC7A6, SLC7A7, SLC7A8, and SLC7A9), and SLC38 (SLC38A1,
SLC38A2, SLC38A3, SLC38A4, SLC38A5, SLC38A6, SLC38A7, SLC38A8, SLC38A9, and
SLC38A10) [42–47]. GLN transporter expression is regulated by transcription factors that
respond to cellular and environmental cues [48–50]. For example, NF-κB can up-regulate
the expression of GLN transporter transcripts in response to inflammatory signals, while
other factors [e.g., hypoxia-inducible factor 1-alpha (HIF-1α) and HIF-2α] up-regulate GLN
transporter genes under hypoxic conditions to correct cellular metabolism [48–50]. In addi-
tion, the availability of GLN in the context of the cellular metabolic state influences GLN
transporter expression. In pathophysiological conditions when GLN is scarce (e.g., cellular
and oxidative stress), GLN transporters are up-regulated; conversely, GLN abundance
signals the down-regulation of GLN transporters to avoid excessive uptake [51]. Although
changes in GLN transporters have been implicated in the pathogenesis of tuberculosis and
sepsis [52,53], they remain largely unexplored in human malaria. The availability of GLN
is also regulated by glutamine synthetase (GLUL), which catalyzes the ATP-dependent
condensation of glutamate with ammonia to produce GLN [54]. Glutaminase 1 (GLS1) and
GLS2 can also affect GLN availability, which catalyzes the conversion of GLN to glutamate
and ammonia [55]. While we demonstrated that leukocytic HSP70 levels were affected by
the low levels of circulating GLN in SMA, it remains unclear whether the mRNA levels of
glutamine transporters or GLN metabolizing enzymes are changed in SMA.

Our recent study in 57 Kenyan children employed an unbiased approach using next-
generation RNA sequencing (RNA-seq) to profile the entire expressed whole blood tran-
scriptome in a pediatric cohort of Kenyan children with non-SMA (n = 39) or SMA (n = 18)
without sickle cell anemia (SCA, HbSS genotype) [56]. The findings revealed that activating
gene networks in response to hypoxic conditions is a central theme of SMA pathogenesis.
Here, we extend those findings to 66 children and include children with SCA since such
individuals represent the natural demographic of severe malaria, especially in holoendemic
P. falciparum transmission regions. Results presented here focus specifically on the host
immune response networks in children with non-SMA (n = 41, HbSS = 2) and SMA (n = 25,
HbSS = 7). The rationale for the current study is that immune response pathways are
central molecular networks that influence the development of SMA. We hypothesized that
immune response pathways play a pivotal role in the pathogenesis of SMA in children with
and without SCA. The investigation revealed, for the first time, that the HSP60-HSP70/TLR
signaling pathway emerged as one of the top-ranked immune response pathway maps in
SMA. Since we previously showed that reduced GLN is a significant predictor of SMA and
an essential signal for HSP [12], GLN transporter genes and GLN metabolizing enzymes
were also explored.

2. Materials and Methods
2.1. Study Design and Participants

The prospective study was conducted (March 2017 to September 2020) at Siaya County
Referral Hospital (SCRH) in western Kenya, a holoendemic P. falciparum malaria transmis-
sion region with high rates of malaria-related morbidity and mortality in children aged
<5 years [57–60]. Female and male (sex at birth) febrile children (≥37.5 ◦C axillary, n = 577,
age 1–59 mos.) presenting at SCRH were enrolled in the study (Figure 1).
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Figure 1. Overall study design, data collection, and sampling strategy. The short-term (14-day)
study at Siaya County Referral Hospital (SCRH) involved children admitted with acute febrile
illness. A total of 577 children (ages 1–59 months) were enrolled between March 2017 and September
2020, with 499 completing well visits. On the enrollment day (Day 0), data on demographics,
geospatial information, clinical status, and laboratory results were collected. Before administering
antimalarials or other medications, venipuncture blood samples (3–4 mL) were taken for laboratory
analysis. Parents/guardians were asked to return their child for a well visit on day 14. Children
were stratified into clinical phenotypes based on hemoglobin (Hb) levels and malaria parasitemia:
non-SMA (Hb ≥ 6.0 g/dL, n = 453) and SMA (Hb < 6.0 g/dL, n = 124). For RNA-Seq analysis,
children were matched by age, sex, and parasitemia, excluding those with co-infections (e.g., HIV-1
and bacteremia). A total of sixty-six children were selected for RNA-Seq: non-SMA (n = 41) and SMA
(n = 25).

Inclusion criteria included: P. falciparum parasitemia (any density), age < 5 years,
distance to hospital ≤ 25 km, written informed consent from parent/guardian, intention
to attend follow-up visit on day 14 (well-visit). Children were excluded if they had been
previously hospitalized for any reason, had an episode of malaria within the past month,
or had clinical signs consistent with cerebral malaria (rare in this setting). Written informed
consent was obtained from every pediatric study participant’s parent or legal guardian
during enrollment. Since severe malaria in western Kenya primarily manifests as severe
malarial anemia (SMA, Hb < 6.0 g/dL, and any parasite density) [2,56,61], children were
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stratified into two groups: Hb ≥ 6.0 g/dL and Hb < 6.0 g/dL. Demographic and clinical
data were collected at enrollment, and a physical examination was performed. Prior to
treatment with antimalarials or other medications, venipuncture blood samples (3–4 mL)
were collected for laboratory measures. Pre- and post-HIV test counseling was provided
to the parents/guardians of all participants. All patients were treated per the Ministry of
Health-Kenya guidelines. The study was approved by the Institutional Review Board of
the University of New Mexico, USA (16-284), and the Maseno University Scientific and
Ethics Review Committee, Kenya (MUSERC; MSU/DRPI/MUERC/00510/18).

2.2. Clinical Laboratory Procedures

Venipuncture peripheral blood (3–4 mL) was obtained from each study participant
at enrollment (day 0) before antimalarial treatment for laboratory tests. Complete blood
counts (CBC) were assessed using the Beckman Coulter ACT diff2™ (Beckman-Coulter
Corporation, Miami, FL, USA). Giemsa-stained thick and thin blood smears were examined
under 100× oil immersion microscopy to determine the presence/absence and species of
Plasmodium parasites and to count the number of P. falciparum parasites per 300 leukocytes
for estimating the parasite density based on the number of asexual malaria parasites [57].
To determine additional common causes of severe anemia in the study area [62,63], HIV-
1 status, bacteremia, and HbAS status were determined. In brief, HIV-1 exposure was
determined serologically using Unigold™ and Determine™ tests, while definitive HIV-
1 infection was determined by pro-viral DNA PCR testing (2 separate measures 3 mos.
apart) [62]. Bacteremia was evaluated by inoculating ~1.0 mL of venipuncture blood into
an automated BACTEC 9050 system (Becton-Dickinson, Franklin Lakes, NJ, USA). Positive
alerts were then examined by Gram staining and sub-cultured on blood agar, chocolate
agar, or MacConkey agar plate (Pittsburgh, PA, USA) [63]. The presence of the HbAS trait
was determined by cellulose acetate electrophoresis (Helena laboratories, Beaumont, TX,
USA). An aliquot of peripheral blood (~500 µL) was mixed with an equal volume of Trizol®

Reagent (Thermo Fisher Scientific Inc., Waltham, MA, USA) and stored at −80 ◦C. Plasma
from another aliquot of peripheral blood (~500 µL) was aliquoted and stored at −80 ◦C for
later use of proteomic analysis.

2.3. Rna Isolation, Quantification, and Qualification

For the transcriptomic experiments, children (n = 577) were matched according to age,
sex, and peripheral malaria parasitemia, excluding positive cases of HIV-1 and bacteremia.
This yielded 66 individuals who were selected for RNA sequencing (RNA-Seq) studies:
non-SMA (n = 41) and SMA (n = 25). Total RNA was isolated from Trizol® preserved whole
blood (Carlsbad, CA, USA) (500 µL) using E.Z.N.A.® Total RNA Kit I (Omega Bio-Tek Inc.,
Norcross, GA, USA) and treated with RNase-free DNase I (New England Biolabs, Ipswich,
MA, USA) to remove any contaminating DNA. Total RNA was cleaned using the RNA
Clean and Concentrator Kit (ZYMO Research Corp., Tustin, CA, USA). RNA quantity was
measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA), while the quantity and integrity of the RNA were evaluated using an Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

2.4. RNA-Sequencing and Library Construction

A total of 1 µg RNA with RNA integrity number (RIN) >8, post-globin mRNA deple-
tion step, was used as input material for library construction. Following the manufacturer’s
recommendations, the sequencing libraries were generated using NEBNext® UltraTM
RNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA). Briefly,
mRNA enrichment was performed using poly-T oligo-attached magnetic beads. Fragmen-
tation was performed using divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5X). First-strand cDNA was synthesized using a random
hexamer primer and M-MuLV reverse transcriptase (RNase H-). Second-strand cDNA
synthesis was subsequently performed using DNA polymerase I and RNase H. Each cDNA
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was ligated to a NEBNext adaptor, followed by PCR enrichment of adaptor-ligated DNA.
The PCR products were then purified, and the sequencing library quality was assessed
using an Agilent 2100 Bioanalyzer (Santa Clara, CA, USA).

2.5. Clustering, Sequencing, and Quality Control

The clustering of the index-coded samples was performed on a cBot Cluster Generation
System using PE Cluster Kit cBot-HS (Illumina® Inc., San Diego, CA, USA), according
to the manufacturer’s instructions. Paired-end sequencing of library preparations was
performed using the Illumina® platform to a depth of >20 million high-quality mappable
reads. Raw reads of FASTQ format were first processed through fastp to obtain clean reads
by trimming reads containing adapter and poly-N sequences and low quality. All the
downstream analyses were based on clean reads.

2.6. Data Analysis of Study Participants’ Characteristics

Participants’ demographic, clinical, and laboratory characteristics at enrollment were
analyzed using SPSS® v23.0 (IBM SPSS Inc., Chicago, IL, USA). Data across the study groups
was compared using Fisher’s exact and Mann–Whitney U tests. Statistical significance
was set at p ≤ 0.050. Bivariate logistic regression analysis was conducted to identify risk
factors for SMA using SPSS® v23.0 (IBM SPSS Inc., Chicago, IL, USA). Variables with a
p < 0.20 from the univariate analyses were included in the models to assess their individual
associations with SMA. Odds ratios (OR) and 95% confidence intervals (CI) were calculated
for each variable to evaluate the strength and direction of the associations. The significance
level was set at p ≤ 0.050 without adjustments for multiple testing based on the sample
size. Assumptions of logistic regression, including linearity of continuous variables with
the logit, absence of multicollinearity, and independence of observations, were assessed to
ensure the robustness of the results.

2.7. Mapping the Reference Genome and Quantification

The sequence reads were mapped to the reference human genome (GRCh38.p13)
(NCBI/UCSC/Ensembl). Paired-end clean reads were aligned to the reference genome
using the Spliced Transcripts Alignment to a Reference (STAR) software version 2.5
(Illumina® Inc.). HTSeq v0.6.1 was used to count the reads mapped to each gene [64].

2.8. Differential Gene Expression Analysis and Visualization of Gene Expression Patterns

For each sequenced library, the read counts were converted to fragments per kilobase
of transcript per million mapped reads (FPKMs) based on the length of the gene. Differential
gene expression analysis was then performed using edgeR (3.16.5) [65]. False discovery rate
(FDR) adjusted p-value (Padj) was calculated using the Benjamini–Hochberg method [66],
and Padj of 0.050 was set as the threshold for significance. To visualize the gene expression
patterns, next-generation clustered heatmaps (NG-CHMs) of DEGs were generated using
hierarchical clustering with Euclidean and Ward’s distance and clustering methods [67].

2.9. Leukocytic Immune Cell Profiling

The relative percentage of different immune cell types/subtypes in peripheral blood
was calculated using CIBERSORTx [68,69], which processes gene expression data from a
bulk admixture of various cell types to estimate the abundance of each cell type in the sam-
ple [68]. We used the curated signature matrix file, LM22, as the reference to deconvolute
the relative fraction of different cell types in whole blood, identifying 22 types/subtypes
of leukocytes. Cell type-specific gene expression levels were imputed at the sample level,
with the output presenting as the fractional proportions in whole blood for each study
participant. A two-sample t-test with Welch’s correction was used to determine whether the
relative proportions (%) of immune cell types, presented as mean (SEM), differed between
the non-SMA (n = 41) and SMA (n = 25) groups. GraphPad Prism v9.5.1. (GraphPad
Software, Boston, MA, USA) was employed to generate a heatmap and relative proportions
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(%) of the 22 leukocyte cell types/subtypes at the individual patient level for both non-SMA
and SMA groups.

2.10. Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) was used to identify gene
modules associated with traits of interest using the WGCNA package in R (version 1.72-
5) [70]. A soft-thresholding power of 4 was selected based on the scale-free topology
criterion, optimizing for an R2 > 0.8. The resulting adjacency matrix was transformed
into a topological overlap matrix (TOM) to assess gene interconnectedness. Modules
were identified via hierarchical clustering with a dynamic tree cut, using a minimum
module size of 500 genes. Module eigengenes were correlated with clinical traits (non-SMA
and SMA) using Pearson correlation, with p-values adjusted for multiple testing by the
Benjamini–Hochberg method. As all genes were analyzed in a single block, the merging of
correlated eigen genes was not performed. Functional enrichment analysis was conducted
with the gprofiler2 package in R (version 0.2.3), focusing on GO terms and Reactome
pathways, with significance assessed using hypergeometric tests and p-values adjusted for
multiple comparisons.

2.11. Pathway Enrichment Analysis

To identify significant gene pathways and network processes in SMA, pathway enrich-
ment analysis was performed using the MetacoreTM pathway analysis software suite (v2024,
Clarivate Analytics, Philadelphia, PA, USA, https://clarivate.com/products/metacore/,
accessed on 18 September 2024).

2.12. Validation of Transcriptome Profiles

An independent cohort of 50 children (non-SMA, n = 38; SMA, n = 12) was used
to validate our findings. RNA was extracted from the peripheral blood of the selected
children using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA). RNA was amplified
and biotinylated using the Illumina® TotalPrep RNA Amplification Kit (Thermo Fisher
Scientific) and quantified on an Agilent 2100 Bioanalyser. Specifically, 750 ng cRNA per
sample was hybridized to Illumina® human HT-12 v4 expression BeadChips harboring
47,231 probes (Illumina® Inc.) and scanned with a BeadStation 500GX (Illumina® Inc.) per
the manufacturer’s recommendations (Illumina® Inc.). Illumina®s’ BeadStudio software
version 3.2 was utilized to filter the data prior to normalization. Illumina® probe profile
expression data were normalized using quantile normalization and corrected for batch pro-
cessing effects [71]. DEGs between SMA and non-SMA were identified using significance
analysis of microarrays (SAM) [72]. GraphPad Prism v9.5.1. (GraphPad Software) was
employed to generate a heatmap and a scatter plot of the expression patterns of common
genes in both the Novogene and Illumina® hHT-12 datasets.

2.13. Proteomic Validation on the Alteration of HSP60-HSP70-TLR2/4 Signaling Pathway
in SMA

We selected 40 children (SMA, n = 18, as cases; non-SMA, n = 22, as controls) whose
whole blood was used for transcriptomic profiling (described above) to conduct proteomic
analysis on their plasma samples. Plasma was obtained by centrifuging fresh venipuncture
peripheral blood samples at 1000× g for 10 min at ambient temperature, followed by
transferring the top aqueous phase to a fresh tube and then stored in aliquots at −80 ◦C
until use. All plasma samples selected for use had sufficient volumes and quality and
underwent no previous freeze-thaw cycles before assaying on the 7k SomaScan Assay v4.1
platform (SomaLogic), following the manufacturer’s protocol. Briefly, plasma samples
were diluted and incubated with dilution-specific SOMAmers, pre-synthesized with a
fluorophore, photocleavable linker, and biotin. Plasma proteins bound to a biotin-tagged
SOMAmer were attached to streptavidin magnet beads and thus retained as part of a pellet
in a magnet field, while the unbound proteins remained in solution and were washed

https://clarivate.com/products/metacore/
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away. The photocleavable linker was dissociated by exposure to ultraviolet (UV) light,
releasing protein-SOMAmer complexes into the solution. The SOMAmers were released
by denaturing the proteins, and fluorophores were measured on a microarray chip. The
fluorescence intensity, measured in relative fluorescence units (RFU), inferred the quantity
of epitope in the original plasma sample [73]. The aptamer-based scan had a median limit
of detection (LOD) of 125 fM, or 5.3 pg/mL for a protein/peptide [74].

Proteomic data processing and analysis were conducted as follows: Data were stan-
dardized using a sample-by-sample adjustment to overall signals within the plasma dilu-
tions, while calibration constituted an overall plate and SOMAmer-by-SOMAmer adjust-
ments to decrease between-plate variability. The final analysis incorporated 35 samples
that passed the quality control check. Protein measurements (RFUs) were compared
between non-SMA and SMA groups using a generalized linear model with a negative
binomial distribution. The proteins were matched to their respective transcripts using
network algorithms in MetaCoreTM (v2024, Clarivate Analytics, Philadelphia, PA, USA,
https://clarivate.com/products/metacore/, accessed on 9 September 2024), and correla-
tion analyses were determined using Spearman’s test. Significant (p ≤ 0.050) transcripts
and proteins were compared. GraphPad Prism v9.5.1. (GraphPad Software) was used to
create a heatmap and a scatter plot of the expression patterns of common genes in both the
Novogene and proteomics datasets.

3. Results
3.1. Demographic, Clinical, and Laboratory Characteristics of the Study Participants

Age- and sex-matched children without co-infections (i.e., HIV-1 and bacteremia) with
peripheral P. falciparum parasitemia (any density) were stratified into two groups based on
Hb levels: Hb ≥ 6.0 g/dL (non-SMA, n = 41) and Hb < 6.0 g/dL (SMA, n = 25). The overall
study design is shown in Figure S1, and the study participants’ demographic, clinical,
and laboratory characteristics upon presentation at the hospital (day 0, pre-treatment) are
shown in Table 1.

Table 1. Demographic, clinical, and laboratory characteristics of the study participants.

Characteristics Non-SMA (Hb ≥ 6.0 g/dL) SMA (Hb < 6.0 g/dL) p-Value
No. of participants (n = 66) 41 25

Sex, n (%)
Male 20 (48.8) 13 (52.0) 0.800 a

Female 21 (51.2) 12 (48.0)
Age, months 24.0 (22.0) 25.0 (28.5) 0.797 b

0–12.9 7 (17.1) 5 (20.0)

0.461 a
13–24.9 14 (34.1) 7 (28.0)
25–35.9 9 (22.0) 5 (20.0)
36–48.9 11 (26.8) 6 (24.0)
≥49 0 (0.0) 2 (8.0)

Blood glucose, mmol/L 5.0 (2.3) 5.0 (1.7) 0.967 b

Temporal temperature, ◦C 38.0 (1.2) 37.7 (0.8) 0.051 b

Hematological Parameters
Hemoglobin, g/dL 9.9 (1.4) 4.6 (1.2) NA

Hematocrit, % 29.8 (5.9) 14.4 (2.9) 1.242 × 10−11 b

Red blood cells, ×106/µL 4.3 (1.0) 1.9 (0.9) 1.790 × 10−11 b

Red blood cell distribution width, % 18.7 (3.4) 22.3 (8.9) 4.050 × 10−4 b

Mean corpuscular volume, fL 69.5 (9.2) 78.6 (29.9) 0.002 b

Mean corpuscular hemoglobin, pg 22.9 (4.8) 26.7 (9.4) 0.022 b

Platelets, ×103/µL 124.4 (85.7) 134.0 (139.7) 0.615 b

Platelet distribution width, % 16.5 (1.3) 17.3 (0.9) 0.370 b

Mean platelet volume, fL 8.5 (1.6) 8.9 (1.9) 0.124 b

https://clarivate.com/products/metacore/


Pathogens 2024, 13, 867 9 of 30

Table 1. Cont.

Characteristics Non-SMA (Hb ≥ 6.0 g/dL) SMA (Hb < 6.0 g/dL) p-Value
WBCs, ×103/µL 11.3 (6.9) 19.8 (11.5) 1.393 × 10−4 b

Lymphocytes, ×103/µL 3.7 (1.9) 10.0 (9.2) 5.509 × 10−6 b

Monocytes, ×103/µL 1.2 (1.3) 1.7 (1.4) 0.022 b

Neutrophils, ×103/µL 5.3 (4.2) 6.0 (6.9) 0.438 b

Granulocytes, ×103/µL 6.7 (3.0) 9.1 (5.8) 0.373 b

Parasitological Indices
Parasite density, MPS/µL 57,915 (81,568) 14,191 (68,728) 0.155 b

Low (1–5000) 6 (14.6) 8 (32.0)

0.134 aModerate (5001–50,000) 13 (31.7) 10 (40.0)
High (50,001–100,000) 14 (34.1) 3 (12.0)

Hyper (>100,001) 8 (19.5) 4 (16.0)
Genetic Variants

Sickle-cell genotypes, n (%)
HbAA 35 (85.3) 16 (64.0)
HbAS 4 (9.8) 2 (8.0) 0.029 a

HbSS 2 (4.9) 7 (28.0)
Unless otherwise noted, data are presented as the median (interquartile range; IQR). Children (n = 66) presenting
with malaria were recruited at SCRH. Based on hemoglobin (Hb) levels, children were categorized into either
non-severe malarial anemia (non-SMA; Hb ≥ 6.0 g/dL, n = 41) or severe malarial anemia (SMA; Hb < 6.0 g/dL,
n = 25). a Fisher’s exact test with exact p-values for homogeneity and b Mann–Whitney U test were used to
compare the non-SMA and SMA groups. Statistical significance was set at p ≤ 0.050; significant p-values are
indicated in bold. Abbreviations: MPS: malaria parasites; HbAA: hemoglobin AA; HbAS: hemoglobin AS; HbSS:
hemoglobin SS. Blue color indicates characteristic categories.

Children with SMA had lower axillary temperatures (p = 0.051) and comparable
glucose levels (p = 0.967). Consistent with the a priori classification based on Hb concen-
trations, children with SMA had lower hematocrit levels (p = 1.242 × 10−11) and RBCs
(p = 1.790 × 10−11). Conversely, SMA was characterized by elevated red blood cell distribu-
tion width (p = 4.050 × 10−4), mean corpuscular volume (p = 0.002), and mean corpuscular
hemoglobin concentrations (p = 0.022). Elevations in the SMA group were also witnessed
for white blood cells (p = 1.393 × 10−4), lymphocytes (p = 5.509 × 10−6), and mono-
cytes (p = 0.022). Comparable levels for additional hematological variables were observed:
platelet (p = 0.615), neutrophil (p = 0.438), and granulocyte (p = 0.373) counts. Parasitological
indices (i.e., parasite density and stratified levels) did not significantly vary across the two
groups (p = 0.155 and p = 0.134, respectively). However, the distribution of sickle-cell trait
status differed between the groups, characterized by a lower proportion of HbAA and
HbAS and a higher proportion of HbSS in SMA (p = 0.029).

3.2. Demographic, Clinical, and Laboratory Predictors of Severe Malarial Anemia

Logistic regression modeling was utilized to determine predictors of SMA by in-
cluding all variables with a p < 0.200 in the univariate analysis (Figure 2). An elevated
temporal temperature on admission was associated with a reduced risk of SMA [OR = 0.440
(95%CI = 0.185–1.0460) p = 0.063]. Elevated lymphocyte counts also increased the risk of
SMA [OR = 1.800 (95%CI = 1.045–3.101) p = 0.034]. Carriage of HbAS was protective against
SMA [OR = 0.007 (95%CI < 0.001–1.281) p = 0.062], while inheritance of HbSS markedly
increased susceptibility to SMA [OR = 5.333 (95%CI = 0.393–72.403) p = 0.208]. Despite
the limited sample size, elevated lymphocytes emerged as a significant predictor of SMA.
Additional patient characteristics showed trends towards either protection (i.e., elevated
temperature and HbAS) or enhanced risk of SMA (i.e., HbSS).
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Figure 2. Predictors of malarial anemia severity. Data are presented as odds ratios (ORs) with 95%
confidence intervals (CI) determined using a bivariate logistic regression model with patient’s with
at p < 0.200 included as predictors. Black dots represent the ORs, while the red lines represent 95%
CI. Abbreviations: MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), WBCs
(white blood cells), MPV (mean platelet volume), RDW (red blood cell distribution width), HbAS
(hemoglobin AS), and HbSS (hemoglobin SS). p-values ≤ 0.050 were considered significant and are
indicated in bold.

3.3. Differential Gene Expression Analysis Uncovers a Significantly Altered Transcriptomic
Landscape in Severe Malarial Anemia

RNA-seq of the entire expressed transcriptome in whole blood revealed 6862 differen-
tially expressed genes (DEGs) in SMA relative to non-SMA after correcting for the false
discovery rate (FDR, Padj < 0.050). Of these DEGs, 3420 genes exhibited up-regulation,
while 3442 genes displayed down-regulation (Figure 3A), suggesting a complex transcrip-
tional response associated with SMA pathogenesis.
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Figure 3. Differential gene expression analysis and leukocytic immune profiling in children
with severe malarial anemia. (A) The volcano plot shows 3420 up-regulated (red) and 3442 down-
regulated (turquoise) genes in children with SMA. The horizontal axis shows the Log2foldchange,
while the vertical axis shows the −log10 Padj values. The horizontal dotted line corresponds to
1.301 (i.e., −log10 Padj significance threshold at 0.050). (B) The composition of different blood cell
types was analyzed using CIBERSORTx for deconvolution. The LM22 signature matrix file was
used to estimate cellular frequencies. A heatmap illustrates the expression levels of 22 leukocyte
cell types/subtypes at the individual patient level for both non-SMA (Hb ≥ 6.0 g/dL, n = 41) and
SMA (Hb < 6.0 g/dL, n = 25) groups. Significant differences in immune cell proportions between the
groups are marked with an asterisk (*), determined by Welch-corrected, two-sided, two-sample t-tests
(p ≤ 0.050). (C) The relative proportions (%) of immune cell types that differ between the non-SMA
(n = 41) and SMA (n = 25) groups are shown as mean (SEM), based on bivariate analysis using
two-sided, two-sample t-tests with Welch correction. Gray font indicated borderline significance.

3.4. Altered Leukocytic Immune Cell Profiles in Severe Malarial Anemia

A bioinformatic analysis using CIBERSORTx was conducted to investigate the leuko-
cytic immune profiles in children who develop SMA. Despite individual variability, the
heatmap analysis demonstrated that ten immune cell types were differentially expressed
with a significance level of p ≤ 0.050 (Figure 3B). Children with SMA showed elevated
levels of naïve B cells (p = 9.741 × 10−5), CD8 T cells (p = 0.009), CD4 memory resting T
cells (p = 0.001), resting NK cells (p = 0.002), monocytes (p = 0.039), and M2 macrophages
(p = 0.002) (Figure 3C). Conversely, there was a notable decrease in the proportion of
activated dendritic cells (p = 0.001), activated mast cells (p = 0.014), and neutrophils
(p = 4.826 × 10−4), with a slight reduction in naïve CD4 T cells (p = 0.053) in the SMA
group (Figure 3C). These patterns suggest that children with SMA experience a diminished
antigenic response, lowered immune priming, and a shift toward cellular proliferation and
tissue repair.

3.5. Co-Expression Network Analysis Reveals Distinct Gene Modules Associated with Non-SMA
and SMA Phenotypes

WGCNA was utilized to identify modules of co-expressed genes in non-SMA and
SMA groups. Hierarchical clustering on the TOM-based dissimilarity identified modules
with a dynamic tree cut and a minimum module size of 500 genes, resulting in 21 modules
(M, Figure 4A). Module eigengenes were correlated with clinical traits (non-SMA and
SMA) to explore relationships between gene expression and clinical outcomes, revealing
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significance for M15 (p = 0.006) and M19 (p = 0.016, Figure 4B). The heatmap showing the
mean gene correlation for each module is shown in Figure 4C.
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using WGCNA (single block analysis). The branches refer to clusters of genes that are highly 
connected, and each vertical line represents a single gene. The colors in the horizontal bar represent 

Figure 4. WGCNA modules of co-expressed genes. (A) WGCNA cluster dendrogram obtained
by hierarchical clustering performed using the TOM-based dissimilarity matrix (1—TOM) as the
distance measure. A total of 21 gene co-expression network modules (M0–M20) were identified using
WGCNA (single block analysis). The branches refer to clusters of genes that are highly connected,
and each vertical line represents a single gene. The colors in the horizontal bar represent the
21 gene co-expression modules. (B) Module significance values of the identified modules associated
with clinical traits (non-SMA and SMA). Module significance value indicates the summary (mean)
of gene significance of all genes in each module, with column colors indicating different modules.
(C) Heatmap of module-clinical trait relationships. The heatmap shows the correlation between
WGCNA module eigengenes and clinical status. Each cell contains the correlation coefficient and
standard deviation in parenthesis. Rows and columns represent modules and clinical features,
respectively. The color intensity represents the strength of the correlation. Red indicates a positive
correlation, while blue represents a negative correlation.

Based on their significance values, functional enrichment analyses were performed
for M15 (804 genes) and M19 (624 genes). The top five GO molecular functions, biological
processes, cellular components, and Reactome output for M15 and M19 are presented in
Figures 5A and 5B, respectively. The integrated summary of the enrichment analysis for
M15 illustrates the central role of the module in immune regulation, signaling, and cellular
responses, specifically through pathways involved in neutrophil degranulation, innate
immune responses, and TLR cascades. The amalgamated information from M19 reveals a
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substantial involvement of the identified gene set in immune response mechanisms related
to defense, protein interactions, and cytokine signaling.
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Figure 5. Functional enrichment analysis of M15 and M19. Functional enrichment plots illustrate
biological pathways and processes associated with the co-expressed genes in the WGCNA modules.
(A) Enrichment analysis for M15. (B) Enrichment analysis for M19. The x-axis represents the −log10
of the FDR-adjusted p-value, indicating the significance of enrichment, while the y-axis shows the
enriched terms. The top five most significant terms are displayed for each module across different
enrichment categories: GO (gene ontology), MF (molecular function), CC (cellular component), BP
(biological process), and REAC (Reactome pathways).

3.6. Severe Malarial Anemia Is Characterized by Immune Dysregulation in the
HSP60-HSP70-TLR2/4 Signaling Pathway

Given that the immune response emerged as a central feature in the WGCNA, canoni-
cal pathway maps for the DEGs (Padj < 0.050) were generated using MetacoreTM, selectively
filtered to identify networks associated with immune activity. The top 10 emergent immune
response pathways for the DEGs included a signaling network enriched for HSPs and
TLRs, i.e., the HSP60-HSP70-TLR2/4 signaling pathway (Padj = 5.483 × 10−9, 3rd ranked
according to p-value, Figure 6A). Based on our previous findings on HSPs in childhood
malaria [12], we expanded these investigations and focused on this immune response
pathway. Children with SMA had significant dysregulation for 32 out of 54 nodes in
the HSP60-HSP70-TLR2/4 signaling pathway (Figure 6B). The 32 mapped nodes in the
pathway comprise 47 genes, of which 17 were up-regulated and 30 were down-regulated.
The Log2foldchange (log2FC) and Padj for each of the genes representing the proteins
are shown in Table S1. To gain an improved understanding of the underlying molecular
mechanisms that influence disease severity, the known signaling actions of genes within
the HSP60-HSP70-TLR2/4 pathway are described below in the context of actual (observed)
expression changes (i.e., up- or down-regulation) in children with SMA (Figure 6B).

Of relevance to the role of HSPs in human malaria pathogenesis, transcripts for
HSP60 (HSPD1) were down-regulated in SMA (log2FC = −0.81), as were HSP70 family
members: HSPA1A (−1.31), HSPA1B (−0.99), HSPA4 (−0.33), HSPA4L (−0.68), HSPA5
(−0.51), and HSPA6 (−0.81). Although increased HSP60 and HSP70 levels enhance the
surface expression of MHC class II, despite their reduction, the following class II transcripts
were still up-regulated: HLA-DMA (+0.38), HLA-DOA (+0.70), HLA-DOB (+0.42), HLA-
DPB1 (+0.56), and HLA-DPB2 (+0.75). However, consistent with the known action of HSP70
increasing MHC class I expression, reduced HSP70 transcripts paralleled decreased class I
expression for B2M (−0.37), HLA-B (−0.33), HLA-C (−0.54), and HLA-E (−0.39).
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Figure 6. Top emergent immune response canonical pathway maps in children with severe
malarial anemia. (A) The top 10-ranked immune response canonical pathway maps were generated
using MetaCoreTM from the RNA-seq analysis in non-SMA (Hb ≥ 6.0 g/dL, n = 41) versus SMA
(Hb < 6.0 g/dL, n = 25) at Padj < 0.05. Protein or protein complexes are shown as individual symbols.
The left Y-axis indicates the biological pathways for human metabolism and cell signaling in immune
response networks. The number of DEGs in the dataset is shown relative to the total number in
the pathway. The right Y-axis shows Padj values for each pathway map. The X-axis represents the
−log10(Padj) values. (B) The HSP60-HSP70-TLR2/4 signaling pathway (Padj = 5.483 × 10−9) with
the Padj DEGs representing 32/54 nodes. The transcripts are the thermometers shown in red (up-
regulated) or blue (down-regulated). The details of symbols used in these figures are available at the
following site: https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf (accessed
on 20 September 2024). See also Figure S1.
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Down-regulation of gene expression was also observed for TLR2 (−0.53) and TLR4
(−0.83). HSP60 and HSP70 can bind to TLR2 and TLR4, forming a complex with CD14
(−0.60). For TLR4-mediated responses to HSP60 and HSP70, MD-2 (−0.89) is necessary.
TLR2 and TLR4 then bind to TIRAP (Mal) for recruitment of MyD88 (−0.32), which
binds to IRAK4 (−0.36), subsequently phosphorylating/activating IRAK1 (+0.23) and
IRAK2 (−0.81). Thus, the observed reduction in the signaling molecules in children with
SMA elicits the expected known actions, except for the up-regulation present for IRAK1.
However, since IRAK1 and IRAK2 form a complex, the higher down-regulation in IRAK2
likely overrides the moderate increase in IRAK1.

In addition, UEV1A (+0.45) undergoes autoactivation, as well as activation of TAB2
(+0.57) and TAB3 (+1.82) by ubiquitination [Ubiquitin B (UBB), +0.94]. TAB2/3 can form
a complex with TAK1 (MAP3K7, +0.18) for activation of IKK-alpha (−0.49), which, once
phosphorylated in the IKK complex, can degrade I-kB (−0.91), resulting in translocation
of NF-kB1 (−0.40) into the nucleus for subsequent activation of gene expression of IL-6
(−0.60), IL-1β (−1.51), ICAM1 (−1.04), CD69 (−0.29), CD80 (+1.54), and CD86 (+0.54).
In children with SMA, decreased IKK-alpha transcripts appear responsible for reduced
NF-kB1 transcriptional regulation of its downstream targets, except for CD80 and CD86,
which were up-regulated. However, this observation may be explained by alternative
signaling pathways that can activate CD80 and CD86, such as CD-40-CD40L interactions
and the JAK/STAT pathway, which is not annotated in the current signaling map [75,76].

Degradation of NF-kB1 (−0.40) liberates TPL2 (MAP3K8) for activation of MEK1/2
(+0.55), followed by phosphorylation of ERK1/2 (+0.60) and the subsequent phosphoryla-
tion of c-Jun, which forms a heterodimer with c-Fos. This complex activates AP-1 [(JUNB,
−0.57) and (JUND, +1.95)], which can induce IL-6 (−0.60) expression. Convergent signaling
for activation of AP-1 [(JUNB, −0.57) and (JUND, +1.95)] also occurs by signaling through
TAK1 (MAP3K7, +0.18), resulting in phosphorylation of MEK3 (MAP2K3, +1.44) and MEK6
(MAP2K6, −0.68), and the subsequent phosphorylation of p38 MAPK (−0.78). Thus, in
children with SMA, it appears that TAK1/MEK3 could signal through the enhanced levels
of AP1, but despite such, transcriptional regulation of downstream targets (e.g., IL-6) does
not appear to be enhanced. In conclusion, a substantial alteration in the cellular signaling
cascade impacts the function of HSPs, MHC expression, TLR signaling, and various other
cellular responses (e.g., NF-kB and AP-1 signaling).

3.7. Unsupervised Hierarchical Clustering Analysis of Gene Expression Profiles in the
HSP60-HSP70-TLR2/4 Signaling Pathway

An unsupervised hierarchical clustering heatmap was generated to visualize individ-
ual gene expression patterns for DEGs (Padj < 0.050) in the HSP60-HSP70-TLR2/4 signaling
pathway in children with non-SMA and SMA, along with information about stratified
age groups and sickle-cell genotype for each study participant (Figure 7A). This analysis
revealed two distinct (major) clusters, with cluster 1 composed of 30 down-regulated genes
in SMA and cluster 2 containing 17 up-regulated genes. In children with SCA, particularly
those in the SMA group, there was an exacerbation of both the down- and up-regulated
genes in clusters 1 and 2, respectively. To further explore the biological functions of the
DEGs in clusters 1 and 2, MetaCoreTM was used to generate the top 10 ranked process
networks. The top-ranked process networks for cluster 1 (down-regulated) included
Inflammation-Amphoterin Signaling (Padj = 1.192061 × 10−25) and Inflammation-Innate
Inflammatory Response (Padj = 3.163061 × 10−25, Figure 7B). Common genes in multiple
pathways were TLR4 and TLR2, MyD88, IRAK1/2, IKK-alpha (I-kappa-B kinase alpha),
NF-kB (various forms including p100, p105, p52, and p50), NFKBIA (I-kappa-B alpha),
AP-1 (Activator Protein 1), ICAM1, and IL-1 beta (Table S2), suggesting that children with
SMA have an impaired immune response, weakened TLR-signaling, and a dysregulated
inflammatory balance. The top-ranked process networks for cluster 2 (up-regulated) con-
tained Immune Response-T Helper Cell Differentiation (Padj = 1.061 × 10−10) and Immune
Response-TCR signaling (Padj = 4.764061 × 10−10, Figure 7C) with an overrepresentation
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of up-regulation of CD86, ERK1/2 (MAPK1), MEK1/2 (MAP2K1/2), TAK1 (MAP3K7),
IRAK1/2, and MHC class II (Table S2), indicating an enhanced response to specific immune
and inflammatory pathways associated with differentiation and activation of T helper cells
and pathways associated with T cell receptors. These findings reveal an interplay between
altered HSP60 and HSP70 expression and TLR signaling in SMA, leading to compromised
cellular stress responses and potential increases in damage and inflammation, suggesting
compensatory and pathological activations.
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Figure 7. Unsupervised hierarchical clustering of RNA-seq data showing differentially expressed
genes in the HSP60-HSP70-TLR2/4 pathway. (A) Heatmap showing expression values for each of the
47 DEGs selected based on Padj ≤ 0.050 (rows) normalized across all samples (columns). Dendrogram
of hierarchical clustering of genes based on Euclidean distance of z-score data. Age distributions
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regulated (red) and down-regulated (green) genes. (B) Top 10-ranked process networks generated in
MetaCoreTM for cluster 1 (down-regulated) DEGs. (C) Top 10-ranked process networks generated in
MetaCoreTM for cluster 2 (up-regulated) DEGs. Process networks are represented on the left Y-axis.
The number of DEGs in the dataset is shown relative to the total number in the process network. The
right Y-axis indicates the Padj value, and the X-axis shows the −log10(Padj) values.
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3.8. Dysregulation of the HSP60-HSP70-TLR2/4 Signaling Pathway Is a Central Feature of Severe
Malarial Anemia in Children with and without Sickle Cell Anemia

To capture the representative natural landscape of children who present at hospitals
with SMA in holoendemic P. falciparum transmission regions, carriers of all sickle cell
genotypes were included in the aforementioned transcriptomic analyses. Consistent with
the expected enrichment of HbSS carriers in children with severe malaria [77], the following
distribution was present in the cohort: non-SMA (HbSS carriers = 2/41, 4.9%) and SMA
(HbSS carriers = 7/25, 28.0%, see Table 1). To mitigate any potential confounding effects
of HbSS carriage on our findings related to immune dysregulation in the HSP60-HSP70-
TLR2/4 signaling pathway, canonical pathway mapping was performed in children without
SCA in the non-SMA (n = 39) and SMA (n = 18) groups. This analysis confirmed significant
dysregulation of DEGs in the HSP60-HSP70-TLR2/4 signaling pathway (54/54 nodes,
Padj = 9.041 × 10−13, Figure S1), confirming that dysregulation in the signaling pathway is
a general feature of SMA in children with and without sickle cell anemia.

3.9. Validation of the HSP60-HSP70-TLR2/4 Signaling Pathway DEGs with High-Throughput
Gene Expression Profiling

For validation of the DEGs in the HSP60-HSP70-TLR2/4 signaling pathway, global
gene expression profiling (>19,185 transcripts, Illumina® HumanHT-12 v4 beadchip) was
performed on whole blood samples from a separate cohort of children (recruited April
2004 to September 2015). The experiment was performed on samples collected prior to
treatment interventions from 50 children representing two extremes of clinical malaria
phenotypes: mild malarial anemia (non-SMA; Hb levels of 8.1–12.4 g/dL; n = 38, average
Hb = 9.3 g/dL) and severe malarial anemia (SMA; Hb levels of 4.1–5.9 g/dL; n = 12, aver-
age Hb = 5.3 g/dL). Figure S2 illustrates the overall study design, while Table S3 provides
the study participants’ detailed demographic, clinical, and laboratory characteristics. Com-
parative analysis of the RNA-seq and Illumina® platforms was performed by mapping both
datasets onto the HSP60-HSP70-TLR2/4 signaling pathway using MetaCoreTM without
any thresholds to depict all the expression patterns (Figure 8A). The Illumina® platform
mapped to 28/54 nodes in the HSP60-HSP70-TLR2/4 signaling pathway and was highly
significant (Padj = 5.452 × 10−5), confirming the findings for the RNA-seq analysis that
mapped to 54/54 nodes (Padj = 9.041 × 10−13). Cluster analysis was then performed on
the HSP60-HSP70-TLR2/4 signaling pathway genes in both datasets (n = 56 genes). The
heatmap analysis revealed consistent fold change patterns and directionality for most genes
(Figure 8B). The cross-platform comparison showed a linear relationship with a correlation
coefficient of r = 0.290 and a p-value of 0.091 (Figure 8C). Collectively, validation with the
beadchip array yielded concordance with the directionality and magnitude of the RNA-seq
data captured for the HSP60-HSP70-TLR2/4 signaling pathway.

3.10. Integration of RNA-seq and Proteome Data for the HSP60-HSP70-TLR2/4
Signaling Pathway

To assess the relationship between DEGs in the HSP60-HSP70-TLR2/4 signaling path-
way and levels of corresponding proteins, transcriptomic data from whole blood were
compared with protein abundance data measured in plasma using the 7k SomaScan plat-
form. For these experiments, 35 children [non-SMA (n = 19) and SMA (n = 16)] out of
the overall cohort (n = 66) had both RNA-seq and proteomic data for comparison. Con-
comitant mapping of the RNA-seq and proteomic datasets to the HSP60-HSP70-TLR2/4
signaling pathway was performed with MetaCoreTM in the absence of thresholds to fully
illustrate the maximum number of transcript/protein pairs (Figure 9). The proteomic
dataset mapped to 38/54 nodes in the HSP60-HSP70-TLR2/4 signaling pathway and was
highly significant (Padj = 7.413 × 10−10), while the RNA-seq data mapped to 54/54 nodes
(Padj = 9.041 × 10−13). As expected for concomitant transcript and protein measurements
that are frequently divergent due to temporal dynamics and post-transcriptional, trans-
lational, and post-translational regulatory mechanisms, 20/38 of the transcript/protein
matches were in opposite directions [78], while 18/38 had the same orientation. Consis-
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tent with the divergent premise, 100% of the transcript/protein pairs showed opposite
directionality with a threshold of p ≤ 0.050.Pathogens 2024, 13, x FOR PEER REVIEW 19 of 32 
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Figure 8. Comparative analysis of RNA-seq and Illumina® platforms for HSP60-HSP70-TLR2/4
signaling pathway. (A) Gene abundance in the RNA-seq dataset (Novogene) was compared with
measures obtained using the Illumina® HumanHT-12 v4 beadchip covering >47,000 transcripts
on the Illumina® “iScanSQ” platform using MetaCore™. There were 66 children in the RNA-seq
experiment (n = 41 non-SMA and n = 25 SMA) and 50 children in the Illumina® platform experiment
(n = 38 non-SMA and n = 12 SMA). The RNA-seq data mapped to 54/54 nodes (Padj = 9.041 × 10−13),
while the Illumina® platform mapped to 28/54 nodes (Padj = 5.452 × 10−5). The missing data
in the Illumina® set was because those genes representing the proteins were absent in the assay
format. The details of symbols used in these figures are available at the following site: https:
//portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf (accessed on 9 September 2024)
(B) Heatmap showing the comparison of Novogene/Illumina® HumanHT-12 v4 pairs between the
two datasets. The Y-axis depicts the matched transcript pairs, while the X-axis represents the assay
type. The color scale depicts fold regulation (Log2). (C) Correlation scatter plot demonstrating the
relationship between significantly expressed protein targets (Log2FoldChange; Y-axis) and genes
(Log2FoldChange; X-axis). A two-tailed Spearman’s test indicated concordance between the transcript
pairs at r = 0.290 and p = 0.091.

https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf
https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf


Pathogens 2024, 13, 867 19 of 30

Pathogens 2024, 13, x FOR PEER REVIEW 20 of 32 
 

 

2024) (B) Heatmap showing the comparison of Novogene/Illumina® HumanHT-12 v4 pairs between 
the two datasets. The Y-axis depicts the matched transcript pairs, while the X-axis represents the 
assay type. The color scale depicts fold regulation (Log2). (C) Correlation scaĴer plot demonstrating 
the relationship between significantly expressed protein targets (Log2FoldChange; Y-axis) and 
genes (Log2FoldChange; X-axis). A two-tailed Spearman’s test indicated concordance between the 
transcript pairs at r  = 0.290 and p = 0.091. 

3.10. Integration of RNA-seq and Proteome Data for the HSP60-HSP70-TLR2/4 Signaling 
Pathway 

To assess the relationship between DEGs in the HSP60-HSP70-TLR2/4 signaling 
pathway and levels of corresponding proteins, transcriptomic data from whole blood 
were compared with protein abundance data measured in plasma using the 7k SomaScan 
platform. For these experiments, 35 children [non-SMA (n = 19) and SMA (n = 16)] out of 
the overall cohort (n = 66) had both RNA-seq and proteomic data for comparison. 
Concomitant mapping of the RNA-seq and proteomic datasets to the HSP60-HSP70-
TLR2/4 signaling pathway was performed with MetaCoreTM in the absence of thresholds 
to fully illustrate the maximum number of transcript/protein pairs (Figure 9). The 
proteomic dataset mapped to 38/54 nodes in the HSP60-HSP70-TLR2/4 signaling pathway 
and was highly significant (Padj = 7.413 × 10−10), while the RNA-seq data mapped to 54/54 
nodes (Padj = 9.041 × 10−13). As expected for concomitant transcript and protein 
measurements that are frequently divergent due to temporal dynamics and post-
transcriptional, translational, and post-translational regulatory mechanisms, 20/38 of the 
transcript/protein matches were in opposite directions [78], while 18/38 had the same 
orientation. Consistent with the divergent premise, 100% of the transcript/protein pairs 
showed opposite directionality with a threshold of p ≤ 0.050. 

 

Figure 9. Comparative analysis of transcript and protein abundance in the HSP60-HSP70-TLR2/4
signaling pathway in children with severe malarial anemia. MetaCore™ was employed to illustrate
genes with their respective protein products in a cohort of 35 children (non-SMA, n = 19; SMA, n = 16)
for whom both RNA and protein data were available. Pathway maps were created without applying
thresholds to view all transcript and protein relationships. The transcriptome data mapped to 54/54
nodes (Padj = 9.041 × 10−13), while the proteome data mapped to 30/54 nodes (Padj = 7.413 × 10−10),
illustrating the strong biological relationship between the transcriptome and proteome data in
the pathway. The lack of a protein match for some of the nodes was because 12 of the proteins
were not in the SomaScan array. The details of symbols used in these figures are available at the
following site: https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf (accessed
on 17 September 2024).

3.11. Differential Expression of Glutamine Transporters and Glutamine Synthetase in SMA

Since GLN is a critical regulator of HSP responses and must be actively taken up by
cells to counter the stress response induced by conditions such as SMA, GLN transporters
were explored. Of the 18 characterized human GLN transporter genes, 7 were differentially
regulated between the non-SMA and SMA groups (Table S4). SMA was characterized by
up-regulation of five transporter genes: SLC6A19 (log2FC = 4.17), SLC7A5 (2.54), SLC1A5
(2.49), SLC7A8 (0.69), and SLC38A1 (0.35), and down-regulation of two transporter genes:
SLC38A2 (−0.28) and SLC38A3 (−1.38) (Figure 10). Unsupervised hierarchical clustering of
the seven transporters revealed two clusters, with the three most differentially up-regulated
GLN transporters (~2.5 Log2FC) forming cluster 1 (i.e., SLC6A19, SLC7A5, and SLC1A5),
while the remaining four transporters (two up-regulated and two down-regulated) formed
cluster 2 (i.e., SLC7A8, SLC38A1, SLC38A2, and SLC38A3) (Figure S3). Children with SCA
who developed SMA had intensified up- and down-regulation of the GLN transporters
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in clusters 1 and 2, respectively. To further explore cellular activity that can influence
GLN levels, GLUL and GLS1/2 were investigated. Exploration of GLUL revealed that it
was significantly up-regulated in children with SMA (Padj = 1.82 × 10−10, log2FC = 1.26,
Figure 10 and Table S4). While GLS1 plays a central role in providing glutamate for
the tricarboxylic acid (TCA) cycle, GLS1 and GLS2 are important in regulating cellular
metabolism [55]. However, differing gene expression profiles were not witnessed for either
GLS1 (Padj = 0.062, log2FC= −0.23) or GSL2 (Padj = 0.778, log2FC= 0.14, Table S4). These
findings indicate that children with SMA exhibit up-regulation of GLN transporters to
boost cellular GLN absorption and increased transcripts for a critical enzyme, GLUL, that
increases GLN production. Key resources for all experiments are listed in Table S5.

Pathogens 2024, 13, x FOR PEER REVIEW 22 of 32 
 

 

 
Figure 10. Model showing significantly dysregulated glutamine transporters and glutamine 
synthetase. The RNA-seq analyses from 66 children [non-SMA (n = 41) and SMA (n = 25)] containing 
Padj genes at <0.05 revealed dysregulation in seven human GLN transporters in children with SMA, 
five up-regulated (red) and two down-regulated (green). The functionality of both SLC7A5 and 
SLC7A8 relies on the formation of a complex with a chaperone, SLC3A2 (orange). The directionality 
of the arrows indicates the flux of GLN (black), Na+ (gray), neutral amino acids (orange), and H+ 
(purple). Conversion of GLU to GLN is catalyzed by GLUL (doĴed red arrow indicating up-
regulation), whereas conversion of GLN to GLU is catalyzed by GLS1/2 (not significantly altered). 
Log2FC (for Log2FoldChange) and Padj are shown for the significant DEGs. The complete gene list 
can be found in Table S4. Abbreviations and symbols: GLN: glutamine; AA0: neutral amino acids; 
Na+: sodium ion; H+: hydrogen ion; Glu: glutamate; GLUL: glutamate-ammonia ligase (i.e., 
glutamine synthetase); GLS1/2: glutaminase1/2. Created in BioRender.com (accessed on 20 August 
2024). The unsupervised hierarchical clustering heatmap for glutamine transporters is shown in 
Figure S3. 

4. Discussion 
The etiology of SMA is multifaceted, primarily characterized by enhanced hemolysis 

and impaired erythropoiesis, which are, at least in part, related to dysregulation in innate 
immune responses [4]. For example, we have shown that children with SMA in the 
holoendemic P. falciparum transmission region in western Kenya, where the current 
investigations were performed, have imbalances in circulating cytokines and chemokines 
that are associated with inefficient erythropoiesis and severe anemia (e.g., IFN-γ, IL-6, IL-
10, IL-12, IL-13, IL-21, IL-23, MIF MIP-1α, MIP-1β, RANTES (CCL5), TGF-β1, and TNF-α) 
[5,79–82]. 

To extend these findings and move beyond the individual gene-level approach, we 
employed RNA-seq to capture the entire expressed transcriptome in whole blood. This 
approach revealed a substantial number of DEGs (3420 up-regulated and 3442 down-
regulated) in children with SMA compared to non-SMA controls. The nearly equal 
distribution of up-regulated and down-regulated genes suggests a complex and 
multifaceted transcriptional response to SMA pathogenesis. Since it is well established 
that the immune response conditions malarial severity [4], deconvolution analysis was 
performed using CIBERSORTx to capture general immune profiles. This analysis revealed 
that SMA was characterized by a decreased antigenic response, reduced immune priming, 
and an enhanced polarization towards cellular proliferation and repair. While not directly 
comparable to our clinical groups, flow cytometric analyses of immune profiles in 

Figure 10. Model showing significantly dysregulated glutamine transporters and glutamine
synthetase. The RNA-seq analyses from 66 children [non-SMA (n = 41) and SMA (n = 25)] containing
Padj genes at <0.05 revealed dysregulation in seven human GLN transporters in children with SMA,
five up-regulated (red) and two down-regulated (green). The functionality of both SLC7A5 and
SLC7A8 relies on the formation of a complex with a chaperone, SLC3A2 (orange). The directionality
of the arrows indicates the flux of GLN (black), Na+ (gray), neutral amino acids (orange), and
H+ (purple). Conversion of GLU to GLN is catalyzed by GLUL (dotted red arrow indicating up-
regulation), whereas conversion of GLN to GLU is catalyzed by GLS1/2 (not significantly altered).
Log2FC (for Log2FoldChange) and Padj are shown for the significant DEGs. The complete gene list can
be found in Table S4. Abbreviations and symbols: GLN: glutamine; AA0: neutral amino acids; Na+:
sodium ion; H+: hydrogen ion; Glu: glutamate; GLUL: glutamate-ammonia ligase (i.e., glutamine
synthetase); GLS1/2: glutaminase1/2. Created in BioRender.com (accessed on 20 August 2024). The
unsupervised hierarchical clustering heatmap for glutamine transporters is shown in Figure S3.

4. Discussion

The etiology of SMA is multifaceted, primarily characterized by enhanced hemoly-
sis and impaired erythropoiesis, which are, at least in part, related to dysregulation in
innate immune responses [4]. For example, we have shown that children with SMA in
the holoendemic P. falciparum transmission region in western Kenya, where the current
investigations were performed, have imbalances in circulating cytokines and chemokines
that are associated with inefficient erythropoiesis and severe anemia (e.g., IFN-γ, IL-6,
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IL-10, IL-12, IL-13, IL-21, IL-23, MIF, MIP-1α, MIP-1β, RANTES (CCL5), TGF-β1, and
TNF-α) [5,79–82].

To extend these findings and move beyond the individual gene-level approach, we
employed RNA-seq to capture the entire expressed transcriptome in whole blood. This
approach revealed a substantial number of DEGs (3420 up-regulated and 3442 down-
regulated) in children with SMA compared to non-SMA controls. The nearly equal distri-
bution of up-regulated and down-regulated genes suggests a complex and multifaceted
transcriptional response to SMA pathogenesis. Since it is well established that the im-
mune response conditions malarial severity [4], deconvolution analysis was performed
using CIBERSORTx to capture general immune profiles. This analysis revealed that SMA
was characterized by a decreased antigenic response, reduced immune priming, and an
enhanced polarization towards cellular proliferation and repair. While not directly com-
parable to our clinical groups, flow cytometric analyses of immune profiles in Ghanaian
children with asymptomatic and symptomatic P. falciparum infections revealed significant
changes in CD4 T cells, CD8 T cells, monocytes, and natural killer cells during acute symp-
tomatic infections, aligning with results presented here [83]. Another study in Kenyan
children utilized CIBERSORTx to deconvolute cell-type proportions from transcriptome
data before, during, and after malaria episodes [84]. This investigation revealed significant
changes in immune cells, including variations in CD8 T cells and memory CD4 T cells.
These changes reflect immune dynamics associated with infection and recovery, generally
consistent with the profiles identified in our clinical groups.

To explore the co-expressed genes that likely share biological and regulatory functions,
WGCNA was performed on the entire expressed transcriptome dataset. This analysis
revealed 21 distinct gene modules, with M15 and M19 showing statistically significant
relationships with the clinical traits (i.e., non-SMA and SMA), suggesting their potential
importance in the pathogenesis of SMA. Functional enrichment analysis revealed that
M15 is strongly linked to immune regulation, including pathways involved in neutrophil
degranulation, innate immune responses, and TLR cascades. This finding highlights a
conglomeration of responses that regulate early (innate) immune activation. Similarly,
M19 showed a significant connection to immune response mechanisms, particularly in
protein interactions and cytokine signaling, indicating its importance in host defense
processes. The WGCNA provided insight into the molecular underpinnings of SMA, with
immune-regulated networks emerging as significant contributors to disease progression.

Since immune response networks emerged as the most enriched features that distin-
guished between the non-severe and severe clinical phenotypes, the pathogenesis of SMA
was further explored by identifying the top 10-ranked canonical pathway maps for the
immune response. This analysis revealed substantial dysregulation in the HSP60-HSP70-
TLR2/4 signaling pathway as one of the top emergent features, supporting the findings
from the WGCNA for M15. In particular, genes for multiple components of the HSP60-
HSP70-TLR2/4 signaling pathway were down-regulated in children with SMA, such as
HSP70 family members, HSP60, TLR2, TLR4, CD14, MD-2/LY96, MyD88, IRAK4, IRAK2,
MEK6/MAP2K6, MAPK14, NF-kB1, NFKB2, IKKα/CHUK, I-κB/NFKBIA, JUNB, IL-6,
NF-κB1/NFKB1, IL-1β, CD69, ICAM1, and MHC class I molecules. Conversely, other genes
within the pathway were up-regulated, including IRAK1, TAB2, TAB3, ubiquitin B/UBB,
UEV1A/UBE2V1, TAK1/MAP3K7, MEK2/MAP2K2, MEK3/MAP2K3, ERK2/MAPK1,
JUND, CD86, CD80, and MHC class II molecules. The pattern of down-regulation of genes
in the HSP60-HSP70-TLR2/4 signaling pathway (e.g., HSP70 family members, TLR2, TLR4,
CD14, and NF-κB1) suggests that children with SMA may have reduced pattern recognition
and inflammatory response. At the same time, up-regulation of other components (e.g.,
IRAK1, CD86, and MHC class II molecules) indicates an attempt to compensate through
alternative immune activation and antigen presentation mechanisms [85,86]. Our results
differ from those obtained in adults, both in malaria-naïve USA volunteers experimentally
infected with P. falciparum and in naturally infected Cameroonian individuals with clinically
apparent falciparum malaria, where GeneChip analysis (Affymetrix U133A) of PBMCs
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showed up-regulation of genes for HSP60, HSPA1A, HSPA1B, HSPA4, HSPA5, HSPA9B,
TLR2, TLR4, CD14, MYD88, IRAK1, IKKα, NF-κB1, IL-1β, and ICAM1 [87]. The differences
between gene expression patterns in children with SMA and adults with malaria may be
due to variations in immune system maturity, disease severity, experimental conditions,
pathogen strain differences, and methodological approaches.

Our previous study showed that leukocytic HSP70 leukocytic transcripts of HSP70
(HSPA1A and HSPA1B) were significantly reduced in children with SMA and positively
correlated with the reticulocyte production index and Hb concentrations [12]. Here, we
expanded those results by linking suppression of HSP70 with TLR2 and TLR4, HSP60,
and associated signaling cascades in malaria-infected children with severe anemia. HSP70
plays an essential role in erythropoiesis by protecting an erythroid transcription factor,
GATA-1, from caspase-3-mediated proteolysis at later stages of erythroblast maturation [88].
Moreover, HSP70 may play a role in the severe anemia witnessed in individuals with β-
Thalassemia (β-TM) since HSP70 directly interacts with free αglobin chains in human β-TM
erythroblasts, resulting in HSP70 sequestration in the cytoplasm, a process that promotes
GATA-1 degradation [89]. HSP70 and HSP60 are also essential for appropriate erythropoi-
etic responses by aiding in protein folding, protecting erythroid precursors from stress-
induced apoptosis during hypoxia and iron deficiency, supporting mitochondrial function,
and regulating the differentiation and proliferation of the erythroid lineage [90–92]. Thus,
our previous and current findings offer novel insight into how dysregulation in the HSP60-
HSP70-TLR2/4 signaling pathway may contribute to inefficient erythropoiesis and the
profound, life-threatening anemia witnessed in children with SMA.

Since the inheritance of sickle cell trait (HbAS) has protective effects against the devel-
opment of severe malaria, children with SMA have a higher proportion of HbSS carriage,
particularly in holoendemic regions [77,85,93–95]. To capture this natural demographic,
children with all sickle cell genotypes were included in the primary transcriptomic analy-
ses, followed by secondary analyses with the removal of HbSS carriers from the non-SMA
and SMA groups. Significant immune dysregulation in the HSP60-HSP70-TLR2/4 signal-
ing pathway was witnessed in the SMA group with or without SCA, indicating that this
pathway is a characteristic feature of SMA, independent of HbSS carriage.

The RNA-seq data for DEGs in the HSP60-HSP70-TLR2/4 signaling pathway was val-
idated using global gene expression profiling (>19,185 transcripts, Illumina® HumanHT-12
v4 beadchip) on whole blood samples from a separate cohort of children with non-SMA
(n = 38, average Hb = 9.3 g/dL) and SMA (n = 12, average Hb = 5.3 g/dL). The global
gene expression profiling confirmed the DEGs in the HSP60-HSP70-TLR2/4 signaling path-
way with a high significance level, underscoring the importance of the immune response
pathway in the pathogenesis of SMA. Although a comparable dataset was not located for
external validation, a comprehensive transcriptomic analysis was recently conducted using
PBMCs from Kenyan children, including 21 asymptomatic–febrile pairs and 22 uninfected–
febrile pairs [96]. This investigation revealed that febrile infections were characterized by
the up-regulation of immune pathways related to immune effector functions, production of
inflammatory cytokines, and humoral responses. Despite comparable panels of genes being
captured, a direct comparison of the expression patterns for the HSP60-HSP70-TLR2/4
signaling pathway and CIBERSORTx results was challenging since the febrile children
were not presented according to disease severity measures.

To evaluate the relationship between DEGs in the HSP60-HSP70-TLR2/4 signaling
pathway and protein levels, transcriptomic data from whole blood was compared with
plasma protein abundance using the 7k SomaScan platform for 35 children (non-SMA n = 19,
SMA n = 16) who had both RNA-seq and proteomic data. Integration of the RNA-seq and
proteome data for the HSP60-HSP70-TLR2/4 signaling pathway revealed highly significant
regulatory changes in protein levels in children with SMA. These data revealed enrichment
for the expected differences in directional patterns between the transcript/protein pairs
in samples measured at the same sample collection time. To fully capture the molecu-
lar relationship between transcript/protein pairs in the HSP60-HSP70-TLR2/4 signaling
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pathway, serially collected samples must be measured in future studies to account for
post-transcriptional and post-translational modifications.

We have previously shown that reduced circulating GLN levels are a significant
predictor of SMA and that GLN treatment can overcome hemozoin-induced suppression of
HSP70 transcripts and protein in human PBMCs from malaria-naïve donors [12]. However,
the etiology of reduced GLN in children with SMA remains undetermined. Multiple
functions have been documented for GLN in mammalian cells, including leukocytes
through the following: (1) cellular signaling by activating heat shock factor 1 (HSF1) and
suppressing NF-κB activity; (2) a crucial energy source, through its involvement in the TCA
cycle; and (3) synthesis of biomolecules, including nucleotides and non-essential amino
acids (NEAA), such as glutamate, asparagine, aspartate, and alanine, as well as proteins and
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which are important for protein
post-translational modifications [40,97–100]. Furthermore, GLN has been shown to facilitate
erythropoiesis by providing succinyl-CoA for heme synthesis [101]. Potential reasons for
reduced GLN in children with SMA, inferred from findings in other non-malarial studies,
include increased metabolic demands, where GLN is rapidly consumed via the TCA cycle,
and overactivation of the immune response, which significantly consumes GLN for the
proliferation and function of immune cells [40]. In addition, children in holoendemic
falciparum regions often suffer from nutritional deficiencies in which inadequate protein
intake can lead to low levels of amino acids, including GLN [40]. Children with severe
malaria may also have impaired liver function, reducing the synthesis and availability
of GLN since the liver is a key site for its production [40]. Children with SMA also have
enhanced oxidative stress that necessitates the utilization of GLN for the synthesis of
glutathione (GSH) and NADPH, which are essential for maintaining the cellular redox
balance [40]. Lastly, children with SMA often suffer from acute kidney injury, which impairs
glutamine (GLN) metabolism, leading to increased oxidative stress and apoptosis in tubular
epithelial cells [102,103].

The uptake of GLN into cells, including lymphocytes and macrophages, to facilitate
its increased demand requires transporters on the cell surface [104]. The primary difference
in GLN transporters lies in their specific functions, substrate specificities, and tissue dis-
tributions (see Figure 6) [51,105,106]. The significant up-regulation of SLC1A19, SLC7A5,
SLC1A5, and SLC7A8 may be related to an increased metabolic demand in the high-stress
state of SMA in which enhanced energy metabolism and synthesis of nucleotides are re-
quired [40,97–100]. The increase in these specific transporters in SMA is also likely related
to an increased need for GLN to support the proliferation and activity of immune cells
and an enhanced requirement for cellular repair, antioxidant defense, and cellular survival
mechanisms [40,51,105,107]. SLC1A5 is essential for Th1 and Th17 cell production and
inflammatory T-cell responses [108]. Consistent with our findings, a previous study in
Gabonese children revealed that SLC6A19 transcripts were highly up-regulated in SMA
relative to those with uncomplicated malaria [109]. In addition to the up-regulation of
specific GLN transporters, two transporters were significantly down-regulated: SLC38A2
and SLC38A3. Given decreased GLN levels in children with SMA, down-regulation of these
GLN transporters is expected to compromise GLN uptake into cells, impairing immune
cell function, antioxidant defense, energy metabolism, and nitrogen balance, a pattern of
responsiveness that could weaken the ability to respond to and recover from the malarial
infection [40,51,105]. The formation of two distinct clusters in the unsupervised hierarchical
clustering suggests that the three most differentially expressed up-regulated genes (cluster
1) may have coordinated regulation driven by a common mechanism. The mixed regu-
lation in cluster 2 indicates a more complex and nuanced response, potentially reflecting
different functional roles/regulatory mechanisms in the disease process. In addition to
GLN uptake through transporters, the combined actions of GLUL and GLS/GLS2 also
control intracellular GLN levels [110,111] While GLUL was significantly up-regulated in
SMA, GLS1/2 did not differ between the groups. Up-regulation of GLUL transcription
likely indicates a compensatory mechanism to enhance leukocytic GLN levels in SMA.
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Since this study focuses on Kenyan children (aged 1–59 mos.) with SMA, there could
be limited generalizability to other populations in geographic regions who suffer from
SMA or different forms of severe malaria (e.g., cerebral malaria). We could not locate
publicly available sources containing data for transcripts and proteins in the HSP60-HSP70-
TLR2/4 signaling pathway to validate our findings in other populations of children. The
cross-sectional design hinders causal inferences, and a single-time-point analysis may not
capture dynamic changes in gene expression and/or the molecular relationship between
transcript/protein pairs. Additional functional studies are required to understand the
roles of dysregulated genes and pathways studied here. Future research should address
these gaps.

5. Conclusions

Exploring the entire expressed transcriptome revealed that key genes in the HSP60-
HSP70-TLR2/4 signaling pathway, as well as genes for GLN transporters and GLN metab-
olizing enzymes, are significantly altered in SMA. This includes down-regulation of key
protective and immune response genes, such as those coding for HSPs, TLRs, and certain
MHC class I components, alongside the mixed regulation of MHC class II, TLR signaling
components, GLN transporters, and GLN metabolizing enzymes. Since the inheritance of
sickle cell trait (HbAS) has protective effects against the development of severe malaria,
children with SMA have a higher proportion of HbSS carriage, particularly in holoendemic
regions. To capture this natural demographic, children with all sickle cell genotypes were
included in the primary transcriptomic analyses, followed by secondary analyses with
the removal of HbSS carriers from the non-SMA and SMA groups. Significant immune
dysregulation in the HSP60-HSP70-TLR2/4 signaling pathway was identified in the SMA
group with or without SCA, indicating that this pathway is a characteristic feature of SMA,
independent of HbSS carriage. These findings highlight the critical role of these signaling
pathways in modulating inflammation and immune responses in SMA, suggesting poten-
tial targets for therapeutic intervention and demonstrating that immune dysregulation in
the HSP60-HSP70-TLR2/4 signaling pathway is central to SMA pathogenesis, regardless of
sickle cell status.
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