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ABSTRACT

Ebola Virus Disease, (EVD) is a rare and deadly disease with high fatality rates in humans
and other primates. It is introduced into the human population through direct contact with
the infected hosts which include porcupines, fruit bats, chimpanzees, gorillas, monkeys
and forest antelopes. Transmission from one human being to another takes place via
direct contact with body fluids of the infected or indirectly via surfaces contaminated
by these fluids. Mathematical models have been developed describing between host and
within host dynamics of EVD separately. The within host models of EVD have considered
mass action incidence rate which does not capture the effect of saturation due to high
concentration of Ebola virions. As a result, a within host model incorporating saturated
incidence rate and treatment has been developed and analysed. Stability analyses of the
model developed show that the Infection Free Equilibrium (IFE) is locally and globally
asymptotically stable, if Rw

0 < 1, and when Rw
0 > 1, an Endemic Equilibrium (EE) emerges,

which is unique and globally asymptotically stable. The effect of treatment has been
illustrated using numerical simulations. One of the control strategies of EVD is vaccination.
The between host models of EVD incorporating vaccination available in literature assume
that the vaccines grant full immunity. This may not be the case since the vaccines are still
under development. Consequently, this study has developed and analysed a Susceptible
Exposed Infected Recovered (SEIR) model incorporating an imperfect vaccine. Analyses
of its equilibrium points have shown that if the basic reproduction number , RB

0 < 1,
the disease dies out and if RB

0 > 1, the disease persists in the population. The impact
of vaccination on the disease has also been established. Even though separate models
have been used to study immunological and epidemiological dynamics of EVD, studies
have shown that for virus infections, the infectivity of the host is directly proportional
to the viral load. This therefore calls for the use of a multiscale model to capture this
interdependence between scales. Multiscale models of EVD exist. However, they have
not considered uninfected cells and infected cells, yet they are major players in the within
host dynamics of EVD. This study therefore has formulated a multiscale model of EVD
incorporating the uninfected cells, infected cells and the Ebola virions. Analyses of the
Disease Free Equilibrium (DFE) and the EE show that the disease dies out if the basic
reproduction number Rc

0 < 1 and persists in the population when Rc
0 > 1 respectively.

Sensitivity analysis shows that the rate and efficacy of vaccination are the most sensitive
parameters. This indicates that effort should be directed towards implementing an effective
vaccination strategy to control the spread of the disease. It has also been established
through simulations that when treatment efficacy is scaled up, the viral load goes down
within a host and consequently, the transmission between hosts is also reduced. The models
developed and analysed in this study have a significant impact on the control of EVD.
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CHAPTER ONE

INTRODUCTION

1.1 Background information

Ebola Virus Disease, (EVD) is a deadly disease with high fatality rates in humans and pri-

mates [41]. The first cases were reported in 1976 in Democratic Republic of Congo (DRC)

and in Sudan. Since then, there have been several outbreaks which have been documented,

the largest being the one that occured in West Africa in Sierra Leone, Guinea and Liberia

in 2014 [4]. As at December 2014, 4656 deaths from this largest EVD outbreak had been

reported by World Health Organisation (WHO), with most cases occuring in Liberia [15].

At this moment, there is an ongoing infection of EVD in DRC in the regions of Ituri and

North Kivu provinces. It began in August 2018. By end of August 2019, about 3000 cases

and 2000 deaths had been reported [26] and according to WHO , by 16th June 2020, cases

were 3,463, survivors were 1,171 and deaths were 2,280 . Records show that this current

outbreak is the largest ever recorded in DRC and the second largest outbreak in the world.

The Director General of WHO declared it a Public Health Event of International Concern

(PHEIC) on 17th July 2019 by the WHO [14].

EVD is introduced into the human population through direct contact with the infected

hosts which include porcupines, fruit bats, chimpanzees, gorillas, monkeys and forest an-

telopes. Transmission from one human being to another takes place via direct contact with

body fluids of the infected or indirectly via surfaces contaminated by these fluids [45]. Once

exposed to the virus, the patient become symptomatic within 2 to 21 days. The symptoms

of EVD include abdominal pain, diarrhea, fever, malaise, sore throat and asthenia. Once

the patient becomes symptomatic, it takes about 10 days for hemorrhagic manifestations

to occur. This leads to death in 50 to 90% of patients [4].
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Currently, there is no licenced antiviral drug treatment for the Disease. However, clinical

trials are going on for several antiviral drugs. For instance, there is a multidrug clinical

trial of Ebola therapies that began in November 2018 and is ongoing in DRC. The thera-

pies comprise three different antibody treatments (mAb114, REGN- EB3 and ZMapp) and

one antiviral drug (Remdesivir or GS- 5734) [1]. Investigators are hopeful that the trial

will provide critical information on which treatments are most effective at treating Ebola

[44]. Results show that EVD patients receiving either of the first two antibody treatments,

i.e REGN-EB3 or mAb114 had a greater chance of survival compared with the other two

[14]. Consequently, the U.S Food and Drug Administration (FDA) has given orphan drug

status to these two most effective drugs and so should receive prompt review for licencing

[26]. These drugs have antibodies that gets attached onto the virus and thus hampering

its replication inside the host’s body. They also trigger the body’s immune system to kill

the infected cells; thus lowering the viral load. Apart from the clinical trials of the drug

therapies, EVD patients usually receive supportive care which comprises providing fluids

and electrolytes (body salts), managing fever and pain, maintaining oxygen status, reduc-

ing vomiting and diarrhea and treating other infections, if they occur [8]. These in turn

boosts the immune system.

Up to now,there is only one vaccine, (rVSV-ZEBOV) that has been approved for use by

the U.S. FDA [8]. This vaccine has been tested in the ongoing outbreak in DRC using ring

vaccination strategy and its efficacy was found to be 97.5%. From these tests, it was also

realised that even those people who are already infected at the time of vaccination may

have greater chances of survival [46]. This therefore calls for enhancement of treatment

and vaccination as part of interventions in the control of EVD.

For most infectious diseases, two processes are involved in the host-pathogen interaction.

One is the within host process at the individual level and the other one is the between host

process which encompasses the disease transmission.
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These processes can be modeled mathematically giving rise to within host models and

between host models [51]. In mathematical modeling of within host processes of EVD, the

modelers have used the mass action incidence rate to describe the interaction between tar-

get cells and Ebola virions. They assume that there is a bilinear interaction between these

cells and virions. However, it is expected that when there is invasion in a host, the immune

system always comes into play to prevent further infection. Moreover, a high concentration

of Ebola virions leads to saturation effect. These may trigger nonlinear responses. One

of the control strategies of EVD is vaccination of the susceptible individuals. It has been

assumed in the between host models of EVD incorporating vaccination that the vaccine

grants full immunity [6]. However, the Ebola vaccines are still under development and so

it may be safer to assume that the efficacy of the vaccine varies.

Single scale models describing dynamics of diseases exist. Despite these extensive studies,

the outbreak of some diseases, (including EVD) cannot still be predicted. This unpre-

dictability may be attributed to the fact that these models are single scale yet disease

dynamics are multiscale in nature [33]. In the recent past, efforts have been directed to-

wards multiscale models linking these two separate scales. The resulting multiscale models

have the capacity to uncover new insights into infectious diseases [3]. For instance, mul-

tiscale models of HIV and AIDS have been used to evaluate the effect of the within host

parameters on the between host reproduction number, prevalence of the disease among

other things. Multiscale models of EVD exist in literature [31],[2]. However, these studies

have only considered viral dynamics and antibodies, leaving out other cells within a host

such as the target cells which are very important in EVD dynamics.
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1.2 Statement of the problem

The within host models of Ebola Virus Disease, (EVD) studied so far have considered

the mass action incidence rate which assumes that the rate of infection is bilinear in both

uninfected cells and Ebola virions. However, it is expected that a nonlinear response may

occur at high concentration of Ebola virions due to the saturation effect. The behavior

change, normally associated with the saturated incidence term may be considered as being

analogous to the immune response. Thus, a saturated incidence rate is more appropriate

for the viral and target cell interaction. Some of the between host models of EVD studied

have considered vaccinating a proportion of the susceptible individuals as an effective tool

of combating this disease. These models assume full protection against EVD which may not

be the case since the vaccines are still under development. Even though separate models

have been used to study immunological and epidemiological dynamics of EVD, studies have

shown that for virus infections such as HIV and AIDS, EVD among others, the infectivity

of the host is directly proportional to the viral load [2]. This therefore calls for the use

of a multiscale model to capture this interdependence between scales. The multiscale

models of EVD that are available in literature
(

see [31],[2]
)

have not explicitly modeled

the interaction between uninfected cells and the virions. This interaction is important since

it produces infected cells which in turn produce Ebola virions.
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1.3 Objectives of the study

1.3.1 Main objective

The main objective of this study is to develop and analyze a multiscale model for Ebola

transmission dynamics with treatment.

1.3.2 Specific objectives

The specific objectives of this study are;

(i) To develop a within host model for Ebola Virus Disease with a saturated incidence

term and analyze its long term solutions.

(ii) To develop a between host model for Ebola Virus Disease incorporating an imperfect

vaccine and analyze its long term solutions.

(iii) To couple the within and between host models developed and analyze the resulting

multiscale model.

(iv) To evaluate the role of treatment as a control strategy.

1.4 Justification of the study

Ebola is an emerging threat of Public Health in Africa. The high fatality and the continuous

high risk faced by frontline healthcare workers makes it an important nosocomial infection.

Despite the advancements in studying mathematical models of EVD, the outbreaks of the

disease remains unpredictable. This may be due to the fact that most models describe the

dynamics of EVD in a single scale. In reality, almost all problems (including diseases) have

multiple scales. Therefore there is need for multiscale modeling of EVD.
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1.5 Significance of the study

Multiscale modeling of Ebola is important in understanding the interdependence of scales.

This study has also incorporated the efficacy of treatment in the within host model. This

has helped evaluate the role of treatment on Ebola transmission dynamics. The novel

results of the analysis of the models developed are helpful to policy makers and health

practitioners in coming up with effective control strategies.

This study also contributes knowledge in Mathematics since multiscale modeling in a very

active area of research.

1.6 Methods of the study

The following methods have been used in this study.

(a) Ordinary Differential Equations (ODEs).

All the models developed and analyzed have been described by a system of ODEs.

The first model describes the within host dynamics. It has uninfected cells , infected

cells and the free virus particles represented by X(t), Y (t) and L(t) respectively . The

uninfected cells grow in a logistic manner and a saturated force of infection has been

adopted. The uninfected cells are taken to have logistic growth since their number

is bounded.

Treatment has been incorporated in this model. One of the proposed treatment for

EVD is convalescent blood transfusion. It was used during the 1995 Kikwit Ebola

Outbreak in treating 8 infected individuals. After the treatment, it was reported that

only 1 patient died [49]. Trials for several drug therapies are ongoing at the moment.

In this study, the efficacy of treatment is given by ρ.

For the between host model, the population is subdivided into the Susceptible S(t),

the Exposed E(t), the Infected I(t) and the recovered R(t).
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Evidence show that people who have recovered from EVD had antibodies that could

be detected after 10 years [8] and therefore we consider recovery as confering tempo-

rary immunity.

The bridge of within to between host is by considering transmission in the between

host model as a saturated function of the viral load of the within host level.

(b) Stability analysis.

Given a dynamical system, a vector x̄ is considered to be its equilibrium point if it

satisfies the property that once the system state vector is equal to x̄, it remains equal

to x̄ for all time.

The stability of a dynamical system is defined with respect to its equilibrium point.

An equilibrium point is stable if when the state vector is given a small perturbation,

it tends to return to it [11].

To determine the stability of a given equilibrium point, the basic reproduction number

is used. For instance, for the case of DFE, when it is greater than 1, the DFE is

unstable and when it is less than 1, this equilibrium is stable and we predict that the

pathogen will be cleared [17]. The Basic reproduction numbers of each model has

been calculated.

The equilibrium points of the models have been found and each model has been

linearized by finding the Jacobian. Local and global stability of each model has been

analyzed using variety of techniques namely Routh Hurwitz method, Center Manifold

Theorem, Descartes Rule, Geometric Approach, Comparison method and Lyapunov

method.

(c) Numerical Simulations.

The long term behavior of the solutions have been determined through numerical

simulations using MATLAB software.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Mathematical models are built on basic assumptions usually with a view to estimating the

necessary intervention strategies [47]. Below is a survey of some mathematial models for

Ebola Virus Disease and some models for other diseases useful in this study.

2.2 Within host models for Ebola

These are models representing the dynamics of a disease within an individual [27].One of the

early within host models, regarded as the standard model for modeling virus reproduction

was used in [32] and in [35] to model the within host dynamics of HIV. It is given below.

dX(t)

dt
= λ− dX(t)− βX(t)V (t),

dY (t)

dt
= βX(t)V (t)− aY (t),

dV

dt
= kY (t)− uV (t) (2.1)

where X(t), Y (t), V (t) represent target (cytotoxic T) cells, infected cells, virus particles

respectively.

Within host studies and mathematical models of Ebola exist in literature. Some of these

are discussed below;

Vincent et.al [43] designed an experiment where they infected 20 mice with ebola virus.

They treated some with favipiravir and left some untreated. They then characterised their

viral dynamics. Their model showed that the drug effectively blocks viral production with

antiviral effectiveness reaching up to 99.6%. From this experiment, they concluded that

favipiravir should be administered as early as possible for it to be effective.
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Sophia et. al [37] developed an immunological model to explore the immune response to

EBOV and to assess the effect of vaccination at the cellular level. In this work, they used

Herz model to analyse EBOV dynamics within an individual and used Tuckwell model to

analyse the immune response. These models provided information about the workings of

the immune system and provided thresholds for parameters. They concluded from their

results that the vaccinated cytotoxic T lymphocyte response contained the EBOV growth.

Thomas et.al [39] developed and analysed a within host model describing EBOV dynamics.

The model is given by the following system of nonlinear ODEs

dX(t)

dt
= λ− βV (t)X(t)− µX(t),

dI(t)

dt
= βV (t)X(t)− ρI(t)T (t)− αI(t),

dV (t)

dt
= cI(t)− γV (t),

dT (t)

dt
= ρI(t)T (t)− δT (t) (2.2)

where X(t), I(t), V (t), T (t) represent uninfected cells, infected cells, EBOV particles and

cytotoxic T cells respectively. They used this model to examine the course of ebola in-

fection within the immune system in a human being. They came up with two threshold

parameters namely: the viral reproduction number, denoted by R0 and the immune re-

sponse number, denoted by R1. These two threshold parameters were used to predict the

local asymptotic stability of the system around the equilibrium points.

Lasisi et.al [22] improved the model (2.2) by introducing the drug usage. Their model is

dU(t)

dt
= β − µ1U(t)− (1− φ)αU(t)V (t),

dI(t)

dt
= (1− φ)αU(t)V (t)− µ2I(t)− δ1I(t)T (t),

dV (t)

dt
= ωI(t)− µ3V (t)− δ2B(t)V (t),

dT (t)

dt
= k1T (t) + γI(t)T (t)− µ4T (t),

dB(t)

dt
= k2B(t) + θB(t)V (t)− µ5B(t) (2.3)
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where φ is the efficacy of drug, U(t) is the number of uninfected cells, I(t) , the number of

infected cells, V (t) the number of free virions, T, the number of cytotoxic T lymphocytes

and B is the number of B cells (antibodies). In the analysis and simulations of this model,

it was shown that the efficacy of drug usage has an effect on the number of free virions.

This in turn affects the number of infected cells.

In the Herz model, Tuckwell model and models (2.2)and (2.3), mass action incidence rate

has been used. In mass action, it is assumed that the infection rate is strictly linear in

the entire range of the uninfected cells and Ebola virions. This may not be realistic since

factors such as saturation and immune response can cause a nonlinear interaction [36].

2.3 Between-host models for Ebola

Navjot et.al [30] developed and analyzed a general SIRS epidemic model. They incorpo-

rate the effects of media awareness on the transmission of infectious diseases. From their

analysis, they reported that media programs that create awareness about a particular dis-

ease have positive impact on reducing disease prevalence in a given region of interest. This

shows that mathematical models can be used to evaluate the impact of a given intervention

on the dynamics of a disease.

Sylvie [38] developed, analysed and numerically simulated a mathematical model for EVD.

She used the model to investigate the effect of media campaigns on the transmission of the

disease. Through simulations, she showed that media has a beneficial effect in reduction

of the EVD cases. She recommended the spacing out of the media campaigns in intervals

of time for more effectiveness.
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Amira and Delfim [5] developed and analysed an SEIR model for EVD to be used in

predicting and controlling the disease. The model is given below

dS(t)

dt
= −βS(t)I(t),

dE(t)

dt
= βS(t)I(t)− γE(t),

dI(t)

dt
= γE(t)− µI(t),

dR(t)

dt
= µI(t) (2.4)

However, model (2.4) does not include deaths caused by the disease. This is not realistic

since EVD leads to death in 50 to 90% of infections as stated earlier. In addition, it does

not include vital dynamics like births and natural deaths yet they affect the size of the

four classes of population.

Ellina and Evgenii [15] improved the model (2.4) as given below.

dS(t)

dt
= −

(
βI(t) + αE(t)

)
S(t)

N
,

dE(t)

dt
=

(
βI(t) + αE(t)

)
S(t)

N
− σE(t),

dI(t)

dt
= σE(t)− γI(t),

dR(t)

dt
= γI(t) (2.5)

They considered population with a constant size N and two infection routes through the

exposed individuals and the infected individuals. This study, however, did not consider

births, natural deaths and disease induced deaths. It has also been documented that the

exposed individuals do not transmit EVD [9].

Wetere et.al [40] developed an SIRD model of EVD incorporating quarantine and vaccina-

tion as control strategies.
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The model is given below.

dS(t)

dt
= γR(t)− β(1− q)S(t)I(t)

N(t)
− vS(t),

dI(t)

dt
=

β(1− q)S(t)I(t)

N(t)
− α1qI(t)− α2(1− q)I(t)− δ1I(t)− δ2I(t),

dR(t)

dt
= α1qI(t) + α2(1− q)I(t) + vS(t)− γR(t),

dD(t)

dt
= δ1I(t) + δ2I(t) (2.6)

where N(t) is the total population, γ is the rate of loss of infection acquired immunity, β

is the contact rate, q is the rate of quarantine, v is the vaccination rate, α1 and α2 are

recovery rates while δ1 and δ2 are death rates. Through numerical simulations, it has been

shown that quarantine and vaccination are effective interventions against EVD.

Amira and Delfim [6] also improved their model (2.4) by introducing vital dynamics and

vaccination. The improved model is given below.

dS(t)

dt
= δN − βS(t)I(t)− λS(t)− uS(t),

dE(t)

dt
= βS(t)I(t)− γE(t)− λE(t),

dI(t)

dt
= γE(t)− µI(t)− λI(t),

dR(t)

dt
= µI(t)− λR(t) + uS(t) (2.7)

Model (2.6) and model (2.7) assumed that all who have been vaccinated are immune to

infection. This may not be true since vaccines for EVD are still under development and

trials.
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2.4 Multiscale models

Multiscale models coupling between host and within host models for diseases including

Ebola are available. Below is a survey of some multiscale models that scholars have devel-

oped and analysed.

Jie et.al [20] came up with an immunoepidemiological model of HIV and AIDS. They

first introduced a within host model describing the within host dynamics of HIV and

AIDS. Their between host model is age structured and they used it to describe the disease

dynamics in the population. They then coupled the two models and formed an immu-

noepidemiological model. The coupling was done via the between host parameters that

depend on viral load and the number of CD4+ T cells. They theoretically analyzed their

mathematical models. Through simulations, they found out that there is interdependence

between the two scales.

Winston et.al [48] developed a modeling framework that can be used in coupling the within

and between host dynamics of a disease. They illustrated the working of this framework

using human schistosomiasis. The pathogen causing this disease, i.e trematode worm has

part of its dynamics in the environment, e.g contaminated water. Thus, the dynamics of

the different scales were coupled via the environment. The resulting multiscale model was

tested and found to be epidemiologically well posed. Through analysis, they established

that there is a link between the within and between host scales via the environment.

Zhilan et.al [16] came up with a mathematical model used in linking the between and

within host dynamics of a disease and used it as a multiscale model for Toxoplasma gondii.

Part of the life cycle of this parasite is interaction with the environment. Their between

host model is;

dS(t)

dt
= µN(t)− λE(t)S(t)− µS(t),

dI(t)

dt
= λE(t)S(t)− µI(t) (2.8)
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Here, E(t) denotes contamination level of the environment at any time. It depends on the

parasite load V (t) and the number of individuals who are infected, I(t). Its equation is

dE(t)

dt
= V (t)I(t)θ(1− E(t))− γE(t) (2.9)

where θ denotes the rate of contamination and γ is the clearance rate. Their within host

model is given below;

dT (t)

dt
= Λ− kV (t)T (t)−mT (t),

dT ∗(t)

dt
= kV (t)T (t)− (m+ d)T ∗(t),

dV (t)

dt
= g(E) + pT ∗(t)− cV (t) (2.10)

with T(t) denoting the density of susceptible cells, T ∗(t) denoting the density of the cells

that are infected, k denotes the rate of infection of the susceptible cells, m is the natural

mortality rate and d is the mortality rate of cells as a result of infection, p denotes the rate

of reproduction of the parasite by a cell that is infected c denotes the mortality rate of

parasites while g(E) is the rate of inoculation of an average host. In this work, g(E) has

been used in linking the dynamics between the two scales. In their analysis, they realized

that there is a dependence of the reproduction number of the between host model on the

parameters of the within host model.

In the studies by Winston et.al [48] and Zhilan et.al [16], the two models are linked via

an environmental component. This may not be applicable for multiscale modeling of EVD

since there is no environmental component in the dynamics of EVD.
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Alexis et.al [3] developed an immunoepidemiological mathematical model coupling an im-

munological model and an epidemiological model of disease. The immunological model is

given as;

dV (t)

dt
= pV (t)(1− V (t)

Kv

)− cvE(t)V (t), V (0) ≥ 0,

dE(t)

dt
= (NE − δEE(t)) +G(V )E(t), E(0) ≥ 0 (2.11)

Here, V (t) is the number of free virions at time t, E(t) denotes the population of T-Cells at

time t, p is the rate of replication of the virions rate and Kv denotes the carrying capacity.

They imposed the properties; G(0) = 0, G′(V ) = dG
dV

> 0 and considered a special case of

G in the Michaelis-Menten form G(V ) = rV
V+KE

in the analysis.

In this model, T- cells get replenished at the rate NE and they are cleared at the rate δE.

The virus is cleared at the rate cv while rV is the maximum value of the virions and KE

is half saturation constant.

Their between host model is;

dS(t)

dt
= (NS − δSS(t))− βS(t)I(t), S(0) > 0,

dI(t)

dt
= βS(t)I(t)− δII(t), I(0) ≥ 0. (2.12)

Here, β is the transmission rate while δS and δI denote the mortality rate of susceptibles

and infected individuals respectively. They coupled the two models using the viral load by

considering the transmission between different people as a function of the viral load within

an infected individual, i.e β = β(V ) where β(0) = 0 and β′(V ) > 0.

Linear, logistic and saturation form of the coupling function were considered in the numer-

ical analyses.

Their main result was the derivation of the between host model reproduction number

as a general increasing function of the reproduction number of the within host model.

This model may not be suitable to study EVD since the within host model considers the

interaction between virions and the T cells yet T cells are not target cells in EVD dynamics.
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Feng et.al [51] presented a mathematical model allowing the immunological and epidemi-

ological processes to depend on one another. Their within host model is as given below;

dT (t)

dt
= Λc − kT (t)V (t)− µcT (t),

dT∗(t)

dt
= kT (t)V (t)− (µc + δc)T∗(t),

dV (t)

dt
= pT∗(t)− cV (t) (2.13)

where T (t) and T∗(t) denotes the density of target host cells and infected host cells respec-

tively and V (t) denotes the viral load within a host.

The between host model that they used is given below;

dS(t)

dt
= b(S, I)− β(V )S(t)I(t)− µS(t),

dI(t)

dt
= β(V )S(t)I(t)− µI(t) (2.14)

Here, b(S,I) is the rate of recruitment of susceptible individuals, µ denotes the natural

mortality rate and β(V ) denotes the transmission rate. This rate of transmission is taken

to be directly proportional to the viral load, V (t). The multiscale model that resulted from

coupling these two sub models is given below.

dS(t)

dt
= Λ− βS(t)V (t)I(t)− µS(t),

dI(t)

dt
= βV (t)S(t)I(t)− µI(t),

dT (t)

dt
= Λc − kI(t)T (t)V (t)− µcT (t),

dT ∗(t)

dt
= kI(t)T (t)V (t)− (µc + δc)T

∗(t),

dV (t)

dt
= pT ∗(t)− cV (t) (2.15)

The rates of infection k and β are taken to be linear functions of the disease prevalence

I(t) and the viral load V (t).

They calculated two threshold quantities, Rh and Rv corresponding to the between host

and within host dynamics, respectively and concluded that the magnitudes of these repro-

duction numbers can determine the prevalence of an infection if considered jointly.
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Feng et.al [51] used the linear form of the coupling function to couple the two models.

According to work done by Alexis et.al [3], linearly coupling the two models may lead to

overestimating the transmission of the disease.

Van et.al [31] developed a multiscale model coupling a within host model considering the

dynamics of virions and a between host model of EVD. They used the model in exploring

Ebola vaccination strategies. Their within host model is

dV (t)

dt
= rvV (t)

(
1− V (t)

Kv

)( V (t)

V (t) + IN

)(
1− Ab(t)

KAb

)
(2.16)

where Ab(t) is the number of antibodies and V (t), the viral load. The virus replicates

in a logistic manner. The replication rate is rv and the carrying capacity of the host is

Kv. IN and KAb denotes the lag phase threshold and the strength of the immune system

respectively. For the between host model, they used the survey data from Europeans’

contact patterns [28] to generate the network model. This model reflected the number

of contacts, the patterns in which people mix in different age groups and a specific age

structure of a population. They chose the city of Freetown in Sierra Leon and used its age

distribution as a reference. They then formed a multiscale model by embedding the within

host model into the network model they had developed. Some of their results were

(i) In the absence of any intervention, the case fatality rate is 90.93%.

(ii) Interventions can reduce case fatality rate.

(iii) Vaccination can reduce the severity of EVD in people who are newly infected after

the program of vaccination.

This study however assumed that the contact pattern of people in Sierra Leone is the same

to that of European countries. This may not be true since Sierra Leone is a very poor

country and most European countries are highly developed hence there are differences in

social and economic status of the people leading to different mixing patterns.
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Alexis and Hernandez [2] presented an improved multiscale model of the model by Alexis

et.al [3]. Their within host model considers the antibody responses of a recovering host

from Ebola infection. The model is given below

dV (t)

dt
= pV (t)

(
1− V (t)

Kv

)( V (t)

V (t) + IN

)(
1− A(t)

KA

)
, V (0) ≥ 0,

dA(t)

dt
= δAA,A(0) ≥ 0. (2.17)

where A(t), V (t), Kv and IN are as defined in (2.16) while p is the rate of reproduction of

the virions.

Their multiscale model is

dS(t)

dt
= (NS − δSS(t))− β(V )S(t)I(t),

dI(t)

dt
= β(V )S(t)I(t)− (δI + γ)I(t),

dR(t)

dt
= γI(t)− δRR(t) (2.18)

From the analysis, the equilibrium points are stable. They considered a saturated form of

the coupling function in the simulations and concluded that the time window for effective

antibody response determines the time window before an outbreak occurs.

The models in [31] and [2] have considered only the viral dynamics and antibodies leaving

the uninfected target cells and infected cells which are very important in EVD dynamics.

In this study, the gaps identified in the literature review have been addressed by developing

and analysing a multiscale model coupling a within host model and a between host model

via the viral load. The within host model has considered the uninfected cells, infected

cells and the virions. It has a saturated incidence rate and the effect of treatment has also

been investigated. The between host SEIR model has considered the rate and efficacy of

vaccination.
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CHAPTER THREE

WITHIN HOST EBOLA MODEL

3.1 Introduction

In this chapter, we have formulated a within host model of EVD incorporating a logistic

growth of the target cells, a saturated incidence rate and the effect of treatment. Treatment

here encompasses supportive care and the Ebola treatment drugs undergoing clinical trials.

We have analysed the local and global stability of the equilibrium points as well as perform

numerical simulations to investigate the effect of efficacy of treatment.

3.2 Model Formulation

The dynamics of EVD within a given host is represented mathematically by a nonlinear

model consisting of three compartments namely; uninfected cells X(t), infected cells Y (t)

and virions L(t). The uninfected cells grow logistically at the rate m. α is the mortality

rate of the uninfected cells and Q is the carrying capacity. The uninfected cells interact

with the virions L(t) at a constant infectivity rate β. This interaction produces infected

cells Y (t) which in turn produce infectious virions L(t) at the rate c and ρ (0 ≤ ρ ≤ 1)

measures the efficacy of treatment.

The infected cells die at the rate η and k determines the saturation level when the virion

population is large.

The virions die at the rate γ.
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These dynamics are illustrated by the diagram below          
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Figure 3.1: Within host Model Flow Chart

The flow diagram above leads us to the system of nonlinear system 3.1

dX(t)

dt
= mX(t)

(
1− X(t)

Q

)
− (1− ρ)β

L(t)X(t)

1 + kL(t)
− αX(t),

dY (t)

dt
= (1− ρ)β

L(t)X(t)

1 + kL(t)
− ηY (t),

dL

dt
= cY (t)− γL(t) (3.1)

With the conditions X(0) = X0, Y (0) = Y0, L(0) = L0 at t = 0.

Model (3.1) is studied in the closed set Π = (X(t), Y (t), L(t)) ∈ R3
+
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Table 3.1 summarizes the variables and parameters that have been used in Model (3.1).

Table 3.1: Description of Parameters and Variables

Variable or Description
Parameter

X(t) The number of uninfected cells
which are susceptible to infection.

Y (t) The number of cells which have been infected with Ebola virus
and they produce virions which cause infection.

L(t) The number of Ebola virions at any time t.

m Rate of growth of the uninfected cells.

Q The carrying capacity of the host

ρ The efficacy of treatment of EVD.

β The transmission rate of the virus.

k The saturation factor.

α The rate of mortality of the uninfected cells.

η The mortality rate of infected cells.

c The production rate of new virions.

γ Mortality rate of free virions.

3.3 Positivity and Boundedness of solutions

We use the lemma below to study the positivity and boundedness of solutions to equations

of Model (3.1).

Lemma 3.3.1. Let t0 > 0. If X0 > 0, Y0 > 0 and L0 > 0, then X(t), Y (t) and L(t) will

each remain nonnegative and bounded in R3
+ for all t ∈ [0, t0].

Proof. The first and second equations of model (3.1) represents the population of cells and

the last one represents population of virions. These are always positive. Therefore ,they

are bounded below.

For the first equation, we have

dX(t)

dt
= mX(t)

(
1− X(t)

Q

)
− (1− ρ)β

L(t)X(t)

1 + kL(t)
− αX(t),

> −(1− ρ)β
L(t)X(t)

1 + kL(t)
− αX(t) (3.2)

Solving for X(t) yields X(t) > X0e
−αt−β

∫ L(t)
1+kL(t)

dt > 0.

Similarly, the other equations yield Y (t) > Y0e
−ηt > 0 and L(t) > L0e

−γt > 0 respectively.
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In all these three solutions, X0, Y0 and L0 are constants of integration. Therefore, for all

t ∈ [0, t0], X(t), Y (t) and L(t) will be positive and remain in R3
+.

Next, we show that all the three equations are ultimately bounded for t ≥ 0.

For the first equation, the viral infection reduces the population of the target cells so at

the onset of infection , the population of uninfected cells must be greater than or equal to

the total cell population at t > 0. The second and third equations reduce to zero at the

Infection Free Equilibrium (IFE).

This leaves us with first equation and since the target cells grow logistically, the number

of cells is given by

X(t) =
QX0

X0 + (Q−X0))e−mt
(3.3)

For initial population values below the carrying capacity Q, the population of cells grows

to Q as time increases as shown below;

lim
t→∞

X(t) = lim
t→∞

QX0

X0 + (Q−X0)e−mt
(3.4)

= Q (3.5)

Thus, the Model (3.1) is bounded above by Q and bounded below by 0.

Since model (3.1) is positive and bounded, it is well posed in the considered region Π.

3.4 The Infection Free Equilibrium

Infection Free Equilibrium, (IFE) of a model is its steady state solution at which no infec-

tion (or disease) is present. It is obtained by setting the right hand side of model (3.1) to

zero and solving for the state variables with Y (t) = L(t) = 0. This gives X(t) = Q− αQ
m

.

Therefore the IFE is [X0, Y 0, L0]=[Q− αQ
m
, 0, 0].

3.4.1 Evaluation of the Basic Reproduction number, (Rw
0 )

The basic reproduction number is the expected number of infections generated by a single

infectious cell introduced in a population of uninfected cells which are susceptible to infec-

tion. Rw
0 is obtained using the method of next generation matrix [42].
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The infection compartments in this model are Y (t) and L(t). The rate of increase in infec-

tion and the rate of progression of infection in the ith infection compartment are denoted

by Fi and Vi respectively. Thus for model (3.1),

F =

(
(1− ρ)β L(t)X(t)

1+kL(t)

0

)
V =

(
ηY (t)
γL− cY

)
. (3.6)

Differentiating Fi and Vi with respect to Y (t) and L(t) and evaluating them at Infection

Free Equilibrium E0 gives

F =

(
∂Fi(E0)

∂xj

)
V =

(
∂Vi(E0)

∂xj

)
(3.7)

Hence, the matrix F and matrix V are respectively given by

F =

(
0 (1− ρ)βQ(1− α

m
)

0 0

)
and

V =

(
η 0
−c γ

)
(3.8)

so that

V −1 =

( 1
η

0
c
ηγ

1
γ

)
(3.9)

Therefore,

FV −1 =

( (1−ρ)βQ(1− α
m

)c

ηγ

(1−ρ)βQ(1− α
m

)

γ

0 0

)
(3.10)

The reproduction number, Rw
0 is given by the spectral radius of matrix FV −1. Hence,

Rw
0 =

(1− ρ)βcQ(1− α
m

)

ηγ
(3.11)
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3.4.2 Local Stability Analysis of the Infection Free Equilibrium

This is investigated using the theorem below.

Theorem 3.4.1. If Rw
0 < 1, then E0 = [Q− αQ

m
, 0, 0] is locally asymptotically stable.

Proof. The Jacobian of model (3.1) is given by

J =

m− α− 2mX(t)
Q
− (1− ρ) βL(t)

1+kL(t)
0 − (1−ρ)βX(t)

(1+kL(t))2

(1− ρ) βL(t)
1+kL(t)

−η (1−ρ)βX(t)
(1+kL(t))2

0 c −γ

 (3.12)

At Infection Free Equilibrium (IFE), Y (t) = L(t) = 0 and X(t) = Q− αQ
m

.

Evaluating matrix (3.12) at IFE, we have

J(E0) =

α−m 0 −(1− ρ)β(Q− αQ
m

)

0 −η (1− ρ)β(Q− αQ
m

)
0 c −γ

 (3.13)

One of the eigenvalues of the matrix (3.13) is

λ = α−m (3.14)

which is negative since m > α. (The population of target cells must always be greater

than zero. For this to be possible, birth rate must be greater than death rate.)

To determine the nature of the other eigenvalues, the reduced matrix below is considered.

JR =

(
−η ηγ

c
Rw

0

c −γ

)
(3.15)

The trace of the matrix (3.15) is given by −(η + γ) < 0 and the determinant is given by

ηγ(1−Rw
0 ). This determinant is positive when ηγ(1−Rw

0 ) > 0, that is Rw
0 < 1.
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The Routh Hurwitz criterion guaranteeing the existence of eigenvalues with negative real

part has been met.

Therefore the IFE is locally asymptotically stable whenever Rw
0 < 1. Otherwise, it is

unstable.

Epidemiologically this means that if a single virion is introduced into a fully susceptible

population of uninfected cells, the infection would die out whenever Rw
0 < 1. Otherwise

the infection would spread to other cells.

3.5 Global Stability Analysis of the Infection Free Equilibrium

This analysis is done using the theorem by Castillo et. al [7] as described below.

Rewrite model (3.1) in the form;

dM(t)

dt
= F (M(t), Z(t))

dZ(t)

dt
= G(M(t), Z(t)), G(M(t), 0) = 0 (3.16)

where M(t) = X(t) denotes the total number of uninfected cells while Z(t) = (Y (t), L(t)),

denotes the number of infected cells and the number of free virions respectively. The IFE

is now given by

E0 = (M0, 0) where M0 = Q− αQ

m

For the IFE to be globally asymptotically stable, conditions H1 and H2 below must be met

.

H1: dM(t)
dt

= F (M(t), 0), E0 is globally asymptotically stable.

H2: G(M(t), Z(t)) = PZ(t)− Ĝ(M(t), Z(t))

where Ĝ(M(t), Z(t)) ≥ 0 and P = DZG(E0, 0) is a metzler matrix.
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Theorem 3.5.1. E0 = (M0, 0) is a globally asymptotically stable equilibrium of model (3.1)

provided Rw
0 < 1 and the assumptions H1 and H2 are met.

Proof. We have

dM(t)

dt
= F (M(t), Z(t)) = mX(1− X

Q
)− (1− ρ)β

L(t)X(t)

1 + kL(t)
− αX(t)

At the IFE, Z(t)=0 so F (M(t), 0) = mX(1− X

Q
)− αX(t)

dZ(t)

dt
= G(M(t), Z(t)) =

(
(1− ρ)β L(t)X(t)

1+kL(t)
− ηY (t)

cY (t)− γL(t)

)
and G(M(t), 0) = 0

Therefore

dM(t)

dt
= F (M(t), 0) = mX(1− X

Q
)− αX(t)

P = DZG(M0, 0) =

(
−η (1− ρ)βQ(1− α

m
)

c −γ

)
PZ(t) =

(
−η (1− ρ)βQ(1− α

m
)

c −γ

)(
Y (t)
L(t)

)
=

(
(1− ρ)βM0L(t)− ηY (t)

cY (t)− γL(t)

)
(3.17)

and

Ĝ(M(t), Z(t)) =

(
Ĝ1(M(t), Z(t))
Ĝ2(M(t), Z(t))

)
=

(
0
0

)
(3.18)

since M0 =
X(t0)

1 + kL(t0)
(3.19)

Equation (3.18) shows that Ĝ(M(t), Z(t)) ≥ 0. Conditions H1 and H2 have been satisfied

and thus E0 is globally asymptotically stable for Rw
0 < 1. This means that if you give the

system a large pertubation, it will return to the IFE.

3.6 The endemic equilibrium point

The endemic equilibrium point is an equilibrium in which the infection is present in the pop-

ulation of the cells. Ebola virus infection within the host is endemic if X∗(t) > 0, Y ∗(t) > 0

and L∗(t) > 0 for all t > 0.
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3.6.1 Existence of the endemic equilibrium point

This is shown using the lemma below.

Lemma 3.6.1. The Ebola virus infection exists and is persistent in the population whenever

Rw
0 > 1.

Proof. At endemic equilibrium, the equation of free virions in model (3.1) gives

L∗(t) = cY ∗(t)
γ

and the limiting value of X(t) is Q− αQ
m

.

Substituting these two expressions in the equation of infected cells in model (3.1), we get

βQ(1− ρ)(1− α

m
)

cY ∗(t)

γ + kcY ∗(t)
− ηY ∗(t) = 0. (3.20)

Equivalently, Equation (3.20) can be written as

ηRw
0

γ + kcY ∗(t)
− η = 0 (3.21)

giving

Y ∗(t) =
γ

kc
[Rw

0 − 1] (3.22)

on further simplification.

Equation (3.22) shows that Y ∗(t) > 0 if and only if Rw
0 > 1. This means that the EE point

exists whenever Rw
0 > 1

We therefore get the endemic equilibrium point as shown below.

Using Equation (3.22), L∗(t) can now be written as

L∗(t) =
1

k
[Rw

0 − 1] (3.23)

Making X(t) the subject in the equation of the uninfected cells in model (3.1) and substi-

tuting the value of L∗(t) from Equation (3.23) gives

X∗(t) = (1−ρ) βQ
kmRw0

(1−Rw
0 )+(1− α

m
)Q. Thus we have the EE point

[
X∗(t), Y ∗(t), L∗(t)

]
given by [(

1− ρ
) βQ

kmRw
0

(
1−Rw

0

)
+
(

1− α

m

)
Q,

γ

kc

(
Rw

0 − 1
)
,

1

k

(
Rw

0 − 1
)]

(3.24)
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3.6.2 Stability analysis of the endemic equilibrium point

We use the Center Manifold Theorem [23] as illustrated below.

Theorem 3.6.1. Consider the following general system of ODEs. dx
dt

= f(x, φ), f : Rn ×

R→ Rn and f ∈ C2(Rn × R)

Let the origin be an equilibrium point of this systemnfor all values of φ where φ is a

parameter. Let

1 . z = Dxf(0, 0)

2 . Zero is an eigenvalue of z and each of the remaining eigenvalues of z has a real

part that is negative.

3 . Matrix z has a right eigenvector w = (w1, w2, w3)T and a left eigenvector v =

(v1, v2, v3)T each of which corresponds to the zero eigenvalue

Let

s? =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

r? =
n∑

k,i=1

vkwi
∂2fk
∂xi∂β?

(0, 0)

The signs of s? and r? determines the dynamics of the given system around the equilibrium

point at the origin. Specifically;

(i) s? > 0; r? > 0 when β? < 0, with |β? < 0| � 1, (0,0) is locally asymptotically stable

and there exist a positive unstable equilibrium; when 0 < β? � 1, (0,0) is unstable

and there exists a negative and locally asymptotically stable equilibrium.

(ii) s? < 0; r? < 0, when β? < 0 with |β?| � 1 (0,0) is unstable; when 0 < β? � 1, (0,0)

is locally asymptotically stable, and there exists a positive unstable equilibrium.

(iii) s? > 0; r? < 0, when β? < 0 with |β?| � 1, (0,0) is unstable and there exists a

negative and locally asymptotically stable equilibrium, when 0 < β? � 1, (0,0) is

stable and there exists a positive unstable equilibrium.
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(iv) s? < 0; r? > 0, when β? < 0 changes from negative to positive, (0,0) changes its

stability from stable to unstable. Correspondingly, a negative unstable equilibrium

becomes positive and locally asymptotically stable.

Applying theorem (3.6.1),we proceed as follows;

Let X(t) = u1, Y (t) = u2 and L(t) = u3.

The model 3.1 can be written in the form

dU

dt
= F (u)

where

U = (u1, u2, u3)

F = (f1, f2, f3)

so that

du1

dt
= mu1(1− u1

Q
)− (1− ρ)β

u3u1

1 + u3

− αu1,

du2

dt
= (1− ρ)β

u3u1

1 + ku3

− ηu2,

du3

dt
= cu2 − γu3 (3.25)

The Jacobian matrix of model (3.25) at the IFE is given by matrix (3.13)

To analyze the dynamics of model (3.25), we compute the right and left eigenvectors of

matrix (3.13). Thusα−m 0 −(1− ρ)β(Q− αQ
m

)

0 −η (1− ρ)β(Q− αQ
m

)
0 c −γ

w1

w2

w3

 =

 0
0
0

 (3.26)

This gives the entries of the right eigenvector as w1 = w2η
α−m , w2 = w2 > 0 and w3 = cw2

γ

To obtain the left eigenvector, evaluate

( v1 v2 v3 )

α−m 0 −(1− ρ)β(Q− αQ
m

)

0 −η (1− ρ)β(Q− αQ
m

)
0 c −γ

 = ( 0 0 0 ) (3.27)
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This gives the entries of the left eigenvector as v1 = 0, v2 = γv3
(1−ρ)βQ(1− α

m
)

and v3 = v3 > 0

Then calculate s? as follows;

For the transformed model (3.25), the associated nonzero partial differentials of f evaluated

at the IFE, (E0) are each 0 except

∂2f2

∂x1∂x2

(0, 0) = (1− ρ)β

Therefore s? = (1− ρ)β v2ω2
2η

γ(α−m)
< 0 [Since m > α]

Consider the case when Rw
0 = 1 and choose β = β∗ as a bifurcation parameter. Solving for

β∗ from Rw
0 = 1 gives

β∗ =
ηγ

(1− ρ)cQ(1− α
m

)
(3.28)

Similarly, in getting r? , the associated nonzero partial differentials of f evaluated at the

IFE, (E0) are each 0 except

∂2f2

∂x1∂β
(0, 0) = (1− ρ)

and

∂2f2

∂x3∂β
(0, 0) = (1− ρ)Q(1− α

m
)

Therefore

r? = v2w1
∂2f2

∂x1∂β
(0, 0) + v2w3

∂2f2

∂x3∂β
(0, 0)

= (1− ρ)v2ω2

[ η

α−m
+
cQ

γ
(1− α

m
)
]
> 0

Since s? < 0 and r? > 0, theorem (3.6.1) holds. Thus, Model (3.25) has a unique endemic

equilibrium which is locally asymptotically stable whenever Rw
0 > 1 and unstable when

Rw
0 < 1.
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3.7 Numerical Simulations and Discussions

MATLAB Software is used here in simulating model (3.1) so as to illustrate the long term

behavior of the state variables and to show the impact of treatment.

The set of parameters used are presented in Table 3.2 while the results are depicted by

Figures 3.2 to 3.5.

Table 3.2: Values of parameters

Parameter Description units Value source
m Growth rate of uninfected cells ml−1day−1 0.1-10 [39]
Q Carrying capacity of the host mm−3 1500 [36]
ρ Efficacy of treatment (0 ≤ ρ ≤ 1) varies
β Transmission rate day−1 0.0027 [39]
k Saturation factor day−1 0.001 [36]
α Mortality rate of uninfected cells day−1 0.02 [39]
η Mortality rate of Infected cells day−1 0.24 [39]
c Rate of producing new virions day−1 2.4 [36]
γ Mortality rate of free virions day−1 2 [36]

Figure 3.2: Stability of IFE
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From Figure 3.2, we observe that in the absence of infection and taking m = 0.1, α =

0.02 and Q = 1500, the model (3.1) has an IFE given by I0[1200, 0, 0] and it is globally

asymptotical stable. This is consistent with our theoretical analysis done in this study.

Figure 3.3: Effect of varying ρ on Evolution of Target cells

Figure 3.3 above shows changes in the number of uninfected cells for different efficacies

of treatment as time changes. It is expected that the number of target cells reduce with

time since some of the cells get infected whenever Rw
0 > 1. When treatment efficacy is

lower (e.g ρ = 0.1), the target cells are depleted faster as opposed to when the treatment

efficacy is slightly increased (e.g ρ = 0.4). When ρ = 0.7, the target cells reduce at a lower

rate and they don’t get depleted. However, when ρ = 0.95, there are no new infections

since Rw
0 = 0.81 < 1. This makes the target cells to grow and reach the Infection free

equilibrium.
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Figure 3.4: Effect of varying ρ on Evolution of Virions

Figure 3.5: Effect of varying ρ on Evolution of Infected cells

From Figure 3.4, it can be observed that the number of free virions increase sharply within

the first few days because of poor immune response resulting from a low efficacy of treat-

ment, reaching the peak of about 850 virions per mililitre in day 14 (depicted by the blue

line) when ρ = 0.1. Consequently, the number of infected cells increase in a similar manner

since they are generated by the free virions, as shown in Figure 3.5.
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However, when the efficacy of treatment is higher (e.g ρ = 0.7) thereby lowering RW
0 , the

number of free virions and the infected cells is kept low.

Ebola virus has been noted to be undetectable by the body’s immune system within the

first few days of invasion. This is because Ebola virus attacks the dendritic cells which are

responsible for activating the immune response against the virus. This makes the virus

to begin replicating immediately and rapidly [21] in the first few days and especially in

the case of low and medium efficacy of treatment. However, after some days, the sharp

increase noted begins to decline. This may be attributed to the fact that the invading

pathogen has been identified and an appropriate immune response mounted with the help

of treatment strategies employed. When treatment has a very high efficacy (ρ = 0.95),

RW
0 < 1 meaning there are no new infections realised and hence no new virions produced.

This is clearly depicted in Figure 3.4 and Figure 3.5.
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CHAPTER FOUR

BETWEEN HOST EBOLA MODEL

4.1 Introduction

A between host model of Ebola virus Disease is developed and analysed in this chapter. We

begin by describing and formulating the model then test for positivity and boundedness

of solutions, perform stability analyses for the equilibrium points and do simulations using

MATLAB software.

4.2 Assumptions in the model

(i) The population is homogeneous; therefore each individual has the same probability

of entering into a compartment.

(ii) Recovered individuals acquire temporary immunity

4.3 Description and Formulation of the model

The between host dynamics of EVD is described by a nonlinear model having four classes

of individuals namely; the susceptible, the exposed, the infected and the recovered. These

are respectively denoted by S(t), E(t), I(t) and R(t). All the classes have natural death

rate µ.

Susceptible individuals become infected at the rate λ through interactions with the infected

individuals while the vaccinated ones are infected at a reduced rate λv through the same

interaction. Those who have been exposed to EVD become symptomatic and proceed to

the infected class at the rate σ. The disease induced death rate for the infected individuals

is ψ and they recover at the rate ω.
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These dynamics are illustrated by the schematic diagram below
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Figure 4.1: Flow Diagram of Model (4.1)

The schematic diagram leads us to the following system of ODEs.

dS(t)

dt
= Λ− (1− qv)λS(t)I(t)− µS(t),

dE(t)

dt
= (1− qv)λS(t)I(t)− σE(t)− µE(t),

dI(t)

dt
= σE(t)− (ω + ψ + µ)I(t),

dR(t)

dt
= ωI(t)− µR(t) (4.1)

Table 4.1 explains the descriptions of the parameters and variables of the model.

Table 4.1: Parameters and Variables of Model (4.1)

Symbol Description of parameter/ variable.

S(t) The number of susceptible individuals.

E(t) The number of infected individuals
who are not showing symptoms.

I(t) The number of infected individuals who
have symptoms of EVD and are infectious.

R(t) The number of recovered individuals.

Λ The rate of recruitment of the susceptibles

λ The rate of infection.

µ The natural death rate.

q The efficacy of vaccine.

v The rate of vaccination.

σ The rate of development of symptoms.

ψ Mortality rate induced by EVD.

ω Rate of Recovery from EVD.

In this model, N(t) = S(t) +E(t) + I(t) +R(t) gives the total human population and the

initial population is N0.
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4.4 Positivity and Boundedness of Solutions

With reference to Model (4.1), we show that the solutions are bounded.

dN(t)

dt
=

d

dt

(
S(t) + E(t) + I(t) +R(t)

)
,

= Λ− µN(t)− ψI(t),

dN(t)

dt
< Λ− µN(t) (4.2)

(by Comparison Theorem [19]).

Separating the variables and integrating gives∫
dN(t)

Λ− µN(t)
<

∫
dt,

N(t) <
Λ

µ
− ke−µt (4.3)

We therefore have

N(t) <
Λ

µ

(
1− e−µt

)
+N0e

−µt (4.4)

As t −→∞, N(t) −→ Λ
µ

. This shows that N(t) is bounded; 0 < N(t) < Λ
µ

and so this model is feasible in set Ω, where

Ω =
{(
S(t), E(t), I(t), R(t)

)
∈ R4

+|0 < N(t) < Λ
µ

}
Next, we show that the state variables S(t), E(t), I(t) and R(t) are all nonnegative for all

time t ≥ 0 using the lemma below.
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Lemma 4.4.1. The solutions of equations of the Model (4.1), will remain nonnegative for

all t ≥ 0 in the region Ω.

Proof. Considering the first equation of the Model, we have;

dS(t)

dt
= Λ− (1− qv)λS(t)I(t)− µS(t),

> −
(

(1− qv)λI(t) + µ
)
S(t) (4.5)

resulting in S(t) > S0e

[
−
∫ t
0

(
(1−qv)λI(ξ)+µ

)]
dξ
> 0.

In a similar manner, the second, third and fourth equations of model (4.1)yields

E(t) > E0e
[−

∫ t
0 (σ+µ)dξ] > 0, I(t) > I0e

[−
∫ t
0 (ω+ψ+µ)dξ] > 0 and R(t) > R0e

[−
∫ t
0 (µ)dξ] > 0

respectively.

Hence all solutions of equations of model (4.1) remain non negative at any time t.

In this model, those who have recovered do not affect the dynamics of the disease in any

way. Consequently, the recovered class is not considered in the analysis.

4.5 The Disease Free Equilibrium

The Disease Free Equilibrium (DFE) point of a model is the equilibrium point where the

disease is not present. To get the DFE, equate the right hand side of equations of model

(4.1) to zero and solve for S(t) with E(t)=I(t) = 0. This gives us S0 = Λ
µ

. Therefore the

DFE is Γ0=[Λ
µ
, 0, 0].

4.6 The Basic Reproduction number

This is the average number of secondary infections produced by an infectious individual

introduced in a population of fully susceptible individuals during the entire period of in-

fectivity. From the model (4.1), the transmission and the transition matrices are given

by

F =

(
0 (1−qv)λΛ

µ

0 0

)
and

V =

(
σ + µ 0
−σ ω + ψ + µ

)
(4.6)
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respectively. Hence

FV −1 =

(
0 (1−qv)λΛ

µ

0 0

)( 1
σ+µ

0
σ

(σ+µ)(ω+ψ+µ)
1

ω+ψ+µ

)

=

(
(1−qv)λΛσ

µ(σ+µ)(ω+ψ+µ)
(1−qv)λΛσ
µ(ω+ψ+µ)

0 0

)
(4.7)

The reproduction number RB
0 is given by the spectral radius of the matrix (4.7), (See [12]).

Therefore,

RB
0 =

(1− qv)λΛσ

µ(σ + µ)(ω + ψ + µ)
(4.8)

4.7 Stability Analysis of the Disease Free Equilibrium

4.7.1 Local Stability Analysis

The local stability is analysed using the theorem below.

Theorem 4.7.1. If RB
0 < 1, then the DFE, Γ0 = [Λ

µ
, 0, 0] is locally asymptotically stable.

Proof. The Jacobian matrix of model (4.1) is given by

J =

−(1− qv)λI(t)− µ 0 −(1− qv)λS(t)
(1− qv)λI(t) −σ − µ (1− qv)λS(t)

0 σ −(ω + ψ + µ)


(4.9)

At the DFE, matrix (4.9) becomes

J(Γ0) =

−µ 0 −(1−qv)λΛ
µ

0 −σ − µ (1−qv)λΛ
µ

0 σ −(ω + ψ + µ)


(4.10)

One of the eigenvalues of matrix (4.10) is −µ. The nature of the other eigenvalues can be

determined using the matrix below.

JR =

(
−(σ + µ) (1−qv)λΛ

µ

σ −(ω + ψ + µ)

)
(4.11)
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The trace of the matrix (4.11) is given by −(σ + µ)− (ω + ψ + µ) which is less than 0.

Its determinant is given by

DetJR = (σ + µ)(ψ + µ+ ω)− (1− qv)λΛσ

µ

= (σ + µ)(ψ + µ+ ω)
[
1−RB

0

]
(4.12)

The determinant given by Equation (4.12) is positive whenever RB
0 < 1.

These show that matrix (4.11) has met the Routh Hurwitz criterion which guarantee

the existence of eigenvalues whose real parts are negative. Hence, the DFE is locally

asymptotically stable whenever RB
0 < 1.

4.7.2 Global Stability Analysis of the Disease Free Equilibrium

The theorem by Castillo et. al [7] is used in this section to determine if the DFE is globally

stable or not.

The model (4.1) is rewritten in the form;

dM(t)

dt
= F (M(t), Z(t))

dZ(t)

dt
= G(M(t), Z(t)), G(M(t), 0) = 0 (4.13)

where M(t) = S(t) and Z(t) = (E(t), I(t)), with M(t) ∈ R+ representing the total number

of susceptible individuals and Z(t) ∈ R2
+ denoting the number of latently infected individ-

uals and the number of symptomatic infected individuals respectively.

The DFE is then denoted by

Γ0 = (M0, 0) where M0 =
Λ

µ

The technique stipulates that the following conditions H1 and H2 must be met to guarantee

global asymptotic stability.

H1: dM(t)
dt

= F (M(t), 0), Γ0 is globally asymptotically stable.

H2: G(M(t), Z(t)) = PZ(t)− Ĝ(M(t), Z(t)), Ĝ(M(t), Z(t)) ≥ 0

for ((M(t), Z(t)) ∈ Ω where P = DZG(Γ0, 0) is an M matrix and Ω is the region where the

model is defined.
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Theorem 4.7.2. The fixed point Γ0 = (M0, 0) is a globally asymptotically stable equilibrium

point of model (4.1) provided RB
0 < 1 and the assumptions H1 and H2 are satisfied.

Proof.

dM(t)

dt
= F (M(t), Z(t)) = Λ− (1− v)λS(t)I(t)− (1− q)vλS(t)I(t)− µS(t)

F (M(t), 0) = Λ− µS(t)

dZ(t)

dt
= G(M(t), Z(t)) =

(
(1− v)λS(t)I(t) + (1− q)vλS(t)I(t)− (σ + µ)E(t)

σE(t)− (ω + ψ + µ)I(t))

)
and G(M(t), 0) = 0

Therefore

dM(t)

dt
= F (M(t), 0) = Λ− µS(t)

P = DZG(M0, 0) =

(
−σ − µ (1−qv)λΛ

µ

σ −(ω + ψ + µ)

)
and Ĝ(M(t), Z(t)) =

(
Ĝ1(M(t), Z(t))
Ĝ2(M(t), Z(t))

)
=

(
0
0

)
We see that Ĝ(M(t), Z(t)) ≥ 0 and conditions H1 and H2 are satisfied. Therefore, Γ0 is

globally asymptotically stable for RB
0 < 1.

Epidemiologically, this means that when the model is given a small pertubation through

the introduction of few infected individuals into the population, the solutions of the model

will converge to the DFE whenever RB
0 < 1.

4.8 The Endemic Equilibrium

4.8.1 Existence of the Endemic Equilibrium

Theorem 4.8.1. EVD is persistent in the population if S∗(t), E∗(t) and I∗(t) exists for

all t > 0 whenever RB
0 > 1.

Proof. The positive endemic equilibrium (EE) of model (4.1) is given by

Γ∗ = (S∗, E∗, I∗) (4.14)

To get Γ∗, we equate the right hand side of each equation of model (4.1) to zero and then

we solve explicitly using elementary row operations.
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This gives us the following results;

S∗ =
(µ+ σ)(ω + ψ + µ)

(1− qv)λσ,

=
Λ

µRB
0

,

E∗ =
Λ− Λ

RB0

σ + µ,

=
Λ(RB

0 − 1)

RB
0 (σ + µ),

I∗ =
σΛ(RB

0 − 1)

RB
0 (µ+ σ)(ω + ψ + µ)

,

=
µ(RB

0 − 1)

(1− qv)λ
. (4.15)

The set of equations denoted by Equation (4.15) shows that S∗, E∗, I∗ > 0 whenever

RB
0 > 1. This shows that the Endemic Equilibrium point exists whenever RB

0 > 1.

4.8.2 Local Stability Analysis of the Endemic Equilibrium

Theorem 4.8.2. The EE point Γ∗ = (S∗, E∗, I∗) is locally asymptotically stable.

Proof. The Jacobian matrix of model (4.1) is as given earlier by matrix (4.9).

Evaluating matrix (4.9) at Γ∗, we get

J(Γ∗) =

 −µRB
0 0 −(1−qv)λΛ

RB0

µ(RB
0 − 1) −(σ + µ) (1−qv)λΛ

RB0

0 σ −(ω + ψ + µ)


(4.16)

The nature of the eigenvalues of matrix (4.16) gives us insights into the local stability of

EE. We therefore compute these eigenvalues. This involves solving the equation∣∣∣∣∣∣∣
−µRB

0 − Z 0 −(1−qv)λΛ

RB0

µ(RB
0 − 1) −(σ + µ)− Z (1−qv)λΛ

RB0
0 σ −(ω + ψ + µ)− Z

∣∣∣∣∣∣∣
= 0 (4.17)

The characteristic equation (4.17) is given by

Z3 + (µRB
0 + σ + ω + ψ + 2µ)Z2 + µRB

0 (σ + ω + ψ + 2µ)Z + µ(RB
0 − 1)(σ + µ)(ω + ψ + µ) = 0(4.18)
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which can be written as

Z3 + CZ2 +DZ + E = 0 (4.19)

where

C = (µRB
0 + σ + ω + ψ + 2µ),

D = µRB
0 (σ + ω + ψ + 2µ),

E = µ(RB
0 − 1)(σ + µ)(ω + ψ + µ). (4.20)

Using the Descartes’ rule [50], the number of real roots of Equation (4.19) that are negative

is equal to the number of changes in the signs of the coefficients of f(−Z) = 0 i.e −Z3 +

CZ2 −DZ + E = 0.

The signs have changed 3 times hence the negative real roots are 3. Therefore each of the

three eigenvalues of matrix (4.16) has a negative real part.

Thus, the EE of model (4.1) is locally asymptotically stable.

This implies that if the system is pertubed by introducing few infected individuals, the so-

lutions of the model will ultimately converge at the EE point whenever RB
0 > 1. Therefore,

whenever RB
0 > 1, the disease will persist in the population.

4.8.3 Global Stability Analysis of the Endemic Equilibrium

The geometric approach proposed by Li. et al [25] is used in this subsection.

The Jacobian matrix of the model (4.1)is given by matrix (4.9). Writing matrix (4.9) as

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33

 (4.21)

the second compound matrix corresponding to matrix (4.21) is given by

J [2] =

 J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33

 (4.22)

J [2] =

−(1− qv)λI(t)−B1 (1− qv)λS(t) (1− qv)λS(t)
σ −(1− qv)λI(t)−B 0
0 (1− qv)λI(t) −σ −B

 (4.23)
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where B1 = 2µ + σ and B = ω + ψ + 2µ Define an auxilliary matrix function A on the

region Ω as

A =

 1 0 0
0 E(t)

I(t)
0

0 0 E(t)
I(t)

 (4.24)

This gives A−1 =

 1 0 0
0 I(t)

E(t)
0

0 0 I(t)
E(t)

.

Since E(t), I(t) > 0 everywhere in Ω, A is smooth and nonsingular.

Furthermore, we find that

Af =

 0 0 0
0 E

′
(t)I(t)−I′ (t)E(t)

I2(t)
0

0 0 E
′
(t)I(t)−I′ (t)E(t)

I2(t)

 (4.25)

and

AfA
−1 =

 0 0 0
0 E

′
(t)

E(t)
− I

′
(t)

I(t)
0

0 0 E
′
(t)

E(t)
− I

′
(t)

I(t)

 (4.26)

Now

AJ [2] =

−(1− qv)λI(t)−B1 (1− qv)λS(t) (1− qv)λS(t)
σE(t)
I(t)

[−(1−qv)λI(t)−B]E(t)

I(t)
0

0 (1− qv)λE(t) (−σ−B)E(t)
I(t)

 (4.27)

Thus

AJ [2]A−1 =

−(1− qv)λI(t)−B1
(1−qv)λS(t)I(t)

E(t)
(1−qv)λS(t)I(t)

E(t)
σE(t)
I(t)

−(1− qv)λI(t)−B 0

0 (1− qv)λI(t) −σ −B

 (4.28)

Let the matrix M = AfA
−1 + AJ [2]A−1, i.e Equation (4.26)+ Equation (4.28).

Therefore, the matrix M is
−(1− qv)λI(t)−B1

(1−qv)λS(t)I(t)
E(t)

(1−qv)λS(t)I(t)
E(t)

σE(t)
I(t)

E
′
(t)

E(t)
− I

′
(t)

I(t)
− (1− qv)λI(t)−B 0

0 (1− qv)λI(t) E
′
(t)

E(t)
− I

′
(t)

I(t)
− σ −B

.

Equivalently, matrix M can be written as

(
M11 M12

M21 M22

)
where

M11 = −(1− qv)λI(t)−B1,

M12 =
( (1−qv)λS(t)I(t)

E(t)
(1−qv)λS(t)I(t)

E(t)

)
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M21 =

(
σE(t)
I(t)

0

)
(4.29)

and M22 =

(
E
′
(t)

E(t)
− I

′
(t)

I(t)
− (1− qv)λI(t)− 2µ− ω − ψ 0

(1− qv)λI(t) E
′
(t)

E(t)
− I

′
(t)

I(t)
− σ − 2µ− ω − ψ

)
Let (u, v, w) denote a vector in R3 whose norm is given by ‖(u, v, w)‖ = max{|u|, |v|+ |w|}.

Let µ(M) be a Lozinskii measure with respect to this norm.

We choose µ(M) ≤ sup{g1, g2} where g1 = µ1(M11) + |M12| and g2 = µ1(M22) + |M21|.

Here, |M12| and |M21| are matrix norms and µ1 denotes the Lozinskii measure, all with

respect to l1 vector norm.

|M12| and |M21| are given by (1−qv)λS(t)I(t)
E(t)

and σE(t)
I(t)

respectively.

Next, we calculate µ1(M22) by taking the nondiagonal elements of each column of ma-

trix (M22) in absolute value and then add to the corresponding columns of the diagonal

elements. This gives

M
′

22 =

(
E
′
(t)

E(t)
− I

′
(t)

I(t)
− 2µ− ω − ψ 0

(1− qv)λI(t) E
′
(t)

E(t)
− I

′
(t)

I(t)
− σ − 2µ− ω − ψ

)
(4.30)

The spectral radius of M
′
22 is given by

µ1(M22) = max
(
E
′
(t)

E(t)
− I

′
(t)

I(t)
− 2µ− ω − ψ, E

′
(t)

E(t)
− I

′
(t)

I(t)
− σ − ω − ψ − 2µ

)
(4.31)

which is

µ1(M22) =
E
′
(t)

E(t)
− I

′
(t)

I(t)
− 2µ− ω − ψ (4.32)

Therefore,

g1 = −(1− qv)λI(t)− 2µ− σ +
(1− qv)λS(t)I(t)

E(t)
(4.33)

and

g2 =
E
′
(t)

E(t)
− I

′
(t)

I(t)
− 2µ− ω − ψ +

σE(t)

I(t)
(4.34)
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From model (4.1) ,

E
′
(t)

E(t)
=

(1− v)λS(t)I(t)

E(t)
+

(1− q)vλS(t)I(t)

E(t)
− σ − µ (4.35)

and

I
′
(t)

I(t)
=
σE(t)

I(t)
− ψ − ω − µ (4.36)

Therefore we have

g1 =
E
′
(t)

E(t)
− (1− qv)λI(t)− µ (4.37)

and

g2 =
E
′
(t)

E(t)
− µ (4.38)

Now,

µ(M) ≤ sup[g1, g2] =
[E ′(t)
E(t)

− (1− qv)λI(t)− µ, E
′
(t)

E(t)
− µ

]
(4.39)

This gives the inequality

µ(M) ≤ E
′
(t)

E(t)
− µ (4.40)

which on integration yields

1

t

∫
µ(M)ds ≤ 1

t
ln
E(t)

E(0)
− µ (4.41)

lim sup
t→∞

1

t

∫
µ(M)ds < −µ < 0 (4.42)

Hence, the EE is globally asymptotically stable.

In epidemiology, this means that there is persistent spread of EVD in the population

whenever RB
0 > 1.
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4.9 Numerical Simulation and Discussion

In this section, MATLAB software is used to perform numerical simulation of model (4.1).

The results are as given by Figure 4.2 to Figure 4.5 below.

Table 4.2: Parameter Estimates for the Model

Parameter Description units Value source
Λ The rate of recruitment of the susceptibles. peopleperday 0.6321 [29]
λ The rate of infection. day−1 0.05 varies
q Efficacy of vaccine (0 ≤ q ≤ 1) varies
µ The natural mortality rate. day−1 0.0099 [6]
v Rate of vaccination (0 ≤ v ≤ 1) varies
σ Rate of development of symptoms day−1 0.083 [34]
ω Rate of Recovery from EVD. day−1 0.1 [13]
ψ Mortality rate induced by EVD. day−1 0.2 Assumed

Figure 4.2: Evolution of State variables without intervention

The state variables evolve with respect to time as illustrated in Figure 4.2. One can see

that as time increases, the number of individuals who are susceptible to EVD infection

decreases. This is due to the fact that some of them get exposed and infected with EVD.

The number of exposed, infected and recovered individuals increases up to particular levels

then begin to decline. The increase is attributed to the numbers flowing from the

susceptibles into the other classes.
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Figure 4.3: Evolution of Susceptible Individuals with varying efficacy of vaccine

From Figure 4.3, the number of susceptible individuals decreases rapidly when the efficacy

of vaccination is low compared to when the efficacy is higher.

A vaccine makes the body to produce antibodies that fight the antigens. Therefore, when

the vaccine is more effective, the body’s immune system is more likely to subdue the

infection than when the efficacy is low.
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Figure 4.4: Evolution of Infected Individuals with varying efficacy of vaccine

When the efficacy of vaccine is low (e.g 10%), those who are infected increases rapidly in

number from the first day until they reach a peak of 70 people on day 25. This is depicted

in Figure 4.4. However, when it is 95%, the number of Infected individuals still rises but

at a slower rate to reach a peak of about 58 people in the first 50 days. This shows that

the efficacy of a vaccine plays a role in substantively affecting the number of

infected individuals.

From the foregoing results, it can be seen that vaccination is an effective control strategy

which can be considered to combat the deadly EVD, provided the efficacy of the vaccine

is high.
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Figure 4.5: Dynamics between Infected and Exposed individuals

The relationship between the number of infected and exposed individuals is depicted by

Figure 4.5. The two variables are directly proportional to each other since the infected

individuals interact with the susceptibles to produce the exposed individuals. Therefore,

when you increase the number of individuals who are infected with EVD, the number of

susceptibles who come into contact with them also increases and this in turn increases

the number of individuals exposed to the disease. From the graph, it can be seen that

when the transmission rate is higher, the number of infected increases to a maximum of

about 70 individuals and the corresponding exposed individuals are about 340. When the

efficacy of vaccination is higher, transmission rate is lower since the body is able to fight

and neutralise the invading pathogens. This leads to a lower number of infected individuals

and the corresponding exposed individuals.
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CHAPTER FIVE

MULTISCALE EBOLA MODEL

5.1 Introduction

Single scale models describing dynamics of diseases exist. Despite these extensive studies,

the outbreak of some diseases, (including EVD) cannot still be predicted. This unpre-

dictability may be attributed to the fact that these models are single scale yet disease

dynamics are multiscale in nature. In the recent past, efforts have been directed towards

multiscale models linking these two separate scales. The motivating factor in these efforts

is the fact that there exists an interdependence of parameters between the different scales

of infection. In this chapter, we develop and analyse a multiscale model of EVD derived

from the within host model and between host model developed in chapters three and four

respectively.

5.2 Within Host Model

The within host is given by

dX(t)

dt
= mX(t)(1− X(t)

Q
)− (1− ρ)β

L(t)X(t)

1 + kL(t)
− αX(t),

dY (t)

dt
= (1− ρ)β

L(t)X(t)

1 + kL(t)
− ηY (t),

dL

dt
= cY (t)− γL(t) (5.1)

where the parameters and variables are as defined in chapter three.
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5.3 Between Host Model

The between host model is given below

dS(t)

dt
= Λ− (1− v)λS(t)I(t)− (1− q)vλS(t)I(t)− µS(t),

dE(t)

dt
= (1− v)λS(t)I(t) + (1− q)vλS(t)I(t)− σE(t)− µE(t),

dI(t)

dt
= σE(t)− (ω + ψ + µ)I(t),

dR(t)

dt
= ωI(t)− µR(t) (5.2)

where the parameters and variables are as defined in chapter four.

5.4 Multiscale Model

The multiscale model is developed by nesting the within host model into the between host

model using the viral load of the within host model at equilibrium. This is presented

graphically below
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Figure 5.1: Flow Diagram of the Multiscale Model
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These dynamics are represented mathematically by the system of ODEs below

dS(t)

dt
= Λ− (1− v)λ(L∗)S(t)I(t)− (1− q)vλ(L∗)S(t)I(t)− µS(t),

dE(t)

dt
= (1− v)λ(L∗)S(t)I(t) + (1− q)vλ(L∗)S(t)I(t)− σE(t)− µE(t),

dI(t)

dt
= σE(t)− (ω + ψ + µ)I(t),

dR(t)

dt
= ωI(t)− µR(t) (5.3)

where λ(L∗) is the transmission rate and is assumed to be an increasing function of L∗

with λ(0) = 0 and L∗ denotes the viral load at the endemic equilibrium in a single infected

host. Here, λ(L∗) = aL∗

L∗+b
and L∗ = 1

k
[Rw

0 − 1]

It can be shown that model (5.3) is mathematically and epidemiologically well posed in

the region Ω =
{(
S(t), E(t), I(t), R(t)

)
∈ R4

+|0 < N(t) < Λ
µ

}
and therefore it suffices to

consider it dynamically in this region.

In the model (5.3), the equation of the removed class is decoupled from the other three

equations (since the recovered individuals are not able to spread the disease) and so we

analyse the reduced model consisting of the first three equations. That is

dS(t)

dt
= Λ− (1− qv)λ(L∗)S(t)I(t)− µS(t),

dE(t)

dt
= (1− qv)λ(L∗)S(t)I(t)− σE(t)− µE(t),

dI(t)

dt
= σE(t)− (ω + ψ + µ)I(t) (5.4)

5.5 Reproduction number

The reproduction number for the coupled model (5.4), Rc
0 is given by ρ(FV −1) as described

in [12]. Therefore,

Rc
0 =

(1− qv)λ(L∗)Λσ

µ(σ + µ)(ω + ψ + µ)
(5.5)
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5.6 Local Stability Analysis of the Disease Free Equilibrium

This is analysed using the theorem below.

Theorem 5.6.1. If Rc
0 < 1, then the DFE, Z0 =

[
Λ
µ
, 0, 0

]
is locally asymptotically stable.

Proof. The Jacobian matrix of model (5.4) is given by

J =

−(1− qv)λ(L∗)I(t)− µ 0 −(1− qv)λ(L∗)S(t)
(1− qv)λ(L∗)I(t) −σ − µ (1− qv)λ(L∗)S(t)

0 σ −(ω + ψ + µ)


(5.6)

Evaluating matrix (5.6) at the DFE, we obtain;

J(Z0) =

−µ 0 −(1−qv)λ(L∗)Λ
µ

0 −σ − µ (1−qv)λ(L∗)Λ
µ

0 σ −(ω + ψ + µ)


(5.7)

The eigenvalues of matrix (5.7) gives insights into the stability of the DFE. We therefore

compute these eigenvalues.

One of them is given by −µ. To determine the nature of the remaining eigenvalues, the

following reduced matrix is considered;

JR =

(
−σ − µ (1−qv)λ(L∗)Λ

µ

σ −(ω + ψ + µ)

)
(5.8)

The trace of the matrix (5.8) is −σ − µ− (ω + ψ + µ) and it is negative.

The determinant of matrix (5.8) is given by

DetJR = (σ + µ)(ω + ψ + µ)− (1− qv)λ(L∗)Λσ

µ
(5.9)

This determinant is positive if and only if

(1−qv)λ(L∗)Λσ
µ

< (σ + µ)(ω + ψ + µ) i.e if (1−qv)λ(L∗)Λσ
µ(σ+µ)(ω+ψ+µ)

< 1

Meaning that the determinant is always positive whenever Rc
0 < 1.

The Routh Hurwitz criterion of a negative trace and a nonnegative determinant which

guarantee the existence of eigenvalues with negative real part has been met. Hence, the

DFE is locally asymptotically stable whenever Rc
0 < 1.

54



5.7 Global Stability Analysis of the Disease Free Equilibrium

We use Comparison method [19] to analyse the global stability of the DFE as follows. At

the Equilibrium point, S(t) = N(t) − E(t) − I(t) and using the comparison theorem, we

have( dE(t)
dt
dI(t)
dt

)
= (F − V )

(
E(t)
I(t)

)
−
(

1− µ

Λ
S(t)

)(
0 (1− qv)λ(L∗)S0

0 0

)(
E(t)
I(t)

)
(5.10)

Here, F and V are the Jacobian matrices for transmission and transition given respectively

by

F =

(
0 (1−qv)λ(L∗)Λ

µ

0 0

)
and

V =

(
σ + µ 0
−σ ω + ψ + µ

)
(5.11)

so that

F − V =

(
−σ − µ (1−qv)λ(L∗)Λ

µ

σ −(ω + ψ + µ)

)
(5.12)

Equation (5.10) gives rise to the inequality( dE(t)
dt
dI(t)
dt

)
≤ (F − V )

(
E(t)
I(t)

)
(5.13)

Note that (F −V ) is equivalent to matrix (5.8) and so its eigenvalues have real parts which

are negative. Therefore, the model (5.4) is stable whenever Rc
0 < 1.

So (E(t), I(t))→ (0, 0) and S(t)→ Λ
µ

as t→∞.

Using comparison theorem [19], (S(t), E(t), I(t))→ Z0 as t→∞.

Hence, Z0 is globally asymptotically stable.

5.8 Existence of the Endemic Equilibrium

Theorem 5.8.1. A positive endemic equilibrium point Z∗ of model (5.4) exists for all time

t > 0 provided Rc
0 > 1

Proof. The positive endemic equilibrium of model (5.4) is given by

Z∗ = (S∗, E∗, I∗) (5.14)
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To get Z∗, we equate the right hand side of each equation of model (5.4) to zero and solve

for the state variables explicitly using row operations. This gives the following results;

S∗ =
(µ+ σ)(ω + ψ + µ)

(1− qv)λ(L∗)σ,

=
Λ

µRc
0

,

E∗ =
Λ− Λ

Rc0

σ + µ,

=
Λ(Rc

0 − 1)

Rc
0(σ + µ),

I∗ =
σΛ(Rc

0 − 1)

Rc
0(µ+ σ)(ω + ψ + µ)

,

=
µ(Rc

0 − 1)

(1− qv)λ(L∗)
. (5.15)

Clearly from Equation (5.15), E∗ > 0 and I∗ > 0 provided Rc
0 > 1. This ends the proof.

5.9 Local Stability Analysis of the Endemic Equilibrium

This is investigated using the theorem below.

Theorem 5.9.1. The Ebola Endemic Equilibrium point Z∗ = (S∗, E∗, I∗) is locally asymp-

totically stable if and only if the corresponding Jacobian matrix, J(Z∗) is stable.

Proof. The Jacobian matrix J(Z∗) is given by

J(Z∗) =

−(1− qv)λ(L∗)I∗(t)− µ 0 −(1− qv)λ(L∗)S∗(t)
(1− qv)λ(L∗)I∗(t) −σ − µ (1− qv)λ(L∗)S∗(t)

0 σ −(ω + ψ + µ)


(5.16)

Since all the diagonal elements of the matrix (5.16) are each less than zero and the fact that

the eigenvalues of any square matrix are the same as those of its transpose, an argument

using Gershgorin disks show that the matrix J(Z∗) is stable if it is diagonally dorminant

in columns [18]. Setting ξ1 = −µ, ξ2 = −µ and ξ1 = −(ω + ψ + µ) gives

ξ = max[−µ,−µ,−(ω + ψ + µ)] < 0 (5.17)

Equation (5.17) implies diagonal dorminance hence the proof.
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5.10 Global Stability Analysis of the Endemic Equilibrium

Theorem 5.10.1. The endemic equilibrium point Z∗ = (S∗, E∗, I∗) is globally asymptoti-

cally stable.

Proof. By making change of variables and using Lyapunov method, define the function

Y = M∗2 + Ξ∗2 +O∗2 (5.18)

where

M∗ = S − Λ

(1− qv)λ(L∗)I + µ
,

Ξ∗ = E − (1− qv)λ(L∗)SI

σ + µ
,

O∗ = I − σE

ω + ψ + µ
(5.19)

Considering equation(5.18), it is clear that Y (0, 0, 0) = (0, 0, 0) and Y (M∗,Ξ∗, O∗) > 0 for

all (M∗,Ξ∗, O∗) in the region Ω. In other words, Y is positive definite.

Differentiating Y with respect to time gives

dY

dt
= 2

[
S − Λ

(1− qv)λ(L∗)I + µ

](dS
dt

)
+ 2
[
E − (1− qv)λ(L∗)SI

σ + µ

](dE
dt

)
+ 2

[
I − σE

ω + ψ + µ

](dI
dt

)
(5.20)

where dM∗

dt
= dS

dt
, dΞ∗

dt
= dE

dt
, dO

∗

dt
= dI

dt
. Substituting the expressions for dS

dt
, dE
dt

and dI
dt

from

system (5.4) into equation (5.20) gives

dY

dt
= 2

[
S − Λ

(1− qv)λ(L∗)I + µ

](
Λ− (1− qv)λ(L∗)SI − µS

)
+ 2

[
E − (1− qv)λ(L∗)SI

σ + µ

](
(1− qv)λ(L∗)SI − σE − µE

)
+ 2

[
I − σE

ω + ψ + µ

](
σE − (ω + ψ + µ)I

)
(5.21)

which is equivalent to

dY

dt
= −2

[
S − Λ

(1− qv)λ(L∗)I + µ

]2(
(1− qv)λ(L∗)I + µ

)
− 2

[
E − (1− qv)λ(L∗)SI

σ + µ

]2(
σ + µ

)
− 2

[
I − σE

ω + ψ + µ

]2(
ω + ψ + µ

)
(5.22)
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The right hand side of Equation (5.22) satisfies the conditions for a negative definite func-

tion. Therefore, dY
dt

is negative definite.

At the point Z∗ given by equation (5.15),equation (5.22) becomes

dY

dt
= −2

[
S∗ − Λ

(1− qv)λ(L∗)I∗ + µ

]2(
(1− qv)λ(L∗)I∗ + µ

)
− 2

[
E∗ − (1− qv)λ(L∗)S∗I∗

σ + µ

]2(
σ + µ

)
− 2

[
I∗ − σE∗

ω + ψ + µ

]2(
ω + ψ + µ

)
(5.23)

From equation (5.23), dY
dt
< 0 since S∗, E∗ and I∗ are all greater than 0. Therefore, Z∗ is

globally asymptotically stable.

5.11 Sensitivity Analysis

In this section, the sensitivity index of the reproduction number with respect to each

parameter is obtained using the approach by Chitni [10] as follows.

Γ
Rc0
Λ =

∂Rc
0

∂Λ
× Λ

Rc
0

= 1

ΓR
c
0

q =
∂Rc

0

∂q
× q

Rc
0

=
−qv

1− qv

ΓR
c
0

σ =
∂Rc

0

∂σ
× σ

Rc
0

=
µ

σ + µ

ΓR
c
0

v =
∂Rc

0

∂v
× v

Rc
0

=
−qv

1− qv

Γ
Rc0
ψ =

∂Rc
0

∂ψ
× ψ

Rc
0

= −ω(ω + ψ + µ)

ΓR
c
0

ω =
∂Rc

0

∂ω
× ω

Rc
0

= −ω(ω + ψ + µ)

Γ
Rc0
L∗ =

∂Rc
0

∂L∗
× L∗

Rc
0

=
b

L∗ + b

The sensitivity indices are given in Table 5.1.
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Table 5.1: Sensitivity indices

Parameter Value Units Sensitivity Index

Λ 0.6321 peopleperday 1

q [0,1] [0,-1.5]

µ 0.0099 day−1 -1.13851199

v [0,1] [0,-1.5]

σ 0.083 day−1 0.1065662

ω 0.1 day−1 -0.03099

ψ 0.2 day−1 -0.06198

L∗ 8460.054 day−1 0.011682169

From Table 5.1, it can be seen that the reproductive number Rc
0 is directly proportional

to the parameters σ and L∗ in that increasing each one of them increases the reproduction

number. On the other hand, q, µ, v, ω, and ψ are inversely proportional to Rc
0. These

parameters are considered more sensitive as opposed to the parameters with positive sen-

sitivity index. The most sensitive parameters are the efficacy of vaccination, q and the

rate of vaccination, v. The sensitivity index of Rc
0 with respect to q is -1.5 implying that

increasing (or decreasing) q by 10% decreases (or increases)Rc
0 by 15%. This means that

the enhancement of the administration of an effective Ebola virus vaccine would reduce

Ebola transmission in the population.

This agrees by the study which was done by Lawrence and Anne in [24] who through sim-

ulations, showed that vaccination effectively reduces the basic reproduction number of the

model.
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5.12 Numerical Simulation and Discussion

In this section, numerical simulation is done using the parameter values given in the Table

5.2 to explore model (5.4). The results are as given by Figure 5.2 to Figure 5.4.

Table 5.2: Values of the parameters in the model

Parameter Relevant Biological Description units Value source
a Rate of transmission due to viral load Mlday−1 0.0025 [2]
b Half saturation constant of virus day−1 100 [3]
Λ Rate of recruitment peopleperday 0.6321 [29]
λ Transmission rate between hosts day−1 0.05 varies
q Reduced Transmission rate (0 ≤ q ≤ 1) varies
µ Natural death rate day−1 0.0099 [6]
v Rate of vaccination (0 ≤ v ≤ 1) varies
σ Rate of developing symptoms day−1 0.083 [34]
ω Recovery rate day−1 [0.01,0.1,0.2] [13]
ψ Disease induced death rate day−1 0.2 Assumed

Figure 5.2: The stability of DFE

From these numerical simulations, the stability of the DFE is depicted by Figure 5.2. It

can be seen that all the solutions are converging at the point [63.85, 0, 0, 0] regardless of

the starting point. This is the DFE point where S0 = Λ
µ

= 63.85. This agrees with the

analysis done above on the stability of the DFE.
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Figure 5.3: Effect of number of Virions on Infected individuals

Figure 5.3 depicts the effect of the coupling function, λ(L∗) on the number of infected

individuals. It can be seen that when L∗ is bigger (meaning λ(L∗) is also bigger since

λ(L∗) is an increasing function of L∗), the number of infected individuals increases. This

increase can be attributed to the fact that as viral load within the individuals increases,

there is a corresponding increase in the average viral load in the population and this affects

the transmission of the disease positively. However, this increase in the number of indi-

viduals who are infected reaches a maximum point then begins to decrease. This decrease

can be attributed to the recovery of the infected due to the effect of effective treatment,

death of the infected individuals due to high viral load or susceptible individuals taking

precautionary measures to prevent infection. This shows us that the viral load within an

individual does affect the transmission dynamics of EVD between hosts. The variations in

the viral load L∗ used here were arrived at by varying the efficacy of treatment ρ. It was

observed that the viral load L∗ and the efficacy of treatment are inversely proportional to

one another.
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Figure 5.4: Effect of ω on Infected individuals with time

The relationship between recovery rates and the number of infected individuals is depicted

in Figure 5.4. It can be seen that when the recovery rate is very low, the number of those

who are infected peaks at a higher value than when the recovery rate is high. Efforts should

be directed towards increasing the recovery rate of those already infected with EVD. One

of the strategies to achieve this is treatment.

EVD is a highly infectious and deadly disease and therefore prudent measures should be

taken to combat and if possible eradicate it. We see that effort should be focussed on

identifying and treating the infected individuals and the efficacy of treatment should be

higher so as to achieve higher recovery rates as has been illustrated by the simulations. It

will also be prudent to put in place strategies to prevent the susceptible individuals from

being exposed to the virus. One of these strategies is vaccination. The vaccine administered

should be able to stimulate the body to produce antibodies within a short time since EVD

causes hemorrhagic complications in a human being within a short time.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This study aimed at developing and analysing a multiscale model for Ebola transmission

dynamics with treatment. This has been achieved by developing and analysing three mod-

els as described below.

First, a within host model describing the Ebola transmission dynamics within an individual

has been developed and analysed. The stability analysis of the results show that the IFE

is both locally and globally stable. Center manifold Theorem has been used in the analysis

to prove that the system has a unique EE that is stable. From numerical simulations, it

can be concluded that the efficacy of treatment should be higher in order to tackle EVD.

This is due to the fact that a higher efficacy of treatment makes the basic reproduction

number to be < 1 and hence stifling new infections.

The second model is a between host SEIR model describing the dynamics of EVD. It has

incorporated two parameters of vaccination i.e the rate of vaccination and the efficacy of

vaccine. The DFE and the EE points of the model have been analysed and realized to

be both locally and globally stable. The basic reproduction number was determined and

proved that the disease is cleared from the population when RB
0 < 1 while it persists when

RB
0 > 1. From the analysis and numerical simulations, it has been shown that with an

imperfect vaccine, the disease can still be controlled.
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Finally, we have derived a multiscale SEIR mathematical model describing EVD dynamics

by coupling the between host model and the within host model using viral load. The basic

reproduction number was determined and proved that the disease dies out when Rc
0 < 1

and persists when Rc
0 > 1. Numerical simulations focussing on the stability of the DFE, the

effect of viral load (as a result of varying efficacy of treatment) and the effect of recovery

rate ω on the number of infected individuals have been performed. Sensitivity analyses

of the parameters has also been done. From the analysis and numerical simulations, it

has been shown that viral load, which is a within host parameter affects the between host

dynamics of EVD. These results are in agreement with the study conducted by Alexis E.

S Almocera and Esteban A.H Vargas [2].

6.2 Recommendations

The following recommendations are made out of the results and simulations in this study;

(i) Based on our analysis and numerical simulations, we recommend that treatment of

EVD should be done using drugs with high efficacy. This will go a long way in

reducing the adverse effects of the disease in the population.

(ii) The multiscale model we have developed and analysed has considered a within host

parameter affecting the between host dynamics of EVD. A study can be done on a

parameter of between host model that affects the within host dynamics of EVD.
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0.1 Codes used in simulating within host model

T = 100; dt = 0.5; N = 4; m = 0.1; Q = 1500; rho =[0.1,0.4,0.7,0.95]; beta = 0.0027;

k=0.001; alpha = 0.02; eta = 0.24; c= 2.4; gamma = 2;

x(1:N,1) = [1000, 1000,1000,1000]’;

y(1:N,1) = [5,5,5,5]’;

l(1:N,1) = [0.01,0.01,0.01,0.01]

for t = 1:T

for i =1:N

x(i,t+1) = x(i,t) + dt*(m*x(i,t).*(1-x(i,t)/Q)-(1-rho(i))*beta*l(i,t).*x(i,t)./(1+k*l(i,t))-

alpha*x(i,t));

y(i,t+1) = y(i,t) + dt*((1-rho(i))*beta*l(i,t).*x(i,t)./(1+k*l(i,t))-eta*y(i,t));

l(i,t+1) = l(i,t) + dt*(c*y(i,t)-gamma*l(i,t));

plot(1:T, x(:,1:T),’Linewidth’,2);

plot(1:T, l(:,1:T),’Linewidth’,2);

plot(1:T, y(:,1:T),’Linewidth’,2);

legend(ρ = 0.1(Rw
0 = 14.58), ρ = 0.4(Rw

0 = 9.72), ρ = 0.7(Rw
0 = 4.86), ρ = 0.95(Rw

0 =

0.81));

ylabel ’No. of Target cells’;

ylabel ’No. of Virions’;

ylabel ’No. of Infected cells’;

xlabel ’Time (Days)’;

title(’Effect of varying treatment (ρ) on Target cells with time’)

title(’Effect of varying treatment (ρ) on Virions with time’)

title(’Effect of varying treatment (ρ) on Infected cells with time’)
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0.2 Direction fields of IFE

T = 200; dt = 0.5; a = 0.02; N = 3; m = 0.1; Q = 1500; rho =0.4; beta = 0.0027; k=0.001;

alpha = 0.02; eta = 0.24; c= 2.4; gamma = 2;

x = zeros(20,T);

y= zeros(20,T);

l = zeros(20,T);

x(:,1) = (100:100:20*100)’;

y(:,1) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]’;

l(:,1) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]’;

f = @(t,y1) 0.1*y1.*(1-y1./1500)-0.02.*y1;

for t = 1:T

x(:,t+1) = x(:,t) + dt*(m*x(:,t).*(1-x(:,t)/Q)-(1-rho)*beta*l(:,t).*x(:,t)./(1+k*l(:,t))-alpha*x(:,t));

y(:,t+1) = y(:,t) + dt*((1-rho)*beta*l(:,t).*x(:,t)./(1+k*l(:,t))-eta*y(:,t));

l(:,t+1) = l(:,t) + dt*(c*y(:,t)-gamma*l(:,t));

end

dirfield(f,0:10:10*20,0:100:2000);

hold on

plot(1:T,x(:,1:T),’Linewidth’,2);

axis([0 200 0 2000])

hold off

ylabel ’No. of Target cells’;

xlabel ’Time (Days)’;

title(’Stability of the Infection Free Equilibrium’)
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0.3 Between host model

T = 150, 120; dt = 0.5; N = 1, 3; Lambda = 0.6321; lambda = [0.01, 0.02, 0.05, 0.06];

q=[0.1, 0.5, 0.7, 0.95]; mu = 0.0099; v = 0.5,0.8; sigma = 0.083; omega = 0.1; psi = 0.2;

S = zeros(N,T);

E = zeros(N,T);

I = zeros(N,T);

R = zeros(N,T);

S(1:N,1) = [460,460,460]’;

E(1:N,1) = [1,1,1]’;

I(1:N,1) = [0,0,0]’;

R(1:N,1)= [0,0,0]’;

for t = 1:T

for i =1:N

S(i,t+1) = S(i,t) + dt*Lambda - dt*(1-q*v)*lambda(i).*S(i,t).*I(i,t) - mu*S(i,t)*dt;

E(i,t+1) = E(i,t) + dt*(1-q*v)*lambda(i).*S(i,t).*I(i,t)-sigma*E(i,t)*dt-mu*E(i,t)*dt;

I(i,t+1) = I(i,t) + dt*(sigma*E(i,t)-(omega+psi+mu)*I(i,t));

R(i,t+1) = R(i,t) + dt*(omega*I(i,t)-mu*R(i,t));

end

plot(1:T,S(1,1:T),’r’,1:T,E(1,1:T),’b’,1:T,I(1,1:T),’m’,1:T,R(1,1:T),’g’,’Linewidth’,2.0);

legend(’S(t)’,’E(t)’,’I(t)’,’R(t)’,’Location’,’best’);

ylabel ’No. of Individuals’;

xlabel ’Time (Days)’;

title(’Evolution of state variables with time’)

plot(1:T,S(1,1:T),’r’,1:T,S(2,1:T),’b’,1:T,S(3,1:T),’g’,’Linewidth’,2.0);

legend(’q=0.1’,’q=0.7’,’q=0.95’,’Location’,’best’);

ylabel ’No. of Susceptible Individuals’;

xlabel ’Tme (Days)’;
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title(’Effect of the efficacy of vaccine on the number of Susceptible with time’)

plot(1:T,I(1,1:T),’r’,1:T,I(2,1:T),’b’,1:T,I(3,1:T),’g’,’Linewidth’,2.0);

legend(’q=0.1’,’q=0.7’,’q=0.95’,’Location’,’best’);

ylabel ’No. of Infected Individuals’;

xlabel ’Time (Days)’;

title(’Effect of the efficacy of vaccine on the number of Infected with time’)

plot(I(1,1:T),E(1,1:T),’r’,I(2,1:T),E(2,1:T),’b’,I(3,1:T),E(3,1:T),’g’,’Linewidth’,2.0);

legend(′λ = 0.01′,′ λ = 0.02′,′ λ = 0.06′,’Location’,’best’);

ylabel ’No. of Exposed Individuals’;

xlabel ’No. of Infected Individuals’;

title(’Dynamics between I(t) and E(t) with varying transmission rates’)

0.4 Multiscale model

T = 300; dt = 0.5; a = 0.0025; b= 100; N = 3; m = 3; Q = 1500; rho =[0.1,0.6,0.8]; beta

= 0.0027; k= 0.001; alpha = 0.02; eta = 0.24; c= 2.4; gamma = 2; Lambda = 0.6321;

lambda = 0.05; q = 0.3; mu = 0.0099; v = 0.8; sigma = 0.083; omega = [0.01,0.1,0.2]; psi

= 0.2;

x = zeros(N,T);

y= zeros(N,T);

l = zeros(N,T);

S = zeros(N,T);

E = zeros(N,T);

I = zeros(N,T);

R = zeros(N,T);

x(1:N,1) = [1000, 1000,1000]’;

y(1:N,1) = [5,5,5]’;

l(1:N,1) = [0.01,0.01,0.01]’;
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S(1:N,1) = [460,460,460]’;

E(1:N,1) = [1,1,1]’;

I(1:N,1) = [1,1,1]’;

R(1:N,1)= [0,0,0]’;

for t = 1:T

for i =1:N

x(i,t+1) = x(i,t) + dt*(m*x(i,t).*(1-x(i,t)/Q)-(1-rho(i))*beta*l(i,t).*x(i,t)./(1+k*l(i,t))-

alpha*x(i,t));

y(i,t+1) = y(i,t) + dt*((1-rho(i))*beta*l(i,t).*x(i,t)./(1+k*l(i,t))-eta*y(i,t));

l(i,t+1) = l(i,t) + dt*(c*y(i,t)-gamma*l(i,t));

S(i,t+1) = S(i,t) + dt*Lambda - dt*(1-q*v)*a*(l(i,t+1)./(l(i,t+1)+b)).*S(i,t).*I(i,t) - mu*S(i,t)*dt;

E(i,t+1) = E(i,t) + dt*(1-q*v)*a*(l(i,t+1)./(l(i,t+1)+b)).*S(i,t).*I(i,t)-sigma*E(i,t)*dt-

mu*E(i,t)*dt;

I(i,t+1) = I(i,t) + dt*(sigma*E(i,t)-(omega(i)+psi+mu)*I(i,t));

R(i,t+1) = R(i,t) + dt*(omega(i)*I(i,t)-mu*R(i,t));

end

end

plot(1:T,I(1,1:T),’r’,1:T,I(2,1:T),’b’,1:T,I(3,1:T),’g’,’Linewidth’,2.0);

legend(’L1=17,103.512’,’L2=8,460.054’,’L3=4,023.003’,’Location’,’best’);

ylabel ’No. of Infected Individuals’;

xlabel ’Tme (Days)’;

title(’Temporal variations between Virions and Infected Individuals’)

plot(1:T,I(1,1:T),’r’,1:T,I(2,1:T),’b’,1:T,I(3,1:T),’m’,’Linewidth’,2.0);

legend(’ω = 0.01′,′ ω = 0.1′,′ ω = 0.2’,’Location’,’best’);

ylabel ’No. of Infected Individuals’;

xlabel ’Tme (Days)’;

title(’Temporal variations between recovery rates and Infected Individuals’)
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