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Abstract: Simple analytic first-order wave functions corresponding to two-electron atoms electron correlation operators are 

obtained by reduction of the Rayleigh-Schrödinger first order perturbation equation to that of one-electron through the partial 

integration over the variables of one electron. The resulting first order wave functions are applied to evaluate the first order 

expectation values of electron correlation operators associated with the radial correlation, magnetic shielding and diamagnetic 

susceptibility. The results obtained have close agreement with other theoretical results. 
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1. Introduction 

The application of quantum mechanics to the atomic 

problem results in a partial integro-differential equation [1]. 

This equation cannot be solved analytically except for the 

special case of the hydrogen atom. The solutions of the 

hydrogen atom provide useful insights regarding the nature 

of the atoms, but difficulties arise when we add one or more 

electrons. This is mainly because the strength of the electron-

electron interactions is comparable to the nucleus-electron 

interaction [2-3]. Perturbation methods have been employed 

to calculate a wide range of atomic parameters relating to the 

ground states of the helium iso-electronic sequence, with the 

unperturbed eigenfunctions being products of screened 

hydrogenic orbital’s [4-5]. The mean value associated to the 

magnetic shielding, diamagnetic susceptibility, relativistic 

mass corrections and dipole polarization were evaluated 

using first order wave functions obtained from a 

representation of the system by screened hydrogenic orbital.  

The perturbation theory of the helium iso-electronic sequence 

of the atoms has also been extended to obtain the first order 

density matrix equations, useful in evaluating the mean 

values of operators for the ground state of helium, helium 
3
S 

state and the lithium ground state [6]. Utpal R and Talukdar 

B, [7], have studied the effects of electron-electron on the 

properties of helium iso-electronic sequence using variation 

approach and obtained the expectation value of the 

Hamiltonian and some radial operators. Sakho I., Ndao A S, 

Biaye M and Wague A [8], combined perturbation theory and  

the Ritz variation method, to obtain an analytic method called 

the screening constant by unit nuclear charge (SCUNC), to 

calculate of the ground-state energy, the first ionization 

energy and the radial correlation expectation value for  the 

ground state of Helium like atoms. The SCUNC method has 

been extended in the calculation of the total energies, the 

total electron-electron interaction energies and the excitation 

energy for the doubly exited state of the Helium-like systems 

[9]. 

A simple analytic calculation for the first order wave 

function of helium-like system developed in a model in 

which nuclear charge screening is caused by repulsive 

coulomb interaction has been applied to calculate second-

order energies of the system within the model [10]. The first-

order wave function was obtained by reduction of the time 

independent first-order equation for the helium-like system to 

that of one-electron through partial integration over the 

variables of one electron. The resulting one-electron atoms 

equations, corresponding to the magnetic shielding term and 
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the repulsive interactions term are the solved analytically. 

The total energy to second order correction were found to 

have close agreement with those from the Hatree–Fock 

model using arbitrary first-order wave functions. 

In the paper the first order expectation values of the two-

electron atoms electron correlation operators associated with 

the radial correlation, magnetic shielding and diamagnetic 

susceptibility are evaluated using first order wave functions 

corresponding to each operator. The first order wave 

functions associated to each operators is obtained by solving 

the first order time independent Schrödinger equation for the 

helium-like system analytically, using a model in which 

nuclear charge screening is caused by the repulsive coulomb 

interaction.  

2. General Dynamics and Perturbation 

Theory of the System 

The Hamiltonian governing the dynamics of the two 

electrons in the model in which nuclear charge screening is 

caused by the repulsive coulomb interaction takes the form 

(atomic units) [11] 

( )0 ′= +H H H                                     (1a) 

where the unperturbed Hamiltonian is  

   
( )0 2 2

1 2

1 2

1 1

2 2
= − ∇ − ∇ − −H

r r

ζ ζ
                     (1b) 

and the perturbing Hamiltonian is  

12 21

1 2 1 2

1 1 1 1

4 2

   ′ = − + + +   
   

S S
H

r r r r
                       (1c) 

The effective nuclear charge ζ in (1b) is defined as  

1

4
= −Zζ                                               (2a) 

and the nuclear charge screening parameter , , 1,2i jS i j = in 

(1c) is expressed as  

       

1
2 2

1 2 cos ,

−
    
 = + − ≥        

j j

ij i j

i i

r r
S r r

r r
ϑ                 (2b) 

where 
i ir = r , 

j jr = r  and ϑ  is the orientation angle 

between the position vectors 
ir  and 

jr of the electron pair 

( ),i j .The unperturbed eigenvalue equation is 

      ( ) ( ) ( ) ( )0 0 0 0Ψ = ΨH E                         (3a) 

where the zero-order wave function is  

( ) ( )( )
3

0

1 2expΨ = − +r r
ζ ζ
π

                 (3b) 

and energy value is [11] 

( )
2

0 2 1

4
E Zζ  = − = − − 

 
                            (3c) 

The first order approximation of the Rayleigh-Schrödinger 

perturbation theory procedure leads to a homogeneous 

equation 

( ) ( )( ) ( ) ( )( ) ( )0 0 1 1 0
0H E H E′− Ψ + − Ψ =            (4a) 

The knowledge of the form of the zero-order wave 

function ( )0Ψ and first order wave function ( )1Ψ  obtained in 

(4a) leads to the values of the first and second order 

corrections to the energy, expressed as  

( ) ( ) ( )1 0 0
,′= Ψ ΨE H                  (4b) 

and 

( ) ( ) ( ) ( )2 0 1 1
,′= Ψ − ΨE H E           (4c) 

respectively [1, 12].  

The expectation value of an operator 
kL of the system 

may be expanded into different orders [4, 5]  

( ) ( )0 1= + +………k k kL LL               (5a) 

where 

( ) ( ) ( )0 0 0= Ψ Ψk k k kL L                         (5b) 

is the zero-order approximation to the diagonal matrix 

element of the dynamical variable and  

( ) ( ) ( ) ( )1 0 0 1= Ψ −k k k kL L χL                       (5c) 

is the first order approximation. The first order wave 

function ( )1

kχ  of the system satisfies the equation  

( ) ( )( ) ( ) ( )( ) ( )0 0 1 0 0
0− + − Ψ =k k k kH E Lχ L           (5d) 

Since ( )0
H , ( )0

kE , ( )0

kΨ , L and ( )0

kL are known, the solution of 

(5d) yield the value of ( )1

kχ , that is used to evaluate ( )1

kL  in (5c). 

2.1. Radial Correlation  

The radial correlation of the Helium like atoms system 

within the model in which nuclear charge screening is caused 

by the repulsive coulomb interaction, is defined from (1c) by  

[11] 

12 21

12 1 2

1 1

2

 
= = + 

 
rad

S S

r r
L

r
                         (6a) 

Substituting (6a) in (5b), taking ( ) ( )0 0

kΨ = Ψ  and evaluating 

the resulting expression, the zero-order expectation of the 
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radial correlation term becomes 

( ) ( ) ( )0 0 0 5

8
= Ψ Ψ =rad radL ζL                         (6b) 

The first order perturbation equation (5d) cannot be solved 

directly for ( )1

radχ , since the radial correlation term contains two 

electron terms. However, analytic solutions to (5d) can be 

found if ( )1

radχ corresponds to a one-electron operator
radL .  

Following the Rayleigh-Schrodinger 1
ζ

 perturbation 

expansion, the two-electron atoms equation is reduced to that 

of one electron through partial integration over the variables 

of one electron [10]. The resulting first-order wave function 

is  

( ) ( ) ( )( ) ( )1 0

1 2= +rad scf r f rχ ψ                       (7a) 

where 

( ) ( ) ( )

( )( )

( )

23 1 3
exp 2 log

32 4 8

3 3
1 exp 2

8 16

5 3
exp 2

8 8

= − − − −

− Γ + − −

+ + −

i i i

i

i

i i i

f r r r

r
r

r Integral E r

         (7b) 

and 

( ) ( )( )0

1 2

1
exp= − +sc r rψ

π
                  (7c) 

is the scaled zero order wave function (3b). Using equation 

(6b), the scaled zero order expectation value is ( )0 5 .
8scradL =

. 

The first order expectation value of the radial correlation 

term (5c), becomes 

( ) ( ) ( ) ( )1 0 0 1
0.111003 . ,= − = −

scrad sc rad radL L a uψ χL        (8a) 

after substituting for (6a), (7b) and (7c).  Using (6b) and (8a) 

in (5a), the expectation value of the radial correlation 

operator to first order approximation is 

( ) ( )0 11

12

5
0.111003

8

5 1
0.111003

8 4

rad rad
p

L L

Z

ζ− = + = −

 = − − 
 

r

           (8b) 

Table 2.1 shows the calculated values of the radial 

correlation expectation value 1

12 p

−
r (8b) for Z=1-6, compared 

to theoretical results obtained in Utpal R and Talukdar B [7] 

andSakho I. et al, 2006 [8]. In spite of the choice of simple 

wave functions which depend only on the distance 

coordinates 1
r  and 2

r  the theoretical results for the radial 

correlation term 1

12
p

−
r  have a close agreement with those of  

Utpal and Talukdar, [7] who constructed in their analytical 

model a wave function depending on the position coordinates 

1 2s r r= + and 
12r . The theoretical results are better than those 

obtained by Sakho, et al, 2006[8] using SCUNC method. The 

results also compares favourbly with exact values for radial 

correlation expectation value for 0.9458 .He a u=  and 
4 3.4389 .C a u+ = quaoted from the variational calculation of 

Pekeris [13].  

Table 2.1.The calculated values of the radial correlation expectation value 1

12
p

−
r  (8b), compared to 1

12
Utpal

−
r [7] and 1

12 Sakho

−
r [8].

 

 H−  He  Li+  2Be +  3B +  4C +  

1
12

Sakho

−
r  0.4297 1.0547 1.6797 2.3047 2.9297 3.5547 

1
12

Utpal

−
r  0.3744 0.9820 1.6010 2.2233 2.8463 3.4700 

1
12

p

−
r

 
0.357747 0.982747 1.60775 2.23275 2.85775 3.48275 

 

2.2. Magnetic Shielding 

Within the model in which nuclear charge screening is 

caused by the repulsive coulomb interaction the magnetic 

shielding operator
magL , is defined from (1c) as  

( )1 1

1 2

− −= +mag r rL                                  (9a) 

Substitute (9a) in (5b), the zero-order expectation of the 

magnetic shielding term becomes 

( ) ( ) ( )0 0 0
2= Ψ Ψ =mag magL ζL                     (9b) 

The magnetic shielding term (9a) contains one electron 

terms, therefore the first order perturbation equation (5d) can 

be solved directly for variables of one electron, to obtain 

( ) ( ) ( )1 0

1 2
= + Ψ

mag
r rχ                                     (9c) 

The first order correction to the expectation value of the 

magnetic shielding term (5c) is
 

( ) ( ) ( ) ( )1 0 1 1
2 0.125 . ,= Ψ − = −mag mag magL L a uχL          (10a) 

Using (9b) and (10a) in (5a), the expectation value of the 

magnetic shielding term to first order approximation is 
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( ) ( ) ( )

( )

0 11 1

1 2 2 0.1250

2 1 4 0.1250

mag mag
p

r r L L

Z

ζ− −+ = + = −

= − −
         (10b) 

Table 2.2 shows the calculated values of the one electron 

radial correlation term associated with magnetic shielding for 
1 1

1 2
1

2 p
r r− −+ (10b) for Z=1-10. 

2.3. Diamagnetic Susceptibility 

The diamagnetic susceptibility is proportional to the 

expectation value of 

2 2

1 2= +dia r rL                                 (11a) 

The zero order expectation value is  

( ) ( ) ( )0 0 02 2
21 2

6= Ψ + Ψ =diaL r r ζ              (11b) 

Substitute (11a) and (11b) in (5d) and use steps in section 

2.2.2, the first order wave function become 

( ) ( )
2 2 3 3

1 01 2 1 2

2 3

 + += − + Ψ 
 

dia

r r r rχ
ζ ζ

               (11c) 

Substitute (11a), (11b) and (11c) in (5c), the first order 

correction to the expectation value of the diamagnetic 

susceptibility term, becomes
 

  
( ) ( ) ( ) ( )1 0 0 1

6
129

32dia dia diaL L χ ζ= Ψ − = −L           (12a) 

and the corresponding first order expectation value 

( ) ( )0 12 2
2 61 2

6 129
32

+ = + = −dia diap
r r L L ζ ζ             (12b) 

Table 2.2 shows the calculated values of the one electron 

radial correlation term associated with magnetic shielding for 
2 2

1 2
1

2 p
r r+  (12b) for Z=1-10. 

2.4. The Radial Operator ( )1 2r r+  

Using steps in equations (11a) - (12c), it is easy to show 

that the first order wave function associated with the radial 

operator ( )1 2r r+ is 

( ) ( ) ( )1 02 2

1 2

1

2
= − + Ψr rχ                          (13a) 

and the first order expectation value is   

( ) ( )

( ) ( )
2

0 1

31

3

3 3
16

3 1 4 3 16 1 4

p
r r L L

Z Z

ζ ζ+ = + = −

= − − −
                   (13b) 

Table 2.2 shows the calculated expectation values for the 

one electron radial operator 
1 2

1
2 p

r r+ (13b) for Z=1-8. 

Table 2.2.Theoretical values of the one-electron radial correlation term associated with  1 1
1 2

1
2 p

r r− −+  (10b), 1 2
1

2 p
r r+ (13b) and 2 2

1 2
1

2 p
r r+  (12b) 

for Z=1-10, compared to theoretical results obtained in Utpal R and Talukdar B, 1999 [7] and exact value (marked a) obtained in Pekeris, 1958 [13]. 

Atom 
1 1

1 2
1

2 p
r r− −+  1

1
Utpal

r−  
1 2

1
2 p

r r+  
Utpal

r  2 2
1 2

1
2 p

r r+  2

utpal
r  

H −  
0.6875 

0.6883a 0.6938 1.7778 2.1800 5.9918 6.3222 

He  
1.6875 
1.6683a 1.6888 

0.8397 
0.9295a 0.8907 

0.9094 
1.1935a 1.0558 

Li+  
2.6875 

2.6879a 2.6879 0.5410 0.5591 0.3920 0.4161 

2
Be

+  3.6875 3.6880 0.3982 0.4073 0.2126 0.2209 

3B +  4.6875 4.6876 0.3149 0.3203 0.1328 0.1367 

4C +  
5.6875 

5.6876a 5.6875 
0.2604 

0.2668a 0.2640 
0.0907 

0.0957a 0.0928 

5N +  6.6875 6.6876 0.2219 0.2245 0.0658 0.0671 

6O +  7.6875 7.6877 0.1934 0.1952 0.0499 0.0508 

7F +  8.6875 8.6875 0.1713 0.1728 0.0392 0.0398 

8Ne +  
9.6875 
9,6875a 9.6877 

0.1537 
0.1559a 0.1549 

0.0316 
0.0326 

0.0320 

 
In table 2.2 the theoretical results for the first order 

expectation value for 1 1

1 2
1

2 p
r r− −+ is close with those 

obtained by Utpal R and Talukdar B, 1999 [9] for one 

electron radial correlation term 1

ir
−  and the exact values 

obtained by Pekeris, 1958 [13] using variation method. The 

theoretical result for first order expectation value for 

1 2
1

2 p
r r+  has close agreement with the expectation value 

obtained by UtpalR and Talukdar, 1999 [9] for one electron 

radial correlation term 
i

r and exact values by Pekeris, 1958 

[13] for 3Z ≥ . Similarly the theoretical value for 2 2

1 2
1

2 p
r r+  

has close agreement with the expectation value obtained by 

Utpal R and Talukdar B, 1999 [7] for one electron radial 

correlation term 
2

ir and exact values by Pekeris, 1958 [13]  

for 3Z ≥ . The slight disparities in the values of expectation 
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values of 1 2
1

2 p
r r+  and 

2 2
1 2

1
2 p

r r+  for H− and He

may be attributed the choice of screening constant which 

underestimate the zero order expectation value and choice of 

simple wave function which depend on only the distance 

coordinate 
1 2s r r= + , 

3. Conclusion 

In section 2.1, the theoretical results for the expectation 

value to the radial correlation term is found using a first order 

wave function order wave function obtained by following a 

simple analytic method. The analytic method involves 

applying the Rayleigh-Schrodinger perturbation expansion to 

the two-electron atom and reducing the resulting equation to 

that of one-electron through partial integration over the 

variables of one electron. The resulting first order wave 

function (7a) is used to calculate first order correction to the 

zero order expectation value of the radial correlation term 

(8b). In table 2.1, the theoretical results for the radial 

correlation term obtained using (8b) have a close agreement 

with other theoretical results.  

In section 2.2, 2.3 and 2.4 the first order wave functions 

associated with the magnetic shielding term ( )1 1

1 2r r− −+ , 

diamagnetic susceptibility term ( )2 2

1 2r r+ radial operator 

( )1 2r r+ of the helium like atoms, given by (9c), (11c) and 

(13a), were obtained directly by solving (5d), since they 

contain only one electron terms. The wave functions were 

used to calculate the first order corrections to the zero order 

expectation values of the radial operators 1 1

1 2r r− −+ (10b), 

2 2

1 2r r+  (12b) and 
1 2r r+  (13b). Since the wave function 

is a symmetric function of 1
r  and 2

r and the values for 1
r  and 

2
r  are the same, then (10b), (12b) and (13b) can be applied 

to obtain the one-electron radial expectation value as  given 

in table 2.2. The one-electron radial correlation values have 

close agreement with other theoretical result for 3.Z ≥  
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