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ABSTRACT 

Bose - Einstein Condensation, BEC, of an ideal gas is investigated for a finite number of particles trapped 

in a harmonic potential. The values of the critical temperature for Rb-87, its condensate fraction and the 

energy per particle are determined. The maxima appear to increase with the number of particles due to the 

fact that a smaller system has a larger available effective volume which concurs with the behavior of the 

critical temperatures.  
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INTRODUCTION 

The phenomenon of Bose-Einstein Condensation (BEC) has a rich history over the past century, 

beginning with the recognition of two classes of particles in nature, bosons and fermions, obeying Bose-

Einstein and Fermi-Dirac statistics, respectively.  

The different particle statistics have fundamental and far-reaching physical consequences. However, 

effects become evident only at low temperatures where particles gather in the lowest energy state of a 

system and the average occupation of a state approaches unity for fermions, but for bosons the lowest 

state may contain a large fraction of particles. 

A BEC is a state of matter formed by a system of bosons confined in an external potential and cooled to a 

temperature very near to Zero Kelvin temperature. BEC is a purely quantum-statistical phase transition 

characterized by a macroscopic population of ground state below the transition temperature. This state is 

called the zero-momentum-state (ZMS).  

The existence of BEC was proven experimentally in helium and other elements from measurements of 

momentum distribution (Grossmann and Holthaus, 1995) and in semiconductors, where para-excitons 

were found to condense. Pure BEC was further observed in systems very different from Bagnato et al., 

(1969) He, namely dilute alkali gases.  

The experimental realization of BEC in alkali-metal atoms and thereafter in atomic hydrogen stimulated 

new interest in the theoretical study of inhomogeneous Bose gas properties (Killian et al., 1998). 

Thermodynamic properties have been investigated by several authors for the trapped Bose gas (Dalfovo et 

al., 1999).  

The demonstration of BEC in gases of Rubidium (Anderson et al., 1995; Myact et al., 1997; Ernest et al., 

1998), Lithium (Bradley et al., 1995), and then Sodium (Davis et al., 1995) was impressive achievement 

that stimulated a lot of theoretical studies. For many purposes the complicated magnetic traps used in the 

experiments is approximated by harmonic oscillator potentials. There are many studies of BEC in 

harmonic oscillator confining potentials (Grossmann and Holthaus, 1995; Bagnato et al., 1991; Haugerud 

et al., 1997).  

From the theoretical point of view, due to the effects of confining potential traps these atomic systems can 

be modeled by harmonic oscillator potential. However, the behavior of the 3D harmonic trap is the most 

relevant aspect for experiments. 
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Theoretical studies show that realization of the quantum phase transition can be more robust with a 

quartic potential (Fetter, 2001) with the condensation temperature and the thermodynamic properties of a 

rotating ideal Bose gas in an anharmonic trap being studied (Kling and Pelster, 2007) appreciably. 

However, in the experimental realization of the quadratic plus quartic confining potential, the observation 

of the fast rotating vortices eludes an unambiguous detection (Bretin et al., 2004). 

BECs of trapped alkali-metal atoms were achieved at temperatures as low as 100 nanokelvin. The number 

of particles in the ground state of the traps ranged from a few thousand (Anderson et al., 1995) to a few 

millions (Davis et al., 1995).  

For a given number of Bosons, the temperature of the system is reduced below a certain critical 

temperature leading to an accumulation of particles in the ground state energy thus increasing the 

condensate fraction (Bretin et al., 2004). This implies that the number of particles in the condensate varies 

considerably with temperature especially in the ultra cold temperature regime. Some of the implications 

of a finite number of particles to the condensate fraction and the critical temperature can, therefore, be 

studied.  

Critical Temperature and Condensate Fraction of BEC 

For an assembly described by Bose-Einstein statistics, the probability that a given energy will be occupied 

is specified by the Bose-Einstein distribution. When the temperature is gradually reduced, the ground 

state will quite suddenly become occupied by a significant fraction of all the particles in the assembly. 

From the conventional total number of particles in the assembly, the levels which are closely spaced in 

energy, necessitates the use of appropriate density of states function which in our calculations shows that
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We build on the restriction of the three level approximation as developed by Sakwa et al., (2004) and 

gave a simple physical meaning that the second and third terms denotes the maximum number of particles 

which can be accommodated in excited states when the fugacity approaches one. All particles exceeding 

this maximum number must “condense” to the ground state from which the critical temperature cT  and 

the condensate fraction were determined.  

A phase transition occurs in the thermodynamic limit and is usually defined by singularities and critical 

behavior. 

 For the finite-N system, we adopt the treatment described by Bagnato et al., (1969) and take the 

macroscopic occupation of the ground state as the defining characteristic of BEC phase transition.  

This calculations therefore assumes that particles “condense” into the ground state of the trap when the 

temperature becomes sufficiently low i.e. as T 0, then N→ 𝑁0. Starting with T > 𝑇𝑐, then as 𝑇 → 𝑇𝑐 we 

have at the onset of condensation, 𝑁0≈0 i.e at critical temperature the chemical potential vanishes as 

indicated by Khanna et al., (1967).  

In the case of bosons, the number of particles in the excited states, 𝑁𝑒 , is equal to the total number of 

particles, N, constituting the system when 𝑇 > 𝑇𝑐. Finally, for a large number of particles, the condensate 

fraction of a trapped boson system was determined to a good approximation as 
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critical temperature for bosons trapped in a finite volume is now arrived at on using Cardano’s formula in 

a rather rigorous calculation. 

Using the work of (Grossmann and Holthaus, 1995) we computed the expression for mean energy U of N 

non interacting bosons that are harmonically trapped. By using the density of state formula the release 

energy is determined directly from the root mean square cloud radius and the time-of-flight. The non-

interacting model predicts a released energy independent of N. Conversely, the observed release energy 

per particle depends strongly on N. For temperatures below the BEC transition temperature, the chemical 

potential has a contribution to the specific heat capacity. At T< 𝑇𝑐, and for large value of N, the specific 

heat capacity can be expressed in terms of the reduced temperature 
𝐶(𝑇)

𝑁𝑘𝐵
= 10.81 (
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)

3
+
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RESULTS AND DISCUSSION 

The condensate fraction of a Bose condensate varies with the reduced temperature for a given value of the 

number of particles in the condensate down to absolute zero temperature as shown in Figure 1. As T→ 0 

the exponential suppression of excited particles becomes stronger and stronger diminishing particle in the 

excited states. At 𝑇 <
ħ𝜔

𝑘𝐵
, there will be hardly any particles in the excited states; most of the particles will 

be in the lowest energy state. This shows that as  

T→ 0, 𝑁𝑜  → 𝑁.  
 

 
Figure 1: Graphs of Condensate Fraction against Reduced Temperature for N=103, N=104, N=105 

and N=106. 

 

The specific heat capacity is found to increase asymptotically as the reduced temperature approaches 

unity (See Figure 2). A maximum value corresponds to the temperature at which BEC occurs and is the 

transition temperature 𝑇𝑐. At temperature greater than 𝑇𝑐 the specific heat capacity falls rapidly as shown 

in Figure 3. 
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Figure 2: Graphs of specific heat capacity against reduced temperature for different values of N 

 

The kink in Figure 3 occurs at a reduced temperature 
𝑇

𝑇𝑐
 < 1. As N decreases, the specific heat capacities 

corresponding to the maxima are at values of 
𝑇𝑐

𝑇𝑜
. This implies that the transition temperature is influenced 

by the value of N. Also notably, the values of the maxima appear to decrease as N decreases in agreement 

with the behavior of the critical temperatures. This is due to the fact that a smaller system has a larger 

available effective volume (Bagnato et al., 1987). 

 

 

Figure 3: Graphs of 
𝐂

𝐍𝐤𝐁
 against 

𝐓

𝐓𝐨
 for different values of N 
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Now using the oscillator frequencies given by Bradley et al., (1995) for Lithium, and taking N=2× 105, 

heat capacity gives a maximum at 
𝑇

𝑇0 
 = 0.983. This translates to 𝑇𝑐 ≈ 380𝑛𝐾 which is in good agreement 

with the range of 100-400𝑛𝐾 for the experiment. For Rubidium with N=2 × 104, with the oscillator 

frequency given by Anderson et al., (1995) (i.e. �̅�=379.28 Hz), the heat capacity has a maximum value at 
𝑇

𝑇0
 = 0.960. This gives 𝑇𝑐 ≈ 71 𝑛𝐾. Using the frequency by Davis et al., (1995) i.e. 

𝜔

2𝜋
= 416 𝐻𝑧 and 

taking 𝑁 = 5 × 105, then maximum heat capacity occurs at 
𝑇

𝑇0
= 0.985 for Sodium and implying 

that 𝑇𝑐 ≈ 1.47 × 10−6 𝐾 which again agrees with the value of 2 × 10−6 K by Davis et al., (1995). The 

inclusion of interactions between the particles profoundly changes the nature of the BEC phase transition 

and is important for the occurrence of a macroscopic phase. Inter-particle interactions have an effect on 

the critical temperature and condensate fraction and may be studied further.  
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