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Abstract  Batch testing has long been recognized as an efficient method of classifying all the experimental units into two 
mutually exclusive categories: defective or non-defective. In recent years, more focus has been on estimation of the 
population proportion p of a trait of interest using batch testing. However, in most of the applications, the tests used are prone 
to errors leading to misclassifications even though misclassifications are kept at a minimal. In this paper, an estimator of the 
unknown proportion of a trait using batch testing model based on a quality control process in the presence of inspection errors 
is constructed and its properties discussed. In quality control, a batch is rejected if the constituent defective members are 
greater than l, the cut off value. The proposed model is superior to the existing models when the proportion of a trait is 
relatively high with fixed sensitivity and specificity.  
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1. Introduction 
In many applications, items can be classified as defective 

or non-defective. Batch testing, also known as group testing, 
involves pooling such items into batches and then testing the 
batches rather than individual items. A batch is declared 
non-defective if all its items do not possess the trait of 
interest. Batch testing has been shown to be cost and time 
effective when the trait of interest is rare. Batch testing has a 
rich history going back to Dorfman (1943) and since his 
seminal work; batch testing has been applied to problems in 
blood bank screening, genetics, drug discovery, 
epidemiology and quality control (see e.g Gastwirth, 2000; 
Remlinger et al., 2006; Hughes-Oliver, 2006, Biggerstaff, 
2008; Bilder et al., 2010). In all these applications, batch 
testing has two main objectives; first is the identification of 
positive individuals in a large population (Dorfman, 1943, 
Johnson et. al., 1991, and Nyongesa, 2004). Second is 
estimation of the proportion of character or trait of interest 
(Thomson, 1962, Sobel and Elashoff, 1975, Garstwirth and 
Johnson, 1994, Brookmeyer, 1999, Hughes-Oliver and 
Swallow, 1994, Tu et. al., 1995 and Xie et. al., 2001). 

Recent studies in batch testing have concentrated on the 
second objective by generalizing Thomson (1962) and Sobel 
and Elashoff (1975) studies. The various scholars have done  
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this by considering; unequal pool sizes (Brookmeyer, 1999, 
Hepworth, 1999 and Biggerstaff, 2008), multistage pooling 
schemes (Brookmeyer, 1999, Hughes-Oliver and Swallow, 
1994 and Nyongesa, 2004) and imperfect tests (Tu et. al., 
1995 and Nyongesa, 2012).  

But, in quality control processes a batch is classified 
positive or negative according to whether d, the number of 
constituent members with quality characteristic is greater or 
less than a fixed cut off value or threshold (Montegomery, 
2009). This is similar to threshold batch testing introduced 
by Damaschke (2006) where he considered two thresholds,  
l < u, called the lower and upper threshold respectively. 
Several others authors have also considered the threshold 
batch testing among them are Chen and De Bonis (2011). 
However, they were mainly concerned with coming up with 
algorithms that can be used to determine the minimum 
number of tests required to determine the defective items. Tu 
et. al. (1995) described the use of batch testing in HIV 
surveillance and implemented the possibility of testing errors 
in the process. Two terms are commonly used when 
discussing the perfection or imperfection of a test: sensitivity 
and specificity. Sensitivity is the probability of a positive 
result given that the unit tested is truly positive. Specificity is 
the probability of a negative result given that the unit tested 
is actually negative. In this paper we present the maximum 
likelihood estimator for the proportion of detective, p and its 
properties when using batch testing in the presence of the test 
errors in a quality control process. That is, there is possibility 
of misclassification of defective or non-defective item being 
declared non-defective or defective respectively.  
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2. Estimator of Proportion 
Suppose we have a set of items that can be characterized 

as defective or non defective and that the probability, p of 
being defective is same for all items in the population. 
Further, assume that the items can be subdivided into n 
batches each of size, k. Then the batches are tested with kits 
that are not 100% perfect. The objective is to estimate the 
proportion of defectiveness that characterizes the population 
under investigation by testing a batch. If a batch is labeled 
defective, then the number of constituent items with the 
quality character of interest, d is greater than a predetermined 
cut off value l. Given that ),( ldk >η  and ),( ldk ≤φ  
are sensitivity and specificity of the test, then the probability 
of classifying a batch as positive; 

))()}(,(1{))(1)(,()(1 lFldklFldkp ≤−+−>= φηπ (1) 

where  
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We investigate the relationship between )(1 pπ  and p  

by plotting )(1 pπ  against p  for different k and l. The 
value of sensitivity and specificity is fixed and assumed 
equal in the course of testing. Figure 1 shows the relationship 
between )(1 pπ  versus p  given that the sensitivity and 
specificity are equal to 99%. It can be noted that the 
probability increases rapidly for low p converging to the 
value of sensitivity.  

  

  

Figure 1.  Plot of )(1 pπ  as a function of p  for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 with sensitivity and specificity = 99% 
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Next, the value of sensitivity and specificity is fixed at 90% and the relationship observed as shown in Figure 2. 

  

  

Figure 2.  Plot of )(1 pπ  as a function of p  for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 with sensitivity and specificity = 90% 

The observation of Figure 2 illustrates that the relationship 
is monotonically increasing and the increment is steep for 
low values of p. The relationship was also examined for 
sensitivity and specificity fixed at a low value equal to 70%. 
This value is picked for the sole purpose of studying the 
relationship. This is because the tests which are normally 
used have higher sensitivity and specificity. 

The results show that the relationship between )(1 pπ  
and p is least affected by the values of sensitivity and 
specificity.  

2.1. Maximum Likelihood Estimator 
Suppose there are n batches, each of size k available for 

testing and X batches test positive. Then according to 
Dorfman (1943), X is a random variable that follows 
binomial distribution ))(,( 1 pn π . Thus the likelihood 

function is; 
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To obtain the MLE of p, we solve the equation 

0)(
)(1

)()(
)( 1

1
1

1

=′
−
−

−′ p
p

xnp
p

x π
π

π
π

     (4) 

where 
q
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∂
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π and q = 1 – p. 

In solving Equation (4), there are two possible solutions;  

0)(1 =′ pπ  or 
n
xp =)(1π
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Figure 3.  Plot of )(1 pπ as a function of p for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 when sensitivity and specificity = 70% 

The candidate 0)( =′ pπ  is dropped because it gives 

only two extreme solutions 0ˆ =q  or 1ˆ =q  and thus 
0ˆ =p  or 1ˆ =p . The estimate 0ˆ =p  is most unlikely 

to happen since in practice it is not possible to avoid 
defectives and have only good items. On the other hand 

1ˆ =p  means that all the batches or items test positive 
which is certainly an overestimate of p as it is most unusual 
for every item in the population to be positive (Hepworth and 

Watson, 2009). With the candidate 
n
xp =)(1π  we get; 
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For l = 0, Equation (5) reduces to 
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This is a result obtained by Nyongesa (2012). However, 
Equation (5) has no solution in closed form when 0>l . 
Therefore, the equation is solved iteratively using an R code 
that we developed which is presented in Appendix A. 

3. Properties of the Estimator  
In this section, the properties of the maximum likelihood 

estimator of proportion are discussed.  
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3.1. Relationship between 1p̂  and p  

The relationship between 1p̂  and p  when the value of 
sensitivity and specificity of the test is fixed at 99% is 

presented in Figure 4. It can be noted that there is significant 
increase in the maximum likelihood estimate as the cut off 
value increases. But the increase diminishes with the 
increase in the batch size.  

 

  

Figure 4.  Plot of 1p̂  against p  for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 with sensitivity and specificity = 99% 

The relationship is studied when the value of sensitivity and specificity is set at 95%. The results are shown in Figure 5 
below. 
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Figure 5.  Plot of 1p̂  against p  for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 with sensitivity and specificity = 95% 

  

  

Figure 6.  Plot of )ˆvar( 1p  as a function of p for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 with sensitivity and specificity = 99% 

The relationship is observed to be monotonically 
increasing and the rate of increment depends on k and l. 
Comparing Figures 4 and 5 it is found that the relationship is 
slightly affected by the values of sensitivity and specificity. 
Also to note is the fact that the Brookmeyer (1999) model 

gives lower estimates than the proposed model. This is 
indicated by the solid line lying below other lines. 

3.2. Asymptotic Variance of Estimator 

In this section, we consider the computation of the 
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asymptotic variance of our estimator. The asymptotic 
variance is obtained from the Fisher’s information given by; 

1

2

2 (.)log
−

















∂

∂
−

p
LE            (7) 

And we obtain; 

[ ]2
22

11
1 )1(}1),(),({

)1())(1)(()ˆvar(
EApkldkldkn

ppppp
−−−≤+>

−−
=

φη
ππ

(8) 

where  

0
(1 )

l
d k d

d

k
E d p p

d
−

=

 
= − 

 
∑  

0
1 (1 )

l
d k d

d

k
A p p

d
−

=

 
= − − 

 
∑  

 
 

The derivation of Equation (8) is presented in Appendix B. 
The figures that follow below indicate the relationship 

between )ˆvar( 1p  and p . The point of interest in the 
figures is to locate the region where the curves of the model 
with l > 0 are below the curve with l = 0 (solid line). That is, 
identify the region where the model is more efficient than the 
Brookmeyer (1999) model. 

As indicated in Figure 6, the Brookmeyer (1999) model is 
more efficient than the proposed model for small p. But the p 
for which the proposed model is more efficient than the 
Brookmeyer (1999) model reduces as k increases. For 
example, with k = 5, the proposed model is more efficient 
than Brookmeyer (1999) model for p > 0.3 while if k = 25, 
that value is p > 0.06. In Figure 7 the sensitivity and 
specificity was set at 95% and the relationship of )ˆvar( 1p  
with respect to p observed. The plot indicates that the p for 
which the proposed model is more efficient than the 
Brookmeyer (1999) model is relatively higher for small 
batch size as opposed to large batch size. 

  

  

Figure 7.  Plot of )ˆvar( 1p  as a function of p for k = 5, 10, 15, 25 and l = 0, 1, 2, 3 with sensitivity and specificity = 95% 
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Table 1.  ARE of proposed model relative to Brookmeyer (1999) model for 
k = 5, 10, 15, 25 with sensitivity and specificity = 99% 

l 

p 1 2 3 

k = 5 

0.02 0.025 0.004 0.005 

0.06 0.273 0.000 0.014 

0.08 0.404 0.004 0.018 

0.15 0.808 0.151 0.011 

0.20 1.073 0.373 0.000 

0.25 1.345 0.675 0.032 

0.30 1.643 1.070 0.155 

k = 10 

0.02 0.162 0.001 0.009 

0.06 0.693 0.114 0.005 

0.08 0.909 0.284 0.001 

0.15 1.595 1.197 0.405 

0.20 2.145 2.179 1.251 

0.25 2.879 3.699 2.884 

0.30 4.029 6.412 6.254 

k = 15 

0.02 0.321 0.002 0.012 

0.06 1.023 0.422 0.025 

0.08 1.306 0.793 0.178 

0.15 2.369 2.731 1.971 

0.20 3.573 5.499 5.469 

0.25 6.016 12.216 15.464 

0.30 12.089 33.852 53.659 

k = 25 

0.02 0.603 0.075 0.006 

0.06 1.575 1.253 0.534 

0.08 2.039 2.121 1.386 

0.15 5.095 9.776 12.211 

0.20 13.595 41.472 71.373 

0.25 40.679 247.332 620.728 

0.30 92.492 1380.420 6104.280 

Comparing Figures 6 and 7 indicate that the proposed 
model is more efficient than Brookmeyer (1999) at lower p 
when sensitivity and specificity is low given small batches. 
For instance, if k = 5 and sensitivity and specificity = 99%, 
the proposed model is more efficient than Brookmeyer (1999) 
when p > 0.25. But when sensitivity and specificity = 95%, 
the model is more efficient with p > 0.21. However, if k is 
large, then p for which the proposed model is more efficient 
than the Brookmeyer (1999) model is relatively lower than 
one when both sensitivity and specificity are equal to 99% as 
opposed to when sensitivity and specificity are equal to 95%. 
For example, when k = 25 the proposed model is efficient 
compared to Brookmeyer (1999) when p > 0.01 if sensitivity 
and specificity is 99%. However, for the same batch size, the 
model is more efficient than Brookmeyer (1999) for p > 0.05 

given the test has sensitivity and specificity equal to 95%. 

3.3. Asymptotic Relative Efficiency 
We compare our results with those of Brookmeyer (1999) 

among others by computing Asymptotic Relative Efficiency 
(ARE). If the estimator of Brookmeyer (1999) among others 
is denoted by Bp̂  and our estimator lp̂  by then  

)ˆvar(
)ˆvar(

l

B

p
p

ARE =                (9) 

Table 2.  ARE of proposed model relative to Brookmeyer (1999) model for 
k = 5, 10, 15, 25 with sensitivity and specificity = 95% 

l 

p 1 2 3 

k = 5 

0.02 0.002 0.036 0.037 

0.06 0.053 0.064 0.098 

0.08 0.133 0.062 0.132 

0.15 0.515 0.005 0.255 

0.20 0.819 0.023 0.305 

0.25 1.157 0.163 0.284 

0.30 1.559 0.458 0.189 

k = 10 

0.02 0.014 0.049 0.065 

0.06 0.394 0.006 0.167 

0.08 0.631 0.010 0.176 

0.15 1.501 0.644 0.001 

0.20 2.348 1.804 0.282 

0.25 3.739 4.214 1.783 

0.30 6.343 9.961 6.905 

k = 15 

0.02 0.081 0.047 0.092 

0.06 0.766 0.057 0.129 

0.08 1.117 0.292 0.038 

0.15 2.747 2.633 0.936 

0.20 5.287 7.956 5.896 

0.25 11.077 25.835 29.042 

0.30 23.332 91.078 146.807 

k = 25 

0.02 0.303 0.012 0.135 

0.06 1.478 0.731 0.017 

0.08 2.177 1.775 0.476 

0.15 8.897 19.063 21.297 

0.20 25.138 112.318 209.465 

0.25 55.805 569.611 1947.016 

0.30 100.113 2081.690 14468.410 

Therefore, ARE > 1 implies that the proposed model is 
more efficient than the Brookmeyer (1999) model. The 
tables that follow show ARE for some values of p with 
sensitivity and specificity equal to 99% and 95%. 
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From Table 1, it can be seen that the proposed model is 
more efficient than Brookmeyer (1999) model for large 
values of p. However, the value of p for which our model is 
more efficient reduces with increase in k. Next sensitivity 
and specificity is reduced to 95% and the results are shown in 
the table below; 

The results in Table 2 indicate that the proposed model is 
more efficient than Brookmeyer (1999) model for relatively 
higher values of p as indicated by ARE > 1.  

3.4. Relative Mean Squared Error 
If the estimator of Brookmeyer (1999) among others is 

denoted by Bp̂  and our estimator lp̂  by then the Relative 
Mean Squared Error (RMSE) is given by; 

)ˆ(
)ˆ(

l

B

pMSE
pMSERMSE =            (9) 

Table 3.  MSE of the estimate for the proposed model relative to the 
Brookmeyer (1999) model with sensitivity and specificity = 99% 

l 

p 1 2 3 

k = 5 

0.005 0.308 - - 

0.01 8.349 - - 

0.05 0.343 - - 

0.10 3.484 - - 

0.15 0.274 - - 

0.20 0.372 - - 

k = 10 

0.005 251.094 0.581 0.005 

0.01 0.177 0.000 0.000 

0.05 1.139 5.948 2.899 

0.10 0.009 6.322 8.148 

0.15 0.131 0.001 0.001 

0.20 0.531 0.439 0.186 

k = 15 

0.005 0.652 0.636 0.023 

0.01 0.002 0.023 0.000 

0.05 2.701 0.315 302.103 

0.10 9.143 9.062 0.009 

0.15 0.001 0.001 0.173 

0.20 6.044 0.213 3132.134 

k = 25 

0.005 9.316 23.982 0.450 

0.01 1.542 0.379 0.342 

0.05 0.003 0.002 0.015 

0.10 11.362 0.694 1.042 

0.15 0.110 61.562 16.829 

0.20 167.710 14.973 1.095 

Table 3 gives the RMSE for a range of proportion values 
when the sensitivity and specificity is fixed at 99%. 

It can be seen that the efficiency of the proposed model 
depends on the p, k and l. For example, if p = 0.005 and l = 1, 
the proposed model is more efficient than Brookmeyer (1999) 
model when k = 10 or 25. But it is less efficient when k = 5 or 
15. 

Next, the sensitivity and specificity is reduced to 95% and 
the RMSE calculated for a range of proportion and cut off 
values. The results are presented in Table 4. 

Table 4.  The MSE of the estimate for the proposed model relative to the 
Brookmeyer (1999) model with sensitivity and specificity = 95% 

l 

p 1 2 3 

k = 5 

0.005 0.226 - - 

0.01 8.228 - - 

0.05 0.343 - - 

0.10 3.473 - - 

0.15 0.322 - - 

0.20 0.370 - - 

k = 10 

0.005 224.652 0.624 0.009 

0.01 0.166 0.000 0.000 

0.05 1.138 5.971 2.174 

0.10 0.009 6.087 6.069 

0.15 0.138 0.001 0.001 

0.20 0.532 0.441 0.187 

k = 15 

0.005 0.000 0.000 0.000 

0.01 0.287 1.548 0.002 

0.05 21.699 2.524 1054.744 

0.10 29.810 29.639 0.033 

0.15 0.028 0.029 7.527 

0.20 26.175 0.921 12253.150 

k = 25 

0.005 9.320 22.684 0.216 

0.01 1.542 0.379 0.289 

0.05 0.003 0.002 0.015 

0.10 11.379 0.694 1.043 

0.15 0.111 62.444 16.951 

0.20 165.304 14.817 1.085 

The results indicate that the efficiency of the proposed 
model is reliant on the p, k and l. The proposed model 
performs better than the Brookmeyer (1999) model in 
several settings of p, l and k. But overall, the proposed model 
is more efficient when batch size increases. 

Lastly, the sensitivity and specificity was set to 90% and 
the models compared using the RMSE. 

From Tables 3, 4 and 5, it can be noted that the efficiency 
of the proposed model relative to the Brookmeyer (1999) 
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model is affected by the value of sensitivity and specificity. 
However, the relationship between the relative efficiency of 
the proposed model and sensitivity and specificity is not a 
simple one. For instance, for large k = 15 and 25 with l = 1 
and p = 0.05, the relative efficiency of the model is 2.701 
increasing to 21.699 and then reducing to 21.660 for 
sensitivity and specificity equal to 99%, 95% and 90% 
respectively.  

Table 5.  The MSE of the estimate for the proposed model relative to the 
Brookmeyer (1999) model with sensitivity and specificity = 90% 

l 

p 1 2 3 

k = 5 

0.005 0.028 - - 

0.01 3.814 - - 

0.05 0.341 - - 

0.10 3.464 - - 

0.15 0.663 - - 

0.20 0.393 - - 

k = 10 

0.005 55.922 0.040 0.043 

0.01 0.130 0.000 0.000 

0.05 1.139 5.911 1.543 

0.10 0.010 5.915 3.889 

0.15 0.131 0.001 0.001 

0.20 0.531 0.439 0.186 

k = 15 

0.005 0.000 0.000 0.000 

0.01 0.286 0.031 0.001 

0.05 21.660 47.415 518.652 

0.10 29.809 19.726 0.033 

0.15 0.028 0.048 7.582 

0.20 25.727 1.885 9807.048 

k = 25 

0.005 9.307 18.615 0.133 

0.01 1.541 0.378 0.228 

0.05 0.003 0.002 0.015 

0.10 11.332 0.693 1.041 

0.15 0.111222 62.62097 16.96471 

0.20 164.3565 14.98504 1.098260 

On the other hand if k = 10, the relative efficiency of the 
proposed model increases as the sensitivity and specificity 
increases. Therefore, one would need such tables to be able 
to set up a more efficient model provided that there is 
information about the proportion p, cut off value, l and 
sensitivity and specificity of tests. 

Note that RMSE could not be determined for k = 5 with l = 
2 and 3 as indicated by missing values in Tables 3, 4 and 5. 
Hence for small batch size, k = 5, we should avoid large cut 
off values, l > 1. 

4. Discussion and Conclusions 
We have constructed an estimator for batch testing based 

on the quality control procedure in the presence of test errors. 
The probability of detecting a positive batch is much affected 
by the cut off value and batch size but least affected by 
sensitivity and specificity. The plots show significant 
increase in the probability of detecting a positive batch with 
increase in batch size for the given value of sensitivity and 
specificity. But the rate of increase diminishes with increase 
in the cut off value. The MLE of p derived is a generalization 
of one obtained by Nyongesa (2012) and has no closed form 
solution when l > 0. However, a computer code using an 
in-built R function, uniroot, is developed to determine the 
estimate of p. It is found out that the MLE of p increases with 
increase in sensitivity and specificity. It is also noted that the 
proposed model gives higher values for MLE of p than 
Brookmeyer (1999) model for fixed batch size, cut off value 
and sensitivity and specificity. If the sensitivity and 
specificity is assumed to be constant in the entire testing time, 
the proposed model improves the efficiency of the estimator 
over other models previously developed especially for higher 
values of p. The problem of errors in inspection can be 
mitigated by re-testing. It has been shown that re-testing of 
batches reduces misclassification errors (cf. Nyongesa, 
2004). In fact, lost sensitivity of a test is recovered by 
re-testing batches classified as negative in the initial stage if 
the tests are imperfect. A batch testing model as applied in 
quality control where re-testing is allowed can be developed 
and investigated. 

Appendix A: R Code to Determine MLE 
#Program to find the estimate of p when test is imperfect 
#Specify the parameter 
k = 15 
x = 2 
l = 1 
n = 20 
d = c (0: l) 
Sensitivity = 0.99 
Specificity = 0.99 
#Define the function whose single root is to be determine 

in interval (0, 1) 
fun<-function(p) 

(sensitivity+specificity-1)*(sum(choose(k,d)*p^d*(1-p)^(k-d
)))+x/n-sensitivity 

p.estimate<-uniroot(fun,c(0,1))$root 
p.estimate 

Appendix B: Derivation of Asymptotic 
Variance  

We consider the computation of the asymptotic variance 
of our estimator as presented in Equation (9). The variance is 
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computed by solving for  
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