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ABSTRACT 

Advances in sequencing technology have resulted in a significant rise in the number of genome 

sequences deposited in the International Pseudomonas Consortium Database (IPCD), National 

Center for Biotechnology Information (NCBI) database and the DNA Databank of Japan (DDBJ). 

A number of special Bioinformatic algorithms have been developed to facilitate comprehensive 

analyses of these repositories. The profile Hidden Markov Model (pHMM) is one such tool that 

has successfully been applied in the characterization of protein families, gene discovery as well as 

the prediction of unclassified sequences. To date, approximately 176 complete genomes of 

Pseudomonas aeruginosa, an opportunistic pathogen, have been banked in the NCBI database. 

The large number of genomes available makes an in silico approach to characterize various genes 

of the ubiquitous organism feasible. The gram-negative bacterium is a leading cause of nosocomial 

infections among immunocompromised individuals which has progressively developed antibiotic 

resistant genes that have conferred it the ability to withstand antibiotics, further complicating the 

treatment. The pathogen has developed this ability through horizontal gene transfer and mutations 

on the variable accessory genome. Within the human host P. aeruginosa forms biofilms that 

compound its antibiotic resistance. In spite of the significance of the phenomenon in compounding 

antibiotic resistance, exhaustive analyses of the genes responsible for biofilm formation remain 

scanty and largely undocumented. This study sought to undertake an in silico mapping of the 

highly versatile biofilm formation genes to decipher novel therapeutic target regions for clinical 

intervention. Genes responsible for biofilm formation were identified using an Entrez search 

engine on the NCBI database. Complete genomes of P. aeruginosa were downloaded from NCBI’s 

P. aeruginosa resources and the International Pseudomonas Consortium Database. A custom 

python script was then written to retrieve biofilm gene sequences from the annotated genomes of 

P. aeruginosa (Genbank files) and Clusters of Orthologous genes (COG) created. A phylogenetic 

tree representative of the evolutionary relationships of the biofilm formation genes was constructed 

to indicate genes that co-evolved and those that evolved differently. Specific profile Hidden 

Markov Models for the different classes of biofilm formation genes were constructed from the 

mined genes and used to analyze the different strains of P. aeruginosa. Overall, 13 ecological 

niches were deciphered. The study identified the algD gene as the most ubiquitous gene in the 

strains of this pathogen. The abscess ecological niche reported the highest density of hits. The 

constructed phylogenetic tree revealed algD, algU and fliC genes evolved differently indicating 

acquisition through horizontal gene transfer. Wilcoxon-signed rank test indicated that the density 

of the htpG pHMM hits was greater for human samples than for nonhuman samples (W=3; p-value 

= 0.01759) indicating a high likelihood of the gene being expressed in human hosts. This was the 

first ever attempt to characterize biofilm formation genes in the genomes of P. aeruginosa based 

on the profile Hidden Markov Model. The findings of this study identified four novel therapeutic 

targets, algD, algU, fliC, and htpG that could be explored by pharmaceutical companies in 

designing candidate drugs based on bioinformatics tools for management of the pathophysiology 

of P. aeruginosa infections. 
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1. CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

The National Center for Biotechnology Information (NCBI) database, International Pseudomonas 

Consortium Database (IPCD) and the DNA Databank of Japan (DDBJ) have witnessed a 

significant rise in the number of genomes largely due to the advances in sequencing technology 

over the last few years (Land et al., 2015). The databases have proved to be a valuable source in 

the search for novel and known genes from different sequences. The large amount of data that 

needs to be analyzed has resulted in the development of special tools like the Profile Hidden 

Markov Models (Francisco et al., 2019). Characterization of protein families, gene discovery and 

sequence analyses have all been achieved using such models (Restrepo-Montoya et al., 2011).  

To better utilize the sequences of specific organisms already available, you could multiply align 

sequences drawn from a given subtype and build a probabilistic model from their consensus. The 

probabilistic model is the widely known profile Hidden Markov Model that can be constructed 

using the software package HMMER (Francisco et al., 2019). Profile HMMs have previously been 

employed in numerous studies that involved the detection of particular sequences. Using the tool, 

one can determine whether or not a particular sequence belongs to a specific profile given the 

probabilistic and statistical intrinsic nature of the profile HMMs (Gong et al., 2012). The Pfam 

database of protein families heavily relies on profile HMMs to facilitate the characterization and 

classification of different protein families (Finn et al., 2016). In spite of its efficiency in sequence 

analysis, profile HMMs have not yet been employed in the analysis of P. aeruginosa genes. This 

study sought to construct profile HMMs of different classes of biofilm formation genes and use 

them to decipher different properties of the pathogen’s sequences obtained from different 

ecological niches. 



2 
 

Close to 176 complete sequence genomes of P. aeruginosa strains isolated from different 

ecological niches, given the ubiquitous nature of the microorganism, have been sequenced in the 

National Center for Biotechnology Information (NCBI) to date. The numerous sequences are an 

ideal source for studies looking to investigate the diversity and complexity of strains of the 

pathogen (Bruggemann et al., 2018). This large number of genomes available in NCBI’s gene 

bank makes an in silico approach to characterize the genes of biofilm formation in P. aeruginosa 

is feasible. Comparative genomic analyses of whole genomes of the bacteria have been 

successfully applied in previous studies that focused on genome plasticity and the persistence of 

the bacterium in airway infections (Bianconi et al., 2015, Bruggemann et al., 2018). The findings 

of these studies highlighted different aspects of the bacteria ranging from its antibiotic resistance 

capability to its virulence properties. In each study, sequences were obtained from NCBI 

repositories and various bioinformatics tools were used to analyze the sequences. Exhaustive 

analysis of the repositories of NCBI database sequences remains scanty and largely undocumented 

(Freshi, 2015, Wielhmann, 2015). 

The Pseudomonas genus comprises of both beneficial strains and opportunistic human pathogens 

which exhibit different lifestyles within their host (Mark et al., 2011). P. aeruginosa is 

predominantly associated with hospital-acquired infections and accounts for 11% of the 

nosocomial infections (Khan et al., 2015). It is an opportunistic human pathogen as it does not 

infect healthy individuals. Immunocompromised patients especially those with cancer, AIDS or 

cystic fibrosis are the most susceptible to infections caused by the bacteria (Balasubramanian and 

Mathee, 2009). It has been associated with high a mortality rate ranging from 18% - 60% and is 

one of the leading gram negative opportunistic pathogens (Kim et al., 2014). P. aeruginosa is 

characterized as a ubiquitous microorganism as it lives in both human and inanimate environments. 
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The pathogen has been implicated in a host of infections including septicemia, pneumonia, otitis 

media, infections of the lower respiratory tract and cystic fibrosis highlighting its medical 

importance. The bacterium has developed resistance to antibiotics through horizontal gene transfer 

and mutations in chromosomal genes (Araujo et al., 2016). Its antibiotic resistance ability is 

compounded by plasmids that encode for beta lactamase production (Okesela and Oni, 2012). 

Multi-drug resistant P. aeruginosa complicates treatment decisions and inevitably leads to 

treatment failure (Zavascki AP, 2010). The organism also forms biofilms through which different 

groups can adhere to surfaces. These biofilms cannot be easily destroyed once they are formed 

compounding the microorganism’s antibiotic resistance ability. The conservation and variation 

patterns of biofilm formation genes in P. aeruginosa are poorly studied in spite of the importance 

of the phenomenon in antibiotic resistance. This study sought to develop a specific profile to search 

for biofilm formation genes in the genomes of P. aeruginosa and identify the conservation and 

variation patterns of these genes among the different strains of the opportunistic pathogen to 

decipher novel therapeutic targets for clinical intervention. New findings have been based on 

chance rather than a systematic exploration (Francisco et al., 2019).  This was the first ever attempt 

to map the gene clusters of P. aeruginosa based on the profile Hidden Markov Model. 

The pathogen’s genome is composed of a conserved core and variable accessory segments that are 

characterized by a set of genomic islands (Mark et al., 2011). The core genome has a conserved 

synteny of genes and a 0.5% level of nucleotide divergence. The genome has a G-C content of 

65% and is about 5.2 to 7 million base pairs long (Weihlmann, 2007). P. aeruginosa consists of 

different strains that are classified under three clades which are known to occupy different niches 

within their host. The first clade is associated with the reference laboratory strain PAO1. Most P. 

aeruginosa strains are associated with this clade. The second clade is associated with PA14 which 
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is more virulent and contains additional genes associated with survival in diverse environments. 

The third clade is associated with strain PA7 that is a non-respiratory clinical isolate from 

Argentina (Roy et al., 2010).  Previous studies have not provided reliable explanations for the 

population structure of the bacteria (Wielhmann, 2015). Although host associations and 

environmental niches have been implicated in the evolutionary differences, exhaustive analyses of 

the NCBI repositories remain scanty and disjointed (Freshi, 2015, Wielhmann, 2015). This study 

analyzed available sequence information to shed further light on the population structure and 

survival mechanism of P. aeruginosa in the human host. 

The next-generation sequencing technology (NGS) is fast taking the place of traditional molecular 

typing techniques.  It is a high throughput technique that facilitates the identification of point 

mutations within bacterial species and is ideal for comparative genomic studies of bacterial 

pathogens (Metzker, 2010). Most of the sequences deposited on NCBI repositories albeit being 

informative have however not been adequately explored in the efforts to better understand the 

survival mechanisms of P. aeruginosa. It is against this background that an informed decision to 

analyze available sequences using profile Hidden Markov Models to identify the conserved and 

variable biofilm formation genes was made. With NGS higher sequence resolution is guaranteed 

and associations can be made between the genome evolution, structure and content and the 

epidemiology of the pathogen (Sabat et al., 2013). Whole genome sequencing data also allows us 

to identify biological markers that can be exploited in the development of therapies against 

P.aeruginosa infections (Bianconi et al., 2015). Databases containing metadata on the strains 

provide relevant information that can be used in comparative genomics studies. The metadata 

provided insights on the specific sequences and aided in the selection of sequences to be used in 

the study. 
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The neighbor-joining algorithm was used to determine the evolutionary trends exhibited by the 

biofilm gene clusters of P. aeruginosa. Profile hidden Markov models for genes responsible for 

biofilm formation in gram negative bacteria were then constructed and used to characterize these 

genes in strains of P. aeruginosa. The study identified the conservation of genes in the 

opportunistic pathogen which were deemed as regions of interest and were identified as potential 

targets for novel treatment options. The profile also identified variations in the genes and reported 

them either as the presence/absence of particular genes or as mutations within the present genes. 

The findings of this study identified four novel therapeutic targets for clinical intervention, algD, 

algU, fliC, and htpG that could be explored by pharmaceutical companies in designing candidate 

drugs for management of the pathophysiology of P. aeruginosa infections. Further, it is hoped that 

the findings of this study help inform policy on management of P. aeruginosa pathogenesis. The 

findings of the study also shed more light on the survival mechanisms of P. aeruginosa within the 

human host. 

1.2 Statement of the Problem  

Immunocompromised individuals who visit hospitals are in danger of acquiring different 

nosocomial infections. Hospital-acquired P. aeruginosa infections cause severe illness and can 

lead to death in some cases. Patients with burn wounds or wounds from surgery are the most 

susceptible to the life-threatening infections. Antibiotics have generally been used to treat these 

infections. However, the bacterium has developed antibiotic resistance through horizontal gene 

transfer and mutations in chromosomal genes, making treatment to become more difficult. 

Multidrug resistant Pseudomonas is considered to be a serious threat according to reports from 

CDC (2019). Previous studies have been carried out to identify the mechanisms of antibiotic 

resistance of the organism. Few studies have made reference to the different niches that the 
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bacterium occupies while in its host. One of the survival mechanisms of P. aeruginosa is the 

formation of biofilms. Biofilms often compound the pathogen’s to ability to impair the effects of 

therapeutic agents. The conservation and variation patterns of biofilm formation genes in P. 

aeruginosa are poorly studied in spite of the importance of the phenomenon in compounding the 

antibiotic resistance ability. This study sought to profile gene clusters of P. aeruginosa that are 

associated with specific biofilms through the construction of specific profile Hidden Markov 

Models. Sequences obtained through the next-generation sequencing technology and deposited on 

NCBI repositories, on the other hand, have been underutilized in the efforts to better understand 

the survival mechanisms of P. aeruginosa. Multi-drug resistant P. aeruginosa causes infections 

that result in high morbidity and mortality rates in different locations. Patients end up requiring 

utmost attention and the overall treatment costs are increased. The higher treatment costs are more 

often than not occasioned by the need to try out different treatment options before the most 

effective option is settled on. 

1.3 Justification of the Study 

Among the numerous challenges that the global healthcare sector needs to grapple with is 

antibiotic resistance. The misuse of antibiotics has actively contributed to the emergence of 

resistance genotypes due to horizontal gene transfer as well as spontaneous mutations. P. 

aeruginosa infections pose a great challenge to healthcare providers in Kenya as the bacteria has 

developed resistance to antibiotics used for treatment. There is need to develop therapies that are 

not antibiotic in nature. This is only possible if survival mechanisms of the pathogen are well 

understood. This study sought to lay bare the conserved and variable gene clusters that facilitate 

biofilm formation in a bid to provide valuable information about this survival technique. Biofilm 

formation has stood out as one of the mechanisms through which the pathogen facilitates its 
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survival within the human host. The biofilms are difficult to destroy and compound the antibiotic 

resistance ability of P. aeruginosa. Development of anti-biofilm therapies could be an important 

step in the efforts to treat infections caused by the bacteria. This study mapped gene clusters that 

are associated with biofilm formation to step up the fight against P. aeruginosa. A better 

understanding of the conserved and variable biofilm formation genes within the pathogen could 

help to augment the efforts against the pathogen. The profile Hidden Markov Model is resourceful 

for determining evolutionary relationships between organisms through rapid and sophisticated 

analyses of gene sequences obtained from whole genome sequencing. With a single profile HMM 

one can accurately predict whether or not a certain sequence belongs to a particular profile (Gong 

et al., 2012). This study sought to analyze available sequences using profile hidden Markov models 

to identify the conservation and variation of genes that are associated with biofilm formation and 

decipher novel therapeutic target regions for clinical intervention. In silico techniques have been 

developed to analyze v 

1.4 General Objective 

To undertake an in silico mapping of biofilm gene clusters of P. aeruginosa that define specific 

biofilm formation genes in deciphering novel therapeutic targets for clinical intervention 

1.5 Specific Objectives 

(i) To determine the molecular evolutionary relationship of genes responsible for biofilm 

formation in P. aeruginosa biotypes occupying different ecological niches. 

(ii) To construct profile Hidden Markov Models for the whole genome sequencing genes 

responsible for biofilm formation in P. aeruginosa biotypes occupying different 

ecological niches. 
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(iii) To determine the levels of variability among biofilm formation genes in the genomes 

of P. aeruginosa strains using profile Hidden Markov Models in deciphering novel 

therapeutic target regions for clinical intervention. 

1.6 Null Hypothesis 

Ho 1. There is no significant difference between the evolutionary relationships of genes 

responsible for biofilm formation in P. aeruginosa biotypes occupying different ecological 

niches. 

Ho 1. There is no significant difference between the relationship of the whole genome sequencing 

genes and biofilm formation in P.seudomonas aeruginosa biotypes occupying different 

ecological niches. 

Ho 1. There is no significant difference between the variations among gene clusters of biofilm 

formation in P. aeruginosa biotypes. 

1.7 Significance of the Study 

The results of this study shed further light on the gene clusters responsible for the survival of P. 

aeruginosa within the human host. The results also revealed the conserved and variable biofilm 

formation genes in the genomes of the opportunistic pathogen. This valuable information is 

currently not available and has limited the therapeutic efforts of the scientific community. It was 

hoped that this study would contribute novel findings to help inform enhancement of the 

therapeutic options against infections caused by P. aeruginosa. Development of efficient treatment 

options is likely to reduce the overall cost of treatment. Mapping of gene clusters responsible for 

biofilm formation supplements the information already available concerning the survival 
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mechanisms of the bacteria in the human host. The scientific community can build on this 

information and make clear the survival strategies of P. aeruginosa. The intrinsic antibiotic 

resistance ability of P. aeruginosa has brought about the need to develop non-antimicrobial 

treatment options against infections caused by the bacteria. These novel strategies target different 

survival pathways of the pathogen within the human host. Quorum sensing and formation of 

biofilms are paramount for the bacteria to survive and thrive in different niches. However, the gene 

clusters for these strategies in P. aeruginosa are not clearly understood. This study focused on 

gene clusters responsible for such mechanisms. The findings can be used to exploit novel treatment 

strategies that will not be affected by the antibiotic resistance ability of the pathogen. The findings 

can also facilitate the development of a new tool for identifying conservation and resistance 

patterns of biofilm formation genes. 
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2. CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Pseudomonas aeruginosa is a ubiquitous microorganism that belongs to the family 

Pseudomonadaceae. It is a Gram-negative bacterium known to be an opportunistic human 

pathogen. The pathogen is responsible for a host of nosocomial infections including those of the 

urinary and pulmonary tracts as well as wounds and burns (Armour et al., 2007, Marra et al., 

2006). Cystic fibrosis patients are also highly susceptible to infections that the bacterium causes. 

P. aeruginosa is a persistent pathogen thanks to its antibiotic resistance ability. The resistance is 

both inherent and acquired. Numerous studies have been carried out in an effort to understand the 

mechanisms that confer these unique characteristics. The sequencing of the genome of P. 

aeruginosa was a major breakthrough in the efforts of elucidating the attributes of the pathogen 

(Stover et al., 2000). Whole-genome analyses have replaced the conventional pathogenesis 

research. The latter techniques laid emphasis on individual virulence determinants while whole-

genome analyses allow researchers to further interrogate the reasons behind the phenotypic 

characteristics. The sequences are also resourceful as large scale analyses can be efficiently carried 

out. 

2.2 Pseudomonas aeruginosa Strains                                                                                  

Most of the strains of P. aeruginosa that have been sequenced to date were isolated from human 

infections. The strains are classified under three clades that have distinct phylogenetic origins 

(Freschi et al., 2015) as well as a distinct evolutionary history (Bruggemann et al., 2018). Group 

1 contains most of the sequenced strains including PAO1 which is used as the reference strain for 

most studies (Stover et al., 2000). The ST235 clonal linage is part of the Group 2 strains that are 
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known to be exoU-positive (Lee et al., 2006). The exoU gene contributes to the virulence ability 

of the pathogen. The Group 3 clade is the least populated and includes the PA7 strain that also 

serves as a reference strain (Roy et al., 2010). A previous study has indicated that most of the 

newer strains, isolated between 2011 and 2016, exhibit different phylogenetic characteristics from 

strains that were isolated between 1994 and 1998 (Brugemann et al., 2018). Very few studies have 

analyzed the phylogenetic differences between P. aeruginosa strains that were isolated over a large 

time period. 

The PAO1 was the first strain of P. aeruginosa to be sequenced (Stover et.al., 2000) and has served 

as the default reference strain ever since. The genome of PAO1 has 6.26 million base pairs and is 

among the largest bacterial genomes to ever be sequenced. The complex genome structure allows 

it to thrive in highly diverse environments. Ninety percent of the genes code for different functional 

and structural proteins. It is no wonder that P. aeruginosa occupies different niches within its host. 

The PAO1 genome has been used to develop the P. aeruginosa GeneChip (Affymetrix). 117 ORFs 

that are not associated with the PAO1 strain are also included in the GeneChip.  Other than the 

PAO1 strain, numerous other strains of P. aeruginosa have been sequenced. They include the 

PA14 strain, PACS2 strain, PA2192 strain as well as the C3719 strain that was isolated from the 

Manchester epidemic (Jones et al., 2001, Mathee et al., 2008). 

The second P. aeruginosa genome sequence was published for the ExoU-positive strain PA14 

(Lee et. al, 2006), a clinical isolate displaying higher virulence than PAO1. Fifty-four PAO1 

regions of at least one open reading frame (ORF) are absent in the PA14genome, and 58 PA14 

regions are absent in PAO1 including the PA14 pathogenicity islands PAPI-1 and PAPI-2 (He et 

al., 2004). LESB58, widely known as the “Liverpool epidemic strain,” was found to be highly 

transmissible among CF-patients and displayed the potential to cause severe infections even in 
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non-CF human hosts (McCallum et al., 2002). The LESB58 genome contains previously unknown 

accessory genome elements (Winstanley et al., 2009). PA7 is a clinical isolate from Argentina 

with a notably unusual antimicrobial resistance pattern. Strain PA7 shares only 93.5% nucleotide 

identity in the core genome with the other sequenced strains confirming the previous assignment 

of strain PA7as a taxonomic outlier within the species P.aeruginosa (Roy et al., 2010). 

The distinct identity of the different strains is made clear by single nucleotide polymorphisms 

(SNPs) on the core genome. The genomic islands also indicate the individuality of strains that are 

isolated from the same setting. These differences demonstrate the ability of strains to adapt to their 

respective environments (Bruggemann et al., 2018). Highly related strains can be differentiated 

thanks to the analysis of whole genomes that is now possible. Advanced whole genome sequencing 

(WGS) technologies provide resolutions that can facilitate the resolution of such strains especially 

during routine screenings. Resistance markers in the different strains can also be identified with 

WGS.  

The specific genomic islands on their accessory genome infer specific functions and allow 

different P. aeruginosa strains to survive in specific ecological niches. The isolated strains are 

acquired from different sources of the body including but not limited to the blood, surgical 

secretions, bronchoalveolar lavage and tracheal secretions (Snyder et al., 2013). The phylogeny of 

the various strains does not however restrict the ability of the strains to inhabit specific body sites. 

A previous study indicated that isolates sourced from different sample types can be found in the 

same clade (Yan et al., 2017). The diverse strains of P. aeruginosa have an overall genome 

similarity. A good number of phenotypes however show distinct characteristics as is evident when 

comparing the pathogenicity of different strains (Lee et al., 2006).  Previous studies have indicated 

that the PA14 strain exhibits more virulent properties than the PAO1 strain (Choi et al., 2002). A 
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functional analysis of genes of different strains reveals the genes responsible for pathogenicity as 

well as those that allow the bacteria to survive in different ecological niches.  More often than not 

both of these mechanisms are multifactorial. Virulence factors are contained on the core genome 

and on specific virulence islands. Virulence genes in P. aeruginosa include those that encode 

secreted toxins like exotoxin A and ExoU. They also play an active role in processes that are 

related with the pathogenesis of the bacteria. These processes include quorum sensing and motility 

(Lee et al., 2006). 

2.3 The Pseudomonas aeruginosa Genome 

The genome of P. aeruginosa comprises of 5,570 open reading frames (ORFs). Simple eukaryotes 

have a similar number of ORFs. The genome is also characterized by a 66.6% GC content which 

influences the stability of the genome in different environments. The four ribosomal RNA loci 

(rrn) indicate the presence of long repeats in the genome (Stover et al., 2000). The genome 

comprises of a core genome as well as accessory genomes that are specific for different strains. 

This was revealed when an analysis of clinical and environmental isolates was done (Lee et al., 

2006). The accessory genomes facilitate the survival of the bacterium in different ecological 

niches. The core genome comprises of 5,021 genes which perform most of the housekeeping duties 

(Mathee et al., 2008). Previous studies have associated 1,800 ORFs with the accessory genome 

and the ORFs perform a myriad of roles. Some are associated with niche adaptation while others 

are involved with bacteriophages and transposons (Mathee et al., 2008). Previous studies have 

used DNA microarrays to study the responses of the genome to different stimuli (Goodman and 

Lorry, 2004). Very few such studies have exploited the use of comparative genomics tools to 

identify the differences and similarities of the accessory genome. This study sought to use such 

tools in a bid to point out gene clusters responsible for the survival mechanism of the bacteria 
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different niches within the human host. The expression of the genes of P. aeruginosa is tightly 

controlled as is evident in the transcriptional regulators that comprise 10% of the genome (Stover 

et al., 2000). These regulatory genes also form part of the accessory genome of different strains. 

2.3.1 Genomic Islands 

Genomic islands are the portion of genomes that are highly variable and are acquired through 

horizontal gene transfer. These sequences have been implicated in the spread of antimicrobial 

resistance especially in low income settings. The development of next generation sequences have 

improved metagenomic studies to step up the fight against antimicrobial resistance. Genomic 

islands are strain specific and consist of divergent DNA sequences that perform similar or related 

functions. Some of the genes in these islands are not present in other strains. These features were 

identified by whole-genome sequencing of different islands (Spencer et al., 2003). The presence 

of genomic islands within bacterial genomes can be deciphered by a number of software tools 

including the Seqword GI sniffer along with the available database of genomic islands (Bezuidt et 

al., 2009). Such GI identification software tools have facilitated the analyses of important genomic 

islands in different studies. 

2.4 Ecological Niches 

P. aeruginosa strains reside in both inanimate and human environments with ease. This is possible 

due to the presence of numerous enzymes that allow it to use diverse substances as nutrient sources. 

Groups tend to form biofilms (bacterial communities that adhere to a variety of surfaces) that 

enhance their survival capabilities. The bacteria is characterized by an attached-for-survival 

mechanism and once attached they are difficult to destroy. This feature is also evident whenever 

the bacterium makes its way into different human hosts. 
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2.4.1 Biofilms 

Biofilms protect P. aeruginosa from antibodies as well as phagocytes and this creates chronic 

infections in cystic fibrosis patients. During biofilm formation, the bacterium secretes polymeric 

substances once it has attached to its desired surface. They then develop protective communities 

which allow them to thrive even in the presence of antibiotics (Valentini and Filloux, 2016). 

Biofilms partly contribute to bacterial antibiotic resistance. Anti-biofilm therapies are potential 

treatment option that can be considered in the efforts to curb antimicrobial resistance in P. 

aeruginosa (Kearns, 2013). This is however only possible if the genes that encode for biofilm 

formation and behavior are well understood. This study sought to characterize gene clusters that 

are responsible for biofilms in the different strains of P. aeruginosa and provide insight on various 

aspects that may be targeted by potent therapies. Biofilm formation in bacteria is closely linked 

with the swarming phenomenon although the two characteristics are not similar (Kearns, 2013). 

The clearest difference is that biofilms are sessile while swarms are motile (Patrick and Kearns, 

2012). Different sets of genes are also expressed when either of the behavior is witnessed in 

bacteria. The opportunistic pathogen exploits the synergy between the two, among other features, 

to increase its chances of survival within the human host (Kearns, 2010). 

Bacteria use an intracellular messenger to decide whether to form biofilms or opt for better 

conditions through swarming. c-di-GMP (Bis-(3’-5’)- cyclic dimeric guanosine monophosphate), 

a ubiquitous secondary messenger, is greatly effective to this end (Csete and Doyle, 2004.) The 

levels of c-di-GMP within the cell are regulated by a host of proteins that act in response to 

different stimuli including contact with specific surfaces. Their regulatory activities modulate the 

expression of downstream genes (Hengge, 2009). High c-di-GMP levels activate biofilm matrix 

genes and represses flagella genes necessary for swarming motility. The situation is reversed when 
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the intracellular c-di-GMP levels are high and is facilitated by FleQ, an enhancer-binding protein. 

The overall effect is the efficient co-regulation of genes responsible for swarming motility and 

biofilm formation (van Ditmarsch et al., 2013; Matsuyama et al., 2016). Antibiotic therapies 

against P. aeruginosa infections can exploit this co-regulation mechanism. 

2.4.2 Quorum Sensing 

P. aeruginosa secretes numerous products including lectins, rhamnolipids, elastase and pyocyanin 

that contribute to its pathogenic activity (Soberón-Chávez, et al., 2005). Quorum-sensing regulates 

the production of most of these pathogenic determinants (Williams and Cámara, 2009). It is a 

complex regulatory network that determines most of the functions and activity of the pathogen 

within its host (Schuster and Greenberg, 2006). Bacteria secrete autoinducers that facilitate 

communication between cells during quorum sensing. The autoinducers bind to transcriptional 

regulators that modulate gene expression when they reach a threshold concentration depending on 

the bacterial-population density. Quorum sensing is therefore effective in the control of gene 

expression in high population densities (Popat et al., 2015). 

Given that P. aeruginosa has a high intrinsic antibiotic resistance, alternative non-antimicrobial 

treatment approaches are being considered. One of the approaches that has been investigated in 

great detail involves impairing the quorum sensing cascade in the pathogen (O’Brien et al., 2015, 

Jakobsen et al., 2013). The promise that such strategies have shown allows us to explore other 

pathways in the bacteria that facilitates its survival within the human host. A clear understanding 

of the gene clusters responsible for formation of biofilms allows the scientific body to consider 

developing treatment regimens that target this aspect of the pathogen. 
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2.5 Antibiotic Resistance 

The development of antimicrobial resistance (AMR) by bacteria continuous to be a global 

challenge (WHO, 2014). Antibiotics are available over the counter and their use is highly 

unregulated thus contributing to AMR. Misuse of antibiotics has taken most of the blame for the 

rise of this new phenomenon in human and animal pathogens as it encourages the development of 

resistant genes in pathogens. These portions of the genome are acquired by mutations and 

horizontal gene transfer. A lot of concerted efforts have been put in place to reverse this trend. 

Among these efforts was an attempt to understand the dynamics of AMR. A few studies have 

looked at the occurrence of the phenomenon in different settings within Africa (Nyangacha et al., 

2017). Web based resources contain information that can be used to further demystify the whole 

concept of AMR. This study relied extensively on web based resources. Numerous factors have 

contributed to the emergence and fast rise of bacteria antimicrobial resistance. Top on that list is 

the variable accessory genome in different strains of P. aeruginosa. Horizontal gene transfer is 

largely responsible for the genes present in these portions of the genome (Juhas et al., 2009, 

Bellanger et al., 2014). AMR is also a result of a host of genomic islands present in the genome 

that can reside in the host’s chromosomes and transfer between different hosts. 

Resistant genes on the plasmid undergo mutations that further compound the antibiotic resistance 

ability of P. aeruginosa. The mutations can extend to chromosomal genes leading to altered 

functions which contribute to AMR (Lister et al., 2009). Various antibiotic resistance mechanisms 

have also been implicated. Modifications of drug targets, alteration of membrane permeability and 

up regulation of efflux pumps due to mutations are some of these mechanisms. Bacteria also 

acquire numerous enzymes including carbapenemases, 16S rRNA methylases and extended 

spectrum β-lactamases that make them resistant to different antimicrobials (Lister et al., 2009). 
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These mechanisms are further enhanced by non-synonymous Single Nucleotide Polymorphisms 

(nsSNPs) on the genes related with the processes. 

P. aeruginosa is also known to develop resistance to particular antibiotics in the course of 

treatment. This poses a challenge to clinicians as they seek to prescribe the most efficient treatment 

regiments for their patients (Septimus and Kuper, 2009, Nathwani et al., 2014). Multi-drug 

antibiotic resistance in P. aeruginosa is a combination of all these processes. Pathogenicity related 

genes interact in various ways and the end result is an augmented ability of the pathogen to resist 

the effects of different antibiotics (Alekshun and Levy, 2007, Gooderham, 2009, Jansen 2016). 

The complexity of antibiotic resistance in different pathogens led to a need of predicting and 

detecting the phenomenon in silico. The Comprehensive Antibiotic Resistance Database (CARD) 

along with novel bioinformatics tools have made this possible. The tools developed offered a more 

sophisticated way of analyzing the genome of antibiotic resistant pathogens. This provided new 

drug targets that could be exploited in the bid to identify potent treatment options. On the other 

hand, scientists are looking to develop therapies that won’t target the bacterium directly but will 

rather impede its survival mechanism within the host. Such drugs are less likely to be affected by 

antibiotic resistance. One survival of interest is biofilm formation and this study sought to 

determine gene clusters that are responsible for this mechanism in a bid to decipher novel 

therapeutic targets for clinical intervention. 

2.6 Web Based Informatics 

During sequence analysis, relevant sequences are sourced from public databases and refined where 

need be. Different computational tools are then used to predict features of interest in the retrieved 

sequences. The evolutionary history, structure as well as function of genes can all be revealed 

when sequences are analyzed. Homologues can also be identified accurately (Mehmood, Sehar 
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and Ahmad, 2014). The Entrez tool of PubMed is widely used for retrieval of data as it is linked 

to numerous biological data domains (Geer and Sayers 2003). In a recent study that sought to 

characterize the chitin binding protein, the sequences were exclusively retrieved from Uniprot. 

The study successfully predicted the function of the gene cbp50 found in Bacillus thuringiensis 

using a host of sequence analysis techniques (Sehar et al., 2013). Lichun and Jie, (2018)  also 

utilized datasets from NCBI repositories as they sought to demonstrate the value of single-cell 

RNA-sequencing technology in type-2 diabetes studies. Their findings revealed that the 

technology could provide valuable information on various molecular processes of the disease. 

They used different machine learning classifiers to determine different influential factors in the 

development of the disease (Lichun and Jie, 2018) 

2.7 The Hidden Markov Model (HMM) 

The past few years have witnessed an astronomical rise in the number of genomes in the NCBI 

database (Land et al., 2015). The database has become an invaluable source for the analysis of 

specific genes in different organisms. In silico mining of data is emerging as an important tool for 

researchers looking to shed more light on different characteristics of various organisms to address 

threats within the health care sector including antimicrobial resistance. The Basic Local Alignment 

Search Tool is the most common sequence-based approach used for mining sequence information 

of microorganism of interest. Along with other in silico mining tools, BLAST relies on Hidden 

Markov Models (HMMs) a statistical method commonly used to model biological information 

(Altschul et al., 1990, Sherlock et al., 2013, Seifert et al., 2014, Morton et al., 2015, Weber et al., 

2015). The vast amount of data has necessitated the development of special tools including profile 

Hidden Markov Models (pHMMs) to facilitate rapid analyses of the sequences (Francisco et al., 

2019). The pHMMs are a specific subset of HMMs that apply a statistical model to represent the 
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motifs and patterns of a multiple sequence alignment. With an observed frequency of a nucleotide, 

pHMMs are designed to estimate their true frequency at a specific position in the alignment (Yoon, 

2009). From the multiple sequence alignments, profile methods build position-specific models to 

represent the conserved regions in the alignments. Pairwise methods like FASTA and BLAST are, 

however, more popular mainly due to the statistical theory that supports such methods (Altschul 

and Gish, 1996). The advent of hidden Markov models (HMMs), probabilistic models, has 

provided an elaborate theory for profile methods.  

The hidden Markov model is used to describe the probability distribution of an infinite number of 

sequences. This model assigns constrained scores as the probability distribution sums to one. The 

HMM’s parameters have non-trivial optima given that the probability of one sequence decreases 

the probability of other sequences. With HMMs, the state sequence, which in this case is a 

biologically meaningful alignment, cannot simply be determined from the observed symbol 

sequence rather it is probabilistically inferred from the observed symbol sequence. 

2.7.1 Hidden Markov Model Probabilistic 

HMMs work as models which generate sequences. The model starts with an initial state then moves 

to a new state with some transition probability. In this case, the state 1 can be maintained with a 

transition probability t1,1 or the move to state 2 with a transition probability t1,2. Once the next 

state is determined, we’ll have a residue whose emission probability is specific to that state. The 

model iterates the transition/emission process until it arrives at the end state. Complete HMMs 

have both an observable symbol sequence and a hidden state sequence that cannot be seen. 

Standard dynamic programming algorithms are used to align and score sequences with the 

constructed model (Durbin et al., 1998). The Viterbi algorithm is used for alignment while the 

Forward algorithm is used for scoring sequences. 
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2.7.2 Building the Hidden Markov Model 

Setting parameters for an HMM can be done in two different ways. One could either train the 

model from unaligned (unlabeled) sequences or choose to build an HMM from pre-aligned (pre-

labeled) sequences. For the pre-labeled sequences, it is assumed that the state paths are already 

known. With this sequences, the model simply converts state transitions and observed counts of 

symbol emissions into probabilities. The alignment is used as input for building the profile HMM. 

Training a pHMM, on the other hand, is slightly complex as it requires one to run a multiple 

alignment program before they can build the model (Eddy, 1998). 

While it is a harder problem, training a model is an interesting alternative given that a plausible 

alignment of a group of sequences is not known. For training, we could either opt for the Baum-

Welch expectation maximization algorithm or choose the gradient descent algorithm. Different 

studies have highlighted simulated annealing, genetic algorithms and Gibbs sampling as suitable 

training methods. Apparently, these methods can efficiently avoid spurious local optima while 

training HMMs (Durbin et al., 1998, Eddy, 1996). Such algorithms often seek simple maximum a 

posteriori or maximum likelihood optimization targets. Alternatively, the algorithms can use more 

sophisticated optimization targets to maximize the model’s ability in discriminating true positive 

sequences from true negative training examples (Mamistuka, 1996). The sophisticated targets also 

compensate for biased representation which can be attributed to non-independence of example 

sequences (Bruno, 1996, Sunyaev et al., 1998). 

Building HMMs from multiple alignments is a suitable option given that the training algorithms 

are simply local optimizers. Meaning that such algorithms work suitably for less complex HMMs. 

For complicated HMMs, the training algorithm could easily get trapped by numerous spurious 

local optima thanks to a complex parameter space (Eddy 1998). The existing maximum likelihood 
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architecture construction algorithm facilitates the building process of HMMs from pre-aligned 

sequences (Durbin et al., 1998). General HMMs can also be constructed from the architecture 

learning algorithms (Yada et al., 1996). Alternatively, training can be done for fully connected 

HMMs before low-probability transitions are pruned once training is complete (Mamitsuka, 1996). 

2.7.3 Profile Hidden Markov Models 

Krogh et al., (1994) introduced the profile HMM, a strongly linear, left-right model (Krogh et al., 

1994). The pHMM uses a ‘match’ state to model the distribution of residues in each consensus 

column of the multiple alignment. This state is complemented by the ‘insert’ and ‘delete’ states 

which account for an insertion of residues after that column or deletion of the consensus residue, 

respectively. With the pHMM the probability parameters are converted to additive log-odds scores. 

This is done before a query sequence is aligned and scored (Barrett et al., 1997). The score from 

an aligned residue to a match state resembles how FASTA and BLAST scores are derived. For 

example, take the probability of match state emitting residue x as px and the background frequency 

of the same residue in the database as fx. The score of the residue in this state is given as log px/fx. 

Profile HMMs have useful, non-trivial optima as their gap costs are not arbitrary numbers. While 

scoring pHMMs and assigning state transition probabilities, a trade-off point is made to create a 

balance between sequences that have an insertion against those without an insertion. The inserted 

residues in these models also have emission probabilities, 4 for nucleic symbols and 20 for amino 

acid symbols. The score of the inserted residue is given as log fx/fx = 0 if the emission probability 

is similar to the background amino acid frequency. 
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2.7.4 Profile Hidden Markov Models Optimization 

To increase the accuracy of the database search using the pHMM, studies can focus solely on the 

analyses of conserved residues as suggested by Ahola et al., 2003. In this case the efficient 

emission probability (EEP) estimation method is employed in the construction of the individual 

profile hidden Markov models. At each conserved alignment position, the hmmbuild algorithm 

divides amino acids into effective and ineffective residues. This is done to ensure that the 

constructed profile separates the signal from the noise in the conserved positions of the sequence 

alignments, hence overcoming the overfitting problem common for HMMs. With the EEP 

technique, the pHMMs model conserved residues rather than only focusing on the general 

characteristics of different amino acids. This technique combines different residue conservation 

scoring methods with great flexibility (Valdar, 2002). Given that only a few residues can be 

considered as effective for protein sequence alignments, the EEP technique helps to decrease the 

parameter space dimensions. With a reduced parameter space, the variance of effective residues is 

not compromised by the variance of ineffective residues which is likely to reduce. This is 

appreciated most when we calculate the confidence intervals for the different emission 

probabilities. The shorter confidence intervals improve the sensitivity of database search results as 

the model’s prediction power is improved. 

2.7.5 Profile Hidden Markov Model Acceleration 

While pHMMs have attractive advantages, the utility of BLAST made it a suitable option over the 

probabilistic sequence comparison methods (Eddy, 2011). The slow analyses speed and 

computational expensive nature of the models restricted their use for sequence homology and 

similarity searches. For protein domain family analysis, however, the profile’s ability to represent 

numerous homologous sequences compensated for the speed differential (Finn et al., 2016). 
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HMMER3, introduced in 2011, uses the Multiple Segment Viterbi (MSV) algorithm that makes it 

100-faster than previous HMMER algorithms. This implementation also uses the 

Forward/Backward evaluation of alignment ensembles which exploits the most of the 

mathematical advantages offered by probabilistic modeling techniques. With this new 

implementation, scientists could now run homology searches as fast as BLAST and still enjoy the 

multiple advantages of profile HMM methods. To achieve the MSV probabilistic model, the 

algorithm treats match-match state transitions as 1.0 and ignores the match, delete, and insert 

transitions of the original profile. While an MSV score is similar to BLAST’s “sum score”, the 

algorithm bypasses the hit extension and word hit heuristics and calculates the score by dynamic 

programming. This approach makes it more sensitive than BLAST’s approach, although this 

finding is not conclusively proven (Eddy, 2011). 

Besides the better sensitivity, the MSV algorithm can be used and selective sequence filter as the 

p-values of the algorithm can be calculated. Target sequences whose p-values are less than the 

chosen threshold are assumed to be non-homologous to the sequences used in model construction. 

This study set a threshold p-value for analyses of P. aeruginosa strains using the constructed 

models. Previous studies have indicated the MSV algorithm made HMMER3 performance 

comparable to other fast database search programs like NCBI BLAST, WU-BLAST, and 

SSEARCH (Eddy, 2011). The HMMER3 acceleration pipeline involves an MSV filter, bias filter, 

Viterbi filter, Forward algorithm, Backward algorithm. All these processes are put together to 

reduce the computational needs of the software package while maintaining its accuracy and 

accelerating the homology search process. The pipeline is designed to use p-values of the log-odds 

score to either accept or reject comparisons at different steps. The assumption made is that the 

residue compositions of the target sequence and query profile are close to the overall average for 
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proteins. In cases where biased composition is expected, HMMER3 recalculates scores and p-

values to compensate for the bias. The bias filter in the acceleration pipeline also reduces the 

problem of underestimated biased matches as it removes any additional matches that may be due 

to biased composition. The full Forward algorithm calculates the final reported score of the 

sequence. The Viterbi filter, on the other hand, is designed to reduce the computational load 

expected from the Forward step. Specialized memory-efficient forms are used to implement both 

the Forward and Backward algorithms in a bid to reduce the computational load from these 

processes. These two probabilities estimate local alignment “regions” with considerable posterior 

probability mass in the target sequence. The final step of the acceleration pipeline subjects each 

region to the “domain definition” pipeline which is a conceptually separate analysis pipeline. This 

step uses a series of algorithms to identify individual homologous regions and alignments.  

2.7.6 Applications of the Profile Hidden Markov Models 

HMMs have been used for numerous biological applications including, phylogenetic analysis, 

gene finding, protein secondary structure prediction, radiation hybrid mapping, and genetic linkage 

mapping (Felnestein and Churchill, 1996; Goldman et al., 1996; Kruglyak et al., 1996; Slonim et 

al., 1997; Lukashin and Borodovsky, 1998). Profile HMMs are suitable for modeling protein and 

nucleotide sequence data as they move in one direction along the alignment and do not need cycles 

(Skewes-Cox et al., 2014). They assess each column of a multiple sequence alignment looking out 

for the three types of hidden states i.e the match state, insert state or delete state. The three states 

respectively describe the frequencies of residues, insertions and deletions on the sequences being 

analyzed (Yoon, 2009). Although sequence homology approaches like BLAST are lauded for their 

speed, profile HMMs have been shown to demonstrate more sensitivity especially when detecting 

distant homologs. This superiority is achieved thanks to the models’ emphasis on function-
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dependent conserved motifs rather than a focus on the overall sequence similarity (Park et al., 

1998, Madera and Gough, 2002).  

Profile HMMs are highly effective in the analyses of extensive amounts of data. Characterization 

of protein families, comprehensive sequence analyses and gene discovery are some of the 

applications that the model has made possible (Restrepo-Montoya et al., 2011).  A single profile 

HMM can successfully detect sequences that belong to specific profiles as they are intrinsic in 

nature (Gong et al., 2012). The tool has also been used in the analysis of metagenomic sequence 

data to identify viral protein sequences (Skewes-Cox et al., 2014). In one study the model was 

used in the analyses of 857 genomes of Bacillus spp. to find Cry genes. The profile revealed that 

Cry proteins are not only restricted to Bacillus thuringiensis as it was initially presumed. Some of 

the protein sequences were present in B.cereus and other unidentified bacilli. The report also 

indicated the value of a systematic search for specific proteins to solve questions regarding the role 

of such proteins in nature (Francisco et al., 2019). The Pfam database, a collection of protein 

families, largely depends on HMMs as well as multiple sequence alignments. The models have 

facilitated the characterization and classification of different protein families in the database. 

Different other studies have identified signal peptides, carotenoid genes as well as transmembrane 

proteins based on the profile Hidden Markov Model (Tonhosolo et al., 2009). 

This study designed, validated and implemented specific profiles to search for biofilm formation 

genes in the genomes of P. aeruginosa species. The designed profile HMMs revealed the 

conserved and variable patterns among gene clusters responsible for biofilm formation. The results 

of this study pointed out novel therapeutic targets for clinical intervention that could be explored 

by pharmaceutical companies in designing candidate drugs for management of the 

pathophysiology of P. aeruginosa infections. It is hoped that the findings of this study help inform 
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policy management of P. aeruginosa pathogenesis.  Given the large number of genomes present 

in the NCBI gene bank, an in silico approach to characterize the genes of biofilm formation in P. 

aeruginosa was a feasible attempt. 
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3. CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Sequence Retrieval  

3.1.1 Entrez Search 

An Entrez gene search engine was performed on the NCBI database to identify the genes 

responsible for biofilm formation in P. aeruginosa. ‘Biofilm AND Pseudomonas 

aeruginosa[ORGN]’ was used as the query term and the results were obtained from the gene 

database of NCBI. Both the FASTA and GenBank file formats were downloaded for analyses. 

Only the sequences available by December 2018 designated with the “P. aeruginosa” tag were 

selected for the analysis. The genes responsible for biofilm formation were further classified into 

different categories based on the functions they perform in the biofilm formation process. A 

literature search was performed for each gene to facilitate this categorization. The GenBank files 

of the individual genes also informed this categorization as they included the gene annotation 

information along with metadata on these sequences. 

3.1.2 Multiple Sequence Alignment of Biofilm Formation Gene Sequences 

Before evolutionary analyses, and other downstream analyses, of the retrieved sequences could be 

done, the study sought to identify whether these genes were true homologs. This was done through 

multiple sequence alignments of the gene sequences. Identifying homologous sequences by 

sequence similarity searching has been recognized as one of the first and most informative steps 

in any analysis of new sequences (Pearson, 2013). BLAST, FASTA, HMMER3, and PSI-BLAST, 

popular similarity searching programs, produce accurate statistical estimates to infer homologous 

sequences (Pearson and Lipman 1988, Altschul et al., 1997, Johnson et al., 2010).  For this study, 

the MUSCLE algorithm available in MEGA X platform was used to run a multiple sequence 

alignment of the 51 biofilm formation gene sequences obtained from the initial step (Edgar 2004, 
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Kumar et al., 2018). Default parameters of MUSCLE were used for this analysis.  The gap 

penalties were set as follows: gap opening penalty (-400.0) and the gap extend (0.00). The UPGMA 

algorithm was used for clustering while the number of iterations was set at 16. The Min Diag 

Length (Lambda) was set at 24. Sequences that shared significant similarity would be inferred to 

be homologous and used for downstream evolutionary analyses (Pearson WR 2013).  

3.1.3 Pseudomonas aeruginosa Whole Genome Sequence Retrieval 

The study collated whole genomes of different strains of P. aeruginosa to determine the 

distribution of biofilm formation genes in the different strains. Complete genomes were 

downloaded from NCBI and the International Pseudomonas Consortium Database 

(https://ipcd.ibis.ulaval.ca/) as GBK files and FASTA files. From NCBI, the ‘Pseudomonas 

aeruginosa’ query term was used and the search was done from the ‘genome’ database. The study 

selected the ‘complete genomes tag’ in the list of available P. aeruginosa to narrow down the 

search further. From the IPCD database, the study downloaded the ‘Genomic DNA (FASTA) 

complete genomes’ file. A manual curation was done to identify only the strains of P. aeruginosa 

from this sequence file. The study only selected “the complete genomes” available by December 

2018 from these two databases. The genome sequences were then categorized based on the 

ecological niches that they occupy. This classification was facilitated by the metadata (bioproject 

and biosample data) of the different strains available in the two databases.  

3.1.4 Sequence Retrieval Using Python Script 

The initial sequence retrieval of biofilm formation genes from the NCBI database successfully 

identified 51 non-homologous gene sequences. These sequences could not, however, be aligned 

against each other given that they had no homolog sequences as was indicated by the multiple 

sequence alignment of the initial retrieved sequences. For a comprehensive analysis of the 

https://ipcd.ibis.ulaval.ca/
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phylogenetic relationship between the biofilm formation genes, the study sought to collect the 

same genes from representative genomes of P. aeruginosa. A custom python script was written to 

facilitate the retrieval of the biofilm formation gene sequences from the annotated genomes of P. 

aeruginosa (Appendix 1). The script was designed to create FASTA files for every gene, 

containing sequences of the respective genes selected from every reference genome. The GenBank 

files of these strains were used in this case as they are annotated – indicating the specific functions 

of different regions of the sequence. Custom python scripts have previously been used by Awal et 

al., (2017)’s study to separate individual genes from the fasta files of chloroplast genomes 

annotated by NCBI. Python scripts were also used to select designed primers from Trticum 

genomes (Awad et al., 2017). The Python scripting language has also played a pivotal role in 

unifying various data sources and analysis tools. With custom python scripts the bioinformatics 

community gets to efficiently retrieve, analyse and summarize data streams in a single workflow 

(Gilpin 2016). 

3.1.5 Evolutionary Analyses of Biofilm Formation Genes 

Besides deciphering gene and protein function, phylogenetic analysis has proven to be a useful 

tool for understanding organismal relationships. Using phylogenetic (gene by gene analysis) 

methods to compute the relatedness of organisms reveals high-quality results that can accurately 

demonstrate phylogenies (Mansour, 2009). This study sought to understand the evolutionary 

relationships between the biofilm formation genes that had been successfully retrieved. This 

analysis would help to identify whether these set of genes co-evolved from the same parent 

organism or whether they have been acquired through horizontal gene transfer in the course of the 

existence of P. aeruginosa. For this evolutionary analysis, the study used the 13 fasta files 

(sequence files) created from the custom python scripts. These sequences were assumed to be 
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largely homologous as the 44 records in each file were retrieved from similar strains of P. 

aeruginosa. For every COG of biofilm formation genes found in selected reference different 

strains, n=13, the study conducted multiple sequence alignments using the MUSCLE algorithm 

(Edgar, 2004). This was done to test the similarity between the sets of sequences and identify any 

potential polymorphisms. The default values of the MUSCLE algorithm were used for the MSA. 

Awad et al., (2017) used a similar approach as they sought to identify effective DNA barcodes for 

Triticum plants through chloroplast genome-wide analysis (Awad et al., 2017). Individual COG 

alignments were edited by the program Gblocks and then concatenated into a super-alignment used 

for a phylogenetic inference by the Neighbour-Joining (NJ) algorithm implemented in the program 

of PHYLIP 3.69 (Phylogeny Inference Package) (Castresana, 2000, Felsenstein 2005). From the 

aligned sequences, the study created a maximum likelihood phylogenetic tree for each COG 

(specific for the individual biofilm formation genes.) To reach branch confidence values, bootstrap 

with 1000 iterations were set for the phylogenetic tree construction. This phylogenomic approach 

is used to infer phylogenetic trees for organisms based on concatenated alignments of multiple 

concatenated alignments of multiple orthologous genes. The initial phylogenetic analysis would 

be useful in identifying the evolutionary relationship between the 44 P. aeruginosa sequences used 

for downstream analyses. The resulted phylogenetic trees were compared by the program treedist 

of PHYLIP 3.69 using the Branch Score Distance algorithm (Felsenstein, 2005). Distances 

between the trees were saved into a distance matrix. The PHYLIP package was preferred as it has 

previously provided the foundation of population genetics (Volgyi et al., 2009).  The module was 

also used to reveal the genetic evolution of different Klebsiella pneumoniae strains isolated from 

diarrhea specimens and estimate the phylogeny of different mycobacterial strains (Guo et al., 2008; 

Mignard and Flandrois 2008). An in-house Python script was used to reformat the treedist text 
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output file into a matrix of distances between COG-based ML phylogenetic trees in PHYLIP 

format suitable for clustering of the trees by the NJ algorithm. The neighbor-joining algorithm was 

then used to build a tree representing the evolutionary relationships of the biofilm formation genes 

based on the distance matrix. The resultant dendogram was used to analyze grouping of co-evolved 

biofilm formation genes. Clustering of several genes together would mean their co-evolution while 

separating genes to different clusters would mean horizontal gene transfer exchange.  

3.2 Construction of the Hidden Markov Models 

3.2.1 Identification of the Protein Family of Interest 

The construction of profile hidden Markov models is based on multiple sequence alignments of 

DNA or proteins sequences from the same functional family. The pHMM is used to represent the 

patterns, motifs along with other statistical properties of the alignments. Before the actual 

construction is performed the protein family of interest under investigation should be selected. The 

criteria identified by Henikoff et al., was used in this study to identify the protein family of interests 

(Henikoff et al., 1997). In this case the protein family of interest would represent a set of genes 

performing similar functions in different strains of P. aeruginosa, the pathogen under study. 

3.2.2 Selection of Sequences Representative of this Family 

With a protein family of interest identified, representative sequences from these sequences were 

selected for model construction. Sequences initially retrieved from the custom python scripts were 

selected in this case to provide the most informative findings in the downstream analyses. A 40% 

sequence similarity threshold was chosen as was suggested by Rost’s study which indicated that 

long alignments greater than 40% are ideal for providing unambiguous results (Rost, 1999). 

Sequence files with similarity identities less than 40% were excluded from the downstream 

analyses.  
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3.2.3 Multiple Sequence Alignment Generation 

To create a pHMM of each of the classes of biofilm formation genes, a global multiple sequence 

alignment was first generated using MUSCLE (v.3.8.31) (Edgar, 2004). The MUSCLE algorithm 

used for these analyses is available in the UGENE platform (Okonechnikov et al., 2012). The study 

used the default values for the gap open penalty (54.00), gap extension penalty (8.00), and 

terminate gap penalty (4.00). These gap penalties were used to control the positions of the 

conserved regions within the alignment. The consensus sequence from these global alignments 

would inform the construction of the specific profile hidden Markov model.  

3.2.4 Building of Profile HMM 

The study used profile analysis to incorporate information concerning the conservation of different 

residues. Analyses from the constructed profiles of biofilm formation genes would be used to 

detect homologies and structural similarities between the sequence families of P. aeruginosa. To 

facilitate an efficient search of the database of homologous sequences, position-specific 

information from multiple alignments were a suitable option. From the multiple sequence 

alignments, the profile method built position-specific models to represent the conserved regions in 

the alignments. The state sequence, which in this case was a biologically meaningful alignment, 

was probabilistically inferred from the observed symbol sequence rather than simply being 

determined from the observed symbol sequence. 

The parameters of the gene-specific models were set from the pre-aligned (pre-labeled) sequences. 

In this case the study assumed that the state paths were already known given that the multiple 

sequence alignments had been optimized. The model converted both the state transitions and 

observed counts of symbol emissions into the transition and emission probabilities, respectively. 

These probabilities were based on the initially set transition and emission probabilities standards. 
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The study used the Forward algorithms to score and optimize the gene-specific pHMMs. 

Alignments from the previous step were used as input for building the profile HMMs. Building 

HMMs from multiple alignments was preferred in this case as the training algorithms (local 

optimizers), are suitable for less complex HMMs. With a less complex parameter space, there was 

little chance that the spurious local optima would trap the training algorithm. Given that the study 

was constructing profile hidden Markov models, the probability parameters were converted to 

additive log-odds scores. These log-odds scores would later be used to score a query sequence 

once it is aligned against the constructed model. (These scores resembled the scores derived either 

by BLAST or FASTA)  

The profile HMM was preferred to Artificial Neural Networks and PSI-BLAST algorithms given 

that it is a well formulated probability model for representing similarity patterns within sequence 

families. The other models are also known to require more computational power without 

necessarily providing better results. Artificial Neural Networks and PSI-BLAST are also ideal for 

large scale analyses that involves complete genome sequences (Altschul et al., 1997). HMMs used 

in this case targeted only specific sections of the genome. These models also provide a precise 

method to search sequence databases using aligned sequences (Ahola et al., 2003). From the 

multiple sequence alignments, the HMMER3 toolkit available on the UGENE software was used 

to construct profile Hidden Markov Models (pHMMs) for the twelve clusters of orthologous genes 

(COGs) of biofilm formation genes for analyses of genomes of P. aeruginosa strains (Eddy, 1998). 

For each of the COGs of biofilm formation genes, the study created a profile HMM. The hmmbuild 

algorithm within the HMMER3 tool (v 3.1b1) in the UGENE software was used to create a suitable 

profile HMM from the MSA aligned-FASTA files (http://hmmer.janelia.org).  

http://hmmer.janelia.org/
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The HMMER3 platform was accelerated by the Multiple Segment Viterbi (MSV) algorithm that 

is implemented in the software package (Eddy, 2011). For better accuracy of the database search 

using the pHMM, the study employed the efficient emission probability (EEP) estimation method 

to construct the gene-specific pHMMs. This estimation method ensured that the overfitting 

problem was overcome as signal was separated from the noise in conserved positions of the 

alignments, and reduced the parameter space as a result. The confidence intervals of representative 

emission probabilities were calculated to determine the effectiveness of the EEP estimation 

method. Shorter confidence intervals would indicate that the model has an improved prediction 

power.  

3.2.5 Validation of Profile HMM  

Using the hmmsearch algorithm on UGENE, sequences used to construct the model were searched 

for as positive controls. Sequences of unrelated microorganisms were also searched for as negative 

controls with a discrimination threshold of E ≤ 1 × 10-5. The hmmsearch algorithm in the UGENE 

platform was used in this validation step with the constructed models serving as the query sequence 

while the controls served as the sequences being analyzed. The presence of signals for the positive 

control search and lack of signals for the negative control search demonstrated the efficiency in 

the prediction by the constructed models. The positive and negative controls (listed in Table 3.1) 

were used to evaluate the ability of the model to correctly identify biofilm formation gene 

sequences.  
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Table 3.1 Controls used in the validation of pHMM 

Organism Accession Number 

Pseudomonas aeruginosa PA01 NC_002516 

Bat Adenovirus 2 NC_015932 

Gyrovirus 4 NC_018401 

Duck circovirus NC_007220 

Domestic cat hepadnavirus NC_040719 

 

3.2.6 Visualization of the Model 

The visualization of the constructed pHMM was performed using the HMM visual editor 

(HMMVE_1.2) (Dai and Cheng, 2008) 

3.3 Pseudomonas aeruginosa Whole Genome Sequence Analyses 

To determine the conservation and variation patterns of biofilm formation genes in P. aeruginosa 

strains, the study collated and analyzed whole genomes of P. aeruginosa. The hmmsearch 

algorithm within the HMMER3 tool in the UGENE software was used to search for the biofilm 

formation profile HMM against sequences of P. aeruginosa drawn from different ecological 

niches. This search revealed the number of biofilm formation genes (identified as hits) within the 

different P. aeruginosa analyzed in this study. Only 96 strains of the ubiquitous pathogen were 

used in this analysis as they were associated with specific ecological niches. The models were 

restricted to show only biofilm formation genes with more than 30% identity and an e-value lower 

than 1×10E-5. These parameters have been employed successfully in previous studies that used 

the profile HMMs to search for sequences (Gong et al., 2012, Munoz-Medina et al., 2015).  
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3.4.1 Evolutionary Analysis 

The study sought to infer the sequence diversity in the sequences of different P. aeruginosa strains. 

The twelve sequence files which contained 44 records each were used for the phylogenetic 

analyses. Maximum parsimony algorithm on the MEGAX platform was used in the construction 

of the phylogenetic trees. Each bacteria strain was assigned a clade based upon its evolutionary 

history. This was done to determine whether the observed patterns are associated with the 

evolutionary history of the different pathogens. The evolutionary analyses of all the strains of P. 

aeruginosa involved 44 amino acid sequences from 12 sequence files. These analyses were 

conducted in MEGAX (Kumar et al., 2018). For the maximum parsimony trees, the Subtree-

Pruning-Regrafting (SPR) algorithm with search level 1 was used. The initial trees were obtained 

by the random addition of sequences. The bootstrap consensus tree was inferred from 1000 

replicates with branches corresponding to partitions reproduced in less than 50% bootstrap 

replicates were collapsed. This analyses were based on the biofilm formation genes rather than the 

conventional whole genome phylogenetic analyses. 

3.4.2 Genome Mapping 

The study also sought to determine the genotypic differences between the closely related strains 

of P.aeruginosa. A visualization of genome comparisons was performed to determine these 

differences. The BLAST Ring Image Generator (BRIG), a cross-platform desktop application, was 

used to generate circular images (maps) that indicated genome comparisons between the P. 

aeruginosa gene sequences under analysis (Alikhan et al., 2011). This BRIG analysis also helped 

to visualize the core and flexible genomes against a reference genome. The study used default 

settings to generate the images of the genome data from each ecological niche initially identified. 

The output images from this analysis showed similarity between a central reference sequence 
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(PAO1 in this case) and other sequences as a set of concentric rings. BLAST matches, on the other 

hand, were colored on a sliding scale which indicated a defined percentage identity. Different 

colors on the rings indicated significant matches while non-significant matches were represented 

by blanks. The BLAST matches were filtered according to an E-value cut-off of 1 × 10-5. These 

matches were calculated from the perspective of the reference sequence P. aeruginosa strain 

PAO1. In this case, regions of different genomes that were present in the query sequences but 

absent in the reference genome were not displayed in the resultant maps. For the visualization of 

genomes from all the ecological niches, data from different genomes were collated into a single 

lane. This step facilitated the visualization of all the sequences under study allowing us to compare 

the genomes as a group against the central reference sequence. Specific regions of the reference 

genome were also highlighted with custom annotations by specifying the position of features. The 

specific features in this case were the different biofilm formation genes under analysis. Selected 

annotations were uploaded from a GenBank file i.e P.aeruginosa PAO1 GBK file (Stover et al., 

2000). The annotations (biofilm formation genes) were shown in the outermost ring of the different 

genomic maps. A study by Bruggemann et al. used the visualization tool to take a closer look at 

the group 2 clade of P. aeruginosa (Bruggemann et al., 2018). The reference genome used in this 

case was the HIAE_PA17 strain. Other than visualization of the genome of an organism BRIG is 

also used for genome comparison as was the case in a study by Ramanathan et al. In this case the 

sequences of clinical isolates were compared with the P. aeruginosa reference genome PAO1 

(Ramanathan et al., 2017). This study followed a similar approach as the PAO1 reference genome 

was used for genome comparison.  
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3.5 Statistical Data Analyses 

Enrichment tests were performed to identify differentially abundant categories between groups of 

genomes based on their origin using the non-parametric Mann-Whitney Test (MWT)/Wilcoxon 

signed rank test. This analysis was done as the data from the profile HMMs did not indicate normal 

distribution. These tests were done to reveal signatures of niche specialization as was the case in 

the study by Bai et al, 2015. The analyses were performed using custom R-scripts (Appendix 2). 

Custom R-scripts were written and run in the R-studio version 1.3.1093. 
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4. CHAPTER FOUR 

RESULTS 

4.1 Sequence Retrieval 

4.1.1Entrez search 

The Entrez gene search identified a total of 51 biofilm formation genes associated with P. 

aeruginosa. The sequences of these genes were downloaded for downstream analyses. Table 4.1 

shows the IDs, names and GenBank accession numbers of the biofilm formation genes’ sequences 

used in this study.  

Table 4.1Biofilm formation genes retreived from the NCBI gene database 

Biofilm formation genes retreived from the NCBI gene database 

ID Gene name Accession Number 

880925 pslB NC_002516.2 

879717 pslA NC_002516.2 

883079 pslH NC_002516.2 

882276 pslI NC_002516.2 

882251 pslJ NC_002516.2 

880828 pslK NC_002516.2 

879704 pslG NC_002516.2 

878490 pslE NC_002516.2 

878238 wspC NC_002516.2 

878103 pslC NC_002516.2 

878051 pslD NC_002516.2 

878020 pslF NC_002516.2 

3399421 intl1 NC_007100.1 

882052 fliC NC_002516.2 

878885 PA2824 NC_002516.2 

882125 algU NC_002516.2 

882792 amrZ NC_002516.2 
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881084 morA NC_002516.2 

879406 algC NC_002516.2 

881782 rsaL NC_002516.2 

879474 gshA NC_002516.2 

882234 PA4878 NC_002516.2 

881298 PA5017 NC_002516.2 

877926 Lon NC_002516.2 

879004 algD NC_002516.2 

879004 ppkA NC_002516.2 

880125 lipC NC_002516.2 

882372 ppyR NC_002516.2 

880611 PA0122 NC_002516.2 

879994 mvfR NC_002516.2 

880617 cupC1 NC_002516.2 

879373 PA1107 NC_002516.2 

881786 PA1434 NC_002516.2 

878758 cupB1 NC_002516.2 

881933 htpG NC_002516.2 

881493 PA4332 NC_002516.2 

881355 PA4398 NC_002516.2 

879143 arnB NC_002516.2 

878826 estA NC_002516.2 

877798 amiC NC_002516.2 

880075 PA4781 NC_002516.2 

882208 PA4625 NC_002516.2 

880282 PA1823 NC_002516.2 

880470 bfiR NC_002516.2 

880350 bfiS NC_002516.2 

878223 gshB NC_002516.2 

878109 PA2572 NC_002516.2 

877982 PA4108 NC_002516.2 



42 
 

882750 PA2771 NC_002516.2 

881686 PA1324 NC_002516.2 

881441 PA4354 NC_002516.2 

 

Once the biofilm formation genes were identified by the Entrez search, the study sought to classify 

these sequences into different categories based on the individual functions of these genes in the 

biofilm formation process. This classification would inform focused analyses of these set of genes; 

from their evolutionary relationships to their distribution within the genomes of P. aeruginosa. A 

literature search along with the metadata and annotations of the genes informed this functional 

classification. Five functional classes were identified: adhesins, cell aggregation, repressors, 

regulatory and motility genes as indicated in table 4.2. The sixth class contained a set of genes 

whose functional properties have not been fully annotated. The study used the ‘Unclassified’ tag 

to identify these set of genes. Further functional analysis of these set of biofilm formation genes 

could be performed to enhance further studies of the ubiquitous pathogen. 

Table 4.2 Classes of biofilm formation genes, number of sequences and the individual genes 

Classes  Sequences Percentage Genes 

Adhesins 3 6% PA1107, PA1434, ppyR 

Cell 

aggregation 

2 4% cupB1, cupC1 

Repressors 2 4% gshB, PA0122 

Regulatory 19 37% algC, algD, algU, amiC, arnB, bfiR, bfiS,  

lon, mvfR, PA1324, PA2572, PA2824, PA4332, 

 PA4354, PA4625, PA4871,  

PA4878, ppkA, rsaL 

Motility 11 22% amrZ, estA, fliC, gshA, htpG, lipC, morA,  

PA2771, PA4108,  

PA4398, PA5017 

Unclassified 14 27% pslC, pslJ, intl1, PA1823, pslA, pslB, pslD,  

pslE, pslF, pslG, pslH, pslI, pslK, wspC 

Total 51   
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Besides the overall statistics, the study sought to further identify the representative percentages of 

each class of the biofilm formation genes. This was done to clearly represent the class with the 

highest number of genes. It is important to note that the 51 biofilm formation genes retrieved from 

the GenBank database were all associated with the P. aeruginosa PAO1 strain (the reference 

strain).  

4.1.2 Multiple Sequence Alignment of Biofilm Formation Gene Sequences 

The multiple sequence alignments revealed high levels of dissimilarity between the retrieved 

biofilm formation gene sequences. From the extensive gaps and minimal regions of similarity, the 

study inferred that the sequences retrieved from the Entrez gene search were not homologous and 

could not be used for downstream analyses of these set of genes. These results informed the 

decision by the study to retrieve sequences associated with these genes from the whole genome 

sequences of different strains of P. aeruginosa.  

4.1.3 Pseudomonas aeruginosa Sequence Retrieval 

The study further sought to retrieve complete genome sequences of P. aeruginosa strains isolated 

from various ecological niches. These sequences would be analyzed by different comparative 

genomics tools in a bid to characterize the biofilm formation genes with respect to different strains 

of the pathogen. A total of 194 complete genome sequences of P. aeruginosa strains from the 

NCBI and IPCD databases were retrieved for analysis. The study then classified the retrieved 

strains based on the ecological niches they occupy. This classification was done to facilitate an 

informed analysis of the P. aeruginosa strains. The study used metadata and GenBank annotations 

on each strain to complete this classification. 13 ecological niches were identified, 11 in the human 

host and two catering for environmental isolates. The human ecological niches include abscess, 

blood, bronchial, clinical, dental, eye, lungs, sputum, trachea, wound and urine. The environmental 
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samples were classified as environmental and cell culture isolates. The remaining isolates lacked 

comprehensive annotations and were therefore categorized into an unclassified group. Only the 

classified P. aeruginosa strains (n=96) were used for downstream analyses given that they were 

associated with different ecological niches. Table 4.3 shows niche-specific categories of P. 

aeruginosa isolates which were used for downstream analyses. 

Table 4.3 Statistics of Pseudomonas aeruginosa sequences and their ecological niches 

Ecological niche Analyzed sequences Percentage 

Abscess 2 1% 

Blood 15 17% 

Bronchial 6 6% 

Cell culture 4 4% 

Clinical 10 11% 

Dental 1 1% 

Environment 8 8% 

Eye 2 2% 

Lung 1 1% 

Sputum 26 27% 

Trachea aspirates 5 5% 

Urine 7 7% 

Wound 9 9% 

Total 96  

 

This selection does not represent any real prevalence of P. aeruginosa in nature. It is, however, 

biased by how the different strains of the ubiquitous pathogen are selected for various sequencing 

projects.  

Strains isolated from the sputum niche were the most abundant while the isolates from the lungs 

and dental niches were the least abundant. This statistics is consistent with the fact that 

P.aeruginosa is mainly associated with cystic fibrosis and most of the sequencing efforts have been 

biased towards strains isolated from the airways. 
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4.1.4 Python Scripts Sequence Retrieval 

The custom python script targeted all the initial biofilm formation genes that were retrieved from 

the Entrez gene search. Out of the possible 51 biofilm formation genes associated with 

P.aeruginosa PAO1, the reference strain, the study successfully retrieved 13 biofilm formation 

genes which were common in most of the strains of the ubiquitous microorganism. These genes 

were identified and grouped into corresponding clusters of orthologous genes (COGs) represented 

by individual FASTA files as indicated in table 4.4. The custom python scripts successfully created 

13 fasta files for the biofilm formation genes, each file containing 44 sequences of the respective 

genes selected from every P. aeruginosa reference genome. This represented 25.49% of the total 

number of biofilm formation gene sequences. In this case the amino sequences were retrieved from 

the GenBank files of different P. aeruginosa strains. Table 4.5 indicates the names, GenBank 

accession number, size and number of annotated genes of the 44 P. aeruginosa genomes. 

Table 4.4 Classes of biofilm formation genes retrieved using the custom python scripts 

Classes  No of Genes Genes 

Adhesins 1 ppyR (psl) 

Repressors 1 gshB 

Regulatory 5 algC, algD, algU, arnB, rsaL 

Motility 3 fliC, gshA, htpG 

Unclassified 3 pslJ, pslE, pslG,  

Total 13  

 

Table 4.5 Information about the 44 Pseudomonas aeruginosa genomes 

Scientific Names GenBank 

Accession 

Number 

Size 

(kbps) 

Number 

of 

annotated 

genes 

GC 

(%) 

Ecological 

niche 

P. a PAO1 NC_002516 6,264.404 5700 66.56 Unclassified 

P. a strain 

24Pae112 

NZ_CP029605 7097.241 6596 65.99  

P. a strain 268 NZ_CP032761 7030.474 6604 65.91  

P. a strain B17932 NZ_CP034436 6744.658 5943 65.94  
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P. a strain BA15561 NZ_CP033432 6793.961 5813 65.84  

P.a strain NCTC 

12903 

NZ_LR134309 6839.985 6431 66.09 Blood 

P. a strain PA1207 NZ_CP022001 7411.863 6813 65.70  

P. a strain PA1242 NZ_CP022002 7050.510 6303 65.80  

P. a strain 

PABL012 

NZ_CP031659 6546.467 6089 66.29  

P. a strain 

PABL017 

NZ_CP031660 6503.460 6019 66.31  

P. a strain Pa58 NZ_CP021775 7241.575 6673 65.80  

P. a strain Pa84 NZ_CP021999 6566.724 6058 66.23  

P. a strain Pa124 NZ_CP021774 7008.516 6479 65.84  

P. a strain Pa127 NZ_CP022000 7148.302 6565 65.74 Bronchial 

P. a strain 

GIMC5015:PAKB6 

NZ_CP034429 6258.491 5772 66.53  

P. a strain H26023 NZ_CP033685 6729.216 6260 66.21  

P. a strain 

NCTC11445 

NZ_LR134308 6766.292 6378 66.06  

P. a paerg002 NZ_LR130527 6451.470 5935 66.40  

P. a paerg003 NZ_LR130530 6433.962 5945 66.40  

P. a paerg004 NZ_LR130531 6452.809 5936 66.40  

P. a paerg005 NZ_LR130534 6931.425 6427 66.00 Clinical 

P. a paerg009 NZ_LR130533 6941.287 6352 65.98  

P. a paerg010 NZ_LR130536 6433.960 5950 66.40  

P. a paerg011 NZ_LR130535 6434.133 5946 66.40  

P. a paerg012 NZ_LR130537 6434.020 5948 66.40  

P. a strain L10 NZ_CP019338 6661.962 6119 66.13 Environment 

P. a strain PA34 NZ_CP032552 6810.079 6314 66.07 Eye 

P. a C-NN2 isolate NZ_LT883143 6902.967 6412 66.12 Lung 

P. a strain H25883 NZ_CP033686 6706.800 6236 66.15  

P. a strain H26027 NZ_CP033684 7079.598 6650 66.07  

P. a strain 

MRSN12280 

NZ_CP028162 7070.928 6597 66.02 Wound 

P. a PAO1161 NZ_CP032126 6383.803 5918 66.42  

P. a strain 

NCTC13715 

NZ_LR134330 6765.311 6288 66.12 Urine 

P. a strain 

FDAARGOS_505 

NZ_CP033832 7029.824 6520 65.87 Trachea 

P. a strain 

AES1M 

NZ_CP037925 6373.139 5848 66.48  

P. a strain AES1R NZ_CP037926 6373.893 5833 66.48  

P. a strain CCUG 

70744 

NZ_CP023255 6859.232 6422 66.04  

P. strain LW NZ_CP022478 6824.837 6271 65.97  

P. a strain 

PASGNDM345 

NZ_CP020703 6893.164 6432 66.07 Sputum 
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P. a strain 

PASGNDM699 

NZ_CP020704 6985.102 6545 66.00  

P. a strain SP2230 NZ_CP034434 6976.603 6067 65.74  

P. a strain SP4527 NZ_CP034409 7005.215 6123 65.79  

P. a strain SP4528 NZ_CP033439 6877.287 6082 65.85  

P. a strain Y31 NZ_CP030910 6831.076 6322 66.15  

  

4.1.5 Evolutionary Analyses of Biofilm Formation Genes 

From the comparison of the 13 COG-based ML phylogenetic trees, the study created a tree of 

relationships between different biofilm related genes using the treedist distance matrix (Figure 

4.1). The phylogenetic analyses revealed four clusters. From the 13 biofilm formation genes 

analyzed, 10 genes fell into a single cluster. The algD and algU genes diverged the most from the 

other biofilm formation genes, while fliC was not completely divergent from the other genes which 

seem to have co-evolved together. While the study assumed that all the biofilm formation genes 

co-evolved together given that they belong to a group of functionally related genes that generally 

was confirmed by the obvious co-evolution of these genes – the divergence of the three genes may 

result from a horizontal gene transfer.  
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Figure 4.1Co-evolution analyses of biofilm formation genes in strains of P. aeruginosa.  

The NJ dendogram shows that the majority of gene COGs produced identical phylogenetic trees 

of the selected reference genomes that indicates a strong co-evolution of these genes. Exceptions 

were the genes fliC, algD and algU which may be exchanged by horizontal gene transfer or evolved 

faster than other genes of this functional group. The tree is drawn to scale with branch lengths in 

the same units as those of the evolutionary distances used to infer the COG phylogenetic tree. 

4.2 Construction of the Profile Hidden Markov Models 

4.2.1 Identification of Protein Family of Interest 

Homologous genes with highly similar functions are often classified as gene families. For this 

study, genes responsible for biofilm formation in different strains of P. aeruginosa were identified 

and selected as the protein family of interest. Using the criteria identified by Henikoff et al., the 
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study classified these set of genes into a family of related sequences (Henikoff et al., 1997). These 

genes were then used to inform the construction and validation of the profile hidden Markov 

models. 

4.2.2 Select Sequences Representative of this Family 

Homologous sequences files obtained in the preceding sequence analyses were selected as the 

representative sequences for the biofilm formation genes protein family (clusters of orthologous 

genes). 12 sequence files created by the custom python script were selected for the downstream 

analyses as they contained sequences from different strains of the ubiquitous pathogen. Each of 

these sequences represented a single biofilm formation gene containing 44 records of P. 

aeruginosa sequences. Gong et al., has previously reported that the choice of representative 

sequences of a protein family of interest inevitably affects the outcomes of downstream analyses 

performed on these set of sequences (Gong et al., 2012). An extensive biological knowledge of 

the protein family under study is necessary for one to make an informed decision. The study relied 

on the previous analyses to make a judgment of the sequence homology. In his study, Rost 

mentioned that pair-wise sequence identity of long alignments that are less than 40% could result 

in ambiguous results in downstream analyses (Rost, 1999). Homologous sequence files were 

preferred in this case as they would contain patterns and motifs which could be identified by the 

pHMM and used to analyze different strains of P.aeruginosa. The amino acid sequences were also 

preferred given that they provide adequate information that can be modelled in a pHMM.   

4.2.3 Building Multiple Sequence Alignment  

The study sought to create multiple sequence alignments that would later be used to construct 

pHMMs. For each family of sequence, a multiple sequence alignment was created using the 

MUSCLE algorithm in UGENE. Figure 4.2 indicates a portion of the multiple sequence alignment 
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file. Gaps are indicated by dashes without amino acid sequences while the matching regions of the 

alignment are indicated by continuous columns of similar amino acid bases. A total of 12 multiple 

sequence alignments were created by the study. The alignment length (indicating the consensus 

sequence length) and number of sequences of each the 12 sequence alignments are indicated in 

table 4.6.  

 

Figure 4.2 A portion of the multiple sequence alignment of the psl cluster of orthologous genes.  

The lack of dashes in this alignment indicates the high levels of homology (similarity) in this set 

of genes. 
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Table 4.6 Names of alignments, consensus sequences length and the total sequences in  each 

alignment 

Alignment name Consensus sequence length Number of  sequences 

algU  870 44 

algD 872 44 

arnB 382 44 

fliC 489 44 

gshA  427 44 

gshB 317 44 

htpG 649 44 

Psl 85 44 

pslE 662 44 

pslG 442 44 

pslJ 478 44 

rsaL 80 44 

 

4.2.4 Build Profile HMM 

The study successfully constructed 12 pHMMs from the clusters of orthologous genes created 

using the python scripts. A representative section of one pHMM is shown in figure 4.3. 
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Figure 4.3 A representative profile HMM indicating the architecture of the constructed models. 

The different shapes indicate states while the arrows indicate state transitions. The ‘S’ represents 

the start position of the model. The ‘N’ represents the null model that the HMMER algorithm 

constructed first before creating the rest of the representative model. The ‘M’ (squares) represents 

the match states which indicate the frequencies of the most probable amino acid in those different 

locations. The ‘D’ (circles) represents the delete states while the ‘I’ (diamonds) represents the 

insert states.  

The profile HMM had three important states, the match state, delete state, and insert state as 

indicated on figure 4.3, page 52. The match state three transition probabilities i.e. 0.01 for the 

insert state, 0.00 for the delete state, and 0.99 for the next match state. The insert state had two 

transition probabilities 0.54 for the match state and 0.47 to remain on the insert state. The delete 

state, on the other hand, also had two transition probabilities 0.27 for the match state and 0.74 to 

remain on the delete state. These patterns were used to identify the biofilm formation genes in the 

sequences of P. aeruginosa. 
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Besides the visualization of the model architecture the HMM, HMMVE_1.2 was used to visualize 

the HMM logo which indicated the most likely amino acid for specific positions (Dai and Cheng, 

2008). A representative HMM logo is described in figure 4.4. From figure 4.4, it is important to 

note that the most conspicuous amino acid in the first position is methionine which is expected to 

be the first amino acid in a gene sequence. Such findings highlight the accuracy of the constructed 

models. The models were built to optimally represent the common motifs and patterns from the 

multiple sequence alignment of the biofilm formation genes. A clear representation of these 

common patterns would help the study to clearly point out both the conserve and variable regions 

within the sequences of P. aeruginosa. The pHMM was chosen for this study as it is useful in 

creating specific architectures suitable for modeling sequence profiles.   

 

 

Figure 4.4 Frequencies of the different amino acid sequences in their relative positions.  

The most conspicuous amino acid represents the most frequent amino acid in that specific position. 

Such amino acids can easily be used to identify the consensus sequences for our alignments. 

4.2.5 Validation of the Profile HMM  

The ability of the developed profile HMM to detect biofilm formation genes was analyzed using 

the positive and negative controls listed in Table 3.1. The reference P. aeruginosa PA01 was 
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chosen as the positive control. All the constructed pHMMs correctly identified different biofilm 

formation genes in the positive control. The negative controls were chosen because they are of 

different species and do not exhibit biofilm formation as one of their survival mechanisms. When 

searched against the four negative controls, the 12 pHMMs showed no identification of the biofilm 

formation genes as was expected.  

4.3 Pseudomonas aeruginosa Sequence Analyses 

The search performed by the developed profile HMM against the P. aeruginosa sequences 

identified a total of 197 hits for the 13 different ecological niches as indicated in table 4.7, page 

56. The hits identified represent the total number of biofilm formation genes identified within the 

genome of various strains of the ubiquitous pathogen. Of the 197 hits, 144 hits (73%) belonged to 

the human samples while 53 hits (27%) belonged to the nonhuman samples. 38% of the human 

sample hits were recorded from ecological niches that were respiratory in nature. 62% of the hits 

were associated with non-respiratory niches within the human host. 22.34% of the biofilm 

formation gene sequences identified by the profile HMMs were identified in the blood ecological 

niche. The lung and dental ecological niches, on the other hand, indicated the least number of 

biofilm formation genes, 1 hit each, representing 0.51% of the identified genes (Table 4.8, page 

56). The algD gene was most commonly found, 44 hits (22.34%) in the different strains of P. 

aeruginosa sequences, followed by the rsaL gene, 31 hits (15.74%). The gshB gene sequences 

were the least abundant sequences, 2 hits (1.02%) (Table 4.9, page 57). 
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Table 4.7 Comparison of pHMM hits of the genes across the 13 ecological niches 

Niche 

alg

D 

alg

U pslJ 

arn

B 

gsh

B 

htp

G 

ps

l 

psl

E 

Psl

G 

rsa

L 

gsh

A fliC 

Abscess 2 0 2 0 0 0 0 2 2 2 1 1 

Blood 10 5 2 1 0 9 4 3 4 3 3 0 

Bronchial 4 0 0 0 0 0 1 0 0 2 3 0 

cell culture 2 1 1 1 0 1 2 1 1 3 0 1 

Clinical 7 1 0 1 0 1 3 0 0 4 2 0 

Dental 1 0 0 0 0 0 0 0 0 0 0 0 

Environment 7 2 1 0 1 2 1 1 1 1 2 1 

Eye 1 1 0 0 1 0 1 0 0 0 0 0 

Lung 0 0 0 0 0 0 0 0 0 0 1 0 

Sputum 5 3 1 1 0 0 6 1 1 9 8 1 

Trachea 1 0 0 0 0 0 2 0 0 1 4 0 

Urine 1 0 0 0 0 0 6 0 0 4 1 0 

Wound 3 0 1 0 0 0 3 1 1 2 5 0 

 

Table 4.8 Frequency (%) of the pHMM hits across the different ecological niches 

Niche No. of sequences Frequency (%) Type 1 Type 2 

Blood 44 22.34 Human non respiratory 

Sputum 36 18.27 Human Respiratory 

Environment 20 10.15 non-human  

Clinical 19 9.64 non-human  

Wound 16 8.12 Human non respiratory 

Cell culture 14 7.11 non-human  

Abscess 12 6.09 Human non respiratory 

Urine 12 6.09 Human non respiratory 

Bronchial 10 5.08 Human Respiratory 

Trachea 8 4.06 Human Respiratory 

Eye 4 2.03 Human non respiratory 

Dental 1 0.51 Human non respiratory 

Lung 1 0.51 Human Respiratory 
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Table 4.9 Frequency of the identified biofilm formation genes 

Biofilm formation genes No. of Sequences Frequency (%) 

algD 44 22.34 

rsaL 31 15.74 

gshA 30 15.23 

pslJ 29 14.72 

algU 13 6.60 

htpG 13 6.60 

pslG 10 5.08 

pslE 9 4.57 

pslJ 8 4.06 

arnB 4 2.03 

fliC 4 2.03 

gshB 2 1.02 

 

The study sought to put these results into context and identified the density of the hits which 

represented the hit per Megabases as is indicated in table 4.10 (page 58). Figure 4.5 (page 59) 

indicates the distribution of the density of hits per ecological niche. In this case, the abscess 

ecological niche had the highest density of hits while the lung niche had the lowest density of hits. 

Figure 4.6 (page 59) compares the density of hits between the human and non-human samples.  
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Table 4.10 Distribution of the density of pHMM hits (hits/MB) across the ecological niches 

Niche 

algD

M 

algU

M 

pslJ

M 

arnB

M 

gsh

BM 

htpG

M pslM 

pslE

M 

pslG

M 

rsaL

M 

gsh

AM 

fliC

M 

Absce

ss 

0.00

015

2 0 

1.52

E-04 0 0 0 0 

1.52

E-04 

1.52

E-04 

1.52

E-04 

7.60

E-05 

7.60

E-05 

Blood 

9.69

E-05 

4.85

E-05 

1.94

E-05 

9.69

E-06 0 

8.72

E-05 

3.88

E-05 

2.91

E-05 

3.88

E-05 

2.91

E-05 

2.91

E-05 0 

Bronc

hial 

9.77

E-05 0 0 0 0 0 

2.44

E-05 0 0 

4.88

E-05 

7.33

E-05 0 

cell 

cultur

e 

7.95

E-05 

3.98

E-05 

3.98

E-05 

3.98

E-05 0 

3.98

E-05 

7.95

E-05 

3.98

E-05 

3.98

E-05 

1.19

E-04 

0.00

E+0

0 

3.98

E-05 

Clinic

al 

1.06

E-04 

1.52

E-05 

0.00

E+0

0 

1.52

E-05 0 

1.52

E-05 

4.56

E-05 

0.00

E+0

0 

0.00

E+0

0 

6.09

E-05 

3.04

E-05 0 

Dental 

1.44

E-04 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 0 

Enviro

nment 

1.32

E-04 

3.79

E-05 

1.89

E-05 

0.00

E+0

0 

1.89

E-05 

3.79

E-05 

1.89

E-05 

1.89

E-05 

1.89

E-05 

1.89

E-05 

3.79

E-05 

1.89

E-05 

Eye 

7.29

E-05 

7.29

E-05 

0.00

E+0

0 

0.00

E+0

0 

7.29

E-05 

0.00

E+0

0 

7.29

E-05 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 0 

Lung 0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

1.45

E-05 0 

Sputu

m 

2.85

E-05 

1.71

E-05 

5.69

E-06 

5.69

E-06 0 

0.00

E+0

0 

3.42

E-05 

5.69

E-06 

5.69

E-06 

5.12

E-05 

4.56

E-05 

5.69

E-06 

Trach

ea 

2.88

E-05 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 0 

0.00

E+0

0 

5.75

E-05 

0.00

E+0

0 

0.00

E+0

0 

2.88

E-05 

1.15

E-05 0 

Urine 

2.13

E-05 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

0.00

E+0

0 

8.51

E-05 

2.13

E-05 0 

Woun

d 

4.85

E-05 

0.00

E+0

0 

1.62

E-05 

0.00

E+0

0 0 

0.00

E+0

0 

4.85

E-05 

1.62

E-05 

1.62

E-05 

3.24

E-05 

8.09

E-05 0 
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Figure 4.5 Comparison of biofilm formation genes by ecological niche reported by the pHMMs  

 

Figure 4.6 Comparison of biofilm formation gene hits between human and non-human strains   

Strains of the ubiquitous pathogen from human samples had a higher density of hits compared to 

the strains from non-human samples. The only different observation was indicated in the density 
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of hits for the arnB gene where the nonhuman samples had a significantly higher density of hits 

compared to their human sample counterparts. The overall result also indicated a significant 

variation in density of hits between the different sites within the human metagenomes. This pattern 

was also reflected in four of the respiratory subsites, namely bronchial, lung, sputum and trachea. 

The lung metagenomes had the lowest biofilm formation gene density and exhibited significantly 

lower densities than all the other ecological niches. 

With regards to the biofilm formation genes, the algD gene had the highest number of hits and 

highest density of hits compared to the models of the other biofilm formation genes as indicated 

in both figures 4.5 and 4.6 (page 59). The Wilcoxon rank test indicated that the density of the htpG 

pHMM hits was greater for human samples than for nonhuman samples, W=3, p = 0.01759.  

Table 4.11 Wilcoxon rank test results comparing the hits in human and non-human strains 

Analyzed strains n = 97 

Gene Human strains 

n =75 

Non-human 

strains 

n= 22 

  

 Mean rank Mean rank Wilcoxon-

test value 

p-value 

algD 0.05 0.11 8 0.287 

algU 0.02 0.03 7 0.168 

pslJ 0.01 0.01 10 0.408 

arnB 0.01 0.01 9 0.079 

gshB 0.002 0.01 12 0.501 

htpG 0.02 0.03 3 0.018* 

Psl 0.05 0.04 9 0.360 

pslE 0.01 0.01 10 0.408 

pslG 0.02 0.01 10 0.408 

rsaL 0.05 0.06 10 0.444 

gshA 0.05 0.03 17 0.799 

fliC 0.002 0.02 8 0.180 
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4.4 Genomic Analyses 

4.4.1 Evolutionary Analyses 

The study sought to determine the evolutionary relationship of the different strains of P. 

aeruginosa. 13 phylogenetic trees were constructed in the MEGA X platform to elucidate this 

relationship. Out of the 13 set of sequences, 3 sequences files did not indicate parsimonious sites 

and therefore couldn’t be inferred by the Maximum parsimony method. The maximum likelihood 

method, along with the JTT matrix-based model, was used instead to infer the evolutionary history 

of these set of sequences (Felsenstein, 1985). The initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using a JTT model, and then selecting the topology with superior log likelihood 

value. The trees were drawn to scale, with branch lengths measured in the number of substitutions 

per site. Similar to the maximum parsimony method, the bootstrap consensus tree inferred from 

100 replicates was taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 

1985). Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were 

collapsed. All these analyses were conducted in MEGA X (Kumar et al., 2018).  
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Figure 4.7 Evolutionary history of arnB gene sequences  

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% 

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (100 replicates) are shown next to the branches. There 

were a total of 382 positions in the final dataset.  

Figure 4.7 represented the arnB phylogenetic tree identified two clades. In this case five genome 

sequences clustered separately from the other gene sequence. PABL017, PA1242 (blood), NCTC 

1145 (clinical isolates), AES1M, AES1R and Y31 (sputum isolates), were clustered in group 2. 
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Figure 4.8 Evolutionary history of fliC gene sequences. 

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (100 replicates) are shown next to the branches. There 

were a total of 489 positions in the final dataset.  

P. aeruginosa strain SP4527 clustered differently from the rest of the other strains in figure 4.8 

phylogenetic tree that indicated evolution of fliC. 
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Figure 4.9 Evolutionary history of gshB gene sequences. 

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% 

bootstrap replicates are collapsed. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (100 replicates) are shown next to the branches. There 

were a total of 317 positions in the final dataset. 

PAERG009 (clinical isolate) clustered separately from the other sequences in figure 4.9 which 

identified two separate clades in the evolution of gshB. 
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The pslJ based tree identified two clades with the PABL012 strain clustering separately from the 

other sequence (figure 4.20). This strain had been classified under sequences obtained from blood 

samples. The other sequences sourced from the blood samples clustered close to each other. 

 

 

Figure 4.10 Evolutionary history of pslJ gene sequences 

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (100 replicates) are shown next to the branches. This 

analysis involved 44 amino acid sequences. There were a total of 478 positions in the final dataset. 
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Figure 4.11 Evolutionary history of htpG gene sequences 

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. The percentage of replicate trees in which the associated taxa 

clustered together in the bootstrap test (100 replicates) are shown next to the branches. This 

analysis involved 44 amino acid sequences. There were a total of 649 positions in the final dataset. 

The htpG tree identified only two clades with the H26023 clustering separately from the other 

P.aeruginosa sequences. This gene sequence was obtained from the bronchial isolates (figure 

4.11). 
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Figure 4.12 Evolutionary history of pslE gene sequences 

The percentage of replicate trees in which the associated taxa clustered together in the bootstrap 

test (100 replicates) are shown next to the branches. This analysis involved 44 amino acid 

sequences. There were a total of 662 positions in the final dataset.  

The pslE tree also identified two clades with the NCTC11445 (from blood) clustering separately 

from the other gene sequences. This was similar to what was observed in the pslG tree where two 

clades were identified and NCTC11445 clustered separately (figure 4.12). 
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Figure 4.13 Evolutionary history of pslG gene sequences 

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. This analysis involved 44 amino acid sequences. There were a total 

of 442 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.  
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Figure 4.14 Evolutionary history of psl gene sequences 

The bootstrap consensus tree inferred from 100 replicates is taken to represent the evolutionary 

history of the taxa analyzed. This analysis involved 44 amino acid sequences. All ambiguous 

positions were removed for each sequence pair (pairwise deletion option). There were a total of 

85 positions in the final dataset.  

The rsaL gene tree which identified 2 clades and clustered H25883 and H26027 separately from 

the other gene sequences. These two sequences had been retrieved from wound isolates (figure 

4.13). The psl tree identified two clades with the H25883 and H26027 clustering separately from 

the other gene sequences (figure 4.14). It is important to note that the final three phylogenetic trees 

were constructed by the neighbor joining algorithm. Attempts to construct the tree with the 
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maximum parsimony algorithm were futile as no parsimonious sites were present in these set of 

sequences.  

4.4.2 Biofilm Formation Gene Distribution 

The study aimed to find the distribution of biofilm formation genes in the genome sequences of 

various strains of P. aeruginosa. The study used the PAO1 genome as the reference genome for 

this analyses. Different colors on the rings indicated significant matches while non-significant 

matches were represented by blanks. A BRIG analysis was conducted for each ecological niche 

and 14 BRIG images were produced during this analysis (Figure 4.15 to figure 4.28). Figure 4.28 

indicated the distribution of the biofilm formation genes among the sequences of the strains 

isolated from the 13 ecological niches that were identified by this study. Figure 4.16 to figure 4.28 

indicated the distribution of the genes among sequences of strains isolated from each individual 

ecological niche. Besides the distribution of biofilm formation genes, the BRIG analysis was also 

used to identify the conserved and variable regions of the genome of the pathogen. This was done 

to further elucidate the differences in the distribution of genes in strains from different ecological 

niches. The key on each of the gene maps indicates the individual genomes in each of the 

concentric rings. 
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Figure 4.15 Visualization of genome comparison of the different strains of P. aeruginosa.  

The BRIG analysis also included the distribution of biofilm formation genes within the genomes 

of different strains. Differences regarding the flexible genome can be seen. Different colors on the 
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rings indicated significant matches while non-significant matches were represented by blanks.

       

Figure 4.16 BRIG analysis for bronchial sequences. 

Genes in the variable regions include PA4878 and lipC at locus 5400kbps, bfiS and bfiR at locus 

4600kbps, amiC at locus 3800kbps and the  pclass at locus 2400kbps 
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Figure 4.17 BRIG analysis for clinical sequences. 

Genes in the variable regions included ppkA at locus 100kbp, p class at locus 2450kbps, amiC 

at locus 3750kbps, arnB and arnD at locus 3950kbps, wspC at locus 4100kbps, pA4625 at 

locus 5150kbos and algC at locus 6000kbps. 
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Figure 4.18 BRIG analysis for cell culture sequences. 

Genes in the variable regions included the p class at locus 2450kbps, and the lipC and PA4781 at 

locus 5400kbps 
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Figure 4.19 BRIG analysis for dental sequences. 

Genes in the variable regions included cupC1at locus 1050kbps, fliC at locus 1200kbps, p 

class at locus 2450kbps, PA2572 at locus 3000kbps, PA2771 at locus 3150kbps, amiC at 

locus 3700kbps, PA3989 at locus 4500kbps, PA4108 at locus 4600kbps and bfiS and bfiR 

at locus 4700kbps. 
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Figure 4.20 BRIG analysis for environmental sequences. 

Genes in the variable regions included the p class at locus 2450kbps, PA2824 at locus 3150kbps, 

amiC at locus 3750kbps, morA at locus 5150kbps and PA4625 at locus 5200kbps. 
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Figure 4.21 BRIG analysis for sequences from the eye. 

Genes in the variable regions included fliC at the 1050kbps locus, amiC at the locus 3750kbps, 

PA3989 at the locus 4450kbps and bfiS and bfiR at the locus 4700kbps. 
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Figure 4.22 BRIG analysis of sequences from the lung. 

Genes in the variable regions included cupC1 at locus 1050kbps, fliC at locus 1150kbps, pclass at 

locus 2400kbps, amiC at locus 3750 kbps, PA3989 at locus 4450kbps and PA4108 at locus 

4600kbps. 
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Figure 4.23 BRIG analysis of sequences from the sputum. 

Genes located in variable regions included p class at locus 2450kbps, PA2771 at locus 3150kbps, 

amiC at locus 3800kbps, PA4108 at 4600kbps, bfiS and bfiR at 4700kbps and PA4354 at 4900kbps. 
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Figure 4.24BRIG analysis for sequence from the trachea. 

Genes in the variable regions included fliC at locus 1150kbps, p class at locus 2400kbs, PA2771 

at locus 3150kbps, amiC at locus 3750kbps, PA3989 at locus 4450kbps, bfiS and bfiR at locus 

4700kbps, PA4625 at locus 5200kbps and algC at locus6000kbps 
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Figure 4.25 BRIG analysis for sequence from the urine samples. 

Genes in variable regions included p class at 2400kbp and amiC at locus 3750kbps. 

 

 

 

 

 



82 
 

 
   

Figure 4.26 BRIG analysis for sequences from wound infections. 

Genes in the variable regions included p class at locus 2400kbps, PA2752 at locus 2850kbps and 

amiC at locus 3750kbps. 
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Figure 4.27 BRIG analysis for sequences from the abscess. 

Genes in the variable regions included cupC1 at locus 1050kbps, fliC at locus 1150kbps, p class at 

locus 2400kbps, amiC at locus 3750kbps and algC at locus 6000kbps. 
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Figure 4.28 BRIG analysis for sequences from blood. 

 

Genes present in the variable regions included p class at locus 2400kbps, 

PA2824 at locus3150 kbps, amiC at locus 3750kbps, PA3989 at locus 4450kbps, 

PA4108 at locus 4600kbps, bfiS and bfiR at locus 4700kbps 
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The overall result of the BRIG analysis indicated high sequence similarity between the different 

strains of P. aeruginosa that were analyzed. The presence of a number of gaps in the analysis can 

be attributed to the mutations necessary for different strains to adapt and survive in their specific 

ecological niches.  
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6. CHAPTER FIVE 

DISCUSSION 

5.1 Introduction 

Pseudomonas aeruginosa, a Gram-negative bacterium, is a leading cause of nosocomial (hospital-

acquired) infections among immunocompromised individuals which has progressively developed 

resistant genes that have conferred it the ability to withstand the effects of antibiotics, further 

complicating the treatment of the infections it causes. Strains of the ubiquitous pathogen form 

biofilms within the human host, further compounding its antibiotic resistance ability and resulting 

in serious infections that could overwhelm the public health sector (Francisco et al., 2019). In spite 

of the significance of this phenomenon, exhaustive analyses of the genes responsible for biofilm 

formation remain scanty and largely undocumented. The use of bioinformatics tools in deciphering 

and designing candidate drug targets for clinical intervention could be an important step in 

mitigating the P. aeruginosa disease burden. With approximately 176 complete genomes of the 

ubiquitous pathogen available in the NCBI database, an in silico mapping of the highly versatile 

biofilm formation genes to decipher novel therapeutic target regions was a viable approach 

(Bruggermann et al., 2018). This study aimed to identify biofilm formation genes, classify them 

based on the role they play in the biofilm formation process and analyze the distribution of these 

genes in the genomes of various P. aeruginosa strains. All these objectives were aimed at 

identifying genes and processes that could serve as potential targets for novel antibiofilm therapies. 

The neighbor-joining algorithm was used to determine the evolutionary trends exhibited by the 

biofilm gene clusters of P. aeruginosa while profile hidden Markov models for genes responsible 

for biofilm formation in gram negative bacteria were constructed and used to characterize these 

genes in strains of P. aeruginosa. The study identified the conservation of genes in the 
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opportunistic pathogen which were deemed as regions of interest and were identified as potential 

biomarkers for novel treatment options. The profile also identified variations in the genes. 

5.2 Evolutionary Relationships of Biofilm Formation Genes 

The study successfully identified 51 biofilm formation genes from the Entrez gene search. The 

regulatory genes were the most frequent (19 out of the 51), highlighting the importance of this step 

in the biofilm formation process (Table 4.2). This finding also revealed the need for strains of 

P.aeruginosa to constantly regulate the process based on prevailing conditions or the specific 

ecological niche. The motility genes at 22% (11 out of the 51) indicated the need for the pathogen 

to regulate mobility during quorum sensing to determine whether or not they would form biofilms 

once they colonize a viable host. Adhesins, repressors and cell aggregation genes recorded the 

least percentages. From these findings, it is possible to assume that these processes of biofilm 

formation are most likely cast on stone and depend on the pathogen’s decision to form or not to 

form biofilms. It is also possible that these processes are not premeditated and may be straight-

forward once a group of bacteria opt to form biofilms. These set of genes could be an important 

target for new drug therapies given that they are highly likely to be expressed once the bacteria 

achieve a quorum that allows for the formation of biofilms (Freschi et al., 2015). The unclassified 

set of genes indicates a group of genes that are expressed at different stages of the biofilm 

formation process. Their expression may be dependent on the ecological niche of the bacteria as 

well as the specific host that the bacteria colonize. 

Besides the biofilm formation genes, the study also collated different strains of P. aeruginosa 

which were classified based on the ecological niches that the different strains occupied. The 

identification of 13 different ecological niches occupied by the pathogen is consistent with reports 

that describe P. aeruginosa as a ubiquitous pathogen: one that thrives in a wide range of animate 
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and inanimate hosts (Klockgether and Tummler, 2017). The pathogen has also been closely 

associated with numerous infections among Cystic fibrosis patients (Talwalkar and Murray 2016). 

This study’s results agreed with this association given that 38 of the 84 retrieved human-associated 

strains (45.23%) were isolated from the respiratory system. 26 of these strains were isolated from 

sputum samples, one of the hallmarks of cystic fibrosis samples, representing the most preferred 

ecological niche of P. aeruginosa. Blood, clinical and wound samples were the other statistically 

significant ecological niches. 

A custom python script search of genbank files successfully retrieved 13 biofilm formation genes 

out of the possible 51 genes. This represented 25.49% of the number of genes that were originally 

obtained. The 25.49% of the genes retrieved were probably a result of incomplete sequence 

annotation of the retrieved P. aeruginosa strain sequences. This finding also indicated that while 

the Entrez search tool is reliable for sequence search and gene identification, it might not be the 

best database to use when trying to retrieve and analyze sequences of protein families (Pearson, 

2013). For one, the Entrez search only identified sequences associated with the reference strain. 

This finding may be due to the extensive studies that have already been done on the PAO1 strain. 

Unfortunately, such information does not give conclusive knowledge on the presence of the 

biofilm formation genes in the other strains of the bacteria which are of clinical importance. This 

finding also gives more credence to the use of profile hidden Markov models (pHMMs) to analyze 

sequences of genes responsible for biofilm formation in P. aeruginosa. With these models, the 

study created a multiple sequence alignment of DNA or protein sequences belonging to the same 

functional family and built a HMM that effectively represents the common motifs, patterns and 

statistical properties of the alignment (Eddy, 1998). With a specific architecture, the pHMMs 

allowed us to suitably model sequence profiles enabling better analyses of sequence families – in 
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our case biofilm formation genes. A study by Madera and Gough, (2002) indicated that profile 

methods show better performance compared to pairwise methods like NCBI BLAST when finding 

sequence homologs. Although with a slower speed, the profile-based methods can detect 

approximately 10% more true homologues than pairwise methods (Madera and Gough, 2002). On 

the other hand, it is possible that the biofilm formation genes are not present in most strains of the 

P. aeruginosa, meaning that the not all the stains of the pathogen form biofilms to facilitate their 

survival (Kamali et al., 2020). 

The results also inform the need to create a database designated for genes responsible for the 

phenomenon in the bacteria. Such a database will give the scientific body an easier time as they 

seek to understand the biofilm formation process further and use this information to find potent 

mitigation measures against the pathogen. The IPCD database has done a commendable job in 

facilitating advanced studies on P. aeruginosa (Freschi et al, 2015). This repository contains 

thousands of P. aeruginosa isolates from plants, human infections, the environment, and animals. 

As of October 2019, the database contained 1763 isolates and 1165 draft genomes of these isolates. 

The database facilitates metadata analyses that links bacterial phenotype, genotype and clinical 

data. While the benefits of the IPCD cannot be overstated, it has laid a lot of emphasis on Cystic 

Fibrosis (development of prognostic approaches to treating these infections). A database dedicated 

to the biofilm formation process will only help to augment these efforts. 

While the study assumed that all the biofilm formation genes co-evolved together given that they 

belong to a group of functionally related genes, that generally was confirmed by the obvious co-

evolution of these genes – the divergence of three genes (fliC, algD and algU) may have been as 

a result of a horizontal gene transfer. Alternatively, it may be assumed that these genes evolved 

faster than other genes as they are more important in terms of a proper response of the biofilm 
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formation to specific environmental stimuli in different habitats. It makes these genes potential 

targets for antibiofilm therapies. Both the algD and algU genes were classified as regulatory genes 

responsible for the regulatory stage of the biofilm formation process. 

Protein AlgU has previously been identified as a founding member of the ExtraCytoplasmic 

Function (ECF) family – a group of products responsible for transcriptional regulation and 

response to environmental stress (Sineva et al., 2017). This sigma factor has been associated with 

regulation of genes having the AlgD’s promoter (Yin et al., 2013). Previous studies indicate that 

mutations in algU can affect mucoidy in P. aeruginosa or lead to a partially active AlgU (Damkiaer 

et al., 2013). A study by Scalan et al. (2015), also indicated that this gene is important for P. 

aeruginosa to withstand various treatments hence the need for an adjustment in its activity by 

specific mutations. It may explain a rather specific evolution pattern displayed by this protein. 

Divergence of this gene as seen in figure 4.1 may result from selective accumulation of such 

mutations. The mucoidy phenotype improves the pathogenesis of P. aeruginosa infections as the 

pathogen acquires increased resistance to antibiotics and phagocytic killing while allowing it to 

evade the host’s immune response (Leid et al., 2005). This prominent role of the gene makes it a 

suitable target for antibiofilm therapy. Further studies should be conducted to understand the exact 

mutations of this sigma factor and improve efforts to tackle antibiotic resistance witnessed in 

infections caused by the ubiquitous pathogens. 

Flagellin, on the other hand, has been identified as an important virulence factor in the 

pathogenesis of P. aeruginosa infections. Non-flagellated mutant strains often exhibit less 

virulence and can hardly invade deeper tissues (Ahmadi et al., 2017). Different strains of P. 

aeruginosa rely especially on flagella during lifestyle switches from planktonic state to biofilms 

and back to planktonic state. The flagella plays a key role in the attachment and detachment of 
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biofilms from different surfaces (Suriyanarayanan et al., 2016). The study’s evolutionary analysis 

indicated that the fliC gene, which encodes flagellin, had a different evolutionary trend compared 

to the other gene sequence. This was an important finding as mutations in this gene have not been 

reported by previous studies to the best of our knowledge. Given the importance of the flagellin in 

the lifestyle of different strains of P. aeruginosa it is highly unlikely that this gene was acquired 

through horizontal gene transfer. This study assumed that this gene has a faster evolutionary rate 

compared to the other biofilm formation genes under study.  

5.2 Creating Profile Hidden Markov Models 

There has been a geometrical increase in the number of genomes available in the NCBI database, 

making it an ideal source to search for specific genes (Land et al., 2015). This database along with 

other sequence storage databases, like IPCD and DDBJ, however, have exceptionally large 

amounts of data to be analyzed. This has led to the development of special tools like the profile 

hidden Markov models to facilitate the analysis of the available data (Eddy, 1998, Yoon, 2009). 

Profile HMMS apply statistical models that estimate the true frequency of an amino acid or a 

nucleotide at a specific position of a multiple sequence alignment from the observed frequency. 

This property allows the subset of HMMs to represent motifs and patterns of multiple sequence 

alignments (Yoon, 2009). The development of specific profiles to search for biofilm formation 

genes in 96 genomes of P. aeruginosa clearly indicated that this family of proteins have significant 

levels of variability depending on the ecological niches that different strains of the pathogen 

occupies.  

This study opted to use profile hidden Markov models to represents patterns and motifs of specific 

biofilm formation genes. Previous studies have proven that the hidden Markov models are highly 

effective in the analyses of massive amounts of data. Applications of these models ranges from 
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sequence analysis, protein characterization, and gene discovery (Francisco et al., 2019, Restrpo-

Montoya et al., 2011). These models are also effective in evaluating whether individual sequences 

belong to specific profiles (Gong et al., 2012). This study used this property of the models to 

determine the presence and distribution of different biofilm formation genes in various genomes 

of P. aeruginosa occupying different ecological niches. Analyses of the pathogens’ genomes 

identified genes that were deemed of importance in the biofilm formation process and that could 

serve as potential targets for novel therapeutic agents against infections caused by P. aeruginosa. 

The study created profile hidden Markov models that would represent sequence patterns of the 

biofilm formation gene sequences retrieved by the custom python custom scripts. The models were 

based on the multiple sequence alignments of the clusters of orthologous genes. Unlike general 

HMMs, profile HMMs do not contain any circles as they move from left to right, making them 

suitable for modelling protein and nucleotide sequence data.  In the pHMM, the match state ‘M’ 

represented the case when a signal in the new sequence matches the symbol in the same position 

of the original alignment. The match states primarily modeled conserved positions of the 

alignments and the residue frequencies, consistent with what is described in previous studies 

(Yoon, 2009). The insert ‘I’ and delete ‘D’ states accounted for insertions and deletions in new 

observation sequences. The insert states represented additional symbols not present in the 

consensus sequences while the delete states handled amino acids present in the consensus sequence 

but absent in the original sequence. The emission probabilities of the resulting pHMMs at a specific 

position represented the observed symbol frequencies in that specific column in the consensus 

column. 

From the representative pHMM present on figure 4.2, it is important to note that each of the match 

states (M) had four transition probabilities: for the next match state, for the insert state, for the 
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delete state and the end state. Each insert state had two transition probabilities, one for the match 

state and the other for the same insert state. The delete states also had two transition probabilities, 

one for the next match state and the other for the next delete states. The transition probabilities 

from/to the insert and delete states catered for the gap penalties for insertions and deletions in the 

alignments. These findings were consistent with what is expected for profile HMMs (Eddy, 2011). 

On the emission probabilities, both the match and insert states had 20 probabilities, each 

representing one of the twenty amino acids given that the sequences used for these analyses were 

protein sequences. The delete states, on the other hand, had no emission probabilities as is 

expected. Given that the delete state represents missing symbols, it is described as a silent state 

which simply serves as a place-holder to connect neighboring states i.e. match and delete states. It 

is for this reason that the delete states have no emission probabilities. 

The HMM profiles that were developed here proved to be valid to detect biofilm formation genes 

as it verified the detection of different genes from the reference genome, but excluded the genes 

in the negative controls during the validation test of the model. The controls were selected based 

on reported biofilm formation; the positive control was known for forming biofilms while the 

negative controls don’t form biofilms to facilitate their survival (Gong et al., 2012). This validation 

also indicated that the developed HMM profiles were able to detect specific sequences of biofilm 

formation, that is, the algD profile HMM only detected algD gene sequences, the algM profile 

HMM detected algM gene sequences and so on. However, the shortcomings of the profiles were 

evident as no single profile could detect all the different biofilm formation genes. This was 

probably due to the structural similarities seen in the sequences of the genes as was indicated by 

the multiple sequence alignments. The study had to create gene-specific profile hidden Markov 
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models to circumvent this challenge. Nevertheless, the HMM profiles developed were totally 

efficient as they did not detect any false positives in the negative controls.  

5.3 Conservation and Variation Patterns of Biofilm Formation Genes 

The tendency of different strains of P. aeruginosa to form biofilms that facilitate its survival in 

different ecological niches demonstrates the presence of biofilm formation genes which influenced 

this process. Different studies have demonstrated the presence of these family of genes in various 

sequences of the ubiquitous pathogen. Previous reports have also indicated that the P. aeruginosa 

tends to occupy different ecological niches, both in the environment and within the human host. 

Nevertheless, the findings of these studies were more as a result of chance, rather than a systematic 

search based on in silico procedures or using large collections of the different strains of P. 

aeruginosa. The present study hypothesized that there are no variations among gene clusters of 

biofilm formation in P. aeruginosa biotypes. This was made based on the fact that this set of genes 

perform a similar function in the survival mechanism of this organism. The study sought to find 

out if there are any variations in these genes, especially with regards to the different ecological 

niches that the pathogen is known to occupy. The approach followed here helped to identify the 

distribution of biofilm formation genes among strains occupying different ecological niches while 

identifying ecological niches with the highest abundance of hits of biofilm formation genes.  

On screening the retrieved sequences of P. aeruginosa from different ecological niches, the study 

identified a significant number of hits for most of the ecological niches apart from the lung and 

dental ecological niches. These results give more credence to the importance of biofilm formation 

to the survival of the ubiquitous in different environments. Human niches also indicated a 

significantly higher number and density of hits compared to the non-human niches. The results 

indicated that P. aeruginosa is more likely to form biofilms that increases its chances of survival 



95 
 

once it colonizes the human host. This finding is consistent with previous studies which have 

correctly indicated that biofilm formation significantly contributes to the antibiotic resistance 

ability of this pathogen resulting in chronic illnesses for susceptible patients (Olsen, 2015). 

The algD gene, previously described as a component of the alignate operon, demonstrated the 

highest number of hits compared to the other biofilm formation genes. Alignate biosynthesis, 

modification and export is important to chronic P. aeruginosa as these processes contribute 

significantly to antibiotic resistance and opsonization, resulting in highly potent pathogens 

(Okkotsu et al., 2014). The significantly higher number of hits indicate an insistent need by the 

pathogen to express the algD gene. A clear understanding of the expression and mutation habits 

of this gene could prove worthwhile in the bid of developing novel treatment options against 

pathogenic strains of P. aeruginosa pHMM screening of the biofilm formation genes also indicated 

that the htpG gene had a significantly higher number of hits in human isolates compared to the 

non-human isolates. The htpG gene has previously been described as a heat protein gene which 

helps P. aeruginosa bacteria survive in environmental stress. A recent study indicated that ΔhtpG 

mutant strains have significantly diminished adhesion, swimming, swarming and twitching 

motility as compared to the wildtype strains. Mutation of this gene also resulted in reduced biofilm 

formation as it affected the processes of adhesion, bacterial motility, and cellular aggregation 

(Grudniak et al., 2018). The significantly higher occurrence of this gene in human isolates 

understates its importance in the survival of the pathogen when it colonizes the human 

environment. P. aeruginosa relies on functional flagella to swim and colonize different surfaces. 

Pili-mediated twitching motility also facilitates the movement and colonization ability of this 

pathogen. Both these processes are htpG dependent as indicated by previous studies (Kazmierczak 
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et al., 2015). Novel therapeutic agents targeting this gene can impair virulence determinants of P. 

aeruginosa increasing the likelihood of completely wiping out infections that the pathogen causes. 

It is important to note that the results from this work showed that the biofilm formation genes are 

distributed among P. aeruginosa strains occupying different ecological niches. This observation 

is consistent with previous reports that have indicated that the pathogen forms biofilms to facilitate 

its survival within different hosts. These results validate the question about the variability of the 

biofilm formation genes based on different ecological niches occupied by different strains of P. 

aeruginosa. As shown here, the biofilm formation genes are highly dispersed and frequently found, 

regardless of the niche occupied by different strains of the pathogen. Much work is still to be done 

to reveal how the genes specifically affect the survival of the pathogen once it occupies different 

ecological niches.  

The study further performed genome mapping analyses to determine the distribution of the biofilm 

formations genes among the different strains of P. aeruginosa. These analyses were niche specific 

to help determine if these genes were present in the variable and conserved regions of the 

pathogen’s genome. The analyses also helped us determine the locus of the genes with the 

pathogen’s sequences. Previous studies have revealed that cupB and cupC genes which were 

classified as cell aggregation genes play an important role in the biofilm formation process, 

especially through micro-colony formation and bacterial clustering (Segolene et al., 2007). In the 

absence of appendages like the flagella and type IVa, the CupC system has more significant 

contributions making it a more viable target for anti-biofilm therapies. This study determined that 

the cupC1 gene is located around the 1050kbps in the genomes of P. aeruginosa PAO1 according 

to the BRIG analysis (Figure 4.16). These analyses also revealed that this region is variable in the 

sequences of strains of P. aeruginosa isolated from the lungs, abscess and the dental area (Figure 
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4.22, 4.23 and 4.19). This finding could indicate that the gene continues to experience constant 

mutations depending on the ecological niche further highlighting its influence in the biofilm 

formation process. The gene was, however, located in constant regions of the genomes of P. 

aeruginosa strains isolated from the other ecological niches (Figures 4.17, 4.18, 4.19, 4.20, 4.21, 

4.22, 4.23, 4.24 and 4.25). This could probably downplay the need of mutations of this gene in 

these ecological niches. It is also possible that the cell aggregation property of the bacterium has 

not been impaired when it colonizes these niches (Segolene et al., 2007). The two sets of genes 

were not retrieved by the python scripts and were not analyzed by the PHYLIP phylogenetic tree 

(Figure 4.1) and the pHMMs. 

Interestingly, none of the BRIG analyses was able to pick out the cupB1 gene. This could indicate 

that its role in the process could easily be downplayed with the cupC1 gene playing a more 

prominent role in the cell aggregation and microcolony formation which are important steps of 

biofilm formation. These findings further heighten the possibility of new therapies that could target 

pathways and processes that are mediated by the cupC1 gene. The study by Segolene et al., 2007 

indicated a near complete failure by bacteria to form aggregates when the cupC3 gene, part of the 

cupC system, was deleted. This was contrasted by a strong aggregative phenotype when there was 

an overexpression of this gene (Segolene et al., 2007). The study however, suggested a synergy 

between the cupB and cupC systems that facilitate the assembly of fimbrial structures for better 

cell-to-cell interactions leading to a proper architecture of the biofilm. 

At 2%, genes responsible for repressing the biofilm formation process were among the least 

abundant class of genes. The present study classified gshA and gshB differently with the two sets 

of genes occupying the repressors and motility classes respectively (Table 4.2). The two genes, 

however, demonstrated a close ancestral relationship. A finding that was highlighted by the 
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PYHLIP phylogenetic tree which clustered the two genes in the same clade (Figure 4.1). gshB has 

previously been shown to facilitate glutathione (GSH) biosynthesis. In a study that deleted the 

gshA, or its mutant variant gshB, the role of GSH in the biofilm formation process was highlighted 

by reporting an increase in biofilm formation (Wongsaroj et al., 2018). Those results suggested 

that GSH had a role to play in repression of biofilm formation. A previous observation has also 

revealed that GSH can disrupt immature and mature biofilms formed by P. aeruginosa (Klare et 

al., 2016). The bacterium tends to suppress the expression of these genes especially during cell 

aggregation. The BRIG analysis revealed that the gshA gene is located at 5680kbps on the genome 

of P. aeruginosa. This region is highly conserved in all the P. aeruginosa sequences analyzed 

during this study (Figure 4.16 – 4.28). This finding highlights the lack of variability in the 

evolution of this gene. Novel antibiofilm therapies could target the gshA expression by targeting 

its possible repressors. Such therapies could facilitate the suppression of biofilm formation by the 

pathogen to improve the antibiotic therapy. The gshB gene, on the other hand, is located at the 

450kbps conserved region of the genome of P. aeruginosa (Figure 4.16). The conservation of this 

position indicates less probability of notable mutations within this gene providing a probable target 

for novel antibiofilm therapies. From the pHMM screening results, the gshB indicated hits in only 

two ecological niches, the environment and eye niches. The gshA gene, on the other hand, indicated 

hits in 10 of the 13 ecological niches. It only lacked hits in the dental, eye and lung ecological 

niches. None of these genes exhibited significant results when the Wilcoxon signed rank test was 

performed to determine the difference in the number of hits between the human and non-human 

samples. This result indicated that the gene may not necessarily have a preference in strains that 

occupy human or environmental samples.  A study by Rao et al., (2011) indicated that P. 

aeruginosa PA0122 negative mutant strains had a significant increase in biofilm formation 
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compared to the strains that contained this gene. This highlights the role of the PA0122 gene as a 

repressor of the biofilm formation process. The BRIG analysis revealed that the PA0122 gene is 

located at the 1050kbps position in the reference genome (Figure 4.16). This is a conserved region 

on the genome sequences of P. aeruginosa. The PA0122 gene was, however, not retrieved using 

the python script and was therefore not used in downstream analyses. 

The study by Wilhelm et al., (2007) demonstrated that mutant strains of P. aeruginosa lacking the 

gene estA showed no swarming motility. Swimming and twitching motility, the other forms of 

surface motility, were also absent in the mutant strains. It is known that the formation of the three-

dimensional biofilm architecture relies on the swarming motility of bacterial cells. The lack of this 

gene impaired biofilm formation in the mutant strains. The present study identified this gene at 

5750 kbps locus that is highly conserved among all sequences of P. aeruginosa (Figure 4.16). The 

estA gene was, however, not retrieved by the python script and was thus not part of the PHYLIP 

phylogenetic analyses. Further analyses needs to be done to demystify the evolutionary relatedness 

between classes of such biofilm formation genes. The functional dissimilarities between the two 

sets of genes are rather clear given that the PA4878 gene has been found to be a transcriptional 

regulator (Chambers et al., 2014). The gene effects its action through the regulation of the c-di-

GMP molecule that has a hand in the correlation between the formation of biofilms and the 

antibiotic resistance ability of the refractory pathogen (Gupta et al., 2014). The BRIG analysis 

revealed that it is located at 5450 kbps highly conserved locus in the reference genome (Figure 

4.16). A study by Jones et al., (2013) indicated that amrZ repressed the transcription of the psl 

operon which in turn modulated the architecture of biofilm layers in P.aeruginosa. The protein 

encoded by this gene binds to a site overlapping the pslA promoter (Jones et al., 2013). This 

observation is consistent with reports describing amrZ as a multifunctional regulator activating the 



100 
 

algD operon besides the repression of the psl operon. Given that this process annuls biofilm tower 

formation in P. aeruginosa, various treatment strategies are compromised. The BRIG analysis 

identified the location of amrZ at 3700kbps locus in the reference genome. This region is highly 

conserved in the genome of different strains of P. aeruginosa (Figure 4.16). The amrZ gene was, 

however, not retrieved by the python script hence it was part of the PHYLIP phylogenetic analysis. 

Proper understanding of interactions mediated by this gene could potentially result in development 

of therapeutic agents that impair biofilm formation. Infections that are refractory to antibiotic 

treatments could be kept in check. 
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7. CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This study aimed to identify biofilm formation genes, classify them based on the role they play in 

the biofilm formation process and analyze the distribution of these genes in the genomes of various 

strains of P.aeruginosa. All these objectives were aimed at identifying genes and processes that 

could serve as potential targets for novel antibiofilm therapies. 

The study successfully identified 51 biofilm formation genes using the Entrez search protocol 

available on NCBI. This number was, however, reduced to 13 after a python script search was 

performed. While the Entrez search is important for identification of different proteins of interest, 

it might not be ideal to identify homologous sequences. A BLAST search of individual genes or 

writing custom scripts to select the gene sequences from annotated genomes is an ideal option for 

such undertakings. Biofilm formation genes generally seemed to have evolved together overtime. 

The algD, algU and fliC which were the exceptions in this study may have been obtained via 

horizontal gene transfer from other bacteria in the respective niches of P. aeruginosa. The study 

also assumed that these set of genes may have indicated faster evolution than the other set of genes. 

The study’s hypothesis that gene clusters with similar functions evolved similarly was negated 

with our findings that the evolutionary trends of the biofilm formation genes in P. aeruginosa did 

not necessarily depend on the functional relationships. Given that the biofilm formation genes of 

the same class are clustered differently in the cladogram, further analyses are needed to decipher 

the relationships between their functions and evolution. From the phylogenetic analyses of the 

pathogen, it was clear that P. aeruginosa isolates mostly cluster into two major clades. These 

phylogenetic analyses also indicated that different genomic regions of the P. aeruginosa have 

different evolutionary mechanisms. It is also clear that some of these genes may have been 
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obtained through horizontal gene transfer to enable the pathogen to survive in different ecological 

niches. These findings further pointed to the high diversification of different strains of P. 

aeruginosa present in different ecological niches. 

The study successfully used profile hidden Markov models to determine the levels of variability 

in the genes responsible for biofilm formation in different strains of the pathogen under study. 

These models correctly represented the sequence patterns in the different biofilm formation genes 

given that they were constructed from the multiple sequence alignments of these sequences. 

Protein sequences were ideal for construction of the models as they factored in mutations likely to 

have occurred within the DNA sequences.  

From the analyses of different P. aeruginosa strains using the gene-specific pHMMs, the study 

indicated that P. aeruginosa is more likely to form biofilms once it colonizes the human host than 

when it colonizes a non-human host as indicated by the different density of hits in the two hosts. 

P. aeruginosa has a high tendency to form biofilms once they colonize the abscess ecological 

niche, most likely to be found in wounds. The algD gene was identified as a possible target for 

novel antibiofilm therapies given that it was reported as the most abundant biofilm formation gene 

between the various strains of the pathogen. This result along with algD’s different evolutionary 

characteristic lays further claim to its potential as a novel drug target site. The diverse distribution 

of genes involved in biofilm formation in P.aeruginosa highlights the diversity of pathways the 

bacterium can explore in different ecological niches. The conservation and variability of some of 

these genes in particular niches offers the scientific body a lot to think about especially on the 

possibility of new antibiofilm therapies.  
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5.2 Recommendations for Future Studies 

Further research should be carried on: 

1. The role of horizontal gene transfer in the evolution differences witnessed among biofilm 

formation genes in different strains of P. aeruginosa. The expression patterns of biofilm 

formation genes in P. aeruginosa strains occupying different ecological niches. 

2. Comparison between pHMM and other well-known search engines. 

3. algU, algD, fliC and htpG genes as potential target sites for novel antibiofilm therapies. 
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9. APPENDICES 

 

Appendix I. Custom python script used to retrieve biofilm formation genes from the genomes of 

P. aeruginosa. 

 

 

Appendix II. Custom R-script used to perform the Wilcoxon-Signed rank test 
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Appendix III Representative multiple sequence alignment of the 51 biofilm formation genes 

indicating extensive gaps and few regions of similarity 

 


