DISTRIBUTION AND CHARACTERIZATION OF GROUNDNUT ROSETTE ASSOCIATED VIRUSES IN WESTERN KENYA

Benard Mukoye

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Crop Protection of Masinde Muliro University of Science and Technology

May 2020

DECLARATION

This thesis is my original work prepared with no other than the indicated sources and support and has not been presented elsewhere for a degree or any other award.

Signature.....

Date.....

Benard Mukoye

SCP/H/02/2015

CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance of Masinde Muliro University of Science and Technology a thesis entitled "Distribution and characterization of groundnut rosette associated viruses in western Kenya".

Signature.....

Date.....

Prof Hassan K. Were

Department of Agriculture and Land Use Management

Masinde Muliro University of Science and Technology

Signature.....

Date.....

Dr. Millicent F.O. Ndonga

Department of Biological Sciences

Masinde Muliro University of Science and Technology

COPYRIGHT

This thesis is copyright materials protected under the Berne Convection, the copyright Act 1999 and other international and national enactments in that behalf, on intellectual property. It may not be reproduced by any means in full or in part except for short extracts in fair dealing so for research or private study, critical scholarly review or discourse with acknowledgment, with written permission of the Director School of Graduate Studies on behalf of both the author and Masinde Muliro University of Science and Technology

DEDICATION

This thesis is dedicated to my wife Joslyne Jepkemboi and my daughter Lynn Mwavishi for their patience and support during my research.

ACKNOWLEDGEMENT

I greatly thank The Almighty God who gave me good health and strength to accomplish this work.

I sincerely thank my supervisors, Prof. Hassan K. Were and Dr. Millicent F.O. Ndong'a for their guidance, mentorship, support and encouragement that led to the success of this work. Extended appreciation goes to Prof Lesley Torrance (The James Hutton Institute – JHI, UK) for facilitating training and analysis in bioinformatics.

I sincerely acknowledge the financial support towards this study by The National Research Fund (NRF-Kenya), The Royal Society of The United Kingdom, International Foundation for Science and the ILRI BecA hub. I am grateful to Dr. Wellington Ekaya and the entire BecA capacity building team for allowing part of this work to be done at the BecA labs.

Appreciation to my colleagues Bonphace Collins Mangeni, Anthony Simiyu Mabele and Patrick Orakha Odhiambo for giving me extensive support to accomplish data collection. My sincere gratitude goes to the entire Biological Sciences Department staff of Masinde Muliro University of Science and Technology (MMUST) for their comments, support, encouragement and advice that contributed to the success of this work and by extension the MMUST administration.

ABSTRACT

Groundnut (Arachis hypogaea L.) is an economically important edible oilseed legume in Sub-Saharan Africa (SSA). Smallholder farmers, who account for 75% of producers, depend on it for food and income. However the yields are far below the world averages. Groundnut rosette disease (GRD) is a major constraint of groundnuts in Sub-Saharan Africa (SSA) causing up to 100% yield losses. The disease is caused by two synergistic viruses; groundnut rosette assistor virus (GRAV, genus *Luteovirus*) and groundnut rosette virus (GRV, genus Umbravirus) associated with a satelliteribonucleic acid (Sat-RNA). Some of the setbacks in the epidemiological studies of GRD associated viruses include the complex etiology of the disease and lack of specific diagnostic tools. Simultaneous detection of the causal agents is possible by multiplex RT-PCR but this depends on the availability of specific primers to known agents that occur in a specific area. Information on occurrence and distribution of GRD in western Kenya was not documented and little was known about the characteristics of associated viruses. This study determined the distribution and characterized GRD associated viruses in western Kenya. Two surveys were conducted (2016/2017) in six counties; Bungoma, Busia, Homabay, Kakamega, Siava and Vihiga. Symptomatic and asymptomatic groundnut and some bean leafy samples were collected for laboratory analysis. Total RNA was extracted from the leaf samples using RNeasy Mini Kit (Qiagen) according to the manufacturers' instructions and used for double stranded cDNA synthesis using the SuperScript II kit. The cDNA was column-purified with the DNA Clean & ConcentratorTM-5 - DNA kit. The samples were then processed with the transposon-based chemistry library preparation kit (Nextera XT, Illumina) following manufacturer's instructions. The fragment sizes structure of the DNA libraries was assessed using the Agilent 2100 Bioanalyzer. The indexed denatured DNA libraries were sequenced (200-bp paired-end sequencing) on the Illumina MiSeq platform (Illumina). Reads quality check was done using FastQC. Trimmed reads were used for denovo assembly and contigs aligned to the viral genomes database using CLC Genomics Workbench 10.1.2. The assembled contigs were subjected to a BLASTn search against the GenBank database. Phylogenetic analyses and comparisons were performed using MEGA X. Primers were designed using Primer3Plus from consensus sequences. Biological characterization of GRD was done through sap inoculation on leguminous hosts. Average incidence was 53% and 41% in the short and long rain seasons, respectively. Chlorotic rosette was the dominant symptom followed by Green rosette and Mosaic. Most farmers (65%) sourced groundnut seeds from open air market. Complete nucleotide sequences of Sat-RNA revealed identities of 88-100% with those from Malawi, Nigeria and Ghana. Isolate EG16-5 clustered together with chlorotic M24S, all chlorotic isolates and yellow blotch. The GRV isolates shared 84-98% sequence identity with those available GeneBank. The GRAV coat protein (GRAV-CP) gene sequences revealed 97-100% identity with GeneBank isolates. Complete GRAV sequences clustered closest with Luteoviruses in phylogenetic analysis. Leguminous hosts showed varied symptoms and tested positive for Sat-RNA and GRAV using the designed primers. The variations of GRD symptoms observed on groundnuts were due to the existence of different variants of Sat-RNA. Sat-RNA and GRV are more diverse than GRAV. The GRD viruses have hosts among the commonly grown legumes and this enhance the perpetuation of the disease. The study recommends an urgent need to curb GRD, possibly through the exploitation of pathogen derived resistance (PDR).

Contents	Page
DECLARATION	ii
COPYRIGHT	iii
DEDICATION	iv
ACKNOWLEDGEMENT	V
ABSTRACT	vi
TABLE OF CONTENT	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS AND ACRONYMS	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Groundnut production and importance	1
1.2 Constraints to groundnut production	2
1.3 Statement of the problem	3
1.4 Justification of the study	4
1.5 General objective	5
1.5.1 Specific objectives	5
1.6 Hypothesis	6
CHAPTER TWO: LITERATURE REVIEW	7

TABLE OF CONTENT

2.1 Occurrence and distribution of groundnut rosette disease	7
2.2 Etiology of groundnut rosette disease	8
2.3 Symptoms of groundnut rosette disease	11
2.4 Epidemiology and host range of groundnut rosette disease	12
2.5 Diversity of GRD causal agents	15
2.6 Detection of GRD causal agents	16
2.7 Management of GRD	17
CHAPTER THREE: MATERIALS AND METHODS	
3.1 Rosette disease diagnostic survey	19
3.2 Determination of genome sequence of the GRD agents	20
3.2.1 Total RNA extraction	20
3.2.2 Sequencing	20
3.3 Host range studies	21
3.4 Survey data analysis	23
CHAPTER FOUR: RESULTS	24
4.1 Distribution of GRD in western Kenya	24
4.1.1 Major GRD symptoms and their distribution in western Kenya	24
4.1.2 The GRD incidence and severity	26
4.2 Socio-economic information of the groundnut farmers in western H	Kenya29
4.3 Groundnut varieties grown	29

4.4 The diversity of GRD associated viruses
4.4.1 Quantification of RNA
4.4.2 Description of the sequence raw reads
4.4.3 Diversity of GRV-Sat-RNA
4.4.4 Estimates of Evolutionary Divergence between Sat-RNA Sequences33
4.4.5 Diversity of GRV35
4.4.5 Diversity of GRAV
4.5 Host range
4.5.1 RT-PCR for the green house and field samples and validation of GRD
diagnostic primers40
CHAPTER FIVE: DISCUSSION43
Conclusion49
Recommendations
REFERENCES
APPEDICES

LIST OF TABLES

Table 1: Primers designed and used in detection of causal agents of GRD. 23
Table 2: Mean GRD incidence (%) per County
Table 3: Mean GRD severity per County. 28
Table 4: Socio-economic data of groundnut farmers in western Kenya
Table 5: Rank of groundnut varieties grown in western Kenya. 30
Table 6: Details of the raw sequence reads
Table 7: Description of the Sat-RNA sequences assembled
Table 8: Estimates of Evolutionary Divergence between the Sat-RNA Sequences from
Kenya and those in GeneBank
Table 9: Greenhouse test crop symptoms and RT-PCR test results 39
Table 10: Quantities of total RNA eluted for samples used in RT-PCR. 40

LIST OF FIGURES

Figure 1: Genomic structure of Luteovirus
Figure 2: The genomic organization of groundnut rosette virus (GRV)10
Figure 3: Some of the virus-like symptoms observed in the surveyed fields25
Figure 4: A map of western Kenya showing the distribution of major GRD symptoms
in the surveyed Counties
Figure 5: A line graph showing relationship between GRD severity and incidence28
Figure 6: Phylogenetic tree of western Kenya Sat-RNA and GeneBank isolates33
Figure 7: Regions of high divergence between the green rosette and chlorotic rosette
isolates
Figure 8: Phylogenetic tree of the Kenyan GRV isolates and those in GeneBank36
Figure 9: Phylogenetic tree of the 600nt western Kenya GRAV CP and GeneBank
isolates
Figure 10: Phylogenetic tree of the three complete genome GRAV Kenyan isolates
with other viruses in the family Luteoviridae
Figure 11: Symptoms expressed by plants inoculated with GRD associated viruses39
Figure 12: Gel quantification of total RNA eluted40
Figure 13: Gel electrophoresis of RT-PCR amplified RNA using primers specific for
Sat-RNA for samples inoculated with GRD viruses and GRD symptomatic field
samples41

Figure 14: Gel electrophoresis of RT-PCR amplified RNA using primers specific for
GRAV-CP gene for samples inoculated with GRD viruses and GRD symptomatic
field samples41
Figure 15: Gel electrophoresis of RT-PCR amplified RNA using primers specific for
GRV for samples inoculated with GRD viruses and GRD symptomatic field samples.

LIST OF ABBREVIATIONS AND ACRONYMS

AEZs	- Agro-Ecological Zones.
ANOVA	- Analysis of Variance.
bp	- Base Pair.
dsRNA	- Double Stranded Ribonucleic Acid.
FAO	- Food and Agricultural Organization.
FAOSTAT	- Food and Agricultural Organization Statistics.
GRAV	- Groundnut Rosette Assistor Virus.
GRD	- Groundnut Rosette Disease.
GRV	- Groundnut Rosette Virus.
ICRISAT	- International Crops Research Institute for the Semi-Arid Tropics.
ICTV	- International Committee on Taxonomy of Viruses.
LM	- Lower Midland.
MMLV RT	- Moloney murine leukemia virus reverse transcriptase enzyme.
NGS	- Next Generation Sequencing.
nt	- Nucleotide
ORF	- Open Reading Frame.
PDR	- Pathogen-derived resistance.
RT-PCR	- Reverse Transcription Polymerase Chain Reaction.
SADC	- Southern African Development Community.

- Sat-RNA Satellite Ribonucleic Acid.
- SSA Sub-Saharan Africa.
- ssRNA Single Stranded Ribonucleic Acid

CHAPTER ONE

INTRODUCTION

1.1 Groundnut production and importance

Groundnut (*Arachis hypogaea L.*), which is native to southern America, belongs to the family *Fabaceae* (Usman, 2013). It is the fifth most important annual oilseed and food legume crop. It is grown in diverse environments throughout the semi-arid and sub-tropical regions, in nearly 100 countries in the six continents of the world (Kumar *et al.*, 2007). The most important groundnut producing countries are Argentina, Chad, China, India, Indonesia, Myanmar, Nigeria, South Africa, Senegal, Sudan, USA, and Vietnam (Kumar *et al.*, 2007). In Africa, the area planted to groundnuts represents 40% globally. It is only South Africa that recorded 26% of the highest averages while East Africa was among the lowest (ICRISAT, 2012; World Bank, 2015; FAOSTAT, 2016). In Kenya, the crop is mainly grown in western Kenya by smallholder farmers for food and sale. The two main groundnut types in Kenya are the bunch type (Red Valencia) maturing within 90-100 days, and the runner type (Homabay), maturing in 120-150 days. Other varieties grown include: Manipita, Makulu Red, Bukene, Asyria Mwitunde, Texas Peanut, Serere 116 (white) and Alika. The current growers yield in Kenya is 450-700kg/ha (Kayondo *et al.*, 2014).

Groundnut production is of great value in terms of income and nutrition for smallholder farmers in East Africa (Kidula *et al.*, 2010; Okello *et al.*, 2010). Groundnut seeds (raw, sun dried and roasted) contain moisture content of 7.4%, 3.4%, 1.1%; crude protein of 24.7%, 21.8%, 18.4%; ash content of 1.5%, 1.4%, 1.4%; crude fat of 46.1%, 43.8%, 40.6%; crude fiber of 2.8%, 2.4%, 2.4% and carbohydrate of 17.4%, 27.2%, 36.1% respectively. Groundnut mineral ions include; Sodium (0.71%, 0.69%, 0.57%), Phosphorus (0.68%, 0.65%, 0.69%), Potassium

(0.47%, 0.51%, 0.55%), Zinc (0.44%s, 0.42%, 0.50%), and Iron (0.40%, 0.47%, 0.43%), respectively (Ayoola *et al.*, 2012). Groundnut seed can be used as poultry feed, complete diet for elderly people who need much protein but less carbohydrates and as an antidote in cases of malnutrition in children (Ayoola *et al.*, 2012). The haulms and groundnut cakes are fed to livestock as hay, while the groundnut seed can be processed as snacks or consumed as a whole seed. It is also a source of vitamins like niacin, falacin, riboflavin, and thiamine. Groundnuts as a legume helps fix nitrogen in soil which enhance productivity in the cereal cropping systems (Smartt. 1994).

1.2 Constraints to groundnut production

Resource poor smallholder farmers grow nearly 75 - 80% of the world's groundnuts in developing countries obtaining yields of 500-800kg/ha, as opposed to the potential yield of >2.5t/ha (Kayondo et al., 2014). In western Kenya, an average of 600 - 700 kg/ha is achieved which is less than 30-50% of the potential yield (Kidula et al., 2010). Low yields are mainly attributed to poor quality seeds, drought, poor agronomic practices, numerous pests and diseases caused by numerous pathogenic viruses, fungi, bacteria and nematodes (Mutegi, 2010; Okello et al., 2010). Worldwide, nearly 31 viruses infect groundnuts in nature (Kumar et al., 2007). These viruses belong to various genera including Potyvirus, Tospovirus, Cucumovirus, Pecluvirus, Soymovirus Umbravirus, Begomovirus, Bromovirus, Carlavirus, Ilarvirus, Luteovirus, Potexvirus, Rhabdovirus and Tymovirus. Nineteen of these viruses were first isolated from groundnuts, while the rest from other hosts, but they commonly occur on groundnuts (Salem et al., 2010). The most economically important viruses of groundnuts are Groundnut rosette virus (GRV), Cucumber Mosaic Virus (CMV), Peanut mottle virus (PeMoV), Groundnut bud necrosis virus (GBNV), Indian peanut clump virus (IPCV), Groundnut rosette assistor virus (GRAV), Peanut stripe virus (PStV), Peanut clump virus (PCV), Tomato spotted wilt virus (TSWV), Tobacco streak virus (TSV) (Okello et al., 2014) and Cowpea mild mottle virus (CPMMV) (Mukoye et al., 2015). Among the viral diseases, Groundnut rosette disease (GRD) is the most devastating in Sub-Saharan Africa that causes an estimated loss of 156 million USD every year (Waliyar et al., 2007).

1.3 Statement of the problem

Despite the importance of groundnuts in terms of income, food and nutritional security, in western Kenya, farmers continue to experience very low yields. This is mainly due to Groundnut rosette disease (GRD) which is endemic and most destructive viral disease in SSA (Wangai et al., 2001; Waliyar et al., 2007; Okello et al., 2014). Some of the setbacks in the epidemiological studies of GRD associated viruses include the complex etiology of the disease and lack of specific diagnostic tools. This affect the development of appropriate management strategies for the disease. Limited documented information on the distribution and diversity of GRD associated viruses (Wangai et al., 2001; Kidula et al., 2010; Thuo et al., 2014), has led to continued increase in yield losses (over 50%) amongst groundnut farmers. In western Kenya, very severe and highly variable GRD symptoms were observed in groundnut farms (Mukoye et al., 2018). The underlying cause possibly lies in the genetic variability in one or all of the GRD associated agents, mainly the Sat-RNA of GRV (Murant and Kumar, 1990). Since 1998, when the last survey on GRD was done (Wangai et al., 2001), there was no new information about the disease and its associated viruses. This hinders accurate and robust diagnosis of GRD and development of management strategies. Simultaneous detection of the GRD causal agents is possible by multiplex PCR (Anitha et al., 2014) but this depends on the

availability of specific primers to known agents that occur in a specific area. This information was limited for GRD causal agents in western Kenya and therefore, a robust detection method which could single out all the GRD agents and their variants was necessary. The variants of the three GRD agents have potential permutations and therefore able to form viable alternatives that can adapt to diverse and changing econiches. Over time and under high selection pressure, such "evolution" in the associated viruses can easily result into new disease patterns (Okello *et al.*, 2014).

1.4 Justification of the study

Observations made by Wangai *et al.*, (2001), showed that GRD incidence ranged between 24 - 40% in areas of western Kenya surveyed in the groundnut growing seasons of 1997-1998. This is a long time ago and the dynamics of the disease might have changed and therefore the need for current study.

In Kenya, the diversity of GRV has been done only basing on the sequences of ORF3 and 4 and that of GRAV only by the coat protein sequences obtained by PCR using primers of already characterized viruses (Wangai *et al.*, 2001). Next Generation Sequencing (NGS) can detect all the GRD causal agents including their variants in a single run. This will unveil the GRD causal agents available in western Kenya for molecular characterization and diversity studies. Additionally, no genomic sequences (partial or complete) of GRD associated viruses from western Kenya existed in the GeneBank.

Taliansky *et al.*, (2000) reported that single infections of GRAV or GRV in groundnuts, have insignificant impact on plant growth and yield expressing only transient mottle symptoms. These results have however, been contradicted by Naidu and Kimmins (2007) who reported that, in susceptible groundnuts cultivars, infection

by GRAV alone affects plant growth and contributes to significant yield losses. The host range of Kenyan GRD virus isolates had not been determined especially on common cultivated legumes. Thus, the need for biological characterization of GRD causal virus isolates from western Kenya to establish host range and symptomology on common legumes in the region.

Several methods have been used to manage GRD viruses. They include application of pesticides to reduce vector populations, various cropping patterns to delay onset and spread of both vector and disease, and cultural practices. However, very little success has been achieved with each of these approaches (Naidu *et al.*, 1999a). The limitation in the documentation of the impact of GRD, in Kenya, could be due to misdiagnosis, as a result of a lack of in depth knowledge of the GRD causal agents. There was, therefore, need to document the occurrence and molecular characteristics of GRD agents in western Kenya to facilitate the development of accurate rosette disease identification, monitoring and recommend appropriate management and control methods.

1.5 General objective

The general objective of this study was to determine the distribution of groundnut rosette disease (GRD and diversity of associated viruses in western Kenya.

1.5.1 Specific objectives

- i. To determine the distribution of GRD in western Kenya.
- To determine the genetic diversity of GRD associated viruses in western Kenya.
- iii. To determine the biological characteristics of GRD in western Kenya.

 To develop molecular diagnostic tools for GRD associated viruses in western Kenya.

1.6 Hypothesis

- i. Groundnut rosette disease do not occur in all main groundnuts growing regions of western Kenya.
- ii. The GRD associated viruses in western Kenya are not diverse genetically.
- iii. The GRD in western Kenya has no similar biological characteristics with those from other regions of SSA.
- The available GRD diagnostic primers cannot detect GRD associated viruses from western Kenya.

CHAPTER TWO

LITERATURE REVIEW

2.1 Occurrence and distribution of groundnut rosette disease

The initial report of Groundnut rosette disease (GRD) was in Tanzania (formerly Tanganyika) in 1907 (Waliyar *et al.*, 2007). Since then, reports of the disease have been documented in many other countries within the SSA. These include Kenya, Uganda, Malawi, Angola, Madagascar, Swaziland, South Africa, Ivory Coast, Burkina Faso, Ghana, Nigeria, Gambia, Niger, Senegal and the Democratic Republic of Congo (DRC) (Wangai *et al.*, 2001; Kidula *et al.*, 2010; Thuo *et al.*, 2014). Even though groundnuts are grown in many other countries outside Africa, the GRD associated viruses have only been detected in SSA. Additionally, the *Aphis craccivora*, the vector of the GRD viruses, is found in many of the groundnuts growing regions.

Symptoms similar to those induced by GRD were reported in some Asian and South American countries, although, diagnostic tests were not conducted to confirm the presence of the disease (Reddy, 1991). The disease is therefore endemic to groundnut producing countries in SSA. The reason for this is speculated that the Portuguese, in the 16th Century, brought in groundnuts from South America that was infested by a pathogen that is endemic to SSA. The pathogen then established and spread in the region. Such a phenomenon is referred to as a new encounter phenomenon (Olorunju *et al.,* 2001). The phenomenon occurs when a pest which evolved with other host species in a certain geographical region, infect a newly introduced crop (Deom *et al.,* 2000).

The rural economy in many groundnut producing countries in SSA is usually crippled in the event of GRD epidemics. Despite the fact that GRD epidemics do not occur every year, devastating losses are experienced in the event of an epidemic. Eastern Zambia (1995-1996) lost an estimated US\$ 5 million when 43,000 ha of groundnut was infested with GRD. In Central Malawi (1994-1995), farmers abandoned groundnut farms by 23%, following an unpredictable GRD epidemic resulting to an estimated loss of US\$ 155 million (SADC/ICRISAT., 1996; Taliansky *et al.*, 2000). In 1975, Northern Nigeria lost 0.5 million tonnes of groundnut estimated at US\$ 5 million as a result of GRD affecting 0.7 million ha of groundnut farms (Olorunju *et al.*, 2001).

The yield losses in groundnuts due to GRD viruses, depend on the stage of growth of the plant when infection occurs. Infections that occur before flowering, cause over 90% loss in pod yield. Variable yield losses occur when infection occurs between flowering and pod maturing stage, whereas negligible effects are caused in subsequent infections (Kumar *et al.*, 2007). While the devastating impact of GRD epidemics, was documented in a few instances (Herselman *et al.*, 2004), ICRISAT estimates that greater yield losses in groundnuts in the semi-arid tropics of the world are mainly caused by GRD than any other groundnut virus disease (Subrahmanyan *et al.*, 1998).

2.2 Etiology of groundnut rosette disease

The GRD is caused by three agents; Groundnut rosette assistor virus (GRAV), Groundnut rosette *umbravirus* (GRV) and GRV associated Satellite-RNA (Sat-RNA) (Taliasky *et al.*, 2003). These three agents depend on each other intricately, and they all have an important role in the spread and biology of GRD. For vector transmission of GRV by *Aphis craccivora*, GRAV is needed (Naidu *et al.*, 1998a).

Groundnut rosette assistor virus (GRAV) is unassigned virus in the family *Luteoviridae* (Deom *et al.* 2000). The GRAV virion are isometric shaped with 28nm

diameter non-enveloped particles of polyhedral symmetry. It is a single stranded positive sense RNA non-segmented genome of 6900 nt that encodes both structural and non-structural proteins (Murant *et al.*, 1990). It is suggested that GRAV encodes six open reading frames (ORFs) just like other *luteoviruses* (Fig. 1). The GRAV virions are composed of 24.5kDa single coat protein (CP) subunits. This virus is antigenetically related to *Potato leaf roll virus, Beet western yellow virus* and *Bean/pea leaf roll virus* (Scott *et al.*, 1996). Replication of GRAV occurs autonomously in the cytoplasm of the phloem tissue. Vector transmission of GRAV is by *Aphis craccivora* in a persistent circulative manner. Mechanical transmission by sap inoculation, pollen, seed or by contact between the plant is not possible. Experimentally, transmission is only possible by grafting (Naidu *et al.*, 1998a). The virus occurs wherever GRD has been reported and groundnuts is the only known natural host. Infections by GRAV alone in groundnuts results to symptomless or transient mottling, and can cause substantial yield loss in susceptible cultivars (Waliyar *et al.*, 2007).

Figure 1: Genomic structure of Luteovirus.

Source: Swiss Institute of Bioinformatics.

Groundnut rosette virus (GRV) belongs to the genus *Umbravirus*. On isolation and characterization, Taliansky *et al.*, (2003), found that the virus has no structural (coat) protein and thus forms no conventional virus particles. The GRV genome is non-segmented single-stranded linear molecule, positive sense RNA of 4019 nt that encodes four ORFs (Taliansky *et al.*, 2003) (Fig. 2). Replication of GRV occurs in the cytoplasm of infected tissue autonomously (Taliansky *et al.*, 2003). The virus alone, causes transient symptoms, but in association with a Sat-RNA, clear rosette symptoms occur (Waliyar *et al.*, 2007). Encapsidation and vector transmission of GRV by *A. cracivora* (in a persistent mode) is dependent on GRAV (Robinson *et al.*, 1999). Transmission of GRV is not possible through pollen, seed or contact between plants, however it is possible by mechanical sap inoculation and grafting (Waliyar *et al.*, 2007). The only natural host of GRV is groundnuts, but some experimental hosts in the *Chenopodiaceae* and *Solanaceae* families have been reported (Waliyar *et al.*, 2007). Only one strain (MC1) of GRV has been reported (Taliansky *et al.*, 2013).

Figure 2: The genomic organization of groundnut rosette virus (GRV).

The genome RNA is represented by the continuous horizontal line while the ORFs are represented by the numbered blocks. The predicted translation products with their sizes are shown on the lower part of the diagram. (Source: International Committee on Taxonomy of Viruses, ICTV, 2012).

The Sat-RNA is sub-viral RNAs of GRV and belongs to the sub-group-2 (small linear) satellite-RNAs. It is of size 895 – 903 nt, single-stranded, linear nonsegmented RNA (Blok *et al.*, 1994). Its replication, encapsidation and movement within and between plants is entirely dependent on GRV. Sat-RNA plays a critical role as a helper virus in the transmission of GRV (Taliansky *et al.*, 1997) and GRD symptom expression (Murant and Kumar, 1990; Taliansky *et al.*, 2000). Ten variants of Sat-RNA associated with GRV have been determined (Blok *et al.*, 1994). The different rosette symptoms (chlorotic [yellowing], green and mosaic rosette) are caused by different variants of Sat-RNA (Murant and Kumar., 1990; Olorunju *et al.*, 2001; Kayondo *et al.*, 2014). The GRV Sat-RNAs that cause chlorotic and green rosette symptoms in SSA are at least 87% identical. The Sat-RNA contains up to five ORFs in either positive or negative sense but the role of any translational products from these ORFs is unknown (Blok *et al.*, 1994; Taliasky *et al.*, 2003). Vector transmission of Sat-RNA by aphids occurs in presence of GRAV and GRV.

2.3 Symptoms of groundnut rosette disease

Both chlorotic and green rosette symptoms occur throughout the groundnuts growing areas of SSA and sometimes the two can occur in the same field (Mugisa *et al.*, 2016). Mosaic rosette, reported in East Africa, is a less common symptom that results from double infection of the groundnut with the chlorotic and green rosette variants of Sat-RNA (Scott *et al.*, 1996; Waliyar *et al.*, 2007). Other symptoms apart from the green and chlorotic rosette may be expressed in infected groundnuts. This suggests wider variability of the visible symptoms of the diseased plants with reduced twisted leaf size resulting in bushy appearance, severe stunting with shortened internodes (Naidu *et al.*, 1998b). Leaves with chlorotic rosette usually show bright yellow with a few

green islands and curled lamina while leaves appear dark green with light to dark green mosaic in case of green rosette (Naidu *et al.*, 1999a). Variation in the GRD symptoms is mainly due to the Sat-RNA variants (Taliansky and Robinson, 1997). Symptom variability under field conditions can be influenced by climatic conditions, genotypic differences of the groundnut cultivars, stage of plant at infection as well as mixed infection with other viruses/agents (Naidu *et al.*, 2007). Green rosette symptoms predominate in eastern Uganda (Okello *et al.*, 2014). This is centrally to the findings by Wangai *et al.* (2001) that chlorotic rosette predominate throughout SSA. This finding is of great importance because eastern Uganda and western Kenya grows more groundnuts in East Africa. Therefore further research to understand the dynamics in GRD symptomology and vector behavior of associated viruses, is needed (Okello *et al.*, 2014).

In Nigeria, over a period of 20 years, a shift from green to chlorotic rosette occurred. The cause of this shift could be as a result of genome changes in the GRD associated viruses, different vector biotypes or cropping patterns (Okello *et al.*, 2014). Such changes therefore suggests the need for routine monitoring and documentation of GRD to support research efforts for its effective control and management.

2.4 Epidemiology and host range of groundnut rosette disease

The hosts of GRD associated viruses are only groundnut and some of its wild relatives (Waliyar *et al.*, 2007). GRD epidemiology intricately involves synergistic interaction between and among GRAV, GRV and a Sat-RNA, the aphid vector, the host plant and environment (Naidu *et al.*, 1998a). Experimentally, GRAV has been vector transmitted by viruliferous *Aphis craccivora* to *Gomphrena globosa* L., *Montia Perfoliata* L., *Stylosanthes gracilis* Taub, *Pisum sativum* L., S. *mucronata* Wild, S. *hamata* (L.) Taub, S. *sundaica* Taub, *Trifolium incarnatum* L., T. *Pratense* L.,

Spinacia Oleracea L. and Caspella bursa-Pastoris (L.) Medicus (Ayoola et al., 2012). Symptomless infections were observed in all these plants except *C. bursa-pastoris*, which showed chlorotic symptoms. However, diagnostic assays confirmed the replication of the viruses in samples from these plants (Waliyar et al., 2007). Experimental hosts of GRV and Sat-RNA were characterized in various species in *leguminosae, chenopodiaceae* and *solanaceae* through artificial mechanical sap inoculation. Local lesion hosts of GRV include *Chenopodium murale* and *C. amaranticolor*; while systemic hosts include *C. amaranticolor*, *Phaseolus vulgaris, Glycene max, Nicotiana Clevelandii* and *N. benthamiana* (Waliyar et al., 2007). *Gomphrena globosa, Spinacia oleracea, Stylosanthes gracilis, S. Sundaica, S. mucronata, Trifolium repens* and *T. incarnatum* are all experimental hosts of all the three GRD agents (Murant et al., 1990).

The cowpea aphid, also known as groundnut aphid (*Aphis craccivora*), transmits all the GRD associated viruses in a persistent circulative manner. To be transmitted by aphids, GRV and Sat-RNA are packaged within the GRAV coat protein. Studies have shown that all the GRAV particles, whether they contain GRAV-RNA or GRV-RNA and Sat-RNA, are acquired by the aphid vector, from phloem sap in 4h and 8h acquisition access feeding, for chlorotic and green rosette, respectively. All the three GRD agents are not always transmitted together by *A. craccivora* (Naidu *et al.*, 1998a). This depends on the feeding patterns of the aphid. In short inoculation feeding (stylet pathway or test probe phase), *A craccivora* probe groundnut leaves, without reaching the phloem thus picks only GRV and Sat-RNA, which multiply in the epidermal and mesophyll cells. The GRAV particles only replicates in the phloem cells and therefore cannot replicate within the mesophyll cells even when deposited there (Naidu *et al.*, 1999b). It is only when the stylets of *Aphis craccivora* penetrate the sieve elements (salivation phase) of the phloem cells, that all GRD agents are transmitted. This suggests that the chances of transmitting all the three agents together is high when there is long inoculation feeding period, or the number of aphids per plant is increased. Diseased plants infected only with GRV and Sat-RNA are termed as dead-end sources of inoculum as the aphid fails to acquire and transmit these two agents. However, such plants become sources of GRD inoculum upon infection with GRAV due to A. *craccivora* feeding (Deom *et al*, 2000). Damage caused by GRD on groundnut underscores the need for further studies on the epidemiology of the disease and development of appropriate control and management strategies that shrinks the virus inoculum. This will help limit the already resistant/tolerant varieties from succumbing to GRD at high inoculum pressure (Appiah *et al.*, 2016).

Aphis craccivora exists in various biotypes that differ in specificity of host plants and transmission efficiency of GRD associated viruses and this has significant implications in the epidemiology of GRD complex (Waliyar *et al.*, 2007). All the three GRD agents are not seed-borne and therefore initial infection of crops is dependent on existence of infected plants, which act as virus sources and the aphids (vectors) (Naidu *et al.*, 1998b). Therefore, between cropping seasons, any surviving infected groundnuts serve as potential virus source for spread of GRD (Waliyar *et al.*, 2007). Influx of viruliferous aphids following prevailing wind currents from regions with infections, can serve as sources of initial infection in regions without GRD (Olorunju *et al.*, 2001). The vector *Aphis craccivora* is polyphagous survives on over 142 species of plants and therefore, any of these hosts could be a source of the GRD virus complex (Naidu *et al.*, 1998b). Research efforts to find any alternative natural hosts of the GRD viruses have not yet succeeded (Waliyar *et al.*, 2007). However,

Okello *et al.*, (2017), detected GRD causal agents in *Cassia obtusifolia* and recommended transmission studies to validate this finding.

Groundnut rosette disease (GRD) is a polycyclic disease, since surviving diseased plants from previous cropping season, become source of virus complex inoculum for another disease cycle in the field. Primary spread of the disease is facilitated by the winged aphid vectors. Migration of apterate aphids and nymphs are largely responsible for secondary spread of the disease within the field (Naidu *et al.*, 1998b). Initial infections that occur at early stages of plant growth enhance repeated cycles of infections thus increasing the severity of the disease in the groundnut fields. The stage of plant growth, infection time, type of groundnut cultivars, vector (aphid) transmission efficiency, crop density, proximity to inoculum sources and climatic conditions determine the nature and pattern of GRD spread (Waliyar *et al.*, 2007).

2.5 Diversity of GRD causal agents

The Coat Protein (CP) gene is the only region that has been utilized to determine the diversity GRAV of the Kenyan isolates and SSA at large (Wangai *et al.*, 2001; Anitha *et al.*, 2014). Different isolates from different regions in Kenya showed 97-100% nucleotide identity (Wangai *et al.*, 2001). These isolates displayed 96-98% sequence similarity with those of Malawi and Nigeria (Wangai *et al.*, 2001). In the same study, Wangai *et al.*, (2001), the GRV diversity was determined using the nucleotide sequences of GRV ORF3 and 4. The two GRV ORFs displayed 99% sequence identity among the Kenyan isolates and showed sequence homology of 95-96% with Malawian isolates and 87-88% with the Nigerian isolates. The GRV associated Sat-RNA sequences of Kenyan isolates shared sequence identity of 95% with Malawian isolate (M24S) and 89% with Nigerian isolate (NG3a). However, none of the GRD

associated viruses sequences from Wangai et al., (2001) are not available in the GeneBank.

Deom *et al.*, (1999), observed that the GRAV CP gene was highly conserved (97-99%) within isolates from the same geographical area (Malawi) but less conserved (88-89%) among isolates from two distant geographical locations (Malawi and Nigeria). Similar observations were reported for the sequences of GRV ORF3 and 4 as well as the Sat-RNA from Malawi and Nigeria (Deom *et al.*, 1999).

2.6 Detection of GRD causal agents

Simultaneous detection of the GRD causal agents is possible by multiplex PCR (Anitha et al., 2014) and also by single run PCR (Naidu et al., 1998). The use of such molecular techniques has increased the speed and accuracy of viral disease diagnosis in crops, however these techniques only allow the detection of known viruses, i.e., viruses that have been characterized (Mumford et al., 2006). When such techniques are unavailable, or the viruses are unknown or poorly characterized, then disease diagnosis needs tests done using indicator plants in expensive glasshouses or the use of field indexing, both of which are lengthy and labor intensive. Methods for simultaneous detection of multiple viruses become very useful in such scenarios. Next generation sequencing (NGS) is now one of the principal methods in detection of multiple viruses (both known and unknown) (Boonham et al., 2014). Detection of viral RNA and DNA genomes in infected plant material by next generation sequencing (NGS) (Kreuze et al., 2009), is possible through the extraction and sequencing of total RNA and DNA (Eichmeier *et al.*, 2016). NGS has the ability to sequence whole genomes of known and unknown viruses and the ability to detect multiple viruses from a mixed infection, thus providing a very sensitive diagnostic method for the rapid and routine detection of viruses. NGS being non-specific, can be

used to detect all known and unknown viruses present in a host irrespective of their pathogenicity.

Next generation sequencing (NGS) technologies are currently becoming popular methods to obtain whole plant virus genomes in a relatively short period of time (Boonham *et al.*, 2014). Because of the ability to use total RNA extractions, NGS is useful and common in obtaining complete genomes of plant viruses (Adams *et al.*, 2009). The challenge faced lies not only in accessing and using NGS technology, but also in analysing and interpreting the very large datasets generated (Boonham *et al.*, 2014). Therefore, virus complexes that cause diseases in combination, such as GRD, can quickly be characterized using NGS technologies as all the causal viruses can be sequenced simultaneously. This enhance adequate characterization and further development of diagnostic tools including primers that can detect an entire range of variants/strains of the target viruses.

2.7 Management of GRD

Many efforts for management of GRD have focused on refining cropping practices to delay the onset and spread of both the vector and the disease, and on breeding for host-plant resistance (Olorunju *et al.*, 2001). Chemical control of aphids and rogueing of volunteer plants from previous cropping season are likely to provide effective management of the disease (Naidu *et al.*, 1998b). However, such practices are rarely feasible for the subsistence farming systems of SSA (Appiah *et al.*, 2017).

A single recessive gene has been identified that confer resistance to the aphid vector (van der Merwe and Subrahmanyan, 1997). This gene is mapped on linkage Group-1, at a distance of 3.9 nm from a marker, originating from a susceptible parent (ICGV-SM 93541) (Herselman *et al.*, 2004). This DNA marker if identified, can hasten aphid

resistance screening and breeding process through development and use of marker assisted selection.

Efforts have been made to exploit pathogen-derived resistance (GRAV replicase and CP genes, movement protein genes and Sat-RNA derived sequences) to GRD, in developing broad based agronomically superior, groundnut cultivars (Taliansky *et al.*, 1996). However, this has not been effectively exploited. Only limited field resistance is available for either virus, in popular groundnut cultivars and landraces, which have less than superior agronomic traits. This phenomenon needs further evaluation of the germplasm in popular groundnut genotypes. The lack of adequate information on the occurrence of the GRD and variability in the GRD associated viruses hinders the development of management strategies aimed at reducing the huge losses caused by this viral disease (Appiah *et al.*, 2017). Therefore, this study intended to contribute to the efforts in management of GRD by documenting the current status of the disease and the genetic diversity of the associated viruses. These information is useful in breeding for resistance that is appropriate for Kenya and entire SSA.

CHAPTER THREE

MATERIALS AND METHODS

3.1 Rosette disease diagnostic survey

A survey to determine GRD occurrence and distribution was conducted in all major groundnut growing areas of western Kenya. Groundnut fields were sampled during the short rains (October to December 2016) and long rains season (May to July 2017). The following Counties were covered: Bungoma, Busia, Homabay, Kakamega, Siaya and Vihiga. Sampling of groundnut farms was done by stopping at regular predetermined intervals, of 3-8 km along motorable roads that traverses each sampling area. The survey were conducted, by walking through groundnut fields, and visually inspecting groundnut crops for symptomatic leaves. Depending on the farm size, quadrats of 10m² were estimated, disease incidence and severity was scored for each quadrat through random sampling. A questionnaire and disease diagnostic score sheet, was used to record GRD virus incidence and severity in each farm (appendix I). Disease incidence was calculated according to Reddy, (1991), as the percentage of plants showing GRD virus symptoms, to the total number of plants observed in the field as shown in the following equation:

Disease incidence = <u>Number of GRD virus symptomatic Plants</u> x 100%

Total number of groundnut plants sampled

Groundnut rosette disease incidence was scored using a rating scale according to Reddy, (1991) where: low incidence = 1-20%; moderate incidence = 21-49% and high incidence = 50-100%. The GRD severity was scored using a severity scale of 0 - 3, where: 0 = No disease, 1 = Mild, 2 = Moderate and 3 = Severe. The types of GRD symptoms observed were recorded.

Leaf samples showing virus-like symptoms of green mosaic, leaf distortion, downward curling, mottling, chlorotic areas, necrotic spots, local lesions, stunting or a combination of these were collected in RNA*later*® RNA Stabilization Solution and kept at 4°C until further analysis. Some leaf samples of common bean were also collected in situations where they were found intercropped with groundnuts. Geographical Positioning System (GPS) (entrex venture HC GARMINTM), was used to record the latitude, longitude and altitude of the sampled regions.

3.2 Determination of genome sequence of the GRD agents

The simultaneous detection of GRD agents was done by next generation sequencing (NGS).

3.2.1 Total RNA extraction

Total RNA was extracted from the leaf samples using Qiagen RNeasy Plant Mini Kit (Qiagen, Germany) according to the manufacturers' protocol. The RNA was quantified using Nano-drop and 1.5% agarose gel electrophoresis.

3.2.2 Sequencing

The extracted total RNA was used for double stranded cDNA synthesis using the SuperScript II (Thermo Fisher Scientific, Waltham, USA) kit. The cDNA was column-purified with the DNA Clean & ConcentratorTM-5 – DNA kit (Zymo Research, Irvine, USA) and quantified with the Qubit 2.0 Fluorometer (Thermo Fisher Scientific). The samples were then processed with the transposon-based chemistry library preparation kit (Nextera XT, Illumina) following manufacturer's instructions. The fragment sizes structure of the DNA libraries was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). The indexed denatured DNA libraries were sequenced (200-bp paired-end sequencing) on the Illumina MiSeq platform (Illumina).

Reads quality check was done using FastQC (version 0.11.5). Reads were then trimmed to remove poor quality sequences with parameters: LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 and a minimum read length of 20. Trimmed reads (Haas *et al.*, 2013) were used for de novo assembly and contigs aligned to the viral genomes database (ftp://ftp. ncbi.nih.gov/genomes/Viruses/all.fna.tar.gz/, downloaded on October 2017) using CLC Genomics Workbench 10.1.2. The assembled contigs were subjected to a BLASTn search against the GenBank database (Altschul *et al.*, 1990). Complete and partial GRV, GRAV and Sat-RNA sequences used for comparison and phylogenetic analyses were retrieved from GenBank (http://www.ncbi.nlm.nih.gov/). Phylogenetic analyses and comparisons were performed using the MEGA X (Kumar *et al.*, 2018).

3.3 Host range studies

Host range experiments were carried out in a greenhouse, through mechanical inoculation of the major legumes with GRD viruses. Low concentrations of the rosette disease agents in host plants, makes it essential to develop a reliable and sensitive method for their detection (Usman, 2013; Salem *et al.*, 2010).

Groundnuts (*Arachis hypogaea*), common beans (*Phaseolus vulgaris*), cowpea (*Vigna unquiculata*), soyabean (*Glycine max*), and green grams (*Vigna radiata*), which are leguminous indicator plants (Mugisa *et al.*, 2016), were planted in plastic pots. Three seeds per legume species/variety were planted in each pot. After germination, the seedlings were thinned to remain with two plants per pot.

Some of symptomatic leaf samples from the survey, were ground using a sterilized pestle and mortar, with the aid of dust powdered Carborundum 320 grit. Freshly prepared ice-cold 0.01M Potassium Phosphate buffer ($K_2HPO_4 + KH_2PO_4$), pH 7.0,

containing 0.2% Sodium Sulfite and 0.01M Mercaptoethanol (1: 6 [w/v] tissue: buffer), was added to the ground tissue, mixed and transferred to a falcon tube, and allowed to stand for 5 min on ice, for debris to settle at the bottom of the tube. The sap was kept on ice, until inoculation was completed. The test plants were dusted with Carborundum abrasive. The inoculum was applied gently on the leaf surfaces, using saturated cotton wool swab. After inoculation, the excess inocula on the leaves were gently washed with sterilized distilled water. The plants were observed on weekly basis for any viral symptoms development for 5 weeks.

Leafy samples were then collected and tested for GRD causal agents by RT-PCR. Groundnuts field samples with chlorotic, mosaic and green rosette were included in the analysis. Total RNA was extracted as described in section 3.2.1. The primers used were designed using Primer3Plus (-http://primer3plus.com/cgibin/dev/primer3plus.cgi) using consensus sequences from this study and those from the GeneBank (Table 1). The RT-PCR was done essentially as described by Naidu et al., (1998) with some modifications. Two step RT-PCR was done using One Tagman master mix. Two µl of RNA was initially used in cDNA synthesis which was run at 42°C for 1 h followed by denaturation step of 5 min at 80°C. The cDNA synthesis reaction was composed of target virus reverse primer (200 ng), MMLV RT, MMLV buffer, dNTPS, DTTS, RNA (2µl) and water. Five µl of cDNA was then used in the amplification step. The amplification mixture was composed of One Taqman master mix, forward and reverse primers, cDNA and water. Amplifications were carried out in a Eppendorf Cycler using the following temperature regime: a denaturation phase at 94°C for 2 min followed by 35 cycles of amplification (94°C for 1 min, 55°C for 1 min, and 2 min at 72°C) and a final extension at 72°C for 10 min. Ten µl of PCR
products were analyzed by 1.2% agarose gel electrophoresis in TBE buffer, stained with ethidium bromide and finally visualized under UV light.

Primers Sequence (5' > 3') Specific to GRVSATF ATGCAGATTGGTAGCCTTGG Sat-RNA GRVSATR CTGTGTATGCGCCCATTAAG Sat-RNA GRAVF GCAATGGACGAGCTAACAGG **GRAV-CP** GRAVR **GRAV-CP** ACTTGATGGTGAACCGGAAG GRVKenF GCAAAATTTTTAGTCGGGGAAG GRV ORF3 and ORF4 GRVKenR GGTCTTATGTTCAGGCTGTCAA GRV ORF3 and ORF4

Table 1: Primers designed and used in detection of causal agents of GRD.

3.4 Survey data analysis

The collected data on GRD virus incidence and severity, was subjected to analysis of variance (ANOVA), using Statistical Analysis System (SAS) program version 9.3.1 software (SAS Institute, 2013). Pairwise comparisons of means was done using Least Significance Differences (LSD) for multiple-means comparison method at $P \le 0.05$ confidence level.

CHAPTER FOUR

RESULTS

4.1 Distribution of GRD in western Kenya

A total of 526 farms were surveyed in 6 counties (253 in long rain and 273 in short rain). Groundnut rosette disease was observed in all the 6 Counties surveyed. The disease expressed varied symptoms across the Counties. The incidence and severity of GRD varied across the surveyed Counties.

4.1.1 Major GRD symptoms and their distribution in western Kenya

Rosette infected plants were dwarf with increased tillering though some were tall but expressed other major symptoms associated with GRD. The main symptoms observed across Counties in order of abundance, starting from the most prevalent, were chlorotic rosette, green rosette and severe mosaic. Other symptoms observed include leaf rolling, upward leaf curling and severe leaf bunching (Fig. 3). The distribution of the major GRD symptoms is shown in Fig. 4.

Figure 3: Some of the virus-like symptoms observed in the surveyed fields

A: dwarfed plant with green rosette; B: severe chlorosis (yellow) on young leaves and dwarfing; C: severe young leaf rolling, chlorosis and bunching on a dwarfed plant; D: Mosaic mostly on young leaves.

Figure 4: A map of western Kenya showing the distribution of major GRD symptoms in the surveyed Counties.

(MS-Mosaic, GR-Green Rosette, CR-Chlorotic Rosette).

4.1.2 The GRD incidence and severity

Generally, GRD incidence was high during the short rain season than the long rain season in all Counties. Highest mean GRD incidence was recorded in Kakamega in the short rain season (94.12%) while the lowest was in Bungoma (30.89%) during the long rain season (Table 2). There was a significant difference in GRD incidence among the counties (p=0.011). Overall, Siaya had the lowest incidence which was significantly different from that of Kakamega but did not vary significantly from that of Bungoma, Busia, Homabay and Vihiga.

County	Season	Ν	Mean (%)	Std. Error of Mean
				(+/-)
Dun soms	Long rain	45	30.89	4.534
Bungoma	Short rain	47	66.51	4.295
Ducio	Long rain	74	43.36	3.526
Dusia	Short rain	108	46.56	2.728
TT 1	Long rain	73	48.60	3.919
Homaday	Short rain	55	48.22	4.025
Valromago	Long rain	30	43.47	5.283
Kakamega	Short rain	17	94.12	4.779
Siovo	Long rain	31	33.94	4.820
Slaya	Short rain	26	43.23	6.645
Vihiga	Short rain	20	47.50	6.412
	Long rain	253	41.51	1.962
	Short rain	273	53.04	1.909

 Table 2: Mean GRD incidence (%) per County.

Mean GRD severity ranged from mild (1) to moderate (2) across all the counties and seasons. Short rains season recorded high severity compared to long rains season in all Counties surveyed. Highest mean severity was recorded in Kakamega in the short rains season (2.46) while the lowest was in Siaya during the long rains (1.46) (Table 3). However, the severity was not significantly different between the Counties.

County	Season	Ν	Mean	Std. Error of
				Mean (+/-)
Dungomo	Long rain	45	1.49	0.10
Dungoma	Short rain	47	2.21	0.12
Ducio	Long rain	74	1.71	0.09
Dusia	Short rain	108	2.11	0.08
Homabay	Long rain	73	1.95	0.09
	Short rain	55	2.04	0.10
17 1	Long rain	30	1.53	0.12
Kakainega	Short rain	17	2.46	0.13
Siovo	Long rain	31	1.46	0.14
Slaya	Short rain	26	1.96	0.17
Vihiga	Short rain	20	1.98	0.14
Total	Long rain	253	1.69	0.05
Total	Short rain	273	2.15	0.05

Table 3: Mean GRD severity per County.

The incidence of GRD seemed to increase with increase in severity. Where severity

was high, incidence was high and predicted to increase significantly (Fig. 5).

Figure 5: A line graph showing relationship between GRD severity and incidence

4.2 Socio-economic information of the groundnut farmers in western Kenya

Groundnuts were grown in two cropping patterns. These are stand-alone (no intercrop), which was the most common pattern (63%) and intercropping with other legumes (37%), such as cowpeas, soybeans and beans. Most farmers (65%) sourced groundnuts seeds from open air markets, some used own saved seed (28%) while others borrowed from neighbors (7%) (Table 4).

County	Cropping pa	tterns (%)	Seed source (%)					
	Intercrop	No	Open market	Own saved	Neighbors			
	with other	intercrop						
	legumes							
Bungoma	18	82	79	16	5			
Busia	35	65	73	20	7			
Kakamega	48	52	59	37	4			
Vihiga	83	17	59	29	12			
Homabay	24	76	60	35	5			
Siaya	22	88	62	32	6			
Overall	37	63	65	28	7			

Table 4: Socio-economic data of groundnut farmers in western Kenya

4.3 Groundnut varieties grown

Various groundnut varieties were planted by farmers across the surveyed areas. The main varieties grown were Red Valencia (48.7%), followed by Uganda red (21.1%), Homabay (12.0%) and CG7 (7.0%). The others, mostly local, were grown by less than 5% of the farmers (Table 5).

Variety	Frequency	%
Red Valencia	256	48.7
Uganda red	111	21.1
Homabay	63	12.0
CG7	37	7.0
Local	26	4.9
Loteseto	7	1.3
Local (Purple)	6	1.1
Local white	5	1.0
SM	5	1.0
Local Red	4	0.8
Madiaba	3	0.6
GL2	1	0.2
Local (Teso)	1	0.2
SB3	1	0.2

Table 5: Rank of groundnut varieties grown in western Kenya.

4.4 The diversity of GRD associated viruses

The genetic diversity of the GRD associated viruses was determined by analysis of the sequence reads obtained by high throughput sequencing (NGS).

4.4.1 Quantification of RNA

The extracted RNA was quantified using Nano-drop and gel electrophoresis (Appendix VI). The RNA quantities ranged between 200-15000 ng/µl.

4.4.2 Description of the sequence raw reads

The number and characteristics of raw sequence reads (FASTQ) obtained are summarized in Table 6. The details of the reads before and after trimming are shown. The raw sequence reads ranged between 700,000 - 7,300,000 bases in both forward (R1) and reverse (R2) directions.

Sample	В	efore Trim		After Trim						
ID*										
	Total reads	Reads	%GC	Total reads	Reads	%GC				
		length			length					
KG8-R1	1661211	35-151	48	1646161	20-136	48				
KG8-R2	1661211	35-151	48	1646161	20-136	48				
EG16-R1	735911	35-151	52	728706	20-136	52				
EG16-R2	735911	35-151	52	728706	20-136	52				
BG3-R1	755228	35-151	50	747786	20-136	49				
BG3-R2	755228	35-151	50	747786	20-136	49				
BUG1-R1	849154	35-151	49	839451	20-136	49				
BUG1-R2	849154	35-151	49	839451	20-136	49				
E3-R1	5799379	35-151	50	4503868	20-136	50				
E3-R2	5799379	35-151	50	4503868	20-136	50				
E5-R1	3329984	35-151	51	3144874	20-136	50				
E5-R2	3329984	35-151	51	3144874	20-136	50				
E7-R1	3238295	35-151	51	2993742	20-136	50				
E7-R2	3238295	35-151	51	2993742	20-136	50				
E8-R1	7263305	35-151	50	6707699	20-136	50				
E8-R2	7263305	35-151	50	6707699	20-136	50				

 Table 6: Details of the raw sequence reads

*KG8 and EG16 = Samples from Kakamega, BG3 = Sample from Bungoma, BUG1, E3, E5 and E8= Samples from Busia, E7 = Sample from Siaya.

4.4.3 Diversity of GRV-Sat-RNA

Six complete genomes of the Sat-RNA were assembled. The assembled Sat-RNA sequences were from different areas of the surveyed Counties. The sequences varied slightly in number of nucleotides (nt) ranging between 896 – 901 nt (Table 7).

Sample ID	Sat-RNA ID	Sequence length (nt)	County of origin
EG16	EG16-5	901	Kakamega
E7	E7	896	Siaya
E8	E8	897	Busia
BUG1	BUG1-21	901	Busia
KG8	KG8-1	898	Kakamega
BG3	BG3-18	901	Bungoma

Table 7: Description of the Sat-RNA sequences assembled

The six Sat-RNAs from Kenya were then compared with those from the GeneBank. In the phylogenetic tree all Kenyan isolates formed two distinct clusters together with Malawian isolates. Isolates E7 and E8 grouped with M11S, isolates BUG1-21, BG3-18 and KG8-1 clustered together with M16S while isolate EG16-5 grouped with M24S. All Nigerian isolates grouped together similar to Ghanaian isolates. Sequence identities of between 88-100% of the Kenyan isolates and those from Malawi, Nigeria and Ghana were revealed. Very close identities of between 92-100% were observed between the Kenyan isolates and those from Malawi, followed by Nigerian isolates (90-93%) and least with Ghanaian isolates (86-89%). Isolate BUG1-21 had 100%, 99% and 98% identities with M16S, M12S, M11S respectively, which are all green rosette variants, and 94% with M24S (chlorotic variant). While the other western Kenya isolates (KG8-1, BUG1-21, BG3-18, E7 and E8) had 92-95% identity with Malawian isolate M24S (chlorotic rosette variant), isolate EG16-5 (Kakamega) showed the closest identity (97%) with this isolate. The same isolate EG16-5 was the only that clustered together with M24S, all chlorotic isolates (Z29702.1, Z29703.1) and yellow blotch (Z29710.1, Z29711.1). Isolates E7 and E8 were closest to Malawian isolate M11S with 97% and 99% identity respectively. Isolates BG3-18 and KG8-1 were closest to Malawian isolates M16S displaying 97% identity (Fig. 6).

Figure 6: Phylogenetic tree of western Kenya Sat-RNA and GeneBank isolates.

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree is rooted on Sat-RNA of a distantly related *Umbravirus* (Tobacco bushy top virus - KU997687.1 TBTV). Bootstrap confidence values (500 replications) are shown.

4.4.4 Estimates of Evolutionary Divergence between Sat-RNA Sequences

Among the six western Kenya Sat-RNA sequences, Isolate EG16-5, showed more evolutionary divergence (above 0.06 base substitutions) compared with the other Isolates. The least divergence was observed between Isolates BG3-18 and KG8-1 (0.02 base substitutions). This was similar divergence (above 0.06 base substitutions) between M24S (chlorotic) and all the other Malawian Isolates (green) (Table 8).

	Isolates	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	AF202866.1_M11S		0.10	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
2	KU997687.1_TBTV_SatRNA	0.97		0.12	0.10	0.11	0.11	0.12	0.12	0.12	0.12	0.11	0.11	0.54	0.54	0.54	0.54	0.14	0.14	0.11	0.11	0.14	0.14	0.14	0.14	0.14	0.12
3	E7	0.03	1.04		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
4	E8	0.01	0.96	0.04		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
5	AF202867.1_M12S	0.02	1.00	0.04	0.03		0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
6	AF202868.1_M16S	0.02	1.00	0.04	0.03	0.01		0.01	0.01	0.01	0.01	0.00	0.01	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
7	AF202869.1_M24S	0.07	1.09	0.08	0.08	0.07	0.06		0.01	0.01	0.01	0.01	0.01	0.04	0.04	0.04	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
8	AF202870.1_N310S	0.10	1.11	0.11	0.11	0.10	0.09	0.10		0.01	0.01	0.01	0.01	0.04	0.04	0.04	0.04	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
9	BG3-18	0.04	1.10	0.06	0.05	0.04	0.03	0.06	0.10		0.01	0.01	0.01	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
10	KG8-1	0.03	1.09	0.05	0.04	0.03	0.03	0.06	0.09	0.02		0.01	0.01	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
11	BUG1-21	0.02	1.00	0.04	0.03	0.01	0.00	0.06	0.09	0.03	0.03		0.01	0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
12	EG16-5	0.07	1.03	0.08	0.08	0.07	0.07	0.04	0.10	0.07	0.06	0.07		0.03	0.03	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
13	KX607055.1-GhW14	0.05	0.99	0.05	0.05	0.03	0.05	0.09	0.10	0.06	0.06	0.05	0.06		0.00	0.00	0.00	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.04	0.04
14	KX607054.1-GhW5	0.05	0.99	0.05	0.05	0.03	0.05	0.09	0.10	0.06	0.06	0.05	0.06	0.00		0.00	0.00	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.04	0.04
15	KX607047.1-GhN2	0.05	0.99	0.05	0.05	0.03	0.05	0.09	0.10	0.06	0.06	0.05	0.06	0.00	0.00		0.00	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.04	0.04
16	KX607039.1-GhE1	0.05	0.99	0.05	0.05	0.03	0.05	0.09	0.10	0.06	0.06	0.05	0.06	0.00	0.00	0.00		0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.04	0.04
17	Z29702.1-chlorotic-mc3a	0.10	1.15	0.12	0.11	0.10	0.10	0.05	0.14	0.09	0.09	0.10	0.07	0.10	0.10	0.10	0.10		0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.00	0.01
18	Z29703.1-chlorotic-mc3b	0.10	1.17	0.12	0.11	0.10	0.10	0.04	0.14	0.09	0.09	0.10	0.07	0.10	0.10	0.10	0.10	0.01		0.01	0.01	0.02	0.02	0.02	0.02	0.00	0.01
19	Z29704.1-green-ng3a	0.08	1.03	0.09	0.09	0.08	0.07	0.08	0.08	0.08	0.07	0.07	0.08	0.10	0.10	0.10	0.10	0.11	0.11		0.00	0.01	0.01	0.01	0.01	0.01	0.01
20	Z29705.1-green-ng3b	0.09	1.02	0.10	0.09	0.08	0.07	0.08	0.08	0.08	0.07	0.07	0.08	0.10	0.10	0.10	0.10	0.11	0.11	0.00		0.01	0.01	0.01	0.01	0.01	0.01
21	Z29706.1-mild-nm3a	0.11	1.21	0.11	0.11	0.10	0.10	0.12	0.04	0.10	0.10	0.10	0.12	0.09	0.09	0.09	0.09	0.15	0.15	0.09	0.10		0.01	0.01	0.01	0.02	0.01
22	Z29707.1-mild-nm3b	0.10	1.17	0.11	0.11	0.10	0.09	0.11	0.04	0.10	0.09	0.09	0.11	0.12	0.12	0.12	0.12	0.15	0.15	0.09	0.09	0.02		0.00	0.00	0.02	0.01
23	Z29708.1-mild-nm3c	0.10	1.17	0.11	0.11	0.10	0.09	0.11	0.04	0.10	0.09	0.09	0.11	0.12	0.12	0.12	0.12	0.15	0.15	0.09	0.09	0.02	0.00		0.00	0.02	0.01
24	Z29709.1-mild-nm3d	0.11	1.18	0.12	0.12	0.10	0.10	0.12	0.04	0.10	0.10	0.10	0.11	0.12	0.12	0.12	0.12	0.16	0.15	0.09	0.09	0.03	0.00	0.01		0.02	0.02
25	Z29710.1_Yellow_blotch-yb3a	0.10	1.19	0.12	0.11	0.10	0.10	0.04	0.14	0.09	0.09	0.10	0.07	0.10	0.10	0.10	0.10	0.01	0.00	0.11	0.11	0.15	0.14	0.15	0.15		0.01
26	Z29711.1_Yellow_blotch-yb3b	0.08	1.10	0.09	0.10	0.08	0.08	0.02	0.12	0.08	0.08	0.08	0.05	0.10	0.10	0.10	0.10	0.05	0.05	0.09	0.10	0.13	0.13	0.13	0.14	0.05	

Table 8: Estimates of Evolutionary Divergence between the Sat-RNA Sequences from Kenya and those in GeneBank

* The number of base substitutions per site from between sequences are shown. Standard error estimate(s) are shown above the diagonal. Analyses were conducted using the Tamura-Nei model (Tamura and Nei, 1993). The rate variation among sites was modeled with a gamma distribution (shape parameter = 1). The analysis involved 26 nucleotide sequences. KU997687.1_TBTV_SatRNA was used as outgroup.

Further alignment of the Kenyan Sat-RNA Isolates alongside the green rosette (M16S, M11S) and chlorotic rosette isolates (M24S) showed major changes in nucleotide sequences at positions 161-211 and 539-546 which were similar to those in M24S. These positions had very minimal nucleotide changes in the rest of the western Kenyan and Malawian Isolates (Fig. 7; Appendix II)

Figure 7: Regions of high divergence between the green rosette and chlorotic rosette isolates

The six Kenyan Sat-RNAs were deposited in the GeneBank with accession numbers LC469779, LC472299, LC472300, LC472301, LC472302 and LC472303.

4.4.5 Diversity of GRV

Four GRV genomes (E3, E5, E7, and E8) were assembled (2401-4171 nt). The assembled genomes were compared with 3 complete genomes available in the GeneBank; MG646923.1 (SRF540), MG646922.1 (SRF57) (from western Kenya) and MC1-Z69910.1 (from Malawi) and GRV ORF3 and 4 complete cds from Malawi and Nigeria. Isolates E3 and E5 clustered closest with SRF54 and SRF57 than E7 and E8. E7 and E8 formed a distinct clade, however they shared at least 84% identity with other GRV genomes. E3 was closest to MC1 with 98% identity followed by E7 (86%) and least with E5 and E8 at 84% each. All isolates shared between 97-98% identity with both SRF54 and SRF57 (Fig. 8).

Figure 8: Phylogenetic tree of the Kenyan GRV isolates and those in GeneBank

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). Bootstrap confidence values (500 replications) are shown.

4.4.5 Diversity of GRAV

Four GRAV coat protein (CP) gene sequences were assembled (600 nt). The four were compared with GRAV CP gene sequences from Malawi, Nigeria and Ghana available in the GeneBank. The comparison revealed 97-100% identity with the Kenyan isolates. Isolates GRAV-5 and GRAV-19 each had 100% identity with M16GCP (AF195824.1) and 99% with M8GCP (AF195502.1) then 98% with the other Malawian, Nigerian and Ghanaian Isolates. Isolate GRAV-22 had 99% identity with isolates M16GCP and M8GCP then 98% with the other Malawian, Nigerian and Ghanaian Isolates. Isolate GRAV-12 (isolated from common beans) had 100% identity with M16GCP and 99% with M8GCP from Malawi, then 98% with the rest of Malawian, Ghanaian and Nigerian isolates except N29GCP (AF195828.1) and

N15GCP (AF195825.1) that showed 97% identity. In phylogenetic tree, all Kenyan isolates clustered together with isolate M16GCP. In general all western Kenya isolates exhibited closest identity and grouped together with some Malawian isolates, M16GCP and M8GCP than the rest of Malawian, Nigerian and Ghanaian isolates (Fig. 9).

Figure 9: Phylogenetic tree of the 600nt western Kenya GRAV CP and GeneBank isolates.

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2-parameter model (Kimura, 1980). The tree is rooted on of a distantly related *Luteovirus* (Potato leaf roll virus – Y07496.1 PLRV). Bootstrap confidence values (500 replications) are shown.

The four GRAV sequences were deposited in GeneBank with accession numbers LC480460 (GRAV 12), LC480461 (GRAV 22), LC480462 (GRAV 19) and LC480463 (GRAV 5).

In addition three complete GRAV genomes (E5-GRAV, E7-GRAV and E8-GRAV) were assembled. These three shared 97-98% sequence identity with GRAV complete

and partial sequences from Malawi, Ghana and Nigeria available in the GeneBank. The three were then compared with representatives of other assigned viruses in the family *Luteoviridae*, namely: *Polerovirus*, *Enamovirus* and *Luteovirus*. The Kenyan GRAV isolates clustered closest with the *Luteoviruses* than *Poleroviruses* and *Enamoviruses* in the phylogenetic tree (Fig. 10).

Figure 10: Phylogenetic tree of the three complete genome GRAV Kenyan isolates with other viruses in the family Luteoviridae.

The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Bootstrap confidence values (500 replications) are shown.

4.5 Host range

The screened plants expressed distinct symptoms of stunted growth, shortened internodes, thickened stems, necrosis, dwarfism with bushy appearance, dark green,

yellowing with chlorosis lesions, mixed mosaic, reduced leaf area with twisted and distorted leaves curling downwards and upwards (Table 9; Fig. 11).

Test plant	Local	Systemic symptoms*	Sat-RNA	GRA	GRV
	Symptoms*			V	
Cowpea	Ν	SS, CS	+	+	-
Groundnuts	Ν	SS, CS, VC	+	+	+
Soybean	Ν	SS, CS, BN	+	+	-
Common beans	Ν	SS, DC, CS	+	+	-
Green grams	Ν	SS, D, CS	+	+	+
Physalis	Ν	DC, CB	+	+	+
peruviana L.					
(golden herry)					

 Table 9: Greenhouse test crop symptoms and RT-PCR test results

*Key: N – necrosis, SS-shiny leaf surface, CS-chlorotic spots, VC-veinal chlorosis, DC-downward leaf curling, CB-chlorotic blotches, BN-Back necrosis, D-Dwarfing.

Figure 11: Symptoms expressed by plants inoculated with GRD associated viruses.

1a: Stunting and chlorosis on groundnut, **1b**: Healthy groundnut; **2a**: Shiny chlorosis in cowpea, **2b**: Healthy cowpea.

4.5.1 RT-PCR for the green house and field samples and validation of GRD diagnostic primers

Ten samples, seven from the green house plants inoculated with GRD viruses and three collected during survey in farms, were tested by RT-PCR to detect GRAV, GRV and Sat-RNA using the designed primers shown in Table 1. Total RNA eluted typically ranged between 30 - 55 ng/µl (Table 10; Fig. 12).

Sample ID	RNA (ng/µl)
2	38.7
1	45.5
3	49.6
4	51.8
5	31.9
6	54.2
7	42.6
8	48.7
9	30.0
10	55.0

Table 10: Quantities of total RNA eluted for samples used in RT-PCR.

Figure 12: Gel quantification of total RNA eluted.

Lanes 1-10 corresponds to sample codes: 1- inoculated bean, 2- inoculated soybean, 3- green rosette groundnut, 4- inoculated golden berry, 5- chlorotic rosette groundnut, 6- inoculated ground nut, 7- inoculated cowpea, 8- chlorotic rosette groundnut, 9- mosaic rosette groundnut, 10- inoculated green gram, L - 100 bp ladder (Fermentas).

All ten samples tested positive for Sat-RNA and GRAV while three for GRV. Band

sizes of approx. 900 bp 567 bp and 860 bp were observed on gel for Sat-RNA, GRAV

and GRV respectively (Fig. 13, 14 and 15). The designed diagnostic primers were able to detect all the three GRD causal agents.

Figure 13: Gel electrophoresis of RT-PCR amplified RNA using primers specific for Sat-RNA for samples inoculated with GRD viruses and GRD symptomatic field samples.

Expected band size was 900 bp. Lane L- 1 kb ladder, 1- inoculated bean, 2- inoculated soybean, 3- green rosette groundnut, 4- inoculated golden berry, 5- chlorotic rosette groundnut, 6- negative control (molecular grade water), 7- inoculated cowpea, 8- chlorotic rosette groundnut, 9- mosaic rosette groundnut, 10- inoculated green gram, 11- inoculated ground nut.

Figure 14: Gel electrophoresis of RT-PCR amplified RNA using primers specific for GRAV-CP gene for samples inoculated with GRD viruses and GRD symptomatic field samples.

Expected band size was 597 bp. Lane L- 1 kb ladder, 1- inoculated bean, 2- inoculated soybean, 3- green rosette groundnut, 4- inoculated golden berry, 5- chlorotic rosette groundnut, 6- inoculated ground nut, 7- inoculated cowpea, 8- chlorotic rosette groundnut, 9- mosaic rosette groundnut, 10- inoculated green gram, 11- negative control (molecular grade water).

Figure 15: Gel electrophoresis of RT-PCR amplified RNA using primers specific for GRV for samples inoculated with GRD viruses and GRD symptomatic field samples.

Expected band size was 860 bp. Lane 1-inoculated cowpea, 2- green rosette groundnut, 3-inoculated soybean, 4-inoculated beans, 5-inoculated green grams, 6-inoculated golden berry, L-100bp ladder (Fermentas).

CHAPTER FIVE

DISCUSSION

Groundnut rosette is the most prevalent disease of groundnuts in western Kenya. The disease was recorded in every County that was surveyed with incidences of up to 100%. The short rain season recorded higher incidence (53%) than the long rains (41%). This could be attributed to the high vector pressure during the short rains as compared to the long rains season when the aphid pressure is low as a result of heavy rains that wash the insects away. A study by Mugisa et al., (2016) found that periods of long rains negatively affected GRD progression as aphid vector pressure was low. Were et al., (2013) reported a positive correlation between potato disease incidence and aphid numbers. This further supports the implication that virus disease incidence variations between the seasons contributed to by differences in vector pressure. Incidence increased with increase in severity due to early infection leading to intensification of the viruses as the plant grows and build-up of inoculum for vectors to spread to nearby plants. Groundnut rosette is a polycyclic disease whereby diseased plants from previous cropping season serves as inoculum sources for initiating subsequent disease spread (Naidu et al., 1998a). In western Kenya, groundnuts are grown in two cropping seasons (long rains and short rains) and due to limitation in land to practice shift cultivation, the same piece of land is continuously used to grow the same or related host crops in the subsequent cropping season. Therefore, GRD infected groundnuts and possibly hosts of any of the GRD associated viruses remaining from the long rains season serves as immediate sources of the GRD agents beginning the disease cycle at early stages of crop development in the short rains cropping season. Such initial infections that occur at early stages of plant growth enhance repeated cycles of infections thus increasing the severity of the disease in the

groundnut fields (Waliyar *et al.*, 2007). Sources of groundnuts seeds were mainly open air market and own saved seed. There was no single record of groundnuts seeds from agro-dealer. This implies that there is lack of a seed system for groundnuts that is reliable in terms of certification to ascertain the quality of the seed. Although GRD associated viruses are not seed-borne, other seed-borne viruses of groundnuts such as CPMMV can easily be spread when farmers use seed from uncertified sources.

All major GRD symptoms were observed in the surveyed region with chlorotic rosette being most prevalent followed by green rosette. This supports the findings of Wangai et al., (2001) who reported chlorotic rosette to be the most prevalent GRD symptoms in the region. The high prevalence of the chlorotic rosette could also be attributed to its higher transmission efficiency compared to green rosette. This observation concurs with that of Misari et al., (1988a), who reported minimum acquisition feeding periods of 4 h and 8 h for chlorotic and green rosette respectively and the median latent periods of 26.4 h, 38.4 h respectively, for chlorotic and green rosette. The mosaic symptom has not been previously reported but was distributed in most of the surveyed region. This suggests that there is evolution of new variants of Sat-RNA in western Kenya that might be causing these new symptoms or the mosaic was due to another causal agent. A total of 10 variants of Sat-RNA have been reported to be associated with the various GRD symptoms (Blok et al., 1994). A mixture of either variants, especially the chlorotic and green rosette and/or the mild ones, are likely to induce the mosaic symptoms (Naidu et al., 1998a). It is therefore possible that some of these variants occur in western Kenya in mixed infections, thus causing the varied symptom observed, especially the mosaic. Apart from the typical rosette symptoms, other symptoms including severe leaf curling and bunching were observed. This suggests that there is wider variability in expression of GRD and could be due to more severe

variants of associated viruses or other agents. It is worth noting that from the Next generation Sequences (NGS) of this study, other than GRD associated viruses, other viruses were detected (data not shown) and could be the reason for some of the new symptoms observed on groundnuts (Mukoye *et al.*, 2018).

The Sat-RNAs assembled were all complete genomes as they ranged between 896-901 nucleotides in length. The length of Groundnut rosette virus associated Sat-RNA range between 895-903 nucleotides (Blok et al., 1994). The western Kenya Sat-RNAs showed close identity (92-100%) to Malawian isolates than those from Ghana and Nigeria (88-93%). This implies that the genetic diversity of the Sat-RNA become more varied with wide geographical distance. Kenya and Malawi are located in Eastern Africa while Ghana and Nigeria are in West Africa thus a wider geographical separation. This finding concurs with that of Wangai et al., (2001) who observed a closer sequence relationship between Kenyan Sat-RNA isolates and those from Malawi. However, this study has reported sequence identity of up to 100% with Malawian isolates as opposed to 95% reported by Wangai et al., (2001). This suggests that more variants of Sat-RNA exist in western Kenya that could be contributing to the diverse symptoms expressed by GRD. This study used NGS which has been demonstrated to be more reliable in detection of new or poorly characterized viruses (Rott et al., 2017). There were variations among the western Kenya Sat-RNA isolates similar to Malawian isolates where they formed distinct clusters in the phylogenetic tree. Isolate EG16-5 was the most distinct and clustered together with chlorotic and yellow blotch Sat-RNA variants. This suggests that this isolate is associated with the chlorotic rosette symptoms that were most prevalent in the surveyed areas. Further analysis of evolutionary divergence between the Sat-RNA isolates revealed Isolate EG16-5 to be the most diverse among the western Kenya Isolates (above 0.06) while

the rest were less diverse (below 0.02). Moreover, when compared with Malawian isolates, the same isolate (EG16-5) had the least evolutionary divergence with M24S (chlorotic rosette) than the rest of the Malawian isolates (green rosette). In addition, major changes in nucleotide sequences in isolate EG16-5 were same as those observed in Isolate M24S. These observations further supports that Isolate EG16-5 is a chlorotic variant of Sat-RNA.

The GRV isolates from western Kenya shared 97-98% identity with those previously described by Wainaina *et al.*, (2018). This implies that there was close identity among GRV genomes from western Kenya. However, isolate E3 was the closest (98%) to MC1 (Malawian isolate) than the rest of the isolates (84-86%) implying E3 had less divergence from Malawian GRV as was observed by Wangai *et al.*, (2001) using ORF3 and 4 who reported identity of 95-96%. This study, however, has also found existence of more diverse GRV isolates (84-86%) in comparison to Malawian MC1. Similar observation was reported by Wainaina *et al.*, 2018 where sequence similarity of 84% was observed between Kenyan and Malawian GRV isolates. The use of more genome regions of GRV, in addition to ORF3 and 4, therefore gave more genomic characteristics of GRV isolates. All the four GRv isolates in this study shared 84-98% identity with other GRV isolates in the GeneBank confirming that they are not new viruses but GRV (King *et al.*, 2012).

The four GRAV CP gene sequences from western Kenya clustered together and had 97 – 100% identity with those from Malawi, Ghana and Nigeria implying that there was no much difference among the western Kenya GRAV CP gene isolates. Kenyan GRAV CP isolates exhibited closest identities with Malawian isolates than Nigerian and Ghanaian isolates. This findings concurs with Wangai *et al.*, (2001) and Appiah *et*

al., (2017) who observed closer identity between sequences from the same geographical region as compared to those from separate geographical regions. In the study, Wangai et al., (2001) found that Kenyan isolates of GRAV CP gene shared 98% nucleotide identity with Malawian isolates as compared to 96-97% with those from Nigeria. Appiah et al., (2017) observed that Ghanaian GRAV CP gene sequence isolates had 98-99% nucleotide identity as compared to 97-99% with Malawian isolates. Such differences due to geographical distances could be as a result of differences in environmental conditions that bring about variations in evolution of the viruses. All western Kenya GRAV CP isolates were closest to Malawian isolates M16GCP and M8GCP (99-100%) than the other isolates from Malawi, Nigeria and Ghana. A similar observation was noted by Wangai et al., (2001) where two of the Kenya isolates in the study (K1 and K2), specifically from western Kenya were closest to M16GCP and M8GCP than with the rest of her isolates from other regions in Kenya. This could imply that the GRAV CP gene from western Kenya have not evolved for at least the last 20 years. However variation could exist in GRAV from other regions in Kenya. It is worth noting that our studies (not published) found GRAV in common beans (Phaseolus vulgaris). This is a new finding as only groundnuts were the only known natural hosts of GRAV (Waliyar et al., 2007). This suggests that GRAV has other natural hosts other than groundnuts and therefore being an important agent of GRD it can survive in such hosts which can serve as sources of infection when picked by its vector (aphids). In general all GRAV CP gene sequences both in this study and those in GeneBank shared 97-100% nucleotide identity. This implies that GRAV CP gene is highly conserved across the wide geographical region in Sub-Saharan Africa. It can thus be targeted as a suitable candidate for development of pathogen-derived resistance (PDR) through genetic engineering that can be used across Sub-Saharan Africa (Deom *et al.*, 2000; Appiah *et al.*, 2017).

The three complete genomes of GRAV clustered closest with the *Luteoviruses* than *Poleroviruses* and *Enamoviruses*. This gives an indication that GRAV could be having genomic characteristics similar to the *Luteoviruses*. This finding contradicts that of Jones *et al.*, (2020) who reported two GRAV isolates that grouped together with *Poleroviruses* and suggested that the unassigned GRAV to be assigned to the genus *Polerovirus*. This could be possibly due the fact that the comparison was only made using the protein sequences of the coat protein gene alone. The comparison in this study involved the entire genome of GRAV from a metagenomics study which therefore compared all regions of the entire genome allowing precise grouping (Simmonds & Aiewsakun, 2018). This study therefore suggest that GRAV be classified as a member of the genus *Luteovirus*.

All major legumes screened as hosts of GRD agents developed both local and systemic symptoms and PCR confirmed presence of the GRD causal agents. This is an indication that the major legumes grown in western Kenya can serve as alternative hosts of one or all of the GRD agents. Using mechanical sap inoculations, several species in *leguminosae, chenopodiaceae* and *solanaceae* have been identified as experimental hosts of GRV and Sat-RNA. In the same families *Glycene max* and *Phaseolus vulgaris* are among the systematic hosts of GRV (Waliyar *et al.*, 2007). These can therefore become sources of inoculum when the main natural host is planted adjacent to or intercropped with such infected alternative hosts. In this study, sequences from a field sample revealed the presence of GRAV in common bean (*Phaseolus vulgaris*). This further confirms common beans as an alternative host of GRD causal agent in nature. One of the cropping systems used in western Kenya of

mixing all legumes in the same piece of land could therefore enhance the spread of GRD among the host plants.

All the sets of primers designed in this study were able to detect all the GRD causal viruses. Diagnostic primers need to be able to detect a whole range of virus variants and strains for use in making plant health decisions. With proper characterization of the GRD viruses in Kenya and designing primers from consensus sequences across SSA, these primers can be utilized in routine diagnosis of GRD.

Conclusion

This study concludes that:

- Groundnut Rosette (GRD) is still the major disease of groundnuts and is present whenever groundnuts are grown in western Kenya. Chlorotic rosette is the most prevalent form of symptom on groundnuts in western Kenya. The mosaic rosette is an emerging symptom in groundnuts and could be due to dual infection by Sat-RNA variants or other agents.
- Genetic diversity of the GRV and Sat-RNA become more varied with wide geographical distance. The western Kenya Sat-RNA variants were closely identical to those of Malawi than those from Nigeria and Ghana. New variants of Sat-RNA exists in western Kenya that are contributing to the diverse symptoms expressed by GRD. A new chlorotic rosette variant of Sat-RNA in Kenya was unveiled in this study (EG16-5).
- The GRAV CP gene is less diverse even with wide geographical distance. All the western Kenya isolates showed close identity of 97-100% when compared with those from Malawi, Ghana and Nigeria. Common bean is a new natural host of GRAV in addition to groundnuts.

- GRAV is most likely to be a member of the genus *Luteovirus* in the family *Luteoviridae*.
- All the major legumes grown in western Kenya are susceptible to GRD agents through mechanical inoculation and therefore can serve as alternative hosts of one or all of the GRD agents.
- The designed primers can detect the GRD associated viruses and thus can be utilized in routine diagnosis of GRD.
- The use of NGS is essential in discovery of new plant viruses and characterization of those that are poorly characterized.

Recommendations

This study recommends the following:

- There is need for urgent measures to manage GRD in western Kenya possibly through the exploitation of pathogen-derived resistance (PDR).
- Crop rotation of groundnuts with non-hosts of GRD be adopted as a cultural measure to break the cyclic nature of the disease. It is also important to check the soil to ascertain whether the GRD associated viruses are soil borne.
- Volunteer leguminous crops from previous cropping season be rogued before planting new crop to reduce the chances of acting as immediate initial sources of GRD inoculum.
- There is need for a reliable seed production and certification for groundnuts in western Kenya.

REFERENCES

- Adams, I.P., Glover, R.H., Monger, W.A., Mumford, R., Jackeviciene, E., et al. (2009). Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. *Molecular Plant Pathology*, 10: 537–545.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215:403– 410. https://doi.org/10.1016/ S0022-2836(05)80360-2.
- Anitha, S., Monyo, E. S. & Okori, P. (2014). Simultaneous detection of groundnut rosette assistor virus (GRAV), groundnut rosette virus (GRV) and satellite RNA (satRNA) in groundnuts using multiplex RT-PCR. *Arc.virol*.159:3059-3062,doi: 10.1007/s00705-014-2139-7
- Appiah, A. S., Offei, S. K., Tegg, R. S., & Wilson, C. R. (2016). Varietal response to groundnut rosette disease and the first report of *Groundnut ringspot virus* in Ghana. *Plant Dis.* 100(5):946-952. http://dx.doi.org/10.1094/PDIS-07-15-0838-RE
- Appiah, A. S., Sossah, L. F., Tegg, S. R., Offei, K. S. & Wilson, R. C. (2017). Assessing sequence diversity of goundnut rosette disease agents and the distribution of groundnut rosette assistor virus in major groundnut-producing regions of Ghana. Trop. Plant Pathol. Doi: 10.1007/s40858-017-0140-x
- Ayoola, P. B., Adeyeye, A. & Onawumi, O. O. (2012). Chemical evaluation of food value of groundnut (*Arachis hypogaea*) seeds. *American journal of food and Nutrition*. Online:ISBN 2157-1317,doi:10.5251/ajfn.2012.2.3.55.57.

- Blok, V. C., Ziegler, A., Robinson, D. J. & Murant, A. F. (1994). Sequences of 10 variants of the satellite like RNA -3 of groundnut rosette virus. *Virology* 202: 25-32.
- Boonham, N., Kreuze, J., Winter, S., van der Vlugt R, Bergervoet, J., *et al.* (2014) Methods in virus diagnostics: from ELISA to next generation sequencing. *Virus Research*, 186: 20 31.
- Bucheyeki, T. L., Shenkalwa, E. M., Mapunda, T. X. & Matata, L. W. (2008). On-farm evaluation of promising groundnut varieties for adaptation and adoption in Tanzania. *African Journal of Agricultural research*, 3:531-600.
- Deom, C. M., Naidu, R. A., Chiyembekeza, A. J., Ntare, B. R. & Subrahmanyam, P. (2000). Sequence diversity with the three agents of groundnut rosette disease.*Phytopathol.* 90:214-219.doi:10.1094/PHYTO.2000.90.3.214
- Eichmeier, A., Kominkora, M., Kominek, P. & Baranek, M. (2016). Comprehensive virus detection using next generation sequencing in grapevine vascular tissues of plants obtained from the wine region of Bohemia and Moravia (Czech Republic). *PloS ONE* 11(12):e0167966.doi:10.1371/journal.pone0167966
- FAOSTAT. (2013). Global groundnut yield. Available at *http://faostat.fao.org/* Groundnut /Arachis/Start.htm (Accessed on 26th July, 2017).
- Haas B.J, Papanicolaou A, Yassour M, Grabherr M, Blood P.D, Bowden J, Couger M.B, Eccles D, Li B, Lieber M, MacManes M.D, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C.N, Henschel R, LeDuc R.D, Friedman N. & Regev A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494 1512. https://doi.org/10.1038/nprot.2013.084.

- Herselman, L., Thwaites, R., Kimmins, F. M., Curtois, B., van der Merwe, P. J. A. & Seal,
 S. E. (2004). Identification and mapping of AFLP markers linked to peanut (*Arachis hypogaea L.*) resistance to the aphid vector of groundnut rosette disease. *Theor. Appl. Genet.* 109:1426-1433.
- Hong, J., Feng, H., Wang, F., Ranjan, A., Cheng, J., Jiang, J., Ghirlando, R., Xiao, T. S.,
 Wu, C. & Bai, Y. (2014). The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer. *Mol. cell* 53(3):498-505.
- ICRISAT. (2012). Groundnut production information. Available at <u>http://www.icrisat-org/Icrisat-crops.html</u> (Accessed on 1st Agust, 2017).
- Jones, S., Cowan, G., MacFarlane, S., Mukoye, B., Mangeni, B.C., Were, H. & Torrance, L. (2020). RNA sequence analysis of diseased groundnut (*Arachis hypogaea*) reveals the full genome of groundnut rosette assistor virus (GRAV). *Virus Research*; 277 (2020) 197837.
- Kayondo, S. I., Rubaihayo, P. R., Ntare, B. R., Gibson, P. I., Edema, R., Ozimati, A. & Okello, D. K. (2014). Genetics of resistance to groundnut rosette virus disease: *African crop science journal*, 22:21-29. ISSN:1021-9730/2014.
- Kidula, N., Okoko, N., Bravo-Ureta, B. E., Thuo, M. & Wasilwa, L. (2010). A preliminary analysis of yield differences in groundnuts between research and non-research farmers in Kenya. In paper presented at the 12th KARI biennial scientific conference, 8-12 November 2010, Naiobi Kenya.
- King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J. (2012) Virus taxonomy. Ninth report of the international committee on taxonomy of viruses. Elsevier/Academic Press, London

- Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S. & Barker, I. (2009). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1-7.doi:10.1016/j.virol.2009.03.024.PMID:19394993
- Kumar, P. L. & Waliyar, F., (Ed). (2007). Diagnosis and detection of viruses infecting ICRISAT mandate crops: *Methods Manual*. Patancheru 502 324, Andhra Pradesh, India; *International Crops Research Institute for the Semi-Arid Tropics*. 133pp.
- Kumar, S., Stecher, G., Li M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution* 35:1547-1549.
- Misari, S. M., Abraham, J.M., Demski J.W., Ansa, O. A., Kuhn, C.W, Casper, R. & Breyel,
 E. (1988a). Aphid transmission of the viruses causing chlorotic and green rosette
 diseases of peanut in Nigeria. *Plant Disease* 72: 250-253.
- Mugisa, I.O., Karungi, J., Akello, B., Ochwo-Ssemakula, M.K.N., Biruma, M., Okello, D.K.
 & Otim, G. (2016). Determinants of groundnut rosette virus disease occurrence in Uganda. *Elseviercropprotectionjournal*. http://dx.doi.org/10.1016/j.cropro.2015.10.01
 9.
- Mukoye, B., Mangeni, B.C., Leitich, R.K., Wosula, D. W., Omayio, D.O., Nyamwamu P.A., Arinaitwe, W., Winter, S., Abang, M.M. & Were, H.K. (2015). First report and biological characterization of cowpea mild mottle virus (CPMMV) infecting groundnuts in Western Kenya. *Journal of Agri-food and applied sciences*. 3: 1-5.
- Mukoye, B., Mangeni, B.C., Sue, J., Ndonga, M.F.O., & Were, H.K. (2018). Next Generation Sequencing as a tool in modern pest diagnosis. A case study of groundnuts (*Arachis hypogaea*) as a potential host of new viruses in western Kenya.

Conference proceedings: The 2nd Phytosanitary Conference, 4th – 8th June, 2018 at KEPHIS-Nairobi, Kenya.

- Mumford, R., Boonham, N., Tomlinson, J., & Barker, I. (2006). Advances in molecular phytodiagnostics - new solutions for old problems. *European Journal of Plant Pathology*. 116, 1-19. doi: 10.1007/s10658-006-9037-0
- Murant, A. F., & Kumar, I. K. (1990). Different variants of the satellite RNA of groundnuts rosette virus are responsible for the chlorotic and green forms of groundnut rosette disease.*Ann.Appl.Biol*.117:85-92.
- Mutegi, C. K. (2010). The extend of aflatoxin and aspergillus section flavi,penicillium spp.. and Rhizopus spp. contamination of peanuts from households in Western Kenya and the causative factors of contamination. *PhD dissertation*, *University of Kwazulu-Natal,Pietermaritzburg*. South Africa.
- Naidu, R. A., Robinson, D. J., & Kimmins, F. M. (1998a). Detection of each of the causal agents of groundnut rosette disease in plants and vector aphids by RT-PCR. *J.Virol.Methods* 76:9-18.
- Naidu, R. A, Bottenberg, H., Subrahmanyam, P., Kimminns, F. M., Robinson, D. J. & Thresh, J. M. (1998b). Epidemiology of groundnut rosette virus deasease:*Current* status and future research needs.Ann. Appl. Biol.132:525-548.
- Naidu, R. A, Kimmins, F. M., Deom, C. M., Subrahimanyam, P., Chiyeubekeza, A. J. & van der Merwe P. J. A. (1999a). Groundnut rosette: Avirus disease affecting groundnut production in Sub-Saharan Africa. *Plant Dis*.83:700-709.

- Naidu, R. A., Kimmins, F., Holt, J., Robinson, D. J., Deom, C. M. & Subrahmanyam, P. (1999b). Spatiotemporal separation of groundnut rosette disease agents. Phytopathol.89:934-941.
- Naidu, R. A. & Kimmins, F. M. (2007). The effect of groundnut rosette assistor virus on the agronomic performance of four groundnut (*Arachis hypogaea*) genotypes. *Journal of phytopathology* 155:350-356.doi:10.1111/j.1439-0434.2007.01234.x
- Ntare, B. R., Olorunju, P. E. & Hildebrand, G. L. (2002). Progress in breeding early maturing peanut cultivars with resistance to groundnut rosette disease in West Africa. *Peanut Science* 29:17-23.
- Okello, D. K.,Birima, M. & Deom, C. M.,. (2010). Overview of groundnut research in Uganda: Post,present and future. *Afr. J. Biotechnol*.9:6448-6459.
- Okello, D. K., Monyo, E., Deom, C. M., Ininda, J. & Oloka, H. K. (2013). Groundnuts production guide for Uganda: Recommended practices for farmers. *National Agricultural Research Organization, Entebbe*.ISSN:978-9970-401-06-2
- Okello, D. V, Akello, L. B, Tukamuhabwa, P., Odongo, T. L, Ochwo-Ssemakula, M., Adriko, J. & Deom, C. M. (2014). Groundnut rosette disease symptom types, distribution and management of the disease in Uganda. *African journal of plant science*. 8: 153-163.
- Okello, D. V., Ugen, M. A., Tukamuhabwa, P., Ochwo-Ssemakula, M., Odong, T. L., Adriko, J., Kiconco, F., Male, A., and Deom, C. M. (2017). Molecular diagnostics of groundnut rosette disease agents in Uganda: Implications on epidemiology and management of groundnut rosette disease. *Journal of plant breeding and crop science*, 9: 63-70.

- Olorunju, P. E., Ntare, B. R., Pande, S. & Reddy, S. V. (2001). Additional sources of resistance to groundnut rosette disease in groundnut germplasm and breeding lines. *Ann. Appl. Biol.* 159:259-268.
- Reddy, D. V. R. (1991). Groundnut viruses and virus diseases; Distribution, identification and control. *Rev.Plant Pathol*.70:665-678.
- Robinson, D. J., Ryabov, E. V., Raj, S. K., Roberts, I. M. & Taliansky, M. E. (1999). Satellite RNA is essential for encapsidation of groundnut rosette *umbravirus* RNA by groundnut rosette assistor luteovirus coat protein. *Virol.* 254:104-114.
- Roossinck, M. J. (1997). Mechanism of plant virus evolution. *Ann.Rev.Phytopathol*.35:191-209.
- Scott, K. P., Farmer, M. J., Robinson, D. J., Torrence, L. & Murant, A. F. (1996). Comparison of the coat protein of groundnut rosette assistor virus with those of other *luteovirus*. Ann.Appl.Biol.128:77 - 83.
- SADC/ICRISAT Groundnut Project Annual Progress Report for 1996. Chitedze Research Station, PPO Box1096, Lilongwe, Malawi.
- Saitou N. and Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4:406-425.
- Salem, N. M., Ehlers, J. D., Roberts, P. A. & Ng, J. C. K. (2010). Biological and molecular diagnosis of seedborne viruses in cowpea germplasm of geographical diverse sub-Saharan origins. *Plant Pathology* 59:773-784.
- SAS Institute. (2013). The SAS System for Windows. Release 9.3.1. SAS Inst.Cary, NC.
- Simmonds, P. & Aiewsakun, P. (2018). Virus classification where do you draw the line? Archives of virology 163:2037-2046.

- Smartt. J. (1994). The groundnut in farming systems and the rural economy: A global view.Pages 664-699 in: The Groundnut Crop: Ascientific basis for improvement.
 J.Smartt, ed.Chapman & Hall, London.
- Subrahmanyan, P., Hildebrand, G. L., Naidu, R. A., Reddy, L. J. & Singh, A. K. (1998). Sources of resistance to groundnut rosette disease in global groundnut germplasm. *Ann Appl.Biol.*132:473-485.
- Tajima F. and Nei M. (1984). Estimation of evolutionary distance between nucleotide sequences. *Molecular Biology and Evolution* 1:269-285.
- Taliansky, M. E., Robinson, D. J. & Murant, A. F. (1996). Complete nucleotide sequence and organisation of the RNA genome of groundnut rosette umbravirus. *J.Gen.Virol.*77:2335-2345.
- Taliansky, M. E. & Robinson, D. J. (1997). Trans-acting untranslated elements of groundnut rosette virus satelitte RNA are involved in symptom production. J.Gen.Virol.78: 1277-1285.
- Taliansky, M. E., Robinson, D. J. & Murant, A. F. (2000). Groundnut rosette disease virus complex: Biology and Molecular Biology. *Advances in virus research*, 55:357-400.
- Taliansky, M. E. & Robinson, D. J. (2003). Molecular Biology of umbraviruses: Phantom warriors. J.Gen.Virol.84:1951-1960.
- Tamura K., Nei M., and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proceedings of the National Academy of Sciences (USA)* 101:11030-11035.
- Thuo, M., Bell, A. A., Bravo-Ureta, B. E., Lachaud, M. A., Okello, D. K., Okoko, N. E., Kidula, N. L., Deom, C. M. and Puppala, N. (2014). Effects of social network factors
on information acquisition and adoption of improved groundnut vaarieties: the case of Uganda and Kenya. *Agric. Hum. Values*, 31: 339-353.

- Tillman, B. L. & Stalker, H. T. (2009). Peanut: In Johann Volmann and Istvan Rajcan Handbook of Plant Breeding, *Oil Crops* 4: 287-316.
- Usman, A. (2013). Genetic analysis of resistance to rosette disease of groundnut (*Arachis hypogaea* L.). *A thesis submitted to the University of Ghana, Legon*, ISSN:10293978.
- van der Merwe, P. J. A. & Subrahmanyan, P. (1997). Screening of rosette resistant shortduration groundnut breeding lines for yield and other characteristics.*Int Arachis.Newsl.*17:23-24.
- Varshney, R.K., Kudapa, H., Roorkiwal, M., Thudi, M., Pandey, M. K., Saxena, R. K., *et al.* (2012b). Advances in genomics research and molecular breeding applications in SAT legume crops by using next generation sequencing and high-throughput genotyping technologies. *J Biosci* 37:811-20.
- Varshney, R. K., Mohan, M. S., Gaur, M. P., Gangarao, R. P. N. V., Pandey, K. M., Bohra, A., et al. (2013). Achievements and prospecte of genomics-assisted breeding in three legume crops of the semi-arid tropics. *Elsevier Biotechnology advances* 31:1120-1134.
- Wainaina, J.M., Harvey, J., Ateka, E., Makori, T., Karanja, D., Kehoe, M.A., Boykin, L.M. (2018). Genomic characterisation and evolutionary relationships of groundnut rosette virus from the western highlands of Kenya. *Tropical Plant Pathology* 43:583–585.
- Waliyar, F., Kumar, P. L., Ntare, B. R., Monyo, E., Nigam, S. N., Reddy, A. S., Osiru, M. & Diallo, A. T. (2007). A Century of Research on Groundnut Rosette Disease and its Management.*Information Bulletin* no.75.Patancheru 502 324, Andhra Pradesh,

India.*International Crops Research Institute for the Semi-Arid Tropics*,40 pp.ISBN 978-92-9066-501-4.

- Wangai, A. W., Pappu, S. S., Pappu, H. R., Okoko, N., Deom, C. M. & Naidu, R. A. (2001). Distribution and characteristics of groundnut rosette disease in Kenya.*Plant Disease*,85:470-474.
- Were, H. K., Kabira, J. N., Kinyua, Z. M., Olubayo, F. M., Karinga, J. K., Aura, J., Lees, A. K., Cowan, G. H. & Torrance, L. (2013). Occurrence and Distribution of Potato Pests and Diseases in Kenya. *Potato Research* 56:325–342.
- World Bank. (2015). Statistical information. Kenya and Uganda. Available at http://data.worldbank.org (Accessed on 24th June 2017).

APPEDICES

Appendix I: Disease survey score sheet

SURVEY DISEASE SCORE SHEET

CROPVARIETY
Farmer's nameCounty
DistrictDivision
LocationSub-Location
VillageDate
GPS readings; Altitude (Meters)Longitude
Latitude (North or South)AEZ
Groundnut variety grown

Cropping pattern (*Tick the appropriate option*):

- No intercrop (stand-alone)
- Intercrop with other legume

Seed source (*Tick the appropriate option*):

- Agro-dealer
- Own saved seed
- Open air market
- Neighbors

Disease score sheet

Disease name				
No. of plants affected	Symptoms	Distribution		Severity 0-3
per 10m² quadrat		(whole spots)	field,	

1		
2		
3		
1		
4		

*Severity: 0= No disease; 1=Mild; = Moderate; 3=Severe.

Number of plants affected per $10m^2$: select the area most affected, 10 steps square quadrat, count infected and total plants, (e.g. $^{20}/_{50}$ indicates 20 plants infected out of 50 plants in the 10x10 steps square quadrat).

KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	1 GGGTTTCAAT GGGTTTCAAT GGGTTTCAAT GGGTTTCAAT GGGTTTCAAT GGGTTTCAAT GGGTTTCAAT GGGTTTCAAT	AG3 G4 G TTG AG3 G4 G TTG		GLAGCTGAAT GAAGCTGAAT GAAGCTGAAT GAAGCTGAAT GAAGCTGAAT GAAGCTGAAT GAAGCTGAAT GAAGCTGAAT			CT 361 361 G CT 361 361 G
KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	71 AcccoccAcc AcccoccAcc AcccoccAcc AcccoccAcc AcccoccAcc AcccoccAcc AcccoccAcc AcccoccAcc AcccoccAccAcc AcccoccAcCAcc AcccoccAcCAcc	TGATTTAGCA TGATTTAGCA TGATTTAGCA TGATTTAGCA TGATTTAGCA TGATTTAGCA TGATTTAGCA TGATTTAGCA TGATTTAGCA	CCCCTATCAA CCCCTATTAA CCCCTATTA CCCCTATTAA CCCCTATTAA CCCCTATTAA CCCCTATTAA CCCCTATTAA	TGAAACCTAC TGAACCTAC TGAACCTAC TGAAACCTAC TGAAACCTAC TGAACCTAC TGAACCTAC TGAACCTAC TGAAACCTAC TGAAACCTAC	I CCI GAGAGA I CCI GAGAGA	CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA CTATICAGA	IGENAGOCITI IGENAGOCITI IGENAGOCITI IGENAGOCITI IGENAGOCITI IGENIGOCITI IGENIGOCITI IGENIGOCITI IGENIGOCITI IGENIAGOCITI
1 KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	41 GGTGGTCCCG GGTGGTCCCG GGTGGTCCCG GGTGGTCCCG GGTGGTCCCG GGTGGTCCCG GGTGGTCCCG GGTGGTCCCG		CA CCC1CC4 C4 CCC1CCA	ACCAACCACC ACCAACCACC ACCAACCACC ACCAACCACC	CGAAGATCC CGGAAGATCC TGGAAGATCC TGGAAGATCC TGGAAGATCC CGGAAGATCC TGGAAGATCC TGGAAGATCC TGGAAGATCC	TTCCCTTGGG TTCCCTTGGG TTCCCTTGGG TTCCCTTGGG TTCCCTTGGG CTTCCCTTGGG TTCCCTTGGG TTCCCTTGGG	TTAGAANGC TTAGAANGC TTAGAANGC TTAGAANGC TTAGAANGC TTAGAAGGC TTAGAAGGC TTAGAANGC
2 KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	11 TCACGAAGCA TCACGAAGCA TCACGAAGCA TCACGAAACA TCACGAAGCA TCACGAAGCA TCACGAACA TCACGAACA TCACGAAACA	GCT GCCCGG GCT GCCCGG GCT GCCCGG GCT GCCCGG GCT GCCCGG GCT GCCCGG GCT GCCCGG GCT GCCCGG GCT GCCCGG	CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA CTTACAGCAA	CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST CT CCATAAST	TTA CGA CCA G TTA CGA TCA G TTA CGA TCA G CCA CGA CCA G		
2 KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	81 AAGGTTGGC AAGGTTGGC AAGGTTGGC AAAGGTTGGC AAAGGTTGGC AAAGGTTGGC AAAGGTTGGC AAAGGTTGGC	CCCCATCTCC CCCCATCTCC CCCCATCTCC CCCCCATCTCC CCCCATCTCC CCCCATCTCC CCCCATCTCC CCCCATCTCC CCCCATCTCC	AT CA CTCTTT AT CAA CTCTTT AT CA CTCTTT AT CA CTCTTTT AT CA CTCTTTT AT CA CTCTTTT AT CA CTCTTTT AT CA CTCTTTT AT CA CTCTTTT	CCT GGA GTGA CCT GGA GCGA CCT GGA GTGA CCT GGA GTGA CCT GGA GTGA CCT GGA GTGA CCT GGA GTGA CCT GGA GTGA	AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG AAAGGTGAGG	GGTGTGTGGCA GGTGTGTGGGG GGTGTGTGGGG GGTGTGTGGGG GGTGTGTGGCA GGTGTGTGGCA GGTGTGTGGCA GGTGTGTGGCA	CICCCCCA ALCITCCGCA GCATCCGCA GCATCCGCA CICATCCGCA GCATCCGCA GCATCCGCA GCCATCCGCA GCCATCCGCA
3 KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	51 GCCTCCAAC GCCTCCAAC GCCTCCAAC GCCTCCAAC GCCTCCAAC GCCTCCAAC GCCTCCAAC GCCTCCAAC	TCCTTCAATC TCCTTCAATC TCCTTCAATC TCCTTCAATC TCCTTCAATC TCCTTCAATC TCCTTCAATC TCCTTCAATC TCCTTCAATC	GGCCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2 GGCC2.C.2	C 2000 A C 200 A 2000 A C 20 C 10 A 2000 A C 2000 A C 20 C 20 C 20 C 20 C 20 C 20 C 20 C 20	CCT GAGAGAC CCT GAGAGAC CCT GA GAGAC CCT GA GAGAC CCT GA GGAC CCT GA GGAC CCT GA GAGAC CCT GA GAGAC CCT GA GAGAC	TGTGTATGCG TGTGTATGCG TGTGTATGCG TGTGTATGCG TGTGTATGCG TGTGTATGCG TGTGTATGCG TGTGTATGCG TGTGTATGCG	
4 KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	21 TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCACA TGCTCCCACA	GECCECCECE GCCCECCECE GCCCECCECE GCCCECECE GCCCECECE GCCCECECE GCCCECECE GCCCECECE GCCCECECE GCCCECECE	GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA GL CCCTCCAA	CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT CGLAGCAGGT	GGAAGACCCT GGAAGACCCT GGAAGACCCT GGAAGACCCT GGAAGACCCT GGAAGACCCT GGAAGACCCT GGAAGACCCT	CCCTTGGCA CCCTTGGCA CCCTTGGCA CCCTTGGCA CCCTTGGCA CCCTTGGCA CCCTTGGCA CCCTTGGCA CCCTTGGCA	LIGAACTGCT TAGAACTGCT TAGAACTGCT TAGAACTGCT TAGAACTGCT TAGAACTGCT TAGAACTGCT TAGAACTGCT

Appendix II: Sat-RNA alignment with green and chlorotic rosette Malawian Isolates

	491						
KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	GAGGAACCAG GAGGAACCAG GAGGAACCAG GAGGAACCAG GAGGAACCAG GAGGAACCAG GAGGAACCAG GAGGAACCAG GAGGAACCAG		THTGGGC TTTAATGGGC TTTAATGGGC TTTAATGGGC TTTAATGGGC TTTAATGGGC TTTAATGGGC TTTAATGGGC	GCATACAGAG GCATACAGAG GCATACAGAG GCATACAGAG	TTTA CGACCA TTTA CGACCA TTTA CGACCA TTTA CGACCA TTTA CGACCA TTTA CGACCA TTTA CGACCA TTTA CGACCA TTTA CGACCA	CGTICGCIGC CHTACAGIGC CGCTCGCIGC CGTTCGCIGC CGTTCGCIGC CGTTCGCIGC CGTTCGCIGC CGTTCGCIGC	TTTGACAAGC TTTGACAAGC TTTGACAAGC TTTGACAAGC TTTGACAAGC TTTGACAAGC TTTGACAAGC TTTGACAAGC TTTGACAAGC
KGO 1	561						
EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	TCCCCCCTTC TCCCCCCTTCC TCCCCCCTTCC TCCCCCC	GGCCCACAGG GGCCCACAGG GGCCCACAGG GGCCCACAGG GGCCCACAGG GGCCCACAGG GGCCCACAGG GGCCCACAGG	AAG TCA ATTG AAG TCA ATTG AAG TCA ATTG AAG TTAATTG AAG TTAATTG AAG TTAATTG AAG TTC ATTG AAG TTC ATTG AAG TTAATTG	GAGCAATGCG GAGCAATGCG GAGCAATGCG GAGCAATGCG GAGCAATGCG GAGCAATGCG GAGCAATGCG GAGCAATGCG GAGCAATGCG	AGCTTGAAAT AGCTTGAAAT AGCTTGAAAT AGCTTGAAAT AGCTTGAAAT AGCTTGAAAT AGCTTGAAAT AGCTTGAAAT	CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG CAAGCTAGGG	ACGGGCCCCT ACGGGCCCCCT ATGGGCCCCCT ATGGGCCCCCT ACGGGCCCCCT ATGGGCCCCCT ATGGGCCCCCT
	631						
KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	CTAA CCAGA CTAA CCAGC CTAA CCAGC CTAA CCAGA CTAA CCAGA CTAA CCAGA CTAA CCAGA CTAA CCAGA CTAA CCAGA CTAA CCAGA	TGCA CATACA TGCA CATACA TGTACATACA TGTACATACA TGTACATACA TGTACATACA TGTACATACA TGTACATACA TGTACATACA	CATGAGGCCG CATGAGGCCG CATGAGGCCG CATGAGGCCG CATGAGGCCG CATGAGGCCG CATGAGGCCG CATGAGGCCG CATGAGGCCG	TTCTGCAGCT GTGTGCAGCT GTGTGCAGCT GTGTGCAGTT GTGTGCAGTT GTGTGCAGTT GTGTGCAGTT GTGTGCAGTT	TATEGETEAE CACEGETEAE TATEGETEAE TATEGETEAE TATEGETEAE TATEGETEAE TATEGETEAE TATEGETEAE TATEGETEAE	CTCCTCCTCC CTCCTCCTCC CTCCTCCTCC CTCCTCC	GTGAAGGTTC GTGAAGGTTC GTGAAGGTTC GTGAAGGTTC GTAAAGGTTC GTGAAGGTTC GTGAAGGTTC GTGAAGGTTC
	701						
KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	AAACGCGGA AAACGCGGAT AAACGCGGAT AAACGCGGAT AAACACGGGAT AAACACGCGGAT AAACGCGGGAT AAACGCGGGAT	GETCGACHG GETCGACTGT GETCGACTGT GETCGACTGT GETCGACTGT GETCGACTGT GETCGACTGT GETCGACTGT	ICCCCCCFTT ICCCCCCFTT ICCCCCCFTT ICCCCCCCFTT ICCCCCCCFTT ICCCCCCCFTT ICCCCCCCFTTT ICCCCCCCCCC	CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA CGGCCCAGGA	GENAGENEGG GENAGENEGG GENAGENEGG GENAGENEGG GENAGENEGG GENAGENEGG GENAGENEGG GENAGENEGG GENAGENEGG	TTAAGTICCC TTAAGTTCCC TTAAGTTCCC TTAAGTTCCC TTAAGTTCCC TTAAGTTCCC TTAAGTTCCC TTAAGTTCCC TTAAGTTCCC	A GT COTGTOC A GT COTGTOC A GT COTGTOC A GT COCGTOC A GT COCGTOC A GT COCGTOC A GT COCGTOC A GT COCGTOC
	771						
KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	CGGGATATTG CGGGATATTG CGGGATATTG CGGGATATTG CGGGATATTG CGGGATATTG CGGGATATTG CGGGATATTG CGGGATATTG	GATTAA CAATA GATTAA CAATA GATTAA CAATA TATAA CAATA GATTAA CAATA GATTAA CAATA GATTAA CAATA GATTAA CAATA GATTAA CAATA GATTAA CAATA	TGGGTCCCAC TGGGTCCCAC TGGGTCCCAC TGGGTCCCAC TGGGTCCCAC TGGGTCCCAC TGGGTCCCAC	CAGCGTGGGA CAGCGTGGGA CAGCGTGGGA CAGCGTGGGA CAGCGTGGGA CAGCGTGGGA CAGCGTGGGA CAGCGTGGGA	TCCCGCATA TCCCGCATA TCCCGCATA TCCCGCATA TCCCGGCATA TCCCGGCATA TCCCGGCATA TCCCGGCATA	GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT GTTCTAGTTT	GGGTCTTGAT GGGTCTTGAT GGGTCTTGAT GGGTCTTGAT GGGTCTTGAT GGGTCTTGAT GGGTCTTGAT
	841						_
KG8-1 EG16-5 BG3-18 BUG1-21 E7 E8 M24S M16S M11S	A GAAGATOTO A GAAGATOTO A GAAGATOTO A GAAGATOTO A GAAGATOTO A GAAGATOTO A GAAGATOTO A GAAGATOTO A GAAGATOTO	GGTTGGTCCA GGTTGGTCCA GGTTGGTCCA GGTTGGTCCA GGTTGGTCCA GGTTGGTCCA GGTTGGTCCA GGTTGGTCCA		ACGCCCAAAC ACGCCCAAAC ACGCCCAAAC ACGCCCAAAC ACGCCCAAAC ACGCCCAAAC ACGCCCAAAC ACGCCCAAAC	TAGGCATTTC TAGGCATTTC TAGGCATTTC TAGGCATTTC TAGGCATTTT TAGGCATTTC TAGGCATTTC TAGGCATTTC	ATATGCCGCC ATATGCCGCC ATATGCCGCC ATATGCCGCC TATGCCGCCG ACATGCCGCC ATATGCCGCC ATATGCCGCC	

Appendix III: Aligned GRV sequences

F3_CPV	71						
E5-GRV E5-GRV E8-GRV E7-GRV MC1	CCCCGCCAAC CAGTCTGCGC CAGTCTGCAC	AGGGAGCTGG AAACCGCTGG AAACCGCTGG AAA <mark>CCGCT</mark> GG	GCAATTAGAGT GACACTGCCC GACACTGCCC	T <mark>GC</mark> <mark>CCG</mark> CCGCTATGTA CCGCTATGTA	GGACATA GGACTTCCTG GGACTTCCTG	CTGGTCAGAT CTGGTCAGAT	TCCGCGATTG TTCCCAGTGC TTCCCAGTGC
8 E3-GRV E5-GRV E8-GRV E7-GRV MC1	41 TTCCGCI GTCCTTCACC GTCCTTCACC	GCTACCAGEG ATTCCCCGGC ATCCCCCGGC		GTACTTGAGC GTATTTGAGC CATCTTTGGC CATCTTTGGC	ICCOTTGCGC ICCOTTGCGC GGCCTCAGTA GGCCTCAGTA	IGCACATOTG IGCACATOTG ACTACTTGTG ACTACTTGTG	GTTCCA GCCC GTTCCA GCCC GGCTA GGCTT GGCTA GGCTT
9 E3-GRV E5-GRV E8-GRV E7-GRV MC1	11 ACGIIGIGCG ACGIIGIGCG ICCICCICGIGAG ICCICCICGGG	A COTIGE COAT A COTIGE COAT GOTIGE COACAT GOTIGE COACAT	TGGGGCCGGG TGGGGCCGGG TATGLGCLGG TATGLGCLGG	GCGCAAAATT GCGCAAAATT CTGAA - CGGG CTGAA - CGGG	TTTAGTCGGG TTTAGTCGGG CTTCCTCCGC CTTCCTCCGC	GAACTCTACG GAACTCTACG CTACGTAGCT CTACGTAGCT	CCAGGTCTGG CCAGGTCTGG CGCGCTTAAA CGCGCTTAAG
9 E3-GRV E5-GRV E8-GRV E7-GRV MC1	81 AGCGGAGAGA AGCCGGAGAGA AGCCCGAGAGA	CAAGTGAAGC CAAGTGAAGC CAATAGCGAA CAATAGCGAA	CTAAAATCCT CTAAAATCCT GCAACGCGGC GCAACGCGGC	GICTCCCC GICTCCCCC GICTCCCIGG GICTCCCIGG	A	CAAGGT GAAA CAAGGT GAAA CAAAGGTATC C <mark>AAAGGTATC</mark>	CTGGCGGCAC CTGGCGGCAC GACTAGGGGG GACTAGGGGG
10 E3-GRV E5-GRV E8-GRV E7-GRV MC1	51 GACCCCGGCC GATAAAAGC GATAAAAGC GATAAAAGC	A GTGA A A CGG A GTGA A A CGG CATCA A TCTG CATCA A TCTG CATCA A TCTT	GTCTCGTA GTCTCATA GGCCCTCCGT GGCCCTCCGT	CAARGTGGAC CAARGTGGAC TCAGGGGGAA TCAGGGGGAA	GTATTGG GTACTGG TCGCAGTCGC TCGCAGTCGC	GECCUL GOLC GECCUL GOLC GECCCUL GEC GECCCCL CEC	TGATTTTTGGT TGATTTTTGGT TGTTGAGGTT TGTTGAGGTT
11 E3-GRV E5-GRV E8-GRV E7-GRV MC1	21 GECCICAADA GECCICAADA GEGCICAA GEGCICAA GEGCICAA	ACTECTTGAA ACTECTTGAA CTETCGTGAA CTETCGTGAA	PAACCT PAACCT PCCATACCTC TCCATACCTC	- GGT TCGL GG - GGT TCGL GG CL GT TCGCCT CL GT TCGCCT	GCTAAA GCTAAA GCTGCCTCCT GCTGCCTCCT	TCLCCCLCTC TCLCCCLCTC CTCCTLCCTC CTCCTLCCTC CTCCTLCCTC	TTCTACACGA TTCTACACGA GGGTGTAAAC GGGTGTAAAC
11 E3-GRV E5-GRV E8-GRV E7-GRV MC1	91 A CAAT GATGG A TAACGATGG A CCACCA CGA A CCACCA CGA	CAAATTGCCC CAAATTGCCC CT CT	CTCGCTCCLG CTCGCTCCLG - TTTTCCLG - TTTTCCLG	CTCCLGCCCC CTCCLGCCCC CTCCLGCCCC CLGCLGCLGC GLLCLGCLGCLGC GLLCLACLAC	GUTCCL GLAA GUTCCL GGAA CCCCCCGT GT CCCCCCGT GT	ATTGATTGCG ATTGATTGCG TTTTGGT TTTTGGT	CCGCGCTGAA CCGCGCTGAA
12 E3-GRV E5-GRV E8-GRV E7-GRV MC1	61 ACLENTICEC ACLENTICEC GGGTCEC GGGTCTC	GTCLCCCCTT GTCLCCCCTT AGLCGCCGAA AGLCGCCGAA	GGA CCCTA GA GGA CCCCTA GA GGA CCCCTGA GGA CCCCTGA	T <mark>GATGTCTGG</mark> T <mark>GATGTCTGG</mark> TATTCTCGTT TATTCTCGTT	A TGA GTTA CA A TGA GGTA CA I GGGTCTTTG I GGGTCTTTG	GGGC GCCA GGGC GCCA GLGCT GTA G GLGCT GTA G	G. G. G. CCCCG G. G. CTCCCA CCCCCT G CCCCCCT G
13 E3-GRV E5-GRV E8-GRV E7-GRV MC1	31 The state of the sectors The state of the sectors And sectors And sectors	CCGTTGICIG CCGTTGICIG CCGTTGGICT CCGTTGGICT	CCTCA CLEA CCTCA CLEA CCTCG CCTCG	G. CCTCTG. G. CCTCTG. ATGG GTGG	GCAAAAGTGA GCAAAAGTGA GGTGTGAGCA GGTGTGAGTA	CCCCLAGCCC CCCCLAGCCC CCCCLAGCCT CCCCCLAGCCT	AGC CCTTC AGC CCTTC TCTCTCTCG TCTCTCTTCG
14 E3-GRV E5-GRV E8-GRV E7-GRV MC1	01 TAAAGGCTGA - AGCTCCTG - AGCTCCTG	GAAGGT GAAC AAAGGT GAAC <mark>GACGGT GACC TACGGT GACC</mark>	TTTAA GGCCA TTTTAA GGCCA TCTCCA TACA TCTCCA TACA	G G GTGCTTCGLG GTGCTTCGLG	CCTGL CCC CCTGL CCC GL GTTCTCCC GL GTTCTCCC	r <mark>cccccccc</mark> a rcccccccca rcncrccccca rcncrcccccc rcncrcccccc rcncrcccccc	GTGATACAAC GTGATACAAC CTTTTGCCA- CTTTTGCCA- CTTTTGCCA-
14 E3-GRV E5-GRV E8-GRV E7-GRV MC1	71 CTCGCGADCC CTCGCGACCC	AAGGTTCAAC AAGG <mark>TTCAAC</mark> - <mark>CTAGCGAAG</mark> - <mark>CTAGCGAAG</mark>	G <mark>CAGTATTT</mark> G G <mark>CAGTGTTTG</mark> ACATTGATTA A <mark>CATTGATT</mark> A	CGAAA TA DAT CGAAA TA CAT TGCTT GA CAT T <mark>GCTT GA</mark> CAT	CAAACCCTTG CAAACCCTTG GATACCCTCC GATACCCTCC	GAGCCTTTAC GAGCCTTTAC GGCCATTGTC GGCCATTGTC	ICTACAAGGC ICTACAAGGC CGCGGC C <mark>GCGGGC</mark>

15	41						
E3-GRV E5-GRV E8-GRV E7-GRV MC1	ATTGGGCAAA ATTGGGCAAA TAG TAG	CTG FALAAAT CTGTACAAAT CCGT GGTAGA CCGT GGTAGA	ATCCCTGCGT ATCCCTGCGT GTCCCTTCGC GTCCCTTCGC GTCTTTTCGC	TGCCA AGGGA TGCCAAGGGA TCGGG TAAGG	TTTAATGCTG TTTAATGCTG AGAACTGGTG AGAAATGGTG	TAGAAACTGG TAGAAACTGG TTCGACCATG TTCGACCATG	CGAGATICGIG TGAAATCGTG TCAATTCATG TCAATTCATG TCAATTCATG
16 E3-GRV E5-GRV E8-GRV E7-GRV MC1	11 GCAAAAAAAA GCAAAAAAAA GTA GTA GTG	GGAAAATGTT GGAAAATGTT GCTTTC GCTTTC	TGCCAACCCA TGCCAACCCA GCCGGCATCC GCCGGCATCC	GTTTGTGTGG GTTTGTGTGG CTAGGTGTGT CTAGGTGT	GA GTCGA TGC GA GTCGA TGC AA TGGC CGTGGC	PAGCCGATTT TAGCCGATTT CATGTCGATT CATGTCGATT	G. CC. GC. CG G. CC. GC. CG - C. TGGC. GC - <mark>C. TGGC. GC</mark>
16 E3-GRV E5-GRV E8-GRV E7-GRV MC1	81 TGTCCGTGGA TGTCCGTGGA TTTCGCTGGC TTTCGCTGGC	T <mark>CCLCTALGG</mark> T <mark>CCLCTALGG</mark> TTCCCT TTCCCT	TT <mark>C</mark> CCC TG TTCI CCC TG TTCITCTCCT TTCITCTCCT	GTGTGTACAG GTGTGTACAG GGGTTTTCAG GGGTTTTCAG	AAGGTTC-AT AAGGTTC-AT GAGGTTCCCT GAGGTTCCCT	CAAGAATCCG CAAGAGCCCG GTCGGGCCCA GTCGGGCCCA	G. G. T. G. G. G. G. G. T. G. G. G. G. G. T. G. T. G. G. A. G. G. T. G. T. G. T. G. A.
17 E3-GRV E5-GRV E8-GRV E7-GRV MC1	51 ATTACT CLCTCCCCC CLCTCCLCCC	ACAACGCAGC ATTAACGCAGC	C <mark>GCCTCLALG</mark> C <mark>GCCTCLALG</mark>	CCGTT CCGTT ATAGTGCTGC ATAGTGCTGC	GGATIGTA CLC GGATIGTA CLC CAGGGTT GAC CAGGGTT GAC	CAACCGTTGC CAACCGTTGC ATATTGTTCC ATATTGTTCC	AGAGG AGAGG TGGCTGCCGG TGGCTGCCGG
18 E3-GRV E5-GRV E8-GRV E7-GRV MC1	21 - AGCT GCCAA - AGCT GCCAA CT GCT GCAT CT GCT GCAT	GGACGGATTC GGACGGATTC GCCGCAATCC GCCGCAATCC	GTGAAATACA GTGAAATACA TCAAAATAGT TCAAAATAGT	CCCTCAACGG CCCTCAACGG GATTGTAGTG GATTGTAGTG	TGTCGCATG T <mark>TGTCGCATG</mark> T <mark>C - GCGGAGG</mark> T <mark>C - GCGGA</mark> GG	AGTGGTGA GA AGTGGTGA GA CATGC A CATGC A	TGGAQA GT GC TGGAQA GT GC TTGT - ATTTC TTGT - ATTTC
18 E3-GRV E5-GRV E8-GRV E7-GRV MC1	91 CCTTGGCAAC CCTGGCAAC CCTGCAACC CCTGCAACCC	TERGICC EGA TERGICC EGA CTGGICTTGA CTGGICTTGA	IGCITTTGAT I <mark>GCITTTGA</mark> CACTAOGCIA C <mark>ACTAOGCI</mark> A	GACCAGGCA GACCAGGCA ATCA GTCA	CTACTOCTO CTGCTOCTOC CATCCGTTAA CATCCGTTAA	CTTTGGGTAT CTTTGGGTAT CTGTAGGTGC CTGTTGGGTGC	ACCCCATGAG ACCCCATGAG GCCCAAGTTG GCCCAAGTTG
19 E3-GRV E5-GRV E8-GRV E7-GRV MC1	61 CTSCTTSACA CTSCTTSACA TCCTACAACT TCCTACAACT	ACGGCGA ACGGCGA CTTCCAAAGC CTTCCAAAGC	FGLOTIGOLIC GGLOTIGOLIC GGLOTIGOLIC GGLOTIGOLIC GGLOTIGOLIC	GTTATCATGG GTTATCATGG GCTGGACTAA GCTGGACTAA	ACCAGGA CCAGGA TCCAAAGC TCCAAAGC	A CACCEG A CACCEG IGCGCAGLAG IGCGCAGLAG	GCGAAATTCA GCGAGGTTCA CTGAGTCTCG CTGAGTCTCG
20 E3-GRV E5-GRV E8-GRV E7-GRV MC1	31 CGAT GCCG CTTCCTCGC CTTCCTCGC CTTCCTCGC	O A A GOC A T A C P A A GOC A T A C O A GT 3 T C T T T C A GT 3 T C T T T	12 C1 C2 2 CC 12 C1 C2 4 CC 1 C 1 C 2 C4 4 CC 1 C 1 C 3 C6 4 C4 1 C 1 C 3 C6 4 C4	PTGGCTTCAC PTGGCTTC <mark>A</mark> C GCTCCATGCC GCTCCATGCC	CATCAAGCT CATCAAGCT CATCCGCTAC CATCCGCTAC	GAAGAGCCCG GAAGAGCCCG CAGGAAAGCC CAGGAAAGCC	TGTZGTGTGT TGTZGTQTGT GTTGGTTGTT GTTGZTTTTT
21 E3-GRV E5-GRV E8-GRV E7-GRV MC1	01 GGAACGAG GGAACGAG CCAAAGAAGG CCAAAGAAGG 	TAGATTTCTG TAGATTTCTG TGATTCTCTA T <mark>GG</mark> TTCTCTA	CCAGACGAG- CCAGACGAG- CTCCTCCTTT CTCCTCCTTT	GCCTGCCT GCCTGCCT GGCTCCGCCA GGCTCCGCCA	CGA CGA CGCGCATGA CGCGCATGA	CGGGAAGAAA CGGGAAGAAA GCTAGCGCAA GCTAGCGCAA	CCACATGC CCACATGC AAACCACTG AAACCACTG
21 E3-GRV E5-GRV E8-GRV E7-GRV MC1	71 TGGCCLCL TGCCCLCL TGCLCTG TGCLCTG	AACTAGOGUT AACTAGUGUC GGATACCCCC GGATACCCCCC	GCCAAAGACT GCCAAAGACT AGCCACGGCG GGCCACGGCG GGCCACGGCG	GOTOTA COGT GOTOCIA COGT A TGCCIA CIATT A TGCCIA CIATT	CATAAACTGG CATAAACTGG CGCCGATGGC CGCCGATGGC	GAACAACTAC GAACAACTAC GGTCAACCAC GGTCAACCAC	CTGCGTGGTT CTGCGTGGTT GC4GGT4GTT GC4GGT4GTT
22 E3-GRV E5-GRV E8-GRV E7-GRV MC1	41 GACCGCCATC GACCGCCATC GTTCCCAGTT GTTCCCAGTT	GGCGAATGTG GGCGAATGTG TATGACGGTA TATGACGGTG	GCATCGC GCATCGC CAGCAGTCTT CAGCAGTCTT	CCTGCCT CCTGCCT TGCCAACGCT TGCCAACGCT TGCCCACGCCT	GGGGGTATCC GGGGGTATCC AGTTATGTGG AGTTATGTGG	CAGTIGCA CAA CAGTIGCA CAA CGTIACCATICC CGCACCATICC	CPCGTTTTPG CTCGTTTTTG FCCATTTCTT FCCATTTCTT

23	11						
E3-GRV E5-GRV E8-GRV E7-GRV MC1	CGCTACCTCA CGCTACCTCA CCCGTCGTAG CCCGTCGTAG	T GCG OG TT GG T GCG OG TT GG A C A C 	CGGAGCCAAA CGGAGCCAAA -AGGCCT -AGGCCT	GGA GGA GTA G GGA GGA GTA G CGTCT GGCA G CGTCT GGCA G	AGAACCACCT AGAACCACCT AAATCTACTC AAATCTACTC	TOTTTGGAAA Totttggaag Gittccagaga Gittccagaga Gittccagtga	AAT <mark>GAA</mark> GGGC AA <mark>C</mark> GAAGGGC CTTAGACGGGC CTTAGACGGGC CTTAGACGGGC
23 E3-GRV E5-GRV E8-GRV E7-GRV MC1	81 TTTCCTGGTA TTTCCTGGTA TCT TCAAC TCT TCAAC	CCGCA TGGGC CCGTA TGGGC CTTCA TGGTG CTTCA TGGTG	A TGGA CCTGT A TGGA CCTGT A A GCCAA GGT A A GCCAA GGT	CGCA CGAAAA CGCA CGAAAA TGCTGTA GTA TGCTGTA GTA	GAQAGTGAGG GAQAGTGAGG TGGGTTGAGG TGGTTTAAGG	GAGGAAGOGA GAGGAAGOGA GCATCOTTGA GC <mark>ATCOTT</mark> GA	GLOTOLGOTT GLOTOLGOTT LCOTOGCOL- LCOTOGCOL-
24 E3-GRV E5-GRV E8-GRV E7-GRV MC1	51 CTGCGCAGCC CTGCGCAGCC 	TT <mark>C</mark> GGCLTTA TTTCGCLTTA GGTCTTCCTG GGTCCTCCTG	GTCCLGCCLT GTCCLLGCLT GTCCLTGLTA GTCCLTGLTA	GCI GTGCGCT GCI GTGCGCT ACCATGCI GT ACCATGCI GT	LTGGA GIG TTGGA GIG C-ATCGCCG C-GTCICCAT	P <mark>GTA C</mark> GA CAA PGTA CGA CAA PGT CAA GCA G PGT CAA GCA G	CT TGGGC CT TGGGC CT C <mark>T</mark> TGGGC CT CGT GGGC CT CGT GGGC
25 E3-GRV E5-GRV E8-GRV E7-GRV MC1	21 GCACCCACAG GCACCCACAG ATACCCAAAG ATACCCAACG	TTA CGG TG TTA CGG TG AG GC GTA G AG GC GC GC G	G C TGC TGCCTGC TGCCTGC TGCCTGC	IA CCGILA CIEG IA CCGILA CIEG A TCAAAA CCA A TCAAAA CCA	C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6	GGA ITTG GAGG GGA ITTG GAGG GTTA CCA A GG GTT CCCA A GG	GAAAT - ACAA GAAAT - ACAA GCAGTGTCCA GCAGTGTCCA
25 E3-GRV E5-GRV E8-GRV E7-GRV MC1	91 19CALG 19CALG 1910-CALG 1910-CALG 1910-CALG 1910-CALG	CCTC - CGCGA CCTC - CGCGA CATGCGACAA CATGCGACAA	CL CTA CLIPTT CLICTA CLATC CCGTTGL CGG CC	ACTATTTCGA ACTATTTTGA TCTATTTCAC	GGATTGQGGC GGATTGQGGC GLATCQGTCC	ATGCAACCAG TTGCAACCAG TTGCCAGCCCC	CCGGCAGCCA CCGGCAGCCA C
26 E3-GRV E5-GRV E8-GRV E7-GRV MC1	GGAACAATAT GGAACAATAT GCAACGGTTG	GTCA ACCCTG GTCA ACCCTG GTCTA ACCCTG GTCTA ACCCTG	GCA GCA CTA A GCA GCA CTA A AA CGGA GTAA	CHTTCAGGCC CHTTCAGGCC CTTCATCAAC	GOTGCGTTGT GOTGCGTTAT TCCGGATTCT	GGGTGC GGGTGC TGATGAACCT	AGTOTTGACC AGTOTTGACC TCTCTACAC
27 E3-GRV E5-GRV E8-GRV E7-GRV MC1	31 ACACTGGGCC ACACTGGGCC ACCATGGGTG	<mark>CGA CA</mark> GGGAA CGA CA GGGAA AA CCTTA G <mark>R</mark> G	CCTCCT GAAA CCTCCT GAAA CATCCA CGGA	CCCI GGI GI CCCI GGI GI CI CCTI CCTI CI	ACAAAGGGAA ACAAAGGGAA TCAAATCGGC	GCCAGCGAAA GCCAGCGAAA TAGCATCGAG	GGT GCCA TGA GGT GCCA TGA TCCGA GA GAA
28 E3-GRV E5-GRV E8-GRV E7-GRV MC1	301 ATTGACATGG ATTGACATGG ACTGGCTTGG	CCATTACACC CCATGACACC CAAACATTTT	TA GGGA TGCC TA GGGA TGCC CCATTTTTTT - <mark>A GGGA A</mark> G <mark>CC</mark>	GGCGAAAGC GGCAAAGC GCCACGATC GGCGAAAGC	A CCATGA A PT CCATGA A PT CCCATGA A PT A CCATGA A PA	GL CATGGTCG GL CATGGTCG THC GC GC TTA GL CATGGTTA	6. CC. CTT 6. CC. CTT 7. CCCTTGG 6. CL CC- CTC
28 E3-GRV E5-GRV E8-GRV E7-GRV MC1	71 CTCCCGAGCG TTCCCGAGCG CAACG CCCCARGGCG	AAGGELCTCT AAGGELCTCT CLGGELTATT	CCL CGGCTA CCL CGGCTA TGTA CL GTTT CCCCGGCTA	GCCGC GCCGC GCCCC <mark>AACGCC</mark> GCCGC	GGLC GGLC ITCTLGLGLGLA GGLC	AATGGCCGGA AATGGCCGGA AAGGCTCCAA AA <mark>TGGCC</mark> GGT	GGGTATCATG GGGTATCATG GGGTATCATG GGGTATCATG
29 E3-GRV E5-GRV E8-GRV E7-GRV MC1	41 TCAAGCADAA TCAAGTATAA TATTTCGCAA TCAAGTGTAA	T <mark>C</mark> AATGTCTT T <mark>C</mark> AATGTCTT ATA <mark>CTGCG</mark> TT TAAATGTCTT	CGCTAGTGGC CGCTAGTGGC GAACCTTGGA CGCIAGTGGC	AAAAGCC AAAAGCC TCCCGGTGGTT AAAAGCT	GCGA CA CA GG GCGA CA CA GG GTATCA CTCG GCAA CTCA GG	GAGAACTCCT GAGAACTCCT CGGGGCAGGG GGGAGCTCCT	CGAAGCACTG CGAAGCACTG - <mark>TC</mark> AGGCTTA CGAAGCTCTG
30 E3-GRV E5-GRV E8-GRV E7-GRV MC1	11 TATGGAGAGG GCCTTAAAGT	TC-CCGTGCA TC-CCGT2CA TC-CCTTCTC	GGAGCTCCAA GGAGCTCCAA AGC GGAGCTGCAA	GAGACAAACC GAGACAAACC C <mark>CTTTA</mark> 	TTGGGGTGCT TTGGGGTGCT TGAAGGTGCT TGGGGGTTTTT	CACACCCCAT CACACCCCAT GACCCTCGCG GACGCCCCAC	CCLCCLCC CCLCCLCC CCLCCLCC CCLCCLCCC CCLCCL

30 E3-GRV E5-GRV E8-GRV E7-GRV MC1	81 CAACGGGT CAACGGGT TCAGAGGTCT 	GGTGTTCACC GGTGTTCACC IATGTTCAGG GG <mark>TGTTCA</mark> CC	CCGCITA - CITA CCGCITA - CITA CITCITCA ACGG CCGCITA - CITA	CCTCCAAAGA CCTCCAAAGA CCTGCTTG CCTCCAAGGA	CCCAAACGAG CCCAAACGAG <mark>NACC</mark> GG CCCAAACAAG	AATATCAGGG AATATCAGGG ACTCTCTGGC GATATCAGGG	GTCGTTCGGC GTCGTTCGGC TGCC-CTTGT GTCCTCCGGC
31 E3-GRV E5-GRV E8-GRV E7-GRV MC1	51 GTCTGCGLCC GTCTGCGLCC ACTCTCC GCCTACGCCC	CACCAAAAAC CACCAAAAAC CAGACATCAT	CGGGGGGGCC CGGGGGGGCC CT2GGGGGCC AC2GGGGGGCC	IGCICIATICI IGCICIATICI IGCICICIATICI IGCIATACCI	GGAAAAAGTC GGAAAAAGTC CGAAA <mark>CT</mark> GT1 GGAGAAGGTC	GTGGTGGTG GTGGTGGTG TCLGCGCG GTLGTGGTG	TTA CL CCCCA GCGCLATCAA CCCCACA
32: E3-GRV E5-GRV E8-GRV E7-GRV MC1	21 CGTACCAGAC CGTACCAGAC TTTTCTGGAA CGTCCCAGAC	GAC-GCACCA GAC-GCACCA CGCGCCIGCA GAC-GCGCCG	GGCGAAGTGG GGCGAAGTGG GCTGGAGCGA GGAGAAGTGG	AGGTATGGAT AGGTGTGGAT GGGGCLATTT AGGTATGGAT	TCL CGL CL GT TCL CGL CL GT GCCL TCL TTG CCL CGL CL GC	TTGCTGCCCA TTGCTGCCCA TTCCTGTGTAGA	
32 E3-GRV E5-GRV E8-GRV E7-GRV MC1	91 CGTAGGGCCG ATTTACTCCT CGTTGGGCCA	CG. CTGCG. CG. CTGCG. CG. CCGCG CG. CCG. CG	ICCCCCIGAA ICCCCCIGAA IATTCAAGGA	CG CG G <mark>1-TATT</mark> G 1 GG C <mark>G</mark>	GAGGG GAGGG ACACCAAAAT GAGGG	CCCAGATTGA CCCAGATTGA CAGTGCTAGG CCGAGATTGA	TGGCCTTTTA TGGCCTTTTA TCCCAATACG T <mark>GGCCTTTTA</mark>
33 E3-GRV E5-GRV E8-GRV E7-GRV MC1	61 TCCCCCCTAC TCCCCCCTAC TCCACATTGT CCCTCCTTAC	ICGATACCI ICGATACCA ACGAGACCCG ICAATACCC-		IGGACA IGGACA CGGGGIICGIIG IGGACA	CCGCCAGPTT	AARC AARC CACTTGAC	CAGGGAGATG CAGGGAGATG TGGGGAGACA CAAGGAGATG
34 E3-GRV E5-GRV E8-GRV E7-GRV MC1	31 CCGCGTTGCT CCGCGTTGCT GGATTTTAGG CCGCGTTGCT	FCGCTAFTG FCGCTAFTG CTTCACTTG FCGCTAFTG	GICGGAGCII GICGGAGCII GICICCACIC GICGGAGCIIA	TTAAGCGCGA TTAAGCGCGA CAGACCTIGGC	GOTACGTAGG GOTACGTAGG GTACACTTCC GOTACGTAGG	CGGAGGAAGC CGGAGGAAGC CCGACTAAAA AGGTCGGACT	CCGTTCAGC CCGTTCAGC ATTTTGCGCC
35 E3-GRV E5-GRV E8-GRV E8-GRV E7-GRV MC1	01 CTCCTCATAA CCCCCCCAA CCCCCCCCAA CTCCCCCCAA	ICTIGGCAGCC ICTIGGCAGCC ICCCCAGCCAGCC ICTIGGCAGCC	ICAGGIIGGAA ICAGGIIGGAA GCACAA GGIIG	AGCCTAGCCC AGCCTAGCCC GGCTGGAACCC AGCCTAGCCC	A CAACTA CPT A CAACTA CPT A CATCI GCA G A CAACTA PPT	ACTCA GGCCG ACTCA GGCCG CGCAA GGCA AATCA GGCCG	CCAAAGATGC CCAAAGATGC CTCAAGTA CCCAGAATGC
35 E3-GRV E5-GRV E8-GRV E8-GRV E7-GRV MC1	71 GGAAGATICTIG - CCAGATICTIG AGAAGATICTIG	CCGGGGAATG CCGGGGAATG ITCICICGGAA ICGGGGGATG	GTGAAGGACG GTGAAGGACG GGTCCGCAAC GTAAAGGATG	CACTGGGAAA CACTGGGAAA AATCGGGGGAG GGCTGGGCAG	ICTGACCAGO ICTGACCAGO IATGTCCCGG ICTGICCAGO	AGGAAG AGGAAG G <mark>CAACTCTAT</mark> AGG <mark>AA</mark> G	CCTA CCTA FGCCCAGCTC CCTA
36- E3-GRV E5-GRV E8-GRV E8-GRV E7-GRV MC1	41 CATAGOGGGG CATAGOGGGG CCTGTTGGOGG CATAGOGGGGA	GCIGTGTCCC GCIGTGTCCC GGGCTGTTAG GCGGTGTCCC	GCGGTTTGC CTTGACACCC CTTGACACCCC	GCAGACTGCG GCAGACTGCG AAACATGGCG GCTGACTGCG	GCAAACCCGC GCAAACCCGC CGCAACTCCA GCAAACCCGC	CGCCAATAGA CGCCAATAGA TGGCAATGGT T <mark>GCCAATAA</mark> G	TGGTGLCLCT TGGTGLCLCT CTGTGLGCGTTC TGGTGLCLCC
37 E3-GRV E5-GRV E8-GRV E7-GRV MC1	11 GCTTTGGAAG GCTTTGGAAG ATGTATGCCA GCAGAAGAGG	CAGGGGAGAC CAGGGGGGGGGC CAGGGGGGGGCC CAGGGGGGGG	AAAT AAAT TTCCACCTGC	GTGGCGTGT AGTGGCGTGT AGTGGCGTGT AGTGGCGTGC	CTCLCT3GG CTCLCT3GG TCLGGGCTC CTCLCT3GG	GCCTGAAGCC GCCTGAAGCC GCCTGAGCTTCC GCCTGAGGCC	CC CC
37 E3-GRV E5-GRV E8-GRV E7-GRV MC1	81 GTACCA GTACCA CAGTGGOTOG GCACCA	CGCGTCCGCA CGCGTCCGCA C <mark>AGGTCTTCC</mark> C <mark>GCGTCCGCC</mark> A	AAGCGACGU AAGCGACGU AGC <mark>UAGCGC</mark> U AA <mark>GCGACG</mark> UA	AAACTACGAC AAACTACGAC IGACGCTAAC AAACTACGAC	CCCGCCCGGG CCCGCCCGGG CCAGCATCA	GTTAATTCTA GTTAATTCTA GQAATCTTCC GTTAATTCTA	CCACAGGT CCACAGGT CCAGAGCTCT CCAGAGCTCT

38	51						
E3-GRV E5-GRV E8-GRV E7-GRV MC1	GATGAT <mark>GGCT</mark>	TGGCAAC TGGCAAC CTGGGGTGGC TGGCA GC	TGTGGGATCC TGTGGGATCC TGGGGGA <mark>CCC</mark> TGTGGGG <mark>ATCC</mark>	CAGITICAGGI CAGITICAGGI CGGITAAGIA CAGIICCAGGI	CTCTTTCACT CTCTTTTACT AATAACA CTCTTTAACT	AGATGT GGAT Agatgt ggat Gggtcaggaa Ag <mark>atgt</mark> gt ggat	GAACTGGTTA GAACTGGTTA GGGGG <mark>A</mark> GT GG <mark>ACTGGTT</mark> G
393 E3-GRV E5-GRV E8-GRV E7-GRV MC1	21 CATTOGICGG CATTCATCGG ACCTCATCCT ATTTTCTCTCGG	CCTTCA CTCG CCTTCA CTCG CCCTCA TTCT CCTTCA TAGG	AGGCGAAGTA AGGCGAAGTA A <mark>CGGGCTCCG</mark> GG <mark>AC</mark> GAAA <mark>CC</mark>	CCGGTGTATG	GGTTGTC GGTTGTC GCACAATTTG ACGAGTC	A <mark>rgoggaaga</mark> Aagoggaaga Aag <mark>cogggaaga</mark> Aag <mark>coggaaga</mark>	GATAGAGGG GATAGAGGG G <mark>GTCCGTAG</mark> G G <mark>ATA</mark> GGGGG
39 E3-GRV E5-GRV E8-GRV E8-GRV E7-GRV MC1	91 TCTCCTCCAG	Tectes for Tectes for Getes for Tettes for	- AGGAAACTG - AGGAAACTG CGACCGATAA CGGGAAACTG	GCAGCTAGGC GCAGCTAGGC CCACCTCGTG GCAGCTGGGC	A G C GTA A A G C GTA A A GT GGA GGG A G C GTA A	GCT CGGGT GT GCT CGGGT GT GCT GGG A GT G GCT CGGGT GT	GTGAACCCCA GTGAACCCCA TTGCTACCCA GTGAACCCCA
40 E3-GRV E5-GRV E8-GRV E7-GRV MC1	61 CLCCGLCGTA GCTCGLCGTA CLCCGLCGTA CLCCGLCGTA	TC CCCCTCT TC CCCCCCT TC TCCTCCCCCT TC CCCCCCT	TGGACTTAGT TGGACTTAGT C <mark>AATCTTTGG</mark> T <mark>GGACTTAG</mark> T	ACGCGACAAC GGGAG ACGCGATTTTG	CCGCCLGCGC CCGCCLGTGC	CTCAGGTGGG CTCAGGTGGG GGC TCCACGTGGG	AGGTAGGTTC AGGTAGGTTC ATGGTGGCTC
41: E3-GRV E5-GRV E8-GRV E7-GRV MC1	31 GGCGCCCCAT GGTGCCCCAT AGCAACCACC GGCACCCAAT	CCGA CA GGGA CCGA CA GGGA GCGGCA CCGA CA GGGA	AAAGTCGTTG AAAGTCGTAG GCAGGT AAAGTCGTAG	GCTCCGGCGC GCTCCGGCGC GGGCC <mark>T</mark> GC GCTCCGGCGCGC	TCCCCCLCCC TCCCCCLCTCC TCCCCCLCTCC	TAATCTAGCG TAATCTAGCG TTCACCGCTG TAAACTAGCG	GCTCATACGC GCTCATACGC GCATGCATACGC GCCCATACGC
42 E3-GRV E5-GRV E8-GRV E7-GRV MC1	01 ATTGTGCGAT ATTGACTT ATTGACTT	GCGTTGGTCC GCGTTGGTCC CGGCTCC <mark>A</mark> CC GCGTTGGTCC	CCCTCLGCLC CCCTCLGCLC CTCCTCLGCLG CLCTCLGCLC	A TGGCGATICT GCAACGATICT GCAACAACCT A TGGCGCGCTCT	GCCATAGGGA GCCATAGGGA GGGCTTCAGG GCCATAGGGA	ICGGAAGGTI ICGGAGGGTI GGTCAGGGTIC CGGAAGGGCC	GTGGTACICC ATCCTACICC ATCCTACICC GTGGTACICC
42 E3-GRV E5-GRV E8-GRV E7-GRV MC1	71 TTCCAACAGG GGGTGATTAG GTTCAACAGG	CGGCACC CGGCACC AAGGCCCAG CGGCACC	T <mark>CTTCLCCLT</mark> T <mark>CTTCLCCCLT</mark> T <mark>CTTCCCCL</mark> T	GACCAACAAG GACCAACAAG ATAGAGCGGC	ACTEGEC CTEGECALC GCACTECTEC	CTAGGCTGGG CGGGCCTTTA	GCCCTGCACG
43 E3-GRV E5-GRV E8-GRV E8-GRV E7-GRV MC1	41 GCC AGCTCTCAC	G <mark>un</mark> gg <mark>og A</mark>	- TCCAACACT GCCAATCCAT	A COTCGGGCCG A A TCTGCCGF	ATTACIAGE ATCCACCCA	ICTCATACIC ICTTCAAACC	CAGACGITIC <mark>IA</mark> CAGATCGGAA
44 E3-GRV E5-GRV E8-GRV E7-GRV MC1	11 PAGCGTTGGG GAGCGTCGTG	T <mark>AGGGAMAGA</mark>	GTTCACCCC- GTGTAGITCT	C <mark>4</mark> GCGQGCCC CGGTGGTCGC	<mark>CCGAT3GA GA</mark> CG <mark>TATCATT</mark> A	AATCCG AAAAAAAAAAAA	GG AA

Appendix IV: Aligned GRAV-CP sequences

Appendix V: GRAV sequences aligned with assigned representatives from the Luteoviridae family.

E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero DEMV-Enamo	541 CTCCTATC CCCCTATC CTCCTATC CGGC TAGCTCC CCCC-CGC	GAACCTGAAT GAACCTGAAT GAACCTGAAT AAATTTAAGG AAACCTGGAG GAATCIGCIG	CAGTETTETT CAGTETTETT CAGTETTETT C T	CC CCTT CCTT CCAC TCAC	A GIGITACCA G A A TIGITACCA G A GIGITACCA G GA GGA TIGG CA GGA A CCGG CA GGA A CCGG CA GGA A CCGG	ICAAC ICAAC ICAAC ICAACAIGIG AGAAAACCA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	601 CGGGAT CGGGAT CGGGAT TRATEGACA CCGCLATCC CCGCLATCC CTGCATGGAC	GAAGCIGTTT GAAGCIGTTT GAAGCIGTTT ATGCCGCITA ACIGCCGCITA ACIGCCCCAT	rerecteere Terecteere Terecteere Terecteere Terecteere	AACCGGGGCT AACCGGGGCT AGCCGGGGCT CUCTGGGAGC CACC	GGACTTTGAA GGACTTTGAA GGACTTTGAA GGACTTCGAA TCCTATCGAG TTCTCA	AATCAAACTG AATCAAACTG AATCAAACTG ATTCCTCTAA ATTCCTCTAA AGACGCAATG AGACGCAATTG
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	661 A-GICCAAIC A-GICCAAIC GICAAIC GICACAAIC CGICGINATT CGICGINATT	IGGCAATG-G IGGCAATG-G IGGCAATG-G IG CGGCGGT <mark>3I</mark> G T <mark>G</mark> C	CGGT CTTTCA GGT CTTTCA GGT CTTTCA GGCT CTTTCA GGCT CTTTCA GGCT CTTTCA GTT GGCA	GGA GA GA GA G GGA GA GA CA G GGA GA GA GA G GA GA GA GA G A <mark>G</mark> A GA TA GG GA GA GA GA GA GA TATICA GA A G	GITICGTT GTTCGTT GTTCGTT CCATCGCTCA CCATCGCTCA CAACTTAC CAACTTTCC	AATCTT AATCTT AGCAAAACTT TGCCGATTTC TCCTATTG
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	721 CAAGCGACGA TAAGCGACGA CAAGCGACGA -AAGTATATA TTGATGACGA GAAGGAGTGG	GC GC GC GT GTACGGAAGA G	- ATATATAGC - ATATATAGC - ATATATAGC - ATATATAGC - AGCCCTGGA GATOTTTCGA	GTCAGATTCC GTCAGATTCC GTCAGATTCC GCTGAATCCC AGCCTTTGTT AGCCTTTGTT	GGTATCTCAT GCTATCTCAT GCTATCTCGT GCTCTACTCGT GCTCTAGIAG GGTTTCTGAT	CTTCCCGTTG CTTCCCGTTG CTTCCCGTTG ATGCCTACLC CTTCGTGLG CTGCTTACLA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	781 	PATRCATAAC TATRACATAAC TATRACATAAC TATRACATAC TATGCATCAA TGCGCATGAT	PCCPGCGPCP PCGCGCGCGPCT CGCGCGCGPCT GAAAGGGPA PATAGICTC G <mark>C</mark> GC	CCACACGIGC CCACACGIGC CCACACGIGC CCGIGIGC CCGIGI CAACGCIGCI	GAGITITCAAT GAGITITCAAT GAGITITCAAT AITICAGI GGGATITICG CGG2 CTTACT	14 14 CACCAC CACCAGAA CACCAGAA CACCAGA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	841 AAUGUTUC AATGTTTT AATGTTTC CATGGCUA TTCACGCUCG C- CAGGCTTT	AA AA AGCCGAC CGCITIGC ATCTTGCGCT	ACGGGCGG ACGGGCGG ACGGGCGG - AAAAGGCA - CGCLGCLCG ICGCLGGLGA	CITCTTCTC TTCTTCTC CTTCTTCTC CTTCTTCTC CTTCTT		CTCT CTCT CTCT CCTTCGCGAA CCTTCGCGAA CCTTCGCGAA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	901 GACAGE GACAGECC GACETECC	CCTTG CCTTG CCTTG -GCTTTCTG FGGTGTCCTG FGGTGTCCTG	GAGTTTGTA AAGTTTGTA- GAGTTTGTA- AAGTOACTA- G-GTTAATG <mark>C</mark> GAGTCTATG-	- AGCCATGCT - AGCCATGCT - AGCCATGCT - AGCCATGCT CTCCCT CAACCTTCCT GCTTTGCT	CAAATCCCGG CAAATCCCGG CAAATCCCGG CAATCCCGG CATCGCCAA C CTGTTCTAG-	ATATATTGAG ATATACTGAG AT <mark>GTACTG</mark> AG - <mark>TGTACGTA</mark> G
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	961 CGTAATTAGC CGTAATTAGC CGTAATTAGC CGTAATTAGC CACCAAT C <mark>ACCAGCCC</mark>	PGCAGGTAAA TGGAGGCAAA TGGGGGCAAA AGGGAGTAGA - GTAGCCATAA T <mark>CCA</mark> GGCAAA	TCTTTAGCTA TCCTTTTGCTA TCTTTTTGCTA T TCTTTTT TCCTTTT TCCT	GCTCGAATGC GCTCGAATGC GCTCAAATGC	DAATTICA CCA TAATTIC <mark>G CCA</mark> TA <mark>GTITICG CCA</mark>	GCAATCACAC GCAATCACAC GCAATCACGC - CAACAACAA - CCATTCCCA - CCTTTATAT
1 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	021 GGCCATCCTT GGCCATCCTT GGCCATCCTT AG GGTGCTGCTT GGCAGCCTT	ICCIPATICCI CCCIPATICIT ICCIPATICIT ICCIATICCI GCGCICCICCI ICCICCICCI	GGCCPT GGTCPT GGCCPT GG TTCTGG TTT <mark>GGGCCP</mark> G	ACCGGGAGA ACCGGGAGA AAGGGAT GGCAAGAGG <mark>T GCCGAGAGGG</mark>	CCAAATCC CCAAATCC CCAAATCC CCAGAATCC CCAGAAATA CCGGAAATTA CCGGCATC	GAGGAAGAA
1 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	081 MGIGOIGIG		I GOI I COI CI I GOI I COI CI I GOITI CII CI CI I TI COOITI CI CII TI COOITI CI CII TI COOITI I GI II A COOIII	GCTTAAC GCTTAAG GCTTAAC TTTTAACCGCC ATTAAACCAGG ACTAACTACT		

1 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	141 G G G G 	ITTGGA G ATTGGA G ITTGGA G ICAAGAAGGA AAGAGGA GCC ACGGAATIGG	CGTTC: ACCC CGTTC: ACCCC CGTTC: ACCCC ACGTC: ACTTC ACTTC: ACTT GGCTC: TC: AC	TCA	ACAAACCT ACAAATCT ACAAACCT AAGG AACTG GCATTGJ CTT	GAAAGGA GAAAGGC GAAAGGA AAAACGAAGA AAGAGGG GGAATATG <mark>TT</mark>
1: E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	201 - A TGC TA GGA - A CGC TA GGA - A TGC TA GGA TGC A GCA TGG - CATALCA CGC CATALCA CGC CGC CATALCA CGC CGC CGC CGC CGC CGC CGC CGC	ATTGGGTCGC ATTGGGTCGC ATTGGGTCGC AAGATGCAGC AGGTTATGGA AGGTTATGCA	TTTCAATTTC TTTCAATTTC AGCAGCICTI ACTTCCATTTC CCT-GGGTTA	CTCTGTCCAG CTCTGTCCAG CTCTGTCCAG CTCTGTCCAGA- GTCTGTAGA- CTCTGATGA- CTCTGATGA-	ITTAA CAGGGA ITTAA CAGGGA ITTAA CAGGGA - AAA CATA CA AAA CATA CA A - A GATGATIGA	CGATCTCTT CGATCTCTTT CGATCTCTTT GGAGCTGCAT CGAACCAAC AGATCTTGAT
1	261					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	A DODTTGCCA GTOTTTGCCA A TOTTTGCCA GI OTTCICA GGCCTGCTCA A A OTTCTTCT	GAATTGATCG GAATTGATCG GAGTTGATCG IGGTTGCTC- OTGCTTATC- IGGCTTATC-	GACITT GITG GACITT GITG GACITT GITG <mark>CT GAAGAA</mark> A <mark>CGAGGAGT</mark> G	AAC AAC AAC AATT <mark>GGCT GCA</mark> G <mark>ACCT CCGA</mark> A	CIGIT CIGIT AAAAAAIGIGA AIGIG GAGAACITC-	GT CT TT Q. GG GT CT TT Q. GG GT CT TT Q. GG - CT CC CC G-CT CQ. GC G-CT CQ. GC - CT CT A. GT
1: E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	321 TCTTCCACGG TCTTCCACGG TCTTCCACGG TCGTCAACAA GCCTCAACAA GCCTCAACGA	TCATTATIAG- TCATTGTAG- TCATTATAG- CGA TAG TAAGCTTAAG	A TOTOTOGA G	- ICITICCGIG - ICCITCCGIG - ICITICCGIG - ITIICCACCA CCATICAGAA	GGTAAGACTC GGCAAGACTT GGTAAGACTC GGAGATTACAG GAACAGGGAA GAAACAAGGC	TAGGAGAAGC TAGGAGAAGC TAGGAGAAGC GAGGAGG <mark>TTC C</mark> AAGATA <mark>CCC AAGAAGA</mark> CCC
1: E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	381 CC CC CTGLANALGT CTGLANALGT CTGLANALGT CCGLTCLTCA	AATC AATC TGAAGTT TCAAACCTTT AAGAACCATC	<mark>G. Testerce</mark> Ccc <mark>gg sterce</mark>			AATTTCCCCC AATTTCCCCCC AATTTCCCCCC AATTC GACC GACCCCCCCCAA
1. E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	441 TATGGGCTTT TATGGGCTTT -ALGGCCTTT -AGGTTTTGT ALGGGCTTTTGT	CITTCGACTT CTTCGACTT CTTCGACTT CACCTGGACTT ACCCTGGATGG ACTCCGATGG	CGITICCCIGI CGITICCCIGI CGITICCCIGI CCIGI CCIGI CCGICCIGI	GITATTCICC GTTETTGICC GTTATTCICC GAAAAGCICG GAAAAGCICG GAATGGAG	TCATCTATGG TCATCTATG TCATCTATGG CCA TCTGG TCAATCTGG GG TGTGG	A
1: E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	501 TATCGAG TATCGAG TATCGAG ACATCAAG TGCAAAG AGCTCTTCAAG	ACAGAGGCCC ACGGAGGCCC ACAGAGGCCC GICCAAAA G CTCGAGAAAG	A GTCA CA GTT A GTCA CA GTT A GTCA CA GTT A GTCA CA GTTT A GTCAA CA TT GCCA GA CGGG	Territerene Territerene Territerene Territerene Territerene T <mark>erreter</mark> e	TAGGOTOCAT TAGGOTOCAT TAGGOTOCAT TAGGOTOCAT GAAOITTTCA ANAT STOTT G CCCATTCATG	AGGAGACGG- AGGAGACACGG- IGGCACACGG- IGGCACACGG- GTGCACAGA GTGCACCAGA TTTTGGACGCAG
1: E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	561 - TGTTAATTIGA - TGTTAATTIGA - TATTAATTIGA OTCCAAATTAT DTGCAAC-AT CACCGTCTAC	A COGOTON DO A COTOTON TO COTOTON TO COTOCA TA CO COTOCA TA CO A TTA A TOGTO	CTTAGGAATA CTTGGGAATA CTTGGGAATA CTTGGGAATA CA CA	GGAGGGGGGG GGAGGGGGGG GGAGGGGGGG IGTGAGAA AAGAGAATGG AAGAGAAG AATGGAAAG	ATTALACICCA ATTALACICCA ATTALACICCA ATTALACICCA ATTACICCGGG AAACICGGGG TALACICGGGG	TGCTCCATCC CGCTCCATCC TGCTCCATCC TGCTCCATCC TGCTCCAATG TGATCTTTACA
1 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	621 TCGTCATCGC TCGTCATCGC TCGTCATCGC CARCANTTGA GCCCTTTACG	ATCT CAA IT A TGT TAG TT A TGT CA GTT A GG CCA GC TT A GGT CA C	G G G	AAAAGAGAGA AAAAGAGAGA AAAAGAGAGG CAAAG GAAAAGAAAA	TAACAATCA TAACAATCA TAACAATCA COGOACATA COGOACATA COGTAATCA COTTAATCA	A GTI CCA CA CC A GTI CCA CA CC A GTI CCA CA CC GTI CCA CA CC GTI CCA CA CC GTI CA CCA CA GTI CA CA CA GTI CTI CTI CCC
1	681					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	CCGGTCGCTA CCGGTCGCTG CCGGTCGCTA GCGCCTGCCTA TTGCCTGCCT ATGGCTGCC	TCGAA TCAAA TCGAA GATGCTCCCC AACTTCCCGT GGGGCTCCA	ITTACAGTT- ITTGCAGTT- ITTACAGTT- CIGCOCAGTC- ITTACAGTACAG ITTA	GTTCAA GTTTAA GTTTAA GCACGAA GTCCCA CCGCCCACCC		CATCGGGGTG CGTCGGGGTG CATCGGGGCTG CATCAAAAATG TTAAGGGACA

17 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 CCCGGCTACA CCCGGCTACA CCCAGCTACA ACCATICCA ATICA GGTGC- GTCA GGTCA	AAGGTGTTGT AAGGTGTTGT AAGGTGTTGT <mark>ATCC</mark> AAAA <mark>CTATT</mark> C	PCTTT PCTTT CCTGC CCTCTTTACG	GAGCGAGATCG	TGGTA TGGTA TGCTC CGGTT GGAAGTGGTA	ATTOTOTOATT ATTOTOAATT ATTOTOTAATT GTTOTAGAC AGTACAAACG TCTGCAAGCT
18 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	A C. CAA COLU A C. CAA COLU A C. CAA COLU A C. CAA COLU GC. CAA COLU GC. AAA COLU GC. AAA COLU GC. AAA COLU	RETAATTACC TGTAATTACC TGTAATTACC TGTAATTACC TGTAATTACC TGTAGCTGTC TAGCACCGGC	AACA AACA ACG 	ICCCAGGCIC ICCCAGGCIC ICCCAGGCIC CICAGGCIC IGGCAGGCIC ICCCGGCITI ICCCGGCITIG	ICCICITATCCG- ICCITATCCG- ICCITATCCG- ITCATICGG- CCITCGACICGC ITCGACICGACICC	G <mark>A</mark> GG <mark>A G</mark> AGG
18	61					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	- TATCATACG - TATCATACG - TCTCATACG - TCTCATACG - CTCTCATACG ACGCAACATA - TCTCAACATA	CAATCAAACC CAATCAAACC CAATCAAACC GAGTCAGG <mark>TT CAATCTTCCA</mark> C <mark>GGCCCGGT</mark> G	A TTCCAGGAA A TTCCAGGAA A TTCCAGGAA I TCCAGGAA I TCCAGGIC G TCCCGGIC A TTCAGGA	PCTGGGGA PT PCTGGGGA PT PCTGGGGA PT C C	T <mark>GCCACCAAT</mark> T <mark>GCCACCAAT</mark> T <mark>GCCACCAAT</mark> T <mark>TTCAATACT</mark> T <mark>GCCAAAAGC</mark> T <mark>GCCCCTATT</mark>	GAQUUGA CA GAQUUGA CA GAQUUGA CA GGQUUGCC GGQAUGA CA GAQAUGA CA GAQAUGA CA GAAGA
19 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	221 GCCATCATGC GCCATGC GCCATCATGC GCC	CATTA CATTC CATTA CATTC CATTA CATTC GETCA CATTC GETCA CAGT G AATTA CGT G CGT CGCAGTC	CACGTAAACG CACGTAAACG CACGTAAACG TTO CAC	T <mark>GGAATTTCC</mark> T <mark>GGAATTTCC</mark> T <mark>GGAATTTCC</mark>	CTTTATTGGC CTTTATTGCC CTTTCTTGCC C	GGGAATCA GGGAATCA GGGAATCA GGAGCCCG GAACA GGGAACATG
19 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	181 - CCAT GTA - CCAT GTA - CCAT GTA CCTA C GTA - TCA GCCCA GCCATCGGA	AGGCTCCGCG AGGCTCCGCG AGGCTCCGCG AGCACTCTGG ACTTCTGG AGCTTTCCCG	DAACT TAACT TAACI TAGAA AGUGI AGAATAGGGC	- TTTCTCGPT - TTTCTCGTT - TTTCTCGTT - TTCTTCGTT - TCGTTTCT GTTTGCTTT GTTTGCTTT	GEGCGCGEAA GEGCGCGEAA GEGCGCGEAA FAECGCAAA FEGC TEACCCGECC	CPGGCTTGCA CPGGCTTGTA CTGGCTTGCA CPGGCTTGCA CPGCC
20 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 AGTTGACCCT AGTTGACCCT AGTTGACCCT CT	ATCCCATTTG ATCCCATTTG ATCCCATTTG ACCCATTTG AGTTTAGGAT CATCGA CACCTCCA	TCATCTTCCC TCATCTTCCC TCATCTTCCC TGTTCTTCA TGATCTATC TCTTCTCCCA	A CITICITA CAT A CITICITA CAT A CITICITA CAT A CITICITA CAT A CITICIA CITICICA	ITGIA CA ITGIA CA ITGIA CA ITGIA CC TAGGGCC ITGIGIGIGIC	TAGTTCAACG TAGTTCAACG TAGTTCAACG CAACGCAA-G TATCACAAGG TATCACTCAAGG
21 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 GCTTC: GA-T GCTTC: GA-T GCTTC: GA-T CCTC: GA-T CCCT: GA-T CCCT: GA-T CCCT: GA-T	CGATAAATTG CGATAAATTG CGATAAATTG GGATGAACTC GGATGAACTC GGATGAAATG	A TCG A TCG A TCG G TGG G A A A G A A A G CTG A TA A TT	<mark>TICCCACC</mark> TICCCACC IIICCCACC CAATICAA <mark>CCACACACAA CCCACACACA</mark>	AGCCCTEAT - AGCCCACAT - AGCACACAT - AGCACACAT - AGCACACCT - AGCACACCT AGAACAATC	CTTA CTTA CTTA CTTA CTCA CTCA CTCA CTCA
21 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	GINGGAAG	- ITOTGTGGG - TTOTGTGGG - TTCTGTGGG ATCCTACAGG	A CCCCITTCA II A CCCCITTCA I A CCCCITTCA I A CCCCITTCA I - CCCITTCA I A TITTTCITA IIA A CTITTCICITA II A CUTTCA IIA G	ATCCCCAAAA ATCCCCAAAA ATCCCCAAAA AGCACCAAAA GAAGCAGAGA GAAGCAGAGAA GTTCCAATAA	CODATCOTT CODATCOTT CODATCOTT GADACCOTC COTCC GGDAGCCCTC	TTGCAAGGTT TTGCAAGGCT CCTCCG GCTCCA GTTTCAATTA
22 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 G-CGGTTCGG G-CGGTTCGG G-TGGTTCGG G-AGACCTGA - AGACCTGA GAAACCTGA	GIGGIIGGIGG GIGGIIGGIGG GGAAG GGAAG GGAAGIGIIGG GGAAGIGIIG	AGGGGGGGT - AGGGGGGGGT - AGGGGGGGGT - GG <mark>A NA</mark> CGG - A <mark>GGCC A</mark> GGTTC	GGGTT GGGTT GGGTT GGAATT GAAGC CAATTAGGGTT	GIGGCGCIGG GIGGCGCIGG GIGGCGCIGG GIGGCGCCCI GIGGCGCCCI GIGG-GCIGA	CCCCGCGGGGG TCCCGCGGGGG TCCCGCGGGGG TCCCACCACAA CCCCACACAC TCACACAAA
22	81					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	GGGGAACTGT GGGGAACTGT GGGGAACTGT 	CETCTACCTA CETCTACCTA CETCTACCTA CETCTACCTA TA	TTTCGGGT TTTCGGGT TTTCGGGT CTTCTCGGAT	TTTGGACCTG TTTGGACTTG TCTGGACTTG GAAATT AACCGG AAACGG	GCACTTGATG GCACTTGATG GCACTTAATG GTAAATCATG AAAATCCGTG ATTATTCCGG	GTGAACCGGA GTGAACCGGA GTGAACCGGA IGGGTT CAAACTCCAG ICGACTCCAG

E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero	2341 AGGAACCAGC AGGAACCAGC AGGAACCAGC S GAA	GATTGCGCTG GATTGCGCTG GATTGCGCTG - ATTGCGCCTG GCGCGG 	GACCCATTAC GATCCATTAC GATCCATTAC TTTACTCTCC TCTCCGCCAC	CCTTGTAGAG CCTTGTAAAG CCTTGTAAAG CGAAG CCCGGCTAAAA	G <mark>AACC</mark> GGAAT G <mark>AACC</mark> GGAAT G <mark>AACCGGAAT</mark> - G <mark>A</mark>	TGATCTTCTG TGATCTTCTG TGATCTTCTG
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	AGAAACAAAG 2401 TCGCATCGTG ACGCATCGTG ACGCATCGTG sTCTTG TATT CCCTCCCGCC	CCA CCA CCA CCA CCATGAGCT CCAA CCAAGAGCCG		G ITCG- ITCG- ITCG- ITCG- ITCG- ITCG- CTGGG GCATGICCGT	GIAGAGGAG GIAGAGAGAG GIAGAAATAA CGITCAGAAA	ACCCCCGTT ACCCCCATT ACCCCATT ACCCCGTT ACCATGCC TGACTATISTT TGACGCCGGA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2461 GATCTAGCGG GATCTAGCGG GATCTAGCGG S GGAAAAGG GCTCGAGCG ACAGAAGCA	CCCATCCAGC CCCATCCAGC CCCATCCAGC CACATCCAGC ATCGCCAACA GCCGACAACA	TTCTTTGTCC TTCTTTGTCC TTCTCTGTGTCC ATATC T	ATTACCRCTC ATTCCCTCTC ATTCCCTCTC ATTCCCTCTC ACCACCACA	ATCCCGAATT ATCCCGAATT ATCCCGAATT ATTTTAAGGC AACOTCAAGG AGGCCAAAGC	LA TTA A CGTA PATTA A CGTA PATTA A CGTA PATTA CGTA PATTGI A <mark>CGTCC A GA G</mark> TGCC A A GA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2521 GGACTG GGACTG GGACTG S -GICCC-FC GGCCICCATC AGACTCCCTC	AAGAC 11 AAGAC TT AAGAC TT AAGGCAT 10 AAGGCGAT CC AAGGCGAT CC	GAGGATTTGC GAGGATTTGC GAGGATTTGC GA <mark>CC</mark> ATTATGA AAGAA <mark>C</mark> ATGC AAGAAATCC	A GLCGGGA A GLCGGGA A GLCGGGA A GAGAAGG CCLGAAGAAA A GGA <mark>G</mark> AAA A GGA <mark>G</mark> AAA	ICALGOTCGI ICALGOTCGT ICALGOTCGT ICGCCCCAGI CCGLGCCGGT GCLCCCLCT	AAGCGATCGA AAGCGATCGA AAGCGATCGA CACCGATCGA CACCGATCGA CACCGATCGA CACCGATCGA CACCGATCGA CACCGATCGA CACCGATCGA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2581 CCCCGAAGAG CCCCGAAGAG CCCCGAAGAG SITCCCGAGGAA TCCCCAAGAA -TCCCCAAGAA	GTGGAAGCG- GTGGAAGAG- GTGGAAGCG- GGAAAACAT GGAAAAACAT GCGGAACTGG	IGGATCA Gaaggaacic Tagaaaagc	GCCATTGC GCCACAATG CCCACAATG	CCCCAGACTC GC GCCCTCACCG	GCCTCG GCCTCG GCCTCG ATATGCCCA GCTCCA CCACG
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2641 GAGACGAAC- GAGACGAAC- GAGATGAAC- S GAAGCAAACG AAGCTGCAAA AAGCTGCAAA AAGAT	- TCCA CCTTG - TCCA CCTTG - TCCA CCTTG A TACAATATC CTA CCGCCGC CA CGA GC	A CCA TTGA GA A CCA TTGA GA A CCA TTGA GA A TCGT CGA GA TTGTTCGA GA A TGTTCGA G	TTTA PATTC TTTTATA CTC TTTTATA CTC CTCA CCTCAA CTCA CCTCAA CTCA CTCAA TTTCCTA TAG	ATGCTAGGCC ATGCTAGGCC ATGCTAGGCC ATGCTAGGC ATGCATG GTGCGAGATA GTGCAAGG	TTGACTATTC TTGACTATTC TTGACTATTC <mark>AACC</mark>
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2701 CAGAACTGAA CAGAACTGAA CAGAACTGAA SAAAAGAA CACLAGLG CAGGGLGGAA	TGOTGGG TGOTGGG GTCATGGG GTCCCCGGCT GTCCCCGGCT GCCCCIGGCT	CAGT - CTG CAGT - CTG CAGT - CTG GCCATT CATG TCCGGTTCTG T - CAATTCAG	AAAGAGACGG AAAGAGACGG GAGACACGG GAGACACACGG TGGCAAAG TTGGCAAAG TTGGATCCTG	CCCCAACGTG CCCCAACGTG CCCCAACGTG ACCCCCCACA CCCCCCAATG CCCCTCAATG	ATA- ATA- GTA- GTA- GTA- GTA- GT
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2761 CTTCCGC CTTCCGC CTTCCAT S CTTTCAGCT CTCCCCAAAC GTCCCCCCAA	TGGAACTTCC TGGAACTTCC TGGAACTTCC TGGAACTTCC AGAACTTCA AGGACTCTCA	CGTG CGTG CGTG CAUTTCAACA AGGTGAATGG AGGT	ACCTTC ACCTTC ACCTTC ACCAACCTC GCCAACCCC GCCAACACC GCCACACCC	TCTTTTGAAA TCTTTTTGAAA ATTGCCAAAA ATTGCCAAAA CATCCGGAA CGTCGGAA	A-TACAAATG A-TACAAATG A-TACAAATG AGTGGCAGAA A A-CCTCGGCG
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2821 TTTCGCCAGA TTTCGCCAGA TTTCGCCAGA S ATTCACCAGA - CATCCCGA TTCCTACAGG	CCCTCCTCT CCCTCCTCT CCCTCCTCT CCTCTTCTCT CCTCTTCT	ATTTCTGC ATTTCTGC ATTTCTGC -ATTTCTGC AAAA AAAG <mark>TACA</mark> GT	TTCCTCGA TTCCTCGA TTCCTCGA A A TCGCCAGAAA	TTAGCGCCTC TTAGAGCCTC TTACGCCTC CCACGCCCCC CCACGCCCCCCCCCC	GACGG - TTT GACGG - TTT GACGG - TTT GGC <mark>TGGCCCC</mark> GGC <mark>TGGCCCC</mark> GGC <mark>GGAACTA</mark>
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	2881 CGTCGTCGTC CGTCGTCGTC CGTCGTCGTC S AGTTCGGTCC AGTTCGGTCC AGTTCTCTTC	GTCTTCCG GTCTTCCG GTCTTCCG GCAGCCGGT GCAGCCGTA GCTA-CCTAG	TTGA CCA A CA CTGA A ATCCT CA GCTA GA CG	CTGTT CTGTT CTGTT CGEGECTGAA IGAGGCTG GCAATCTGCT	I GGI I GCCGA I GGI I GCCGA I GGI I GCCGA CAGGO I CT GA CAAGCO I CGA CAAAC A	GGGGTTTTGGA GGGGTTTTGGA GGGGGTTTTGGA GGTGGGAAGA GGTGGGTG

29 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 CCA CAA CCA- CCA CAA CCA- CCA CAA CCA- CCA CAA CCA- TAGCATCOTA- TCCCCCCCA- TCCCCCCCA-	CGG CA CALL G	CTCGGTCG CTCGGTCG CTCGGTCG CTCGGTCG CTAAGTCA TGCCAAGCTC AAGTCG	CGC CGC TAT TATC-GAGA TGC-GGAAGG	G <mark>AGCGCGTC</mark> A A <mark>TTTGATT</mark> AA	TCAACAATCC TCAACCATCC GCGCACAACT
30 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 CTTGGA CTTGGA CTTGGA MATTCCCCCAA GGTGTCCAA GGTGTCCAA GGTGTCCAA	GCCCGCCIAI GCCCGCCIAI GCCCGCCIAI TIGGCICCIAI TIGGCICIAG GGTCGICIAG	TAC TAC CAC CAC CACATCAGI CITT		G <mark>CAACGAT</mark> GA	GGCG GGCG GGCG ATCCA GTGGGGA GGT GCCG
30	61					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	CCTGTTAGCT CCTGTTAGCT CCTGTTAGCT CCTGTTAGCT NTTGAAAAAT GCTGTGGGAT GCCCCCATGT	CGTCCLTTGC CGTCCLTTGC CGTCCLTTLC GLTLTLTC GLTLTTCTL GGGC	CCGGTCTCCT CCGGTCTCCT CCGGTCTCCT TATGTTT - CAATCTTTT CCATAATTTT	A A CC 4 CG 4 CC A 4 CC 4 CG 4 CC A 4 CC 4 CG 4 CC C 4 4 G 4 A G 4 CA A 4 G 4 A G 4 CA A 4 G 4 A G 4 CA G 4 CG 4 G 4 G 6 CA	GTA TTCA TTA GTA TTCA TTA GTA TTCA TTA GTA TTCA TTA GTA TCCTCT- GTA TCCTCT- CA TGCGCCT-	CGA TT GA CC A CGA TT GA CC A CGA TT GA CC TT GA GG TT GCAA TT GAAT
31 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 TT TTCA TTGG TCGGGGAGTG	CGTG GGAAA	CTCAAAGCTC	ACCINCTICA ACCINCTICA ACCINTICA AACUNCA ACCINTICA ACCINTICA ACCINTICA ACCINTICA ACCINCTICA ACCINCTICA	- GGAGATCTT - GGAGATCTT - GGAGATCTT - GGGCATC CGGACTACCA CGGCCTTCCC	PAGETAGATU PAGETAGATU TAGETAGATU TAGETAGATU TATET GGCTC TATET GGCTC
31 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	81 CCG CGG CGG TCTCAGCCCG	AAATAAA- AAATAAA- AAATAAA- CGATATTAAC GTAAACCAAC GAAGACCAA-	ACAAGC CCATCGTAGC	GA CC GA CC GA CC A TGGGGA A TA CTTC TGGA A G - TGA CAAA TG	AGCGA IIIGA - AGCGA IIIGA - AGCGA IIGA - AGCIIIA IIIA - A <mark>TICCA</mark> GA GA - GG <mark>IIIIIIG</mark> A <mark>C</mark>	GA GA GA
32 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 - TCGGGATTG - TCGGGATTG - TCGGGATTG - TCGGGATTG CCCAGGATTG CCCAGGATTG	A TG A TG A TG A TG C A TGC TT G C TCGC TCCA A TGGGA GA CC	Courte Coord	TTATTAA TTATTAA TTATTAA CCTTATAA GCTTACAGAAG GGTTGTTCCG	- AACCAAAAG - AACCAAAAG - AACCAAAAG - CCTCGAA-G TTCTCGAAGG CCTCCTTAAC	CAAAGCCCGA CAAAGCCCGA CAAAGCCCGA CAGAACTTTG AAGGGGITTTG CAGGACTTTA
33 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 14GA 14GA 14GA 14GA 14GA 14GA 14GA 14GA 14GA 14GA 14GA	AAC AAC AAC CCCGAGCAGC CCCCAGAGCAGC	CTGTA CTGTA CTGTA CTGTAAAGCA CTGTTAAGGA	GGTCTCI GT GGCCTCGTT	- A TCCA GA CT - A TCCA GA CT - A TCCA GA CT - A TCCA GA CT GA CCCGA TCC GA CCCGA TCC GA CCCA A TTC	GATCTTCT GATCTTCT GATCTTCT GATCTTCT GCGTCTTTC GCGTCTTTCGT GGCTTTTTCGT
33 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	AANCIGIGA GAAGGGIGAA TAAGCIGGAA	AAATAC AAATAC AAATAC CCCACAAAAC CCCACAAAAC CCACATAAAA	TTGACTAAAT TTGACTAAAT TTGACTAAAT GAGCCAAAT AGAGCAAACT IGGAGAAACT	CTCC-GGCAA CTCC-GGCAA CTCC-GGCAA TTCTGGCAT CGAT-GAGGG TCGC-AACAA	TTGCAACAAG TTGCAACAAG TTGCAACAAG GTACGACTTC ACGCTACCGC GCCTTACAGA	TTATCOGGCT TTATCOGGCT TTATCOGGCT TTCTCAGGC CTCATCAGGT TTATCOCTT
34 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 G. TTG TTTTC G. TTG TTTTC G. TTG G. TTG G. TTG G. G. G. C. C. C. G. G. G. C. C. C. C. G. C. C. C. C.	CTCTAGTGAT CTCTATTGAT CTCTATTGAT GCTTCTATGAT CATTGTAGAT	1 A 111111 G 11 C C 1 A 11111 G 11 C C A A 11111 G 11 C C A 11 C A A 11 C A A 51	GGCCACTGGG GGCCACTGGG GGTCACTGGA GGTCACTGAA GGTGGCCCGG TGTGGCCAGG	CGAACCAGAC CGAACCAGAC CGAACCAGAC CGAACCAGTTT CACCACGTTTC ATCCTCTTCC	A CTCATCA A CTCATCA A ATCATCA A CAACTTCA A CAACTTCA A CAACTTCA A CAACA CAACA CAACA CAACA CAACA CAACA
34	81					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	ACCAACCCAA ACCAACCCAA ACCAACCCAA ACACCCAACA CAACAA	CGAGATCAGG CGAGATCAGG CAAGGICAGG ITICIGCCA ATAGCICIGI CTCCICAAC		ACTTCATTCA ACTTCATTCA AATTCATTCA ATCAA TCCATCCA ACCATCCA	ACACT ACACT ACACT ACCCT AGCCCGGATT AGCCCGGATTT	

E5-GRAV	3541 <mark>GAGAAGC</mark>		GTAGTTTGAA		GGTT	
E8-GRAV BYDV-Luteovirus CPPV2-Polero	GAGAAGC GAGAAAC 3 ACGGACAAAC	AGGCATTCAG GTTTGT AAGTGCTGGA	GTAGTTAGCT GTCAATGGA- GTTCACGGAA	ACCACCTCAA		-GCCACATTC
PEMV-Enamo	C <mark>AAGACCA</mark> CC	AGG <mark>TTTT</mark> GG <mark>C</mark>	TTTCACTGAG	T <mark>CCG</mark> TTGCTG	C <mark>GCTT</mark> GC <mark>T</mark> GG	AA <mark>CTAGT</mark> GCA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	3601 CGGGTTATAG CGGGTTATAG CGGGTTATAG CGGGTTATAG CAGGTTTTAA CAGGACTTGG	CCATGAATCA CCATGAATCA CCATGAATCA NTATAGAATG TTGAAGAATG TTGAAGAATG	ATTICIA CAA A DITCIA CAA A CTTATA CA C CTATA CA C CTA CGA CA CAA CGA CA CTATA CA CAA CTATA CAA	C C C C C CTTCTCTCCA CCCA	ATTTTGT ATTTTGT <mark>ATTTTGC</mark> CT <mark>GATTGCTC CCGACTGCTC</mark>	DAACGITIAA C T <mark>AACATTIAC</mark> TGAC TGAC GGGCTITIGAC GGGCTITIGAC
E5-GRAV	3661 CGG <mark>A</mark> GTGGCG	AGGTTGGG <mark>C</mark> T	G <mark>CTT</mark> GAAGAT	G <mark>TTT</mark> GAG <mark>C</mark> AG	AATT <mark>CCA</mark> GTT	CTTGCCCAAC
E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	CGGACTGGCG CGGAATGGCG TGCA TGGAGCGTTG TGGTCTGTAC	AGG <mark>TTGGGCT</mark> AG TCTGGGC CGG <mark>A</mark> CTGGAT CTATGTGGTT	GCTTGLAGAT CCTTGLAGAC GTCLAAGA- GCTCGLAGAT GTTGGLAGAT	GTTTGIGCAG ATTTGIGCAG GATATTGAGG GACTTAGCAG	AATTCCAGTT AATTCCAGTT T	CTTGCCCAAC CTTGCCCGAT CAGC CCGCAACAGA CAGGAATGAG
E5-GRAV	3721 CTCGACTTTC	AAA <mark>CCTAGCT</mark>	TTTTATACTT	CGCTAAGTTA	GAGTCCACCG	ATTCGAGAG-
E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	CTCGACTTTC CTCGACTTTT CAC CTC CTC	AAACCHAGCH AAACCTAGAC <mark>ACCTTGTTI</mark> <mark>ACC</mark> <mark>ACC</mark>	CTTTATACTC CTTTATACTC GAGTATGCTC - AGAGGTCTC - CTT <mark>CGGCTC</mark>	CGCTAGGTTA CTCTAGGTTG GGCCCAGAGG ACCCCAGTGA CCCCA TGG	GAGTOCACOG GAGTOCACOG ACGTOCAGTO COGCO-AGTO COGCO-AGG TOTCCGOAAG	ATTICGAGAG- A <mark>CTC</mark> AAGGG- GTACATGTC- ATGCGCAGGA AT <mark>GCGA</mark> GAAA
E5-GRAV	3781 <mark>CATCA</mark>	TCGCCCTTTG	CTACCGCCCA			
E7-GRAV E8-GRAV	CATCA CCTCG	T <mark>CGCCCATTG</mark> TCGCCCATCG	CTACC <mark>G</mark> CCCA CCATCGCCCA	A <mark>GAT<mark>GC</mark>ACCA Agatgcgcca</mark>	CAGTGAAAGG CAATGATAAGG	C <mark>GCACATAA</mark> C CGCACATAAC
BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	s <mark>AGCCG</mark> ACTGGAAACA CCTGGCTTAA	TTGCTCAGTG TTGCATAGCG GTGCCTAGGT	AATT CAAT CCG CAAT CCG	T <mark>GGGCTT</mark> T <mark>GTTCTGC</mark> TT TATTCT <mark>GCC</mark> T	G <mark>TCT</mark> CTCGGATGGG CTCTAACGGC	ACTTT <mark>GOTCG</mark> CTTTTATTAG
E5-GRAV	3841 <mark>C</mark> <mark>CGAA</mark>	TCCGAGAAT-			CTACCACTCT	TTT <mark>GAA</mark> CTCC
E7-GRAV E8-GRAV	CCGAA ACGAA	T <mark>CCGAGAAT</mark> - TTCTGGAGT -	TAGAGGAG <mark>CT</mark> TGGAGGAGCT	AGTGTTGTAG TGTGTTGTAG	CTACCACTCT CTTCCACTCT	TTT <mark>GAA</mark> CTCC TTT <mark>GGA</mark> CTCC
BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	3 <mark>TGAA</mark> C <mark>ACAAACTGT</mark> CCCAAACC <mark>TC</mark>	TT <mark>CAGGC</mark> TA T <mark>CCC</mark> GGTGTG T <mark>CCA</mark> GGTATA	CCCATTETTE CAAAAGAGTG CAGAAGAGCG	AAAG <mark>TTTTTA</mark> GGAGCTA <mark>CA</mark> A GGAG <mark>TTTT</mark> AA	CCACT <mark>COTC</mark> A TACTACCTCA CLCCTCCTCA	<mark>IL</mark> SILA <mark>CCGA</mark> ACCAACTCCC ACGAACTCILC
E5-GRAV	3901 AGG <mark>AACGGTC</mark>	- <mark>TGGGAAAGC</mark>	<mark>AA</mark>		G <mark>ACGTC</mark>	C
E7-GRAV E8-GRAV	AGGAA <mark>C</mark> GG <mark>TC</mark> AGGAA <mark>C</mark> GG <mark>TT</mark>	- <mark>TGGGAAAGC</mark> - <mark>TGGGACA</mark> GC	<mark>AA</mark> <mark>AA</mark>	AT <mark>GGCCGTCT</mark> GGTACCATCC	GACGTG GACAGG	<mark>C</mark> <mark>C</mark>
BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	s A <mark>GTAGCGGTT</mark> GGGTGCGAAT GGA <mark>TGAGGT</mark> A	ATAAGAAAGT - <mark>CATGTGC</mark> GC - <mark>TATGCTAGC</mark>	C <mark>TATCATTGT</mark> CC <mark>TTTATGC</mark> A	<mark>ATCT</mark> GG <mark>CGCCACCT</mark> GGGG <mark>CTA</mark> GCT	GAGGCGTT GGTGTTGTGC GGG <mark>CC</mark> GTTA <mark>C</mark>	CAT <mark>GGGCGAT</mark> TATGGGGGGA <mark>C</mark>
E5-GRAV	3961 AAAGCACAGA		CACTTCLACC			
E7-GRAV E8-GRAV	AAA <mark>GCACAG</mark> A A <mark>m</mark> agcacaga	ATT <mark>CGCAAT</mark> G ATTCGCTATG	CACTTCAACC CACTTCAACC	AACCCGCGCG ACCCCGCGCGCG	CAGACGCACA CAGACGCACA	AG <mark>C</mark> A - GGGGG AGCA - GGGGG
BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	BCATCAA GACGCCCTAG GACGCCCTAG GACGCCCTTG	AAACGTCATA AATCA GTG A <mark>GTC</mark> G GTT	TCCTATG GACTCCAACC GGCTCGGACC	<mark>GTA</mark> TAGAGGAGTA TTTCCCAGTA	C <mark>GGA-</mark> GGAAA TAAACGTCTA CGCACGGCTG	GG <mark>CTTCA</mark> GGG GGATTGAAAG GGTATTAAAT
F5-CDAV						
E7-GRAV E8-GRAV	TTGAGGCCCA	TGGTTAATCG	ATTGCGGACT	TCCATATCAT	CTTCAAGCAT	CC <mark>AGT</mark> CC <mark>GC</mark> A CCAGTCCGCA
BYDV-Luteovirus CPPV2-Polero	S T <mark>AGACGTGCC</mark> T <mark>CGAGGTGA</mark> G	CGCCAAATCG TGGAAAACTG	AG G <mark>AATTCTGCT</mark>	CCTATTAC CTCACAT	CTT AGGAA CTTC <mark>GAGTCC</mark>	C <mark>AA</mark> GACTCAG CCC <mark>T</mark> CCCTCG
PEMV-Enamo	GTGAG <mark>C</mark> GAG <mark>C</mark>	A <mark>GAGGAG</mark> TT <mark>C</mark>	G <mark>AC</mark> TT <mark>CTGC</mark> T	CCCATCT	TTT <mark>CC</mark> GT <mark>GCC</mark>	CCT <mark>GATG</mark> TCG
E5-GRAV	1081 ACGCTCCAGT	CAAAACC		<mark>GGAGC</mark> AAT		CA
E/-GRAV E8-GRAV	ACGCTCCAGT A <mark>CGCTCCA</mark> GT	CAAAACC C <mark>AAA<mark>GCC</mark></mark>		<mark>GGAGC</mark> AAT <mark>AGAGC</mark> AAT	CAGTGGGCAC CAGTGGGCAC	<u>CA</u>
BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	GENERGE CENTRE C	GAATGTTGG GAA <mark>TGTTGGT</mark> GAA <mark>CCTGGA</mark> A	AAAA <mark>TGCTCT</mark> AA <mark>GATGGTT</mark> T	<mark>GAGTTGA</mark> T ATAAA <mark>CTGA</mark> T A <mark>TGGGCTTC</mark> T	CCGAGGACAC ATTTGGATAC TAGTGGGACC	AA AA <mark>CCCTGGG</mark> T TCTCCAGAGT

E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru: CPPV2-Polero PEMV-Enamo	4141 s GAAATCGTTG CTCGAAATCT CTCCTTTGCT	GGAACTT GGAACTT I GTAGTT GGAGGTACTT GGAGGTCITC AGGTCITCGT	GCCAATTACT TTCAGCT GGC	GTT CTT CTT TGCCACCTT TGCCACCCT TATCGCCCCT	CCACTCCGTG CCACTCCGTG CCATCCGGTA CAGATCCGTG CCAATCCGTG CCAATCCATA	ATCAACTOGG ATCAACTOGG ATTACTTC CTCA CTCA TTTAATCAGT TTCCAGAAA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	4201 TAGCAGGA CGGCICAGGA S TAAGGCATG- TGCCICATA	A CA CCAA CCC A C2 CCAA CCC A C3 CCA G C CCAA CCC C CCCCA C C CCCCA C C CCCCA C C CCCCAA C C CCCCAA C C C CCCAA C C C CCCAA C C C C C	GGTGGGCCAA GGTGGGCCAA GGTGGGCCA GGTCCTACAA GATTTTT GTAA	G G A TTATACGAG CATG	CI CT GGTTGGTTCT CI	CTCACTGAAA CTCACTGAAA CTCACTGAAA - AGACTGAAG TCACTCAAG I CCACTCCAA I ATAGI GCAT
4	4261					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	CT	CA CA CA 	GCACTTGCTC GCACTTGCTC GCACTTGCCC GCAACTTCCAC GCCATTCTCA GGGC <mark>TT</mark> GGGG	A TOTOTOGA C A TOTOTOGA C A TOTOTOGA C A TOTOGA A TO GTTA GOOGA A TOTOGA A A A TOTOGA A A TOTOGA A	AAGCCAAAAC AAGCCAAAAC AGGCCGAATIC AATCCTTCTC AACCCTCGCTC AAGTCGCTCG GTGATCCCCC	CGGGTTT CGGGTTT CGGG <mark>CTT</mark> T <mark>CAAT CCCA</mark> G TG <mark>CAAT CCC</mark> A AGGG <mark>AT A</mark> TT <mark>G</mark>
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	4321 AGACGGGAPT GGAGGGAPT GGAGGGACA GGAAAACACA GGAAAACPTA GAATAGGGAA	GATCGCCAC- GATCGCCAC- GATCGCCAC- GTCCGCTAC- GTCAGCTACA GCCGGCTAC-	A A A A A A A A A A A A A A A A A A A	ATTTAATTTC ATTTAATTTC A <mark>CITTC</mark> ATTTC AATAGATTTT AATAGATTTC <mark>CATGAATT</mark>	CCGCTTATTT CCGCTTATTT COTOTTGTTT CATTCCTTA GATTCTTAT - GACATGCTTA	- IGGTCTTGA - IGGTCTTTGA - IGATCTTGA CCGGCTTTGG CCGGTCTTGC CCLGTCCGGA
	4381					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	AACAAAACCC AACAAAACCC AACAAGACCC AACAAGACCC AACAAGACCC TTTAGGGTTC AAGA	GGGCTTACCAA GGGCTTACCAA GGGCTTACCAA ATTTTTAGCAA ATTACTCTCTA CTTTTAAA	TTGATCAACC TTGATCAACC TTGGTCAACC IACC IACC CTATTTACC	AACGAAACAG AACGAAACAG AACGAAACAG AACGAAACAG	A CATGATGAG A CATGATGAG A CATGATGAG 	GCGGTAGC GCGGTAGC GCGGTAGC IGDACADT GTGTCAAT GTGCCAAGCG
4	4441					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	GACCTTCATC GACCTTCATC GACCTTCATC AGCTCTCATC AGCTCTCATC GTCTTA GTCTTACAAA	C.AATTTGGCC TAATTTGGCC TAATTTGGCC TAATTTGGCC TATTTGCATT TATTGCATC TATCGGGG	TGTTTGT TGTTTGT TGTTTGT TACAATA TACTTA GAGTACTTGG	GGGGCTCCCC GGGGCTCCCC GGGGTTCCCC AGTTTCAGA GATCTCTGC GACCCTCCTT	CTTTA CGA CTTTA CGA CTTTA CGA CACCA CTAGA CCACCA CTAGA ATCCAAGTGA	AAAGACGT AAAGACGT AAAGACGT GAGCTCGT GA T <mark>G</mark> AATTGTTA AAA <mark>TTA</mark> GATA
	4501					
ES-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru: CPPV2-Polero PEMV-Enamo	ATGGGATCAC ATGGGATCAC ATGGGATCAC ATGAATTCAG ATGAATTCAG AGGAAAA <mark>CCC</mark>	AAAGCCCGT AGAGCCCGT TAGGCCGTA CAGGCCGTA CAGGGGTCC AAGACCCTCC	GCTGC GTTGG GTAGA GTAAT AATAAGCGAT	ACAAGCTCAA ACAAGCTCAA ACAAGCTGTT GCAAGCAAAA AGCAATGGAA GCCGACTAGA	CCGGACT CCGGACT ATGTCAGAGC GGAGAAC TCGAGAAC	CATTICCTCA CATCTCCTCA CATCTCTCA CAGCC TAGCC CAAA
	4561					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	AACCTHGCCT AACCTTGCCT AACCTAGTCT S	CCGCTATCTT CCGCTATCTT CCGCTATCTT GTC GTC	CTGTAAACGA CTGTAAACGA CTGTAGGCGA GCAA GCAGACGCAT ATCAACGGAG	GCGAAGGTAA GCGAAGGTAA GCGAAGACCA TAGAACAGT TCAAAGGCG- GAGAAGGCC-	GGCGAGCGAG GGCGAGCGAG GGCGAGCCAA	AACCGGGAGC AACCGGGAGC TATCGGGAGC - TCGGCCAG - TCAGCGCGG - TAGAAGGG
-	4621					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru: CPPV2-Polero PEMV-Enamo	CLEGETEGEGET CLEGETEGEGET TTGCGGGGET TGCTTCTGCG TGCTTCTGCT TGCTTGCGT TLGTCGCTGCT	CTTCAAC CTTCAAC CCTCCAC CCCCACCACC CCCACCCTCT	GGG <mark>CT A CC A</mark> C	ATCCAAATGG GTCGCLGAAG G	AAAGCTTCTA AAAGCTTCTA AAAGCTTCTA ICCACCACGA GCACCACGA GCACCCTCTA	TGGGTTGGGT TGGGTTGGGT CGAAACCGGCC CGAAACCGGCC TGGCCCAACCC
	4681					
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	TA TA S GA GA	CCCAGAG CCCAGAG CCCAGAG CCAG CCAG CCAG	CGATCTAAGG CGATCTAAGG CTATCTATGG CAAGAAGAGG CAAGAAGAGG CAAGAGGAGG	AACCCCCACA AACCCCCACA AACCCCCACTA AAGGCCAAATA CGGA AAACAAG	CCAGCA ICCA CCAGCA ICCA CCAGCA ICCA CCAGCA ICCA CCTAILA CITT CCTCGAA GAG CCLGC GCGCC	GOT CAAG GOT CAAG GOT CAAG GACCAGCAGG GGT CGAG GAT TGAA

E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5341 T GCT CCLGG CCT GT CCLGG CCT GT CCLGG S CT GCCCCGLGC CT CCCCCGL C CCCL GC	GCCGA - CLITT GCCGA - CLITT GCLCTA - I GCT CCA A A A GCA TCCA CA GCCG TCC CA GI	CCACTCCTAT CCACTCCTAT CCACTCCTAT CCACTCATAT CCCATCATA TGCAACAAAT CCCCTACCAT	CTCCTGTCGG CTCCTGTCGG CTTCTGCTGG TTTTCG TCCGGTTTTG CTCCGTTTCGTG	GATGGGCGAG GATGGGCGAG GGTGGGCAAG AGTACATCGG GGGCTATGAA GGGCTATGAA	GCCGGGTTTG GCCGGGGTTTG I CCGGGGTTG I A CI CCI I G GGTGTCCCI C GGCCTI CCCG
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5401 TGCCTTCTCC CGCCTTCTCC CTTCTCC SGGACATCC AGAATAAGAT AATCTCGTAT	GGTTCTTTCG GGTTCTTCG GGTTCGTTCGG GATCTCGGGA GATCTCTCGG GATCTCTCGGG GATCTCTCGGG	CGGTC CGGTC AACATCGGAC GAGAACGATA AGAAATGACC	GGTGCCGCGC GGTGCCGCGC GGTGCCGCGCGC GCATTTCTG GAAATATTGA CGATATCGA	TTCCCCTTTC TTCCCCTTTC TTCCCCTTTC TTCCCCTACCT CTCCCACCCT CTCCCACCCT TCTTAA	CCGAGCGCTT CCGAACGCTT CCGACCTCT- GGGAGITCA GGGAGITCA CTCTCGTTTA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5461 CCT TCTTGTTATA S GCA - TTCCA TAALGTTTGA TCL CCA TGTA	GTTGGAA CTTGGAG AAAGATCGAG TAAGTGGAA TAAGTGGGAA	AAACGGGGTT AAACGGGGCTT AATTCGGGTG AACGAGAGGG GATGACAATT GATGACAATT GATGACAGAGT	PAGCOLCGAA PAGCOLCGAA GAGCOLCGAA CCAA GGACTAGCGI GGACCTCICG	GRACTCGICC GRACTCGICC GACTCGICC GACCICITIC GATTIGGA AACTIGICI	TCAAATTCAA GCAAATTCAA GCATTATCCH TCTCGGCTA GCTGGTT GCTAGCT
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5521 CTTC CATCCTTTTC s CTGGC BTC	A TCA GCCCA G A TCA GCCCA G TCCGGA CCAA A ATA CA GTAA - A CTCCGCTAA TCCA GAA TCA	AGACCTCCAG AGACCTCCAG AGGAAACCTG CACTCTCT ACAATTCCCA CCAACTCCC-	CTTTCGCTTT CTTTCGCTTT CTTCTGA GT GT	CAAGGACTCC CAAGGACTCC CAATTTCTCT ACGCTCAA ACGCTCA GCCTCA ACGCTCA	TCAGCTTTTC TCAGCCTTTC TCAGCCTTTC CCAGCCTTTG CCGTACATGG CCGTACATGC
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5581 GGATGTCTTT IGATGTCTTT STGATGTCCC TAGTTCCA TAGTTCCA TAGTCCA	GACAGCAGCG GACAGCAGCG ANTEGCACCG GCCACTAAAG GCCACTAAAG ACTAGCAAAAG	GAGACCATAT GAGACCATGT GAAACCAGGT GTAGTTAG GAAATTTTCA GGAA <mark>CTTTTTC</mark>	CATCI GTTC CATCI GTTC I GATTAGATC I GTTAACATA I GTGTAACATA I GTTTATATATC	TTCATCCAAG TTCCTCCAAG CTCCTCCAAG CACTCTCAAG CAACCTCAAG CAACCTCCAAG CAATCCCAAG	A TGCC/CC A TGCC/CC GAT GCCCCC GAT GCATCC G TGCATCC G CTTCC ATCC G CTTCC ATCC
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5641 CGTTGGLGCT AGTTGGLGCCA AGTTGGCGCA S TGTTGATCA CGTTAAATCG AGTGAAGLGC	GTGGTCTCGC GTGCTCTCGC GTTCTCTCA A DAG GTTC GTTC A TTC 		CGCTA A GTA CGCTA GA GTA AGGG ATA GTC	ACCCCCCCCA ACCCCCCCCCA ACATCA COTCA COTCA COTCA	ITCCCICCA ITCCCICCA CACCCACCA - CACCCCAAA - CACCCCAAA - CACCCAAAC - CCCCAAAC
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5701 TGGA CAAGCA AGGA CAAGCA AGGA CTAGCT CTGA CAAGCT CTGA CAAGCT CTGA CAAGCT CTGA TGGATG	CGGTTGGLGT CGGTTGGLGT TTGGLTLGGGT CTGTLGGLGGT CTGTLGGGTGGG	TCAAATCAAG TCAAATCAAG TCAACTCGAG T T C	GTGGTIAA CCG GTGGTIAA CCG GTGATIA CCCA - TGATIA GCCT - TCATIA GCGT - TCATIA GCGT	A TATGA A CCC A TATGA A CCC A CATGTA C A CCC A TTCCA A TTC A TTCCA A TTC A TCA TACTCC A TCC A TTC	CGA CGA GGCT CGA CGA GGCT CACGA GGCT CACGA GGCC CACGA GGGC CA CGA GGGC A A A GAA GGA C
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5761 CTTCCCTGAA CTTCCCTGAA CTTCCCAAA SGTCTGGG GTGGA GGGTGGQ	AATACCCCAG AATACCCCCAG AACTACCCAG GCCTCCCCA ATATACCCCCCCCCC	C1 CC1 G4 4 TC C2 CC1 G4 GA TC CTCCT G4 GT TT2 C1 A4 G CT G6 4 GG TT2 C1 C4 G4 G		GTGTTACAGA GTATTACAGA GTTGTATCA GTTGCA GTTGCAGTCTTT GTTCTGTGTTTT GTACGGTCTTT	GCAAACTC GCAAACTC CAACACTCA CTCCAATT CGAAACTT CGAACTT GTCCAATT
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5821 - ATGTACCCG - ATGTACCCG AATATACCCA ACCTCCTCA - ATAAATCA - ATAAATCA	GTGGG GTGGG GAAGG CCAACTCATG AGACCCAG GTACTACA	TTTCCCGGAA TTTCCCGGAA TTTCCCGCGGA GAGGCCAG TTTCTCTCTTTGG GTCATCAATG	GGGA GGGA GGGA G <mark>TCACAGAGGA GGCACCCTG</mark> A G <mark>ACACCCT</mark> GA	GGAATTC GGAATTC GCTACTC CCTCAAGCTT TCTCCTCAAGTC CTCTCAAGTG	TGCGCCGGCC TGCGCCCGCC AGCGCCTGCG AATGATTGCG AATGATTGCA AATGATTGCA
E5-GRAV E7-GRAV E8-GRAV BYDV-Luteoviru CPPV2-Polero PEMV-Enamo	5881 AATTCGGCGT AATTCGGCGT AATTCGGCGT S CATTCGACAA AATTCAAGCC	LTCGCAAATA TTCGCAAATA IGCGTAAGAA AGGCCAAG <mark>TC</mark> AGCCAGGGGGGGGGGG		PCGCCCAAAG PCGCCCCAAAG PCCCTATAGG G G	CAAACAAAGA CAAACAAAGA CAAACAATGA TAGAAAGAGA TGGAAGCTGA TTCAGAGTGA	- GCATTTGCT - GCATTTGCT - ICATTTAGA CGCI GTCATA TTGGTA CGCT CGTAATCTGT

59 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 CTTCCLCLCLCA CTTCCLCLCA TTTTCCLCLT TCCTTCCLT TCCTTCCLAC TCTTTCLTC	TTACTCCCCC TTACTCCCCC TCTCTCCCCCC CTCCAAG TTACTTCTCA TTC	GGAC - GAAGT GGAC - GAAGT GGAC - GAAGT CTCTCGCTGA TGAC - GATGA AGGCAGAAGA	GGACGCCT - T GGACGCCT - T TGACGCTC - T AAACCCCTG TGGAGC G AGATAGTTAT	T <mark>GCAACCCAA TGCAACCCAA</mark> T ACACCCAAG TTCITACTTAC TGGGTTOTAT TGGGCCTTAG	GAGAGATTCC GAGAGATTCC AAGCGATTCC TAGCTCCAAA ACGCTCCCCC AAGCCCCTCC
60 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 CACTCAGGGG CACTCAGGGG CATTCAGGGG AACGCAAAAG CATCCCTAAG CATTCAGAAA	GACCITICGCA GACCTTICGCA GTCCTTICACA ACTG GACA TCCA	GATTACTTCA GATTACTTCA GATCACCTCA GATCACCTCA GCTCCTA GCTCCTACAA GCCACTACAA	TCATTOTTAG TCATTOTTAG TCATTOTGTG TTATATOGTC TTACACCGTC CTATCTGTTGTG	TACTOCAAAG TACTOCAAAG TGCICTGCAAG TCCTACGCAG TCCTATGCAG TCCTATGCAG	GACGCACCIIC GACGCACCIIC IACGCACCIIC GUIACACCIIC GUIACACII GAIACACII GAIACACII
60 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	61 TTTTGAAACT TTTTGAAACT TTTGGGAAACT CAAGAAA GAAAACA GAAAACA GLGAAA	CGCTCC-AIG CGCTCC-ATG CGGACC-ATG CGGACC-ATG ATG CGATTGAATG CGATTGAATG	GAATCTTG GAATTTTA GAATTTTG GAATTTTGGA GGGTACCG GGGGTCTG	TTTCCGG TTTCCGG TTTCCAT CATTATCCAT TCTCGAT TCTCTAT	T	G a attet G att G
61 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21	CCGAATTGCA	A <mark>GG<mark>CAC</mark>GCAR</mark>	GCGA CCGA CCGA AlcAAGCCGI ICGAI TCCAT	GGGGACAC GGGGACAC GAAGATAC AAAGGAAAAC CGACGAAGAC AGACGAA	CACATTICACG CACATTICACG AACCCACG ^A CG ^A TTI CATCAACAAA AATT <mark>C</mark> AGCAGG
61 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	81 GGCCCT-IGT GGLCCT-IGT GGLCCA-IGT TTTTCCLACGG GGAACAATGC	ITTAGGGI TTTAGGGI TTTGG GI T TTTCGGI AAC CTTAAAA CCA	CAACCAC CAACCAC CAACAAT CTCCTACCCC CACAACCAC CACAAGG		I <mark>GATTAGAG</mark> TA	G a A G <mark>n ch Anc</mark>
62 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 	G G Magonoma G G	ICICCACCC ICICCACCAC ICACCACCAC ICACCCCTC CCAACCCTTC CCAACCCTTC ICC	TAATGAGGGC TAATGAGGGC T <mark>GATAA</mark> GGGC AAA <mark>CCCG</mark> T <mark>GCTCAA</mark>	GTTTCTCCCA GTTTCTCCCA GTTCCTTCCA TCCTTGC CCCCGG	TTTAGCAACC TTTAGCAACC TTGAGGAGCC TGAGAAGACC AAAAAGAACT
63 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 GGATACACGT GGATACACGT GGATGCAAGT ACTTCCAAC	AGCGTACCCG AGCGTACCCG TGCGTATCCA ATTTTACTCA	GCCTCAGATC GCCTCAGAGAC GCCTCGGAAC GCAAGAAA - <mark>CCC</mark> GGGA <mark>G</mark> G	CCGAAGAGTA CCGAAGAGTA CAGAGGGGTA TAGAAGAGAGAA TCAAAGAGAGAA	TTGAATTTGC TTGAATTTGC TTGCACCTGAA TCGACCTGTA - GACTCIAA	AAQACAGACT AAQACAGACT AAAACAGACT QAATCTCGCC AAQTCCCGCC AAQTCCCGCC AAQTCCGCC
63 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	61 TCTTCGG-GG TCTTCGG-AG TCTTGGG-GG ACCTCTG-AA ATCAAGG-TG GCTCAGCAG	GATECT GCCT GATECT GCCT GATECT GTGG GTTCTT GTGG GTTCCT GTCA GTCCCT GGA G	CACCTTAAA- CACCTTAAA- GACCCTAAA- CAGAACAAGA CT	r <mark>attracc</mark>	<mark>- CCAA</mark> GCAAG	GGTCAG GGTCAG CGTCAG ATTGAGCAG CGGCAG GGGCAG
64 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 GAAG AAAG AAAGCAAA GAC G	G. T. GCT GG	G <mark>CA</mark> CTCAAAT	CC. CGRCCR	GGT CCATIGT	CTCCGG. GTA
64 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	81 CCGTCTA CCGTCTA CCGTTTA CCCCCGGCCA C	CGGCTCTCTC CGGCTCTCTC GAGCTTCTC CGGTCCTTGT AGCTCCCAT	ACCAAT CT ACCAAT CT ACCAAT CT ACCAAT OTCCA CA CAA ACCAA CGAA G	CCTTCCTCCT CCTTCCTCCTC - CTCCTCCTCTT TCCTCCACCA CC	CCTCTTCCTC CCTCTTCCTC CCTCTTCCTC CCTCACTTC ATCTCCCCCT	A TCCCGC TCA A TCCCGA TCA GTCCAGA TCG GTCCGGA GTA GTTCA GTTCA

65 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 GATTCCAG GATTCCAG AAATCGGCAA TAGCCGICCA AATTTGTTGG AA	A <mark>II GCCA CGA A</mark> Al <mark>i GCCA CGA G</mark> AAATATCA AAAT <mark>CA CGC</mark> A <mark>GATA</mark> CTGCG	CTCCCCAATCC CTCCCCAACC TTCCCA	GAGAGGGATA GAGAGGGATA GAGG <mark>C</mark> GTATC	AGCGCTCATA AGCGCTCATA ACGCGCTCATA	AAATCGACAT AAATCGACAT PAATTGAPRC - AATTGAPRC - AAACGCAGC - AAATGG
66 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 TT GCAADATA TT GCAADATA CT GCAADAGA CT ACAADAGC CT ATGA GGCC - GCGADATT	GCAAAAATCI GCAAAAATCT CAAAACTCT CAAAACATCT GCCGAAGATT GCCGAAGATT GCCGGAAGCT	I GCGCAAA I GCGCAAA I CCGCAAA A TGATGACGA I GGGTTIA CC GCGGTACCGC	- ACCOALCCC - ACCOALCCC - GCCAALCCC COLCCCCCCC GATCAAGCCA CLCCALCCCCCC CLCCALCCCC	ACCAAAAC ACCAAAAC ACCACAAAC GCAATCCCC ACCATAAAT- CCC	GGA
66 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	61 TGAGGTCAC TGAGGTCAC TGAGGTCAC TGAGGTTGCA AGAGGTTGCA AAGAATAGGA GGGGGTTATG	GCHAATCCTG GCHAATCCTG GCTGATGJGJ GATGTTAC GATGGCTATT GATGGCTATT GAT	PARCAAAGA PAGCAAAAA TAGCTSCGAT CATCCACCAT CGATCCACCAT CGATCCAAGT	ALGCACACAC AACCACACA GACCCCCAAT GCTCTACAAC A <mark>CCCC</mark> AATAN	P <mark>GCTTC</mark> AAAA PGCTTCAAAA PCTCAGCCA CAAAAACCCA	ICAAACCITAG ICAAACCITAG IGAITACICAG AAAATACITAG C <mark>TITICC</mark>
67 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 GACGATACAA GACGATACAA GATGAAGGAG GTCTAGCATG ACCTAAGCATG	ATGCI ICGCC ATGCI ICGCC ATGCI ICGCC CTITCI CGCI I <mark>CC</mark> ICCAAT	AGAITTATOGA Agaittatoga Agaitgattga Tita - Tagi ga A <mark>ttig</mark> ta a <mark>o</mark> ga	GAACHADAGC GAACHADAGC ADACHADAGC AAAATAAAAC DCAAATAAAAC TCAAATAAAACT 	GCTAG GCTAG AGTAA ACCAGATIGCT GCCAG ACCTG	
67 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	81 AA CGGCCC GGTGGCCC GGTGGCCC CCC GGCCAC GAAGTTTC GGTGAC	A <mark>TATGAA</mark> A <mark>TATGAA</mark> A <mark>TAGGAA</mark> A <mark>ACCTCGCGA</mark> A <mark>GGACGCA</mark> GA	CCACTCCAAC CCACTCCAAC CCACTCTAAC ATSACCCCAGA TSACCCCGAGA	GTCAGGGATG GTCAGGGATG GCCTCGGATG ACCAATTGAA GCAATTGCGTC	CCCATTTCCT CCCATTTCCT CTCCGCTCACT AGAATACACT TTAAAACTTT	CGACTCGTCT CGACTCGTCT CAACTTTGTT CGTATT GGACGATTTT
68 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 AGCAAACAAG AGCAAACAAG AGCGAACATC AGAAACATC AGAAGCTCTCG	TTGATCC - A - TTGATCC - A - TTAAACC - A - TTGGTCTGA - GTGACTCGC - GTGACTCGC -	CCGGG CLA	GCAAGCAGCC GCAAGCAGCC GAGCAGTATAC GAATACAAGG GTCTGCAAAA	CATCCCCCAG CATCCCCCCAG CATCCCCCCAG CTTCACTCGG TCTCACTCGG TCTCTCTCGG	A GATTI GCATIG A GATTI GCATIG A GA GTI GCATIG A <mark>THEOT</mark> GA Z GA A A <mark>GTI</mark> GA GA
69 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	01 AGGGAAA TGGLAAA TGLAAGAGNG TGGAAGAGNG TGGAAGAAAT	C <mark>ACCCTTTC</mark> A CG <mark>ATGCT 4</mark> TT	C<mark>A GUA COCA C</mark> RAN<mark>COL</mark>GA A	GLOTOTOGIA GLOTOTOGIA GLOTOTOGIA GLOTOGOAAA GLOTOGOAGA GLOTOGOAGA G	CGACCOTTTC CGACCOTTTC CCAACCOTTTC AGACGGATCC ICAAGAGACC C	AGCCACGICG AGCCACGICG IGANACGIGA IGCANACIG CACANACIGA GGCAACGIGA
69 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	61 GCAGTGCCTA	GG <mark>CA</mark> CG <mark>TAA</mark> G	C <mark>CC</mark> GGGG <mark>A II</mark> A		CT CGAAG CT CGAAG GT CGCAG CCCGACGAT A DITIGAGTTT - <mark>TCAACCGG</mark>	CAGGICICIA CAGGICICICI CATTICICICI CAGITITICICI CAGITICICI CAGITICICICA CAGITICICICA CAGITICICA CAGITICICA CAGITICICA CAGITICICA CAGITICICICI
70 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 124G 124G AGG GGCCGATCG 1GG AGGG	GIGITICGGDA GIGITICGGDA GIGGCCIIGGA GIGGCCIIGGA GC	AGGGGCTGCG AGTACTGCG AATACTGCG GGTCATTGCT GGTCATTACG	 TTTTG CTTTG ACCINGTTTGG ACCINGTTTGG ACCINGTTTGG ACCINGTTTAA	GGGCAAATGC GGGCAAGTGC GGGCAAGTGC TAGCAAATGT GAGGACAGCA AAGAAGCCAC	A A GCCCCA GG A A GCCCCA GG A GA CCCCA GA A GTCCCT C A GTCCCT C
70 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	81 GCGCTCAATA	CCATTRCTAAA			GCCITTCCTT GCCITTCCTT CCCGLCTCTA CTATTGTCGC GLTCGGTCTT CLC	CCCATAGNAG CCCATAGNAG CCCAGAGCCG CACAGAGCCG CACAGAAACC CACAGAAGCC TACCCAAGNG

71 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 GGAA GGAA BAAAMCGCCCA AAAC GGAT	GTCTTGAA GTCTTGAA GTCTTGAA CTCTCCTCCTGEG CTGAA CTACEG2	GCCTAAAA GCCTAAAA GCCGATGG AGC-AGAG AGGCAAAAT <mark>G</mark> ATCCAGAA	GCCC GCCC GCCC GCA CCC GCA CCC GCC CCC GCCC GCCC 	ATCGAGGTAT ATCGAGGTAT ATCTAGAAAG TACAAAACA - TCAAAA - CCTAGA	A II GCIII CGGAA A II GCIII CGGAA GAGGA CGGAA AA GAA GGGA AA GAA GGGA GAA
72 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo		G G AGGAAAGAGG G		CGAGATCGGA CGAAATCGGA GAAATAGGG ATCACAGG ATCCACAGTA	GCA GCA CCT IGCTCTAGG ICG	GG <mark>A</mark> CTIVAAA
72 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	261 CCATTGC CCATTGC CCATTGG ALCCCACGC 	IGGAGG-ITI IGGAGG-ITI CGAAAA-ITI CGAAAA-ITI AACACAAACIG CGGGGAGCITI ITIA	GAAACAAG GAAACAAG AAAACGAT GAAACCAACC AAGACCAACC AAGACCTA ATAACCTA	AGCGATCAAA		<mark>GCI TCTG/</mark> G
73 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	221 	CCCC <mark>A</mark> G T AFC	AGGAA <mark>A</mark> GGAA <mark>A</mark> GGAA <mark>GCCTCGGTAA GGA GA</mark> <mark>A</mark> GGG <mark>C</mark>	GAAA GAAA GAAA ACAAAGCITC TTCCAA	GGCTCGACTCC GGCTCGAGCG	GA GA GATCA GGTCACCACA
73 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	81 AAAGAAAA AAAGAAAA AAAGAAAA GAAGAAAA GCCCAAAGAT CAGGAGT	GCACGCATCA GCACGCATCA GCACGCATCA GACACTCTGA ICTCATATCA CTCTGCCTGT	AAGAAAGCAA AAGAAAG <mark>IT</mark> AA AALGAAGGAG GGGC <mark>TTT</mark> AGGG AAAT <mark>AT</mark> GCTIG GAGA <mark>CG</mark> AGAG	TTCATGGITG TTCATGGITG TTCATTTTCC ATCCCGGIGA CGGGIGAA PA ATCATGITTA	LCAAT ATC LCAAT ATC AAAGC CTT ATACCOTAGA AAGACCAAGC LAGCCCTAGG	TTCOTCOTGA TTCOTCTGA TTCOTCTGA TCOTCA GCTCA TGCTCA T
74 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	41 TCGAAAAAGT TCGAAAAAGT TCGBAAAAAGT TTGGGGGGC TTGGGACC	TTACAAAGAA TTACAAAGAA TAAAATAGAA TAAAACCCAC GAGAATTCGG RCGACCACGG	A GA A DTA CA C A GA A DTA CA C A GA A DTA CA C GA A DTA CA C A GOTTA NGA I CO A DTA CI CA I CO A DTA CI CA I CO A DTA CI CA	GCAACAAAGA GCAACAAAGA GCTGCAAAGA T-CTCGTTAA TAGAAGGAAA G	GI GC TAA GA GI GC CI A GA GC GC GA ACC GAITHAA G A CI AAA CAAA	GLGTTCTCTG GLGTTCTCTG ATSTTCTTTC CCTTCLCA CCCTCLCCA ACCTCLCCA ATCTG
75 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo		GG GG CG TGATAGTCAL TGAATCAGTCAL TG	GAGAG GAGAG CUCCCGAGAG CUCCCGACCC CUACCGACCC CTG	GT	- TGATGAATT - TGATGAATT - TGATGACT CTAATGACT - TAGCGITT - T <mark>GA</mark> CGGCTA	GGATGG GGATGG CTATAG ATAGGAAGGA GGCGGAATCG GCCGGTTCCT
75 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	ici ici ici ici ici ici ici ici ici ici	CCTCTTA CCTCTTA CCCATTG TCTACTACCC TCCAA-G TTTAAGI	G <mark>atgec</mark> ggaa	CCCCCTCGGG	G <mark>TC</mark> GGCCTGG	ATGAGAAACC
76 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	21 AAGUCAATUC AAGUCAATUC AAGUCAATUC AGGATUC CAU AAGCAATCA	TCACTC TCACTC GCACTTCC CCCCTCGTCC CCCCTCGTCC TCGCTCGTCC	 ATTTCTACA G <mark>CTCCAATGG</mark> GAAG ATTACTCTG	CTAGAGAACT CTGGAGAACT C GOGAACT CCATAGGACA CTACTAGGACA CTACTAGGACA	I GA CAT T GA CAT I GA CAT A GT GA CAT A GT GA CAT I GA GA T GT GT I GT A AT	AAAA AAAA Agggaaaga A <mark>gggaaaga A<mark>ttca</mark>gagga A<mark>tt</mark>aa</mark>
76 E5-GRAV E7-GRAV E8-GRAV BYDV-Luteovirus CPPV2-Polero PEMV-Enamo	GATICTICA GAA GATICTICA GAA AAACTICA GAA ACTICCGAAC GACTA GGGAA GACTA GGGAA	IGGGCTC IGGGCTC CGCGCTC CGCGCCTATG I	C. GGCCTCTG	GTTGCCAG	ICAAGDA1 ICGAGDA1 ICAAGDA ICAAGDA CGGCAAGICA CCAGGTTG ACAA	CI 1 CI 1 I 1 GCI 2 1 GCI 3 1 GCI 3 1 I

Appendix VI: RNA quantities	S
-----------------------------	---

	Nucleic				Sample
Sample	Acid	Unit	260/280	260/230	Туре
1	711.3	ng/µl	2.11	2.23	RNA
2	944.8	ng/µl	2.12	2.18	RNA
3	526.6	ng/µl	2.05	1.95	RNA
4	442.3	ng/µl	1.84	1.17	RNA
5	550.9	ng/µl	2.02	1.85	RNA
6	243.6	ng/µl	1.99	1.37	RNA
7	470	ng/µl	2.05	2.14	RNA
8	221.8	ng/µl	1.78	1.03	RNA
9	343.9	ng/µl	1.92	0.75	RNA
9	333.2	ng/µl	1.94	0.74	RNA
10	1010.2	ng/µl	2.14	2.14	RNA
11	2512	ng/µl	2.09	2.14	RNA
12	1015.2	ng/µl	2.04	1.69	RNA
13	5921	ng/µl	2.1	2.12	RNA
14	4322.1	ng/µl	2.12	2.06	RNA
15	1114.6	ng/µl	2.04	1.83	RNA
17	6364.1	ng/µl	2.03	2.1	RNA
18	14059.7	ng/µl	2	2.04	RNA
19	2542.9	ng/µl	2.1	2.12	RNA

COUNTY	ALTITUDE	LONGTUDE	LATITUDE	SEASON
Busia	1296	E034.31286	N00.31286	Long rain
Busia	1296	E034.31286	N00.31286	Long rain
Busia	1296	E034.31286	N00.31286	Long rain
Busia	1257	E034.23760	N00.29552	Long rain
Busia	1257	E034.23760	N00.29552	Long rain
Busia	1257	E034.23760	N00.29552	Long rain
Busia	1257	E034.23760	N00.29552	Long rain
Busia	1264	E034.23464	N00.29288	Long rain
Busia	1264	E034.23464	N00.29288	Long rain
Busia	1264	E034.23464	N00.29288	Long rain
Busia	1264	E034.23464	N00.29288	Long rain
Busia	1310	E034.28268	N00.31942	Long rain
Busia	1310	E034.28268	N00.31942	Long rain
Busia	1310	E034.28268	N00.31942	Long rain
Busia	1284	E034.32163	N00.32496	Long rain
Busia	1284	E034.32163	N00.32496	Long rain
Busia	1284	E034.32163	N00.32496	Long rain
Busia	1280	E034.32230	N00.32128	Long rain
Busia	1280	E034.32230	N00.32128	Long rain
Busia	1280	E034.32230	N00.32128	Long rain
Busia	1185	E034.19242	N00.40588	Long rain
Busia	1193	E034.20306	N00.41242	Long rain
Busia	1193	E034.20306	N00.41242	Long rain
Busia	1193	E034.20306	N00.41242	Long rain
Busia	1193	E034.20306	N00.41242	Long rain
Busia	1193	E034.20306	N00.41242	Long rain
Busia	1191	E034.20351	N00.41551	Long rain
Busia	1191	E034.20351	N00.41551	Long rain
Busia	1191	E034.20351	N00.41551	Long rain
Busia	1191	E034.20351	N00.41551	Long rain
Busia	1191	E034.20351	N00.41551	Long rain
Busia	1191	E034.20351	N00.41551	Long rain
Busia	1193	E034.20446	N00.41642	Long rain
Busia	1193	E034.20446	N00.41642	Long rain
Busia	1193	E034.20446	N00.41642	Long rain
Busia	1193	E034.20446	N00.41642	Long rain
Busia	1193	E034.20446	N00.41642	Long rain
Busia	1172	E034.13031	N00.41994	Long rain
Busia	1179	E034.10503	N00.41319	Long rain
Busia	1179	E034.10503	N00.41319	Long rain
Busia	1179	E034.10503	N00.41319	Long rain
Busia	1175	E034.10410	N00.40845	Long rain

Appendix VII: Locations of the surveyed groundnut fields

Busia	1175	E034.10410	N00.40845	Long rain
Busia	1175	E034.10410	N00.40845	Long rain
Busia	1175	E034.10410	N00.40845	Long rain
Busia	1175	E034.10410	N00.40845	Long rain
Busia	1200	E034.11015	N00.43571	Long rain
Busia	1200	E034.11015	N00.43571	Long rain
Busia	1200	E034.11015	N00.43571	Long rain
Siaya	1340	E034.35617	N00.07417	Long rain
Siaya	1340	E034.35617	N00.07417	Long rain
Siaya	1340	E034.35617	N00.07417	Long rain
Siaya	1340	E034.35617	N00.07417	Long rain
Siaya	1367	E034.34445	N00.05377	Long rain
Siaya	1367	E034.34445	N00.05377	Long rain
Siaya	1367	E034.34445	N00.05377	Long rain
Siaya	1290	E034.43913	S00.04043	Long rain
Siaya	1290	E034.43913	S00.04043	Long rain
Busia	1164	E034.31875	S00.23808	Long rain
Busia	1164	E034.31875	S00.23808	Long rain
Busia	1164	E034.31875	S00.23808	Long rain
Siaya	1176	E034.32233	S00.23762	Long rain
Siaya	1176	E034.32233	S00.23762	Long rain
Siaya	1176	E034.32233	S00.23762	Long rain
Siaya	1191	E034.32590	S00.23710	Long rain
Siaya	1191	E034.32590	S00.23710	Long rain
Siaya	1191	E034.32590	S00.23710	Long rain
Siaya	1182	E034.32560	S00.23590	Long rain
Siaya	1182	E034.32560	S00.23590	Long rain
Siaya	1182	E034.32560	S00.23590	Long rain
Siaya	1291	E034.27107	N00.10636	Long rain
Siaya	1291	E034.27107	N00.10636	Long rain
Siaya	1291	E034.27107	N00.10636	Long rain
Siaya	1291	E034.27107	N00.10636	Long rain
Siaya	1282	E034.28773	N00.10851	Long rain
Siaya	1282	E034.28773	N00.10851	Long rain
Siaya	1282	E034.28773	N00.10851	Long rain
Siaya	1282	E034.28773	N00.10851	Long rain
Siaya	1167	E034.18727	S00.03375	Long rain
Siaya	1167	E034.18727	S00.03375	Long rain
Bungoma	1476	E034.54118	N00.61600	Long rain
Bungoma	1476	E034.54118	N00.61600	Long rain
Bungoma	1476	E034.54118	N00.61600	Long rain
Bungoma	1465	E034.54144	N00.61531	Long rain
Bungoma	1465	E034.54144	N00.61531	Long rain
Bungoma	1465	E034.54144	N00.61531	Long rain
8				0

Bungoma	1465	E034.54144	N00.61531	Long rain
Bungoma	1404	E034.46411	N00.69718	Long rain
Bungoma	1404	E034.46411	N00.69718	Long rain
Bungoma	1404	E034.46411	N00.69718	Long rain
Bungoma	1404	E034.46411	N00.69718	Long rain
Bungoma	1350	E034.44774	N00.68771	Long rain
Bungoma	1350	E034.44774	N00.68771	Long rain
Bungoma	1350	E034.44774	N00.68771	Long rain
Bungoma	1350	E034.44774	N00.68771	Long rain
Busia	1261	E034.34343	N00.64906	Long rain
Busia	1261	E034.34343	N00.64906	Long rain
Busia	1261	E034.34343	N00.64906	Long rain
Busia	1299	E034.33460	N00.66420	Long rain
Busia	1299	E034.33460	N00.66420	Long rain
Busia	1446	E034.36942	N00.69250	Long rain
Busia	1446	E034.36942	N00.69250	Long rain
Busia	1446	E034.36942	N00.69250	Long rain
Busia	1446	E034.36942	N00.69250	Long rain
Busia	1441	E034.36904	N00.69389	Long rain
Busia	1441	E034.36904	N00.69389	Long rain
Busia	1441	E034.36904	N00.69389	Long rain
Busia	1441	E034.36904	N00.69389	Long rain
Busia	1447	E034.39956	N00.67659	Long rain
Busia	1447	E034.39956	N00.67659	Long rain
Busia	1447	E034.39956	N00.67659	Long rain
Busia	1447	E034.39956	N00.67659	Long rain
Busia	1446	E034.39912	N00.67713	Long rain
Busia	1446	E034.39912	N00.67713	Long rain
Busia	1446	E034.39912	N00.67713	Long rain
Busia	1446	E034.39912	N00.67713	Long rain
Busia	1416	E034.38803	N00.74552	Long rain
Busia	1416	E034.38803	N00.74552	Long rain
Busia	1416	E034.38803	N00.74552	Long rain
Busia	1416	E034.38803	N00.74552	Long rain
Bungoma	1535	E034.76328	N00.61117	Long rain
Bungoma	1535	E034.76328	N00.61117	Long rain
Bungoma	1535	E034.76328	N00.61117	Long rain
Bungoma	1591	E034.79065	N00.62522	Long rain
Bungoma	1591	E034.79065	N00.62522	Long rain
Bungoma	1591	E034.79065	N00.62522	Long rain
Bungoma	1591	E034.79065	N00.62522	Long rain
Bungoma	1591	E034.79065	N00.62522	Long rain
Bungoma	1560	E034.80379	N00.62807	Long rain
Bungoma	1560	E034.80379	N00.62807	Long rain

Bungoma	1560	E034.80379	N00.62807	Long rain
Bungoma	1560	E034.80379	N00.62807	Long rain
Bungoma	1560	E034.80379	N00.62807	Long rain
Bungoma	1628	E034.78019	N00.63291	Long rain
Bungoma	1628	E034.78019	N00.63291	Long rain
Bungoma	1628	E034.78019	N00.63291	Long rain
Bungoma	1628	E034.78019	N00.63291	Long rain
Bungoma	1275	E034.40377	N00.59442	Long rain
Bungoma	1275	E034.40377	N00.59442	Long rain
Bungoma	1275	E034.40377	N00.59442	Long rain
Bungoma	1275	E034.40377	N00.59442	Long rain
Bungoma	1275	E034.40377	N00.59442	Long rain
Bungoma	1344	E034.44003	N00.68440	Long rain
Bungoma	1344	E034.44003	N00.68440	Long rain
Bungoma	1344	E034.44003	N00.68440	Long rain
Bungoma	1374	E034.44807	N00.70103	Long rain
Bungoma	1374	E034.44807	N00.70103	Long rain
Bungoma	1397	E034.44944	N00.70175	Long rain
Bungoma	1397	E034.44944	N00.70175	Long rain
Bungoma	1397	E034.44944	N00.70175	Long rain
Kakamega	1520	E034.78662	N00.14787	Long rain
Kakamega	1520	E034.78662	N00.14787	Long rain
Kakamega	1530	E034.66257	N00.05551	Long rain
Kakamega	1530	E034.66257	N00.05551	Long rain
Kakamega	1530	E034.66257	N00.05551	Long rain
Kakamega	1519	E034.66122	N00.05523	Long rain
Kakamega	1519	E034.66122	N00.05523	Long rain
Kakamega	1519	E034.66122	N00.05523	Long rain
Kakamega	1513	E034.66036	N00.05441	Long rain
Kakamega	1513	E034.66036	N00.05441	Long rain
Kakamega	1513	E034.66036	N00.05441	Long rain
Kakamega	1513	E034.66036	N00.05441	Long rain
Kakamega	1558	E034.74823	N00.00325	Long rain
Kakamega	1558	E034.74823	N00.00325	Long rain
Kakamega	1558	E034.74823	N00.00325	Long rain
Kakamega	1558	E034.74823	N00.00325	Long rain
Kakamega	1558	E034.74823	N00.00325	Long rain
Kakamega	1600	E034.81551	N00.01565	Long rain
Kakamega	1600	E034.81551	N00.01565	Long rain
Kakamega	1600	E034.81551	N00.01565	Long rain
Kakamega	1600	E034.81551	N00.01565	Long rain
Kakamega	1600	E034.81551	N00.01565	Long rain
Kakamega	1589	E034.81600	N00.01505	Long rain
Kakamega	1589	E034.81600	N00.01505	Long rain

Kakamega	1589	E034.81600	N00.01505	Long rain
Kakamega	1589	E034.81600	N00.01505	Long rain
Kakamega	1589	E034.81600	N00.01505	Long rain
Kakamega	1684	E034.82533	N00.03115	Long rain
Kakamega	1684	E034.82533	N00.03115	Long rain
Kakamega	1684	E034.82533	N00.03115	Long rain
Homabay	1313	E034.57562	S0059917	Long rain
Homabay	1313	E034.57562	S0059917	Long rain
Homabay	1313	E034.57562	S0059917	Long rain
Homabay	1313	E034.57562	S0059917	Long rain
Homabay	1313	E034.57562	S0059917	Long rain
Homabay	1338	E034.58366	S00.60474	Long rain
Homabay	1338	E034.58366	S00.60474	Long rain
Homabay	1338	E034.58366	S00.60474	Long rain
Homabay	1339	E034.58286	S00.60896	Long rain
Homabay	1339	E034.58286	S00.60896	Long rain
Homabay	1339	E034.58286	S00.60896	Long rain
Homabay	1339	E034.58286	S00.60896	Long rain
Homabay	1343	E034.58385	S00.61199	Long rain
Homabay	1343	E034.58385	S00.61199	Long rain
Homabay	1343	E034.58385	S00.61199	Long rain
Homabay	1343	E034.58385	S00.61199	Long rain
Homabay	1329	E034.12975	S00.70017	Long rain
Homabay	1329	E034.12975	S00.70017	Long rain
Homabay	1329	E034.12975	S00.70017	Long rain
Homabay	1339	E034.12822	S00.70061	Long rain
Homabay	1339	E034.12822	S00.70061	Long rain
Homabay	1339	E034.12822	S00.70061	Long rain
Homabay	1356	E034.14912	S00.68648	Long rain
Homabay	1356	E034.14912	S00.68648	Long rain
Homabay	1325	E034.17109	S00.68328	Long rain
Homabay	1325	E034.17109	S00.68328	Long rain
Homabay	1325	E034.17109	S00.68328	Long rain
Homabay	1454	E034.63848	S00.62621	Long rain
Homabay	1454	E034.63848	S00.62621	Long rain
Homabay	1454	E034.63848	S00.62621	Long rain
Homabay	1454	E034.63848	S00.62621	Long rain
Homabay	1454	E034.63848	S00.62621	Long rain
Homabay	1465	E034.64264	S00.62588	Long rain
Homabay	1465	E034.64264	S00.62588	Long rain
Homabay	1465	E034.64264	S00.62588	Long rain
Homabay	1465	E034.64264	S00.62588	Long rain
Homabay	1473	E034.64319	S00.62610	Long rain
Homabay	1473	E034.64319	S00.62610	Long rain

Homabay	1473	E034.64319	S00.62610	Long rain
Homabay	1473	E034.64319	S00.62610	Long rain
Homabay	1468	E034.63749	S00.62680	Long rain
Homabay	1468	E034.63749	S00.62680	Long rain
Homabay	1468	E034.63749	S00.62680	Long rain
Homabay	1468	E034.63749	S00.62680	Long rain
Homabay	1449	E034.63797	S00.62541	Long rain
Homabay	1449	E034.63797	S00.62541	Long rain
Homabay	1449	E034.63797	S00.62541	Long rain
Homabay	1449	E034.63797	S00.62541	Long rain
Homabay	1449	E034.63797	S00.62541	Long rain
Homabay	1455	E034.63761	S00.62468	Long rain
Homabay	1455	E034.63761	S00.62468	Long rain
Homabay	1455	E034.63761	S00.62468	Long rain
Homabay	1408	E034.63527	S00.62322	Long rain
Homabay	1408	E034.63527	S00.62322	Long rain
Homabay	1408	E034.63527	S00.62322	Long rain
Homabay	1408	E034.63527	S00.62322	Long rain
Homabay	1433	E034.63490	S00.62302	Long rain
Homabay	1433	E034.63490	S00.62302	Long rain
Homabay	1433	E034.63490	S00.62302	Long rain
Homabay	1433	E034.63490	S00.62302	Long rain
Homabay	1448	E034.63409	S00.62329	Long rain
Homabay	1448	E034.63409	S00.62329	Long rain
Homabay	1448	E034.63409	S00.62329	Long rain
Homabay	1448	E034.63409	S00.62329	Long rain
Homabay	1438	E034.63251	S00.62313	Long rain
Homabay	1438	E034.63251	S00.62313	Long rain
Homabay	1438	E034.63251	S00.62313	Long rain
Homabay	1438	E034.63251	S00.62313	Long rain
Homabay	1438	E034.63251	S00.62313	Long rain
Homabay	1449	E034.62985	S00.62512	Long rain
Homabay	1449	E034.62985	S00.62512	Long rain
Homabay	1449	E034.62985	S00.62512	Long rain
Homabay	1449	E034.62985	S00.62512	Long rain
Homabay	1351	E034.58273	S00.61512	Short rain
Kakamega	1552	E034.72606	N00.12995	Short rain
Homabay	1351	E034.58273	S00.61512	Short rain
Homabay	1351	E034.58273	S00.61512	Short rain
Busia	1225	E034.33674	N00.65445	Short rain
Busia	1320	E034.35423	N00.73924	Short rain
Homabay	1351	E034.58273	S00.61512	Short rain
Busia	1389	E034.38952	N00.71382	Short rain
Busia	1416	E034.37709	N00.69690	Short rain

Busia	1410	E034.37346	N00.69641	Short rain
Busia	1407	E034.39107	N00.71532	Short rain
Busia	1407	E034.39107	N00.71532	Short rain
Busia	1221	E034.17486	N00.36270	Short rain
Busia	1229	E034.17559	N00.36128	Short rain
Busia	1416	E034.37709	N00.69690	Short rain
Kakamega	1552	E034.72606	N00.12995	Short rain
Kakamega	1518	E034.78664	N00.14788	Short rain
Busia	1438	E034.37261	N00.69267	Short rain
Kakamega	1597	E034.70835	N00.07816	Short rain
Kakamega	1552	E034.72606	N00.12995	Short rain
Kakamega	1518	E034.78664	N00.14788	Short rain
Busia	1181	E034.33303	N00.62172	Short rain
Busia	1462	E034.39536	N00.67814	Short rain
Busia	1462	E034.39536	N00.67814	Short rain
Busia	1336	E034.35728	N00.74348	Short rain
Busia	1189	E034.33092	N00.62213	Short rain
Homabay	1336	E034.54420	S00.57751	Short rain
Busia	1228	E034.33865	N00.65436	Short rain
Busia	1343	E034.33363	N00.63637	Short rain
Busia	1218	E034.33158	N00.63656	Short rain
Siaya	1267	E034.32716	S00.06093	Short rain
Siaya	1259	E034.32898	S00.05704	Short rain
Busia	1441	E034.39369	N00.67833	Short rain
Busia	1458	E034.39904	N00.68400	Short rain
Busia	1455	E034.39881	N00.67807	Short rain
Siaya	1267	E034.32716	S00.06093	Short rain
Siaya	1267	E034.32716	S00.06093	Short rain
Busia	1467	E034.39631	N00.67923	Short rain
Busia	1469	E034.39760	N00.67960	Short rain
Busia	1469	E034.39760	N00.67960	Short rain
Busia	1390	E034.39028	N00.71010	Short rain
Kakamega	1592	E034.75635	N00.11998	Short rain
Kakamega	1592	E034.75635	N00.11998	Short rain
Busia	1229	E034.17955	N00.36007	Short rain
Busia	1382	E034.38951	N00.71284	Short rain
Busia	1379	E034.38913	N00.71270	Short rain
Busia	1390	E034.39028	N00.71010	Short rain
Busia	1395	E034.39230	N00.71068	Short rain
Busia	1395	E034.39230	N00.71068	Short rain
Busia	1336	E034.35728	N00.74348	Short rain
Busia	1379	E034.38913	N00.71270	Short rain
Busia	1385	E034.38935	N00.71435	Short rain
Busia	1440	E034.37812	N00.69597	Short rain

	Busia	1430	E034.37445	N00.69515	Short rain
	Busia	1385	E034.38935	N00.71435	Short rain
	Busia	1382	E034.38951	N00.71284	Short rain
	Busia	1430	E034.37445	N00.69515	Short rain
	Busia	1395	E034.39273	N00.71085	Short rain
	Busia	1407	E034.39782	N00.70042	Short rain
	Busia	1410	E034.39635	N00.70070	Short rain
	Busia	1361	E034.36237	N00.73834	Short rain
	Busia	1395	E034.39273	N00.71085	Short rain
	Busia	1364	E034.36440	N00.74005	Short rain
	Busia	1363	E034.36406	N00.74013	Short rain
	Busia	1389	E034.38952	N00.71382	Short rain
	Busia	1306	E034.27793	N00.31820	Short rain
	Busia	1234	E034.15780	N00.32863	Short rain
	Bungoma	1307	E034.37951	N00.61641	Short rain
	Bungoma	1307	E034.37951	N00.61641	Short rain
	Busia	1234	E034.15808	N00.32931	Short rain
	Busia	1234	E034.15808	N00.32931	Short rain
	Busia	1234	E034.15808	N00.32931	Short rain
	Bungoma	1431	E034.47524	N00.71529	Short rain
	Bungoma	1431	E034.47524	N00.71529	Short rain
	Busia	1306	E034.27793	N00.31820	Short rain
	Bungoma	1324	E034.38408	N00.61557	Short rain
	Bungoma	1432	E034.47522	N00.71455	Short rain
	Bungoma	1432	E034.47522	N00.71455	Short rain
	Bungoma	1427	E034.47611	N00.71328	Short rain
	Siaya	1274	E034.34568	S00.08004	Short rain
	Siaya	1274	E034.34568	S00.08004	Short rain
	Siaya	1274	E034.34568	S00.08004	Short rain
	Siaya	1274	E034.34568	S00.08004	Short rain
	Bungoma	1431	E034.47524	N00.71529	Short rain
	Busia	1205	E034.16887	N00.35417	Short rain
	Busia	1211	E034.17033	N00.35276	Short rain
	Kakamega	1544	E034.66602	N00.06374	Short rain
	Busia	1234	E034.15780	N00.32863	Short rain
	Busia	1205	E034.16887	N00.35417	Short rain
	Busia	1201	E034.17838	N00.36920	Short rain
	Bungoma	1324	E034.38408	N00.61557	Short rain
	Bungoma	1324	E034.38408	N00.61557	Short rain
	Bungoma	1437	E034.47462	N00.47153	Short rain
	Busia	1277	E034.15487	N00.31860	Short rain
	Bungoma	1427	E034.47611	N00.71328	Short rain
ļ	Siava	1197	E034.34181	S00.32585	Short rain
ļ	Busia	1289	E034.33158	N00.33419	Short rain
ļ					
Busia	1190	E034.16438	N00.36786	Short rain	
----------	------	------------	-----------	------------	
Siaya	1303	E034.34433	S00.08766	Short rain	
Busia	1356	E034.35058	N00.71592	Short rain	
Siaya	1303	E034.34433	S00.08766	Short rain	
Busia	1277	E034.15487	N00.31860	Short rain	
Busia	1199	E034.16658	N00.36056	Short rain	
Busia	1199	E034.16658	N00.36056	Short rain	
Busia	1286	E034.27865	N00.31569	Short rain	
Bungoma	1437	E034.47462	N00.47153	Short rain	
Bungoma	1437	E034.47462	N00.47153	Short rain	
Bungoma	1441	E034.47380	N00.71567	Short rain	
Bungoma	1441	E034.47380	N00.71567	Short rain	
Bungoma	1441	E034.47380	N00.71567	Short rain	
Busia	1312	E034.28217	N00.31770	Short rain	
Busia	1312	E034.28217	N00.31770	Short rain	
Siaya	1303	E034.34433	S00.08766	Short rain	
Kakamega	1539	E034.69537	N00.06794	Short rain	
Bungoma	1427	E034.47611	N00.71328	Short rain	
Bungoma	1436	E034.47055	N00.71428	Short rain	
Bungoma	1436	E034.47055	N00.71428	Short rain	
Bungoma	1436	E034.47055	N00.71428	Short rain	
Busia	1182	E034.16068	N00.36627	Short rain	
Siaya	1303	E034.34433	S00.08766	Short rain	
Kakamega	1539	E034.69537	N00.06794	Short rain	
Bungoma	1284	E034.39766	N00.59157	Short rain	
Busia	1202	E034.13985	N00.40976	Short rain	
Kakamega	1540	E034.66439	N00.06210	Short rain	
Kakamega	1540	E034.66439	N00.06210	Short rain	
Bungoma	1284	E034.39766	N00.59157	Short rain	
Kakamega	1525	E034.66335	N00.05916	Short rain	
Bungoma	1284	E034.39766	N00.59157	Short rain	
Kakamega	1525	E034.66335	N00.05916	Short rain	
Busia	1271	E034.23274	N00.30274	Short rain	
Siaya	1223	E034.33007	S00.33214	Short rain	
Siaya	1223	E034.33007	S00.33214	Short rain	
Busia	1286	E034.27865	N00.31569	Short rain	
Bungoma	1284	E034.39766	N00.59157	Short rain	
Busia	1274	E034.23130	N00.30292	Short rain	
Siaya	1197	E034.34181	S00.32585	Short rain	
Siaya	1197	E034.34181	S00.32585	Short rain	
Bungoma	1284	E034.39766	N00.59157	Short rain	
Kakamega	1525	E034.66335	N00.05916	Short rain	
Busia	1274	E034.23130	N00.30292	Short rain	
Kakamega	1498	E034.66174	N00.05348	Short rain	

Kakamega	1498	E034.66174	N00.05348	Short rain
Kakamega	1498	E034.66068	N00.05534	Short rain
Kakamega	1498	E034.66068	N00.05534	Short rain
Kakamega	1498	E034.66068	N00.05534	Short rain
Busia	1274	E034.23130	N00.30292	Short rain
Bungoma	1271	E034.40218	N00.59605	Short rain
Siaya	1223	E034.33007	S00.33214	Short rain
Busia	1230	E034.18511	N00.35133	Short rain
Bungoma	1271	E034.40218	N00.59605	Short rain
Bungoma	1271	E034.40218	N00.59605	Short rain
Busia	1195	E034.14187	N00.40381	Short rain
Bungoma	1271	E034.40218	N00.59605	Short rain
Busia	1304	E034.28094	N00.31598	Short rain
Busia	1311	E034.27917	N00.31702	Short rain
Busia	1311	E034.27917	N00.31702	Short rain
Homabay	1336	E034.54420	S00.57751	Short rain
Bungoma	1271	E034.40218	N00.59605	Short rain
Busia	1277	E034.23585	N00.30755	Short rain
Busia	1195	E034.14187	N00.40381	Short rain
Siaya	1336	E034.35868	S00.07524	Short rain
Siaya	1336	E034.35868	S00.07524	Short rain
Siaya	1336	E034.35868	S00.07524	Short rain
Siaya	1336	E034.35868	S00.07524	Short rain
Busia	1286	E034.27865	N00.31569	Short rain
Siaya	1301	E034.34427	S00.08644	Short rain
Siaya	1301	E034.34427	S00.08644	Short rain
Siaya	1301	E034.34427	S00.08644	Short rain
Bungoma	1283	E034.39667	N00.59429	Short rain
Bungoma	1283	E034.39667	N00.59429	Short rain
Bungoma	1283	E034.39667	N00.59429	Short rain
Bungoma	1283	E034.39667	N00.59429	Short rain
Bungoma	1283	E034.39667	N00.59429	Short rain
Busia	1285	E034.33087	N00.32232	Short rain
Busia	1183	E034.10686	N00.41479	Short rain
Busia	1183	E034.10686	N00.41479	Short rain
Homabay	1345	E034.58086	S00.60979	Short rain
Busia	1285	E034.33087	N00.32232	Short rain
Homabay	1374	E034.54052	S00.57785	Short rain
Homabay	1327	E034.58371	S00.60816	Short rain
Homabay	1327	E034.58371	S00.60816	Short rain
Homabay	1327	E034.58371	S00.60816	Short rain
Homabay	1327	E034.58371	S00.60816	Short rain
Homabay	1327	E034.58371	S00.60816	Short rain
Homabav	1345	E034.58086	S00.60979	Short rain

Homabay	1337	E034.54174	S00.57543	Short rain
Busia	1186	E034.10749	N00.41389	Short rain
Homabay	1337	E034.54174	S00.57543	Short rain
Homabay	1337	E034.54174	S00.57543	Short rain
Busia	1289	E034.32445	N00.32220	Short rain
Busia	1183	E034.12789	N00.47977	Short rain
Busia	1186	E034.10749	N00.41389	Short rain
Busia	1289	E034.33158	N00.33419	Short rain
Homabay	1374	E034.54052	S00.57785	Short rain
Homabay	1362	E034.54165	S00.57765	Short rain
Busia	1203	E034.10750	N00.42081	Short rain
Homabay	1362	E034.54165	S00.57765	Short rain
Siaya	1303	E034.34433	S00.08766	Short rain
Homabay	1374	E034.54052	S00.57785	Short rain
Homabay	1345	E034.58086	S00.60979	Short rain
Homabay	1336	E034.54420	S00.57751	Short rain
Homabay	1352	E034.58208	S00.61374	Short rain
Homabay	1352	E034.58208	S00.61374	Short rain
Homabay	1352	E034.58208	S00.61374	Short rain
Homabay	1352	E034.58208	S00.61374	Short rain
Homabay	1352	E034.58208	S00.61374	Short rain
Homabay	1345	E034.58086	S00.60979	Short rain
Busia	1320	E034.35423	N00.73924	Short rain
Busia	1284	E034.33161	N00.32302	Short rain
Busia	1284	E034.33161	N00.32302	Short rain
Busia	1183	E034.12789	N00.47977	Short rain
Busia	1320	E034.35423	N00.73924	Short rain
Homabay	1345	E034.58086	S00.60979	Short rain
Homabay	1336	E034.58243	S00.60857	Short rain
Homabay	1336	E034.58243	S00.60857	Short rain
Homabay	1336	E034.58243	S00.60857	Short rain
Homabay	1336	E034.58243	S00.60857	Short rain
Homabay	1336	E034.58243	S00.60857	Short rain
Homabay	1336	E034.58243	S00.60857	Short rain
Busia	1320	E034.35423	N00.73924	Short rain
Busia	1320	E034.35423	N00.73924	Short rain
Homabay	1362	E034.54165	S00.57765	Short rain
Homabay	1329	E034.45344	S00.69450	Short rain
Homabay	1325	E034.53304	S00.69321	Short rain
Kakamega	1553	E034.71852	N00.12469	Short rain
Busia	1277	E034.32221	N00.32168	Short rain
Homabav	1362	E034.54165	S00.57765	Short rain
Homabay	1329	E034.45344	S00.69450	Short rain
Homabay	1325	E034 53304	S00.69321	Short rain
-101114047				

Homabay	1325	E034.53304	S00.69321	Short rain
Homabay	1370	E034.53998	S00.57697	Short rain
Homabay	1370	E034.53998	S00.57697	Short rain
Homabay	1329	E034.45344	S00.69450	Short rain
Homabay	1334	E034.53652	S00.69514	Short rain
Homabay	1334	E034.53652	S00.69514	Short rain
Busia	1206	E034.17614	N00.36898	Short rain
Homabay	1329	E034.53646	S00.69228	Short rain
Homabay	1329	E034.53646	S00.69228	Short rain
Busia	1182	E034.10469	N00.41272	Short rain
Homabay	1370	E034.53998	S00.57697	Short rain
Homabay	1334	E034.53652	S00.69514	Short rain
Homabay	1329	E034.53646	S00.69228	Short rain
Homabay	1334	E034.53652	S00.69514	Short rain
Homabay	1325	E034.53304	S00.69321	Short rain
Busia	1182	E034.10469	N00.41272	Short rain
Busia	1257	E034.32043	N00.32471	Short rain
Busia	1277	E034.32221	N00.32168	Short rain
Busia	1185	E034.10552	N00.41298	Short rain
Bungoma	1481	E034.53045	N00.60687	Short rain
Bungoma	1514	E034.533119	N00.61361	Short rain
Bungoma	1479	E034.52184	N00.61094	Short rain
Bungoma	1490	E034.526390	N00.617222	Short rain
Bungoma	1509	E034.58068	N00.62845	Short rain
Bungoma	1557	E034.59395	N00.66004	Short rain
Bungoma	1515	E034.60737	N00.66895	Short rain
Bungoma	1538	E034.61226	N00.67426	Short rain
Bungoma	1747	E034.72624	N00.82073	Short rain
Bungoma	1935	E034.72564	N00.85590	Short rain
Kakamega	1469	E034.62708	N00.21789	Short rain
Kakamega	1469	E034.62708	N00.21789	Short rain
Kakamega	1469	E034.62708	N00.21789	Short rain
Kakamega	1469	E034.52639	N00.21789	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
Kakamega	1490	E034.62357	N00.22022	Short rain
-susuine ₅ a	1170	203 1.02337	1100.22022	

Appendix VII: Publications from this study

International Journal of Genetics and Genomics 2019; 7(4): 98-102 http://www.sciencepublishinggroup.com/j/ijgg doi: 10.11648/j.ijgg.20190704.12 ISSN: 2376-7340 (Print); ISSN: 2376-7359 (Online)

Incidence of Groundnut Rosette Disease (GRD) and Genetic Diversity of Groundnut Rosette Assistor Virus (GRAV) in Western Kenya

Benard Mukoye^{1, 3, *}, Millicent Florence Owuor Ndonga¹, Hassan Karakacha Were²

¹Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya

²Department of Agriculture and Land Use Management (ALUM), School of Agriculture, Veterinary Science and Technology, Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya

³Department of Biosafety and Phytosanitary Services, Kenya Plant Health Inspectorate Service (KEPHIS), Nairobi, Kenya

Email address:

btemukoye@gmail.com (B. Mukoye), mndonga@mmust.ac.ke (M. F. O. Ndonga), hwere@mmust.ac.ke (H. K. Were)
*Corresponding author

To cite this article:

Benard Mukoye, Millicent Florence Owuor Ndonga, Hassan Karakacha Were. Incidence of Groundnut Rosette Disease (GRD) and Genetic Diversity of Groundnut Rosette Assistor Virus (GRAV) in Western Kenya. *International Journal of Genetics and Genomics*. Vol. 7, No. 4, 2019, pp. 98-102. doi: 10.11648/j.ijgg.20190704.12

Received: September 11, 2019; Accepted: October 4, 2019; Published: October 16, 2019

Abstract: This study determined the incidence of groundnut rosette disease (GRD) and genetic diversity of groundnut rosette assistor virus (GRAV, genus Luteovirus) in western Kenya. The diseases is a major constraint of groundnuts in Sub-Saharan Africa (SSA) causing up to 100% yield losses in severe cases. Among the GRD associated viruses, GRAV plays a crucial role in vector transmission of the other viruses. Therefore understanding the genetics of GRAV across SSA could enhance development of resistance to the disease. In Kenya, groundnuts are mainly grown in western region, however, the yields are poor mainly due to GRD. Information on occurrence and distribution of GRD in western Kenya was not documented and little was known about the characteristics of associated viruses. Two diagnostic surveys were conducted in six counties; Bungoma, Busia, Homabay, Kakamega, Siaya and Vihiga. Symptomatic and asymptomatic groundnut were collected in RNA/ater® solution for laboratory analysis. Total RNA was extracted from the leaf samples using RNeasy Mini Kit (Qiagen) according to the manufacturers' protocol and used for double stranded cDNA synthesis using the SuperScript II kit. The cDNA was column-purified with the DNA Clean & ConcentratorTM-5 - DNA kit. The samples were then processed with the transposon-based chemistry library preparation kit (Nextera XT, Illumina) following manufacturer's instructions. The fragment sizes structure of the DNA libraries was assessed using the Agilent 2100 Bioanalyzer. The indexed denatured DNA libraries were sequenced (200-bp paired-end sequencing) on the Illumina MiSeq platform (Illumina). Reads quality check was done using FastQC. Trimmed reads were used for de novo assembly and contigs aligned to the viral genomes database using CLC Genomics Workbench 10.1.2. The assembled contigs were subjected to a BLASTn search against the GenBank database. Phylogenetic analyses and comparisons were performed using the MEGA X. Average incidence was 53% and 41% in the short and long rain seasons, respectively. Chlorotic rosette was the dominant symptom followed by Green rosette and Mosaic. The GRAV coat protein (GRAV-CP) gene sequences revealed 97-100% identity with GeneBank isolates showing very slight variations across SSA. The study concludes that GRD incidence is high in western Kenya and that GRAV is highly conserved across SSA. The study recommends an urgent need to curb GRD, possibly through the exploitation of pathogen derived resistance (PDR) with GRAV as the suitable candidate.

Keywords: Incidence, GRAV, Kenya, Diversity

99

1. Introduction

Groundnuts, (Arachis hypogaea L.), is the fifth most important annual oilseed and food legume crop. It is grown in diverse environments throughout the semi-arid and subtropical regions, in nearly 100 countries, in the six continents of the world [1]. Groundnut production is of great value in terms of income and nutrition for smallholder farmers in East Africa [2, 3]. Resource poor smallholder farmers grow nearly 75 - 80% of the world's groundnuts in developing countries obtaining yields of 500-800kg/ha, as opposed to the potential yield of >2.5t/ha [4]. In western Kenya, an average of 600 -700 kg/ha is achieved which is less than 30-50% of the potential yield [2]. Low yields are mainly attributed to poor quality seeds, drought, poor agronomic practices, numerous pests and diseases caused by numerous pathogenic viruses, fungi, bacteria and nematodes [5, 3]. Among the viral diseases. Groundnut rosette disease (GRD) is the most devastating in Sub-Saharan Africa (SSA) causing an estimated annual loss of US\$156 million every year [6]. The disease is caused by association between Groundnut rosette assistor virus (GRAV), Groundnut rosette umbravirus (GRV) and a Satellite-RNA (Sat-RNA) of GRV [7]. To be transmitted by aphids, GRV and Sat-RNA are packaged within the GRAV coat protein [8].

Groundnut rosette assistor virus (GRAV) belongs to the family *Luteoviridae* [9]. The GRAV virion are isometric shaped with 28nm diameter non-enveloped particles of polyhedral symmetry. It has a single stranded positive sense RNA non-segmented genome of 6900 nt that encodes both structural and non-structural proteins [10]. It is suggested that GRAV encodes six open reading frames (ORFs) just like other *luteoviruses*. The GRAV virions are composed of 24.5kDa single coat protein (CP) subunits. This virus is antigenetically related to *Potato leaf roll virus*, *Beet western yellow virus* and *Bean/pea leaf roll virus* [11].

Both chlorotic and green rosette symptoms occur throughout the SSA, and sometimes occur in the same field [12]. A less common third symptom variant, called mosaic rosette, resulting from mixed infection by the Sat-RNA causing chlorotic and green mottled variant, has been reported from East Africa [11, 6]. Infected groundnut leaves may also show symptoms other than the typical chlorotic or green rosette [8].

In Eastern Uganda, green rosette symptoms predominate [13]. This is in contrast with [14], who reported that chlorotic rosette symptoms of GRD have been the predominant form throughout SSA and western Kenya. The dynamics of the GRD virus symptomatology, therefore, needs constant monitoring. For example, in Nigeria, a there was shift from green to chlorotic rosette over a period of about 20 years. The shift could be due to changes in the genome sequences of GRD associated agents or other factors [13].

Survey conducted by [14] showed that GRD incidence ranged between 40% in areas of western Kenya surveyed in the groundnut growing seasons of 1997-1998 and Sat-RNA shared 89-95% nucleotide identity with those from Malawi and Nigeria. Since then, no other survey has been conducted to ascertain the current status of GRD in the region. In addition, no genomic sequences of any of the GRD associated viruses existed in the GeneBank from western Kenya. With the dynamics of the disease, this hinders proper diagnosis of GRD and development of management strategies. This study determined the incidence of GRD and assed the sequence diversity of GRAV of isolates from western Kenya.

2. Materials and Methods

2.1. Field Survey

The GRD diagnostic survey was conducted in all the major groundnut growing areas in western Kenva during the short rains (October to December 2016) and long rains season (May to July 2017). The following Counties were covered: Bungoma, Busia, Homabay, Kakamega, Siaya and Vihiga. Sampling of groundnut farms was done by stopping at regular predetermined intervals, of 3-8 km along motorable roads that traverses each sampling area. The survey were conducted, by walking through groundnut fields, and visually inspecting groundnut crops for symptomatic leaves. Disease incidence was calculated according to [15], as the percentage of plants showing GRD virus symptoms, to the total number of plants observed in the field. GRD viral incidence was scored using a rating scale according to [15], where: low incidence = 1-20%; moderate incidence = 21-49% and high incidence = 50-100%. The types of GRD symptoms observed were recorded. The collected data on GRD virus incidence and severity, was subjected to analysis of variance (ANOVA), using Statistical Analysis System (SAS) program version 9.3.1 software. Pairwise comparisons of means was done using Least Significance Differences (LSD) for multiple-means comparison method at P ≤ 0.05 confidence level

Symptomatic and asymptomatic leaves were collected in 10ml falcon tubes containing RNA*later*® RNA Stabilization Solution and put in a cool box. The samples were kept in the fridge and used for molecular studies. Geographical Positioning System (GPS) (entrex venture HC GARMINTM), was used to record the latitude, longitude and altitude of the sampled farms.

2.2. RNA Extraction, Sequencing and Sequence Analyses

Total RNA was extracted from the leaf samples using RNeasy Mini Kit (Qiagen) according to the manufacturers' protocol and used for double stranded cDNA synthesis using the SuperScript II (Thermo Fisher Scientific, Waltham, USA) kit. The cDNA was column-purified with the DNA Clean & ConcentratorTM-5 – DNA kit (Zymo Research, Irvine, USA). The samples were then processed with the transposonbased chemistry library preparation kit (Nextera XT, Illumina) following manufacturer's instructions. The fragment sizes structure of the DNA libraries was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). The indexed denatured DNA libraries were sequenced (200-bp paired-end sequencing) on the Illumina MiSeq platform (Illumina).

Reads quality check was done using FastQC (version 0.11.5). Reads were then trimmed to remove poor quality sequences. Trimmed reads [16] were used for de novo assembly and contigs aligned to the viral genomes database (ftp://ftp.ncbi.nih.gov/genomes/Viruses/all.fna.tar.gz/,

downloaded on October 2017) using CLC Genomics Workbench 10.1.2. The assembled contigs were subjected to a BLASTn search against the GenBank database [17]. Complete and partial GRV Sat-RNA sequences used for comparison and phylogenetic analyses were retrieved from GenBank (http://www.ncbi.nlm.nih.gov/). Phylogenetic analyses and comparisons were performed using the MEGA X [18].

3. Results

3.1. Incidence of GRD

A total of 526 farms were sampled in six (6) counties (253 in long rain and 273 in short rain). The main symptoms observed in all Counties in order of abundance, starting from the most common, were chlorotic rosette, green rosette and mosaic. Generally, GRD incidence was high during the short rain season (53%) than the long rain season (41%) in all Counties. High mean GRD incidence was recorded in Kakamega in the short rain season (68.92%) while moderate incidence was in Bungoma (30.89%) during the long rain season. There was a significant difference in GRD incidence among the counties (p=0.011). Siaya County had the overall lowest incidence which was significantly different from that of Kakamega but did not vary significantly from that of Bungoma, Busia, Vihiga and Homabay counties (Table 1).

County	Season	N	Mean (%)	Std. Error of Mean (+/-)
D	Long rain	45	30.89	4.534
Bungoma	Short rain	47	66.51	4.295
Duria	Long rain	74	43.36	3.526
Dusia	Short rain	108	46.56	2.728
TT	Long rain	73	48.60	3.919
нотавау	Short rain	55	48.22	4.025
W.L.	Long rain	30	43.47	5.283
Kakamega	Short rain	17	94.12	4.779
e:-	Long rain	31	33.94	4.820
Siaya	Short rain	26	43.23	6.645
Vihiga	Short rain	20	47.50	6.412
	Long rain	253	41.51	1.962
	Chart rain	2.72	52.04	1 000

Table 1. Mean GRD incidence (%) per County

3.2. Diversity of GRAV

Four GRAV coat protein (CP) gene sequences were assembled (600 nt). The four were compared with GRAV CP gene sequences from Malawi, Nigeria and Ghana available in the GeneBank. The comparison revealed 97-100% identity with the Kenyan isolates. Isolates GRAV-5 and GRAV-19 each had 100% identity with M16GCP (AF195824.1) and 99% with M8GCP (AF195502.1) then 98% with the other Malawian, Nigerian and Ghanaian Isolates. Isolate GRAV-22 had 99% identity with isolates M16GCP and M8GCP then 98% with the other Malawian, Nigerian and Ghanaian Isolates. Isolate GRAV-12 had 100% identity with M16GCP and 99% with M8GCP from Malawi, then 98% with the rest of Malawian, Ghanaian and Nigerian isolates except N29GCP (AF195828.1) and N15GCP (AF195825.1) that showed 97% identity. In phylogenetic tree, all Kenyan isolates clustered together with isolate M16GCP. In general all western Kenya isolates exhibited closest identity and grouped together with some Malawian isolates, M16GCP and M8GCP than the rest of Malawian, Nigerian and Ghanaian isolates (Figure 1).

Figure 1. Phylogenetic tree of the 600nt western Kenya GRAV CP and GeneBank isolates.

The evolutionary history was inferred by using the Maximum Likelihood method based on the Kimura 2parameter model. The tree is rooted on of a distantly related *Luteovirus* (Potato leaf roll virus – Y07496.1 PLRV). Bootstrap confidence values (500 replications) are shown.

4. Discussion

Groundnut rosette is the most prevalent disease of groundnuts in western Kenya. The disease was recorded in every County that was surveyed with incidences of up to 100% at some farm levels. The short rain season recorded higher incidence (53%) than the long rains (41%). This could be attributed to the high vector pressure during the short rains as compared to the long rains season when the aphid pressure is low as a result of heavy rains that wash the insects away. A study by [12], found that periods of long rains negatively affected GRD progression as aphid vector pressure was low. [19], reported a positive correlation between potato disease incidence and aphid numbers. This further supports the implication that virus disease incidence variations between the seasons contributed to by differences in vector pressure. Incidence increased with increase in severity due to early infection leading to intensification of the viruses as the plant

grows and build-up of inoculum for vectors to spread to nearby plants. Groundnut rosette is a polycyclic disease whereby diseased plants from previous cropping season serves as inoculum sources for initiating subsequent disease spread [8]. In western Kenya, groundnuts are grown in two cropping seasons (long rains and short rains) and due to limitation in land to practice shift cultivation, the same piece of land is continuously used to grow the same or related host crops in the subsequent cropping season. Therefore, GRD infected groundnuts and possibly hosts of any of the GRD associated viruses remaining from the long rains season serves as immediate sources of the GRD agents beginning the disease cycle at early stages of crop development in the short rains cropping season. Such initial infections that occur at early stages of plant growth enhance repeated cycles of infections thus increasing the severity of the disease in the groundnut fields [6].

101

All major GRD symptoms were observed in the surveyed region with chlorotic rosette being most prevalent followed by green rosette. This supports the findings of [14], who reported chlorotic rosette to be the most prevalent GRD symptoms in the region. The high prevalence of the chlorotic rosette could also be attributed to its higher transmission efficiency compared to green rosette. This observation concurs with that of [20], who reported minimum acquisition feeding periods of 4 h and 8 h for chlorotic and green rosette respectively and the median latent periods of 26.4 h, 38.4 h respectively, for chlorotic and green rosette. The mosaic symptom has not been previously reported but was distributed in most of the surveyed region. This suggests that there is evolution of new variants of Sat-RNA in western Kenya that might be causing these new symptoms or the mosaic was due to another causal agent. A total of 10 variants of Sat-RNA have been reported to be associated with the various GRD symptoms [21]. A mixture of either variants, especially the chlorotic and green rosette and/or the mild ones, are likely to induce the mosaic symptoms [8]. It is therefore possible that some of these variants occur in western Kenya in mixed infections, thus causing the varied symptom observed, especially the mosaic. Apart from the typical rosette symptoms, other symptoms including severe leaf curling and bunching were observed. This suggests that there is wider variability in expression of GRD and could be due to more severe variants of associated viruses or other agents. It is worth noting that from the Next generation Sequences (NGS) of this study, other than GRD associated viruses, other viruses were detected (data not shown) and could be the reason for some of the new symptoms observed on groundnuts [22].

The four GRAV CP gene sequences from western Kenya clustered together and had 97 – 100% identity with those from Malawi, Ghana and Nigeria implying that there was no much difference among the western Kenya GRAV CP gene isolates. Kenyan GRAV CP isolates exhibited closest identities with Malawian isolates than Nigerian and Ghanaian isolates. This findings concurs with [14] and [23], who observed closer identity between sequences from the same geographical region as compared to those from separate geographical regions. In the study, [14] found that Kenyan isolates of GRAV CP gene shared 98% nucleotide identity with Malawian isolates as compared to 96-97% with those from Nigeria. [23], observed that Ghanaian GRAV CP gene sequence isolates had 98-99% nucleotide identity as compared to 97-99% with Malawian isolates. Such differences due to geographical distances could be as a result of differences in environmental conditions that bring about variations in evolution of the viruses. All western Kenya GRAV CP isolates were closest to Malawian isolates M16GCP and M8GCP (99-100%) than the other isolates from Malawi, Nigeria and Ghana. A similar observation was noted by [14], where two of the Kenya isolates in the study (K1 and K2), specifically from western Kenya were closest to M16GCP and M8GCP than with the rest of her isolates from other regions in Kenya. This could imply that the GRAV CP gene from western Kenya have not evolved for at least the last 20 years. However variation could exist in GRAV from other regions in Kenya. In general all GRAV CP gene sequences both in this study and those in GeneBank shared 97-100% nucleotide identity. This implies that GRAV CP gene is highly conserved across the wide geographical region in Sub-Saharan Africa. It can thus be targeted as a suitable candidate for development of pathogen-derived resistance (PDR) through genetic engineering that can be used across Sub-Saharan Africa [9, 23].

5. Conclusion

Groundnut Rosette (GRD) is still the major disease of groundnuts and is present whenever groundnuts are grown in western Kenya. Chlorotic rosette is the most prevalent form of symptom on groundnuts in western Kenya. The mosaic rosette is an emerging symptom in groundnuts and could be due to dual infection by Sat-RNA variants or other agents. The GRAV CP gene is less diverse even with wide geographical distance.

The four GRAV sequences were deposited in GeneBank with accession numbers LC480460 (GRAV 12), LC480461 (GRAV 22), LC480462 (GRAV 19) and LC480463 (GRAV 5).

Acknowledgements

This work was funded by The royal society of UK, The International Foundation for Science, The National Research Fund (NRF-Kenya) and the ILRI BecA hub. We are grateful to Dr. Wellington Ekaya and the entire BecA capacity building team for allowing this work to be done at the BecA labs.

References

 Kumar, P. L. & Waliyar, F., (Ed). (2007). Diagnosis and detection of viruses infecting ICRISAT mandate crops: *Methods Manual*. Patancheru 502 324, Andhra Pradesh, India; *International Crops Research Institute for the Semi-Arid Tropics*. 133pp.

- [2] Kidula, N., Okoko, N., Bravo-Ureta, B. E., Thuo, M. & Wasilwa, L. (2010). A preliminary analysis of yield differences in groundnuts between research and non-research farmers in Kenya. In paper presented at the 12th KARI biennial scientific conference, 8-12 November 2010, Naiobi Kenya.
- [3] Okello, D. K., Birima, M. & Deom, C. M., (2010). Overview of groundnut research in Uganda: Post, present and future. *Afr. J. Biotechnol.* 9: 6448-6459.
- [4] Kayondo, S. I., Rubaihayo, P. R., Ntare, B. R., Gibson, P. I., Edema, R., Ozimati, A. & Okello, D. K. (2014). Genetics of resistance to groundnut rosette virus disease: *African crop science journal*, 22: 21-29. ISSN: 1021-9730/2014.
- [5] Mutegi, C. K. (2010). The extend of aflatoxin and aspergillus section flavi, penicillium spp. and Rhizopus spp. contamination of peanuts from households in Western Kenya and the causative factors of contamination. *PhD dissertation*, *University of Kwazulu-Natal, Pietermaritzburg.* South Africa.
- [6] Waliyar, F., Kumar, P. L., Ntare, B. R., Monyo, E., Nigam, S. N., Reddy, A. S., Osiru, M. & Diallo, A. T. (2007). A Century of Research on Groundnut Rosette Disease and its Management. *Information Bulletin* no. 75. Patancheru 502 324, Andhra Pradesh, India. *International Crops Research Institute for the Semi-Arid Tropics*, 40 pp. ISBN 978-92-9066-501-4.
- [7] Taliansky, M. E. & Robinson, D. J. (2003). Molecular Biology of umbraviruses: *Phantom warriors. J. Gen. Virol.* 84: 1951-1960.
- [8] Naidu, R. A., Robinson, D. J., & Kimmins, F. M. (1998a). Detection of each of the causal agents of groundnut rosette disease in plants and vector aphids by RI-PCR. J. Virol. Methods 76: 9-18.
- [9] Deom, C. M., Naidu, R. A., Chiyembekeza, A. J., Ntare, B. R. & Subrahmanyam, P. (2000). Sequence diversity with the three agents of groundnut rosette disease. *Phytopathol.* 90: 214-219. doi: 10.1094/PHYTO.2000.90.3.214
- [10] Murant, A. F., & Kumar, I. K. (1990). Different variants of the satellite RNA of groundnuts rosette virus are responsible for the chlorotic and green forms of groundnut rosette disease. *Ann. Appl. Biol.* 117: 85-92.
- [11] Scott, K. P., Farmer, M. J., Robinson, D. J., Torrence, L. & Murant, A. F. (1996). Comparison of the coat protein of groundnut rosette assistor virus with those of other *luteovirus*. *Ann. Appl. Biol.* 128: 77-83.
- [12] Mugisa, I. O., Karungi, J., Akello, B., Ochwo-Ssemakula, M. K. N., Biruma, M., Okello, D. K. & Otim, G. (2016). Determinants of groundnut rosette virus disease occurrence in Uganda. *Elseviercropprotectionjournal*. http://dx.doi.org/10.1016/j.crop ro.2015.10.019.
- [13] Okello, D. V, Akello, L. B, Tukamuhabwa, P., Odongo, T. L,

Ochwo-Ssemakula, M., Adriko, J. & Deom, C. M. (2014). Groundnut rosette disease symptom types, distribution and management of the disease in Uganda. *African journal of plant science*, 8: 153-163.

- [14] Wangai, A. W., Pappu, S. S., Pappu, H. R., Okoko, N., Deom, C. M. & Naidu, R. A. (2001). Distribution and characteristics of groundnut rosette disease in Kenya. *Plant Disease*, 85: 470-474.
- [15] Reddy, D. V. R. (1991). Groundnut viruses and virus diseases; Distribution, identification and control. *Rev. Plant Pathol.* 70: 665-678.
- [16] Haas B. J. Papanicolaou A, Yassour M, Grabherr M, Blood P. D. Bowden J, Couger M. B, Eccles D, Li B, Lieber M, MacManes M. D, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C. N, Henschel R, LeDuc R. D, Friedman N, Regev A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nat Protoc* 8: 1494–1512. https://doi.org/10.1038/nprot.2013.084.
- [17] Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. *J Mol Biol* 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
- [18] Kumar, S., Stecher, G., Li M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. *Molecular Biology and Evolution* 35: 1547-1549.
- [19] Were, H. K., Kabira, J. N., Kinyua, Z. M., Olubayo, F. M., Karinga, J. K., Aura, J., Lees, A. K., Cowan, G. H. & Torrance, L. (2013). Occurrence and Distribution of Potato Pests and Diseases in Kenya. *Potato Research* 56: 325–342.
- [20] Misari, S. M., Abraham, J. M., Denski J. W., Ansa, O. A., Kuhn, C. W. Casper, R. & Breyel, E. (1988a). Aphid transmission of the viruses causing chlorotic and green rosette diseases of peanut in Nigeria. *Plant Disease* 72: 250-253.
- [21] Blok, V. C., Ziegler, A., Robinson, D. J. & Murant, A. F. (1994). Sequences of 10 variants of the satellite- like RNA -3 of groundnut rosette virus. *Virology* 202: 25-32.
- [22] Mukoye, B., Mangeni, B. C., Sue, J., Ndonga, M. F. O., & Were, H. K. (2018). Next Generation Sequencing as a tool in modern pest diagnosis. A case study of groundnuts (*Arachis hypogaea*) as a potential host of new viruses in westem Kenya. Conference proceedings: The 2nd Phytosanitary Conference, 4th – 8th June, 2018 at KEPHIS-Nairobi, Kenya.
- [23] Appiah, A. S., Sossah, L. F., Tegg, S. R., Offei, K. S. & Wilson, R. C. (2017). Assessing sequence diversity of goundaut rosette disease agents and the distribution of groundnut rosette assistor virus in major groundnut-producing regions of Ghana. *Trop. Plant Pathol.* Doi: 10.1007/s40858-017-0140-x.

Vol. 12(1), pp. 22-29, January-June 2020 DOI: 10.5897/IJGMB2019.0178 Article Number: 81BC2FC63204 ISSN 2006-9863 Copyright © 2020 Author(s) retain the copyright of this article http://www.academicjournals.org/IJGMB

International Journal of Genetics and Molecular Biology

Full Length Research Paper

Distribution of groundnut rosette disease and sequence diversity of groundnut rosette virus associated satellite RNA (Sat-RNA) in Western Kenya

Benard Mukoye^{1,2*}, Anthony Simiyu Mabele¹, Millicent Florence Owuor Ndonga¹, Bonphace Collins Mangeni¹ and Hassan Karakacha Were¹

¹Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya.
²Kenya Plant Health Inspectorate Service (KEPHIS), Nairobi, Kenya.

Received 18 June, 2019; Accepted 29 October, 2019.

Production of groundnuts (Arachis hypogaea L.) in Western Kenya is mainly constrained by groundnut rosette disease (GRD) which cause up to 100% yield loss. This disease expresses different symptoms as a result of variations in the groundnut rosette virus (GRV) associated satellite-ribonucleic acid (GRV Sat-RNA). Over the past 20 years, no work had been done to document the status of the disease in Kenya. Additionally, no sequences of any of the GRD associated viruses were available in the GeneBank from Kenya. This study determined the distribution of GRD and the genetic diversity of GRV Sat-RNA. Sampling was done in main groundnut growing areas of Western Kenva during the long and short rain seasons in 2016/2017. Total RNA was extracted from the leafy samples collected using RNeasy Mini Kit (Qiagen) according to the manufacturers' protocol and used for double stranded cDNA synthesis using the SuperScript II kit. DNA libraries were sequenced on the Illumina MiSeq platform (Illumina). Reads were used for *de novo* assembly and contigs aligned to the viral genomes database using CLC Genomics Workbench 10.1.2. The assembled contigs were subjected to a BLASTn search against the GenBank database. Average GRD incidence was 53 and 41% in the short and long rain seasons, respectively. Chlorotic rosette was the dominant symptom followed by green rosette and mosaic. Nucleotide sequences of Sat-RNA revealed identities of 88 to 100% between the Kenyan isolates and those from Malawi, Nigeria and Ghana. All Kenya isolates clustered closest with green rosette variants of Malawi except one which clustered with chlorotic/yellow blotch variants. Rosette is widely distributed in Western Kenya and occurs wherever groundnuts are grown. The variations of GRD symptoms in Western Kenya could be due to the existence of different variants of Sat-RNA or other agents

Key words: Groundnuts, satellite-ribonucleic acid (Sat-RNA), diversity, Western Kenya.

INTRODUCTION

Groundnut (Arachis hypogaea L.) is the fifth most important annual oilseed and food legume crop. It is grown in diverse environments throughout the semi-arid and sub-tropical regions, in nearly 100 countries, in the six continents of the world (Kumar and Waliyar, 2007).

Groundnut production is of great value in terms of income and nutrition for smallholder farmers in East Africa (Kidula et al., 2010; Okello et al., 2010). Resource poor smallholder farmers grow nearly 75 to 80% of the world's groundnuts in developing countries obtaining yields of

500 to 800 kg/ha, as opposed to the potential yield of >2.5 t/ha (Kayondo et al., 2014). In Western Kenya, an average of 600 to 700 kg/ha is achieved which is less than 30 to 50% of the potential yield (Kidula et al., 2010). Low yields are mainly attributed to poor quality seeds, drought, poor agronomic practices, numerous pests and diseases caused by numerous pathogenic viruses, fungi, bacteria and nematodes (Mutegi, 2010; Okello et al. 2010). Among the viral diseases, groundnut rosette disease (GRD) is the most devastating in sub-Saharan Africa (SSA) causing an estimated annual loss of US\$156 million every year (Waliyar et al., 2007). The disease is caused by association between groundnut rosette assistor virus (GRAV), groundnut rosette virus (GRV) and a Satellite-RNA (Sat-RNA) of GRV (Taliansky and Robinson, 2003). Variations in Sat-RNA have been shown to be responsible for different rosette symptoms (chlorotic, green and mosaic rosette) (Taliansky and Robinson, 1997; Olorunju et al., 2001; Kayondo et al., 2014). Both chlorotic and green rosette symptoms occur throughout the SSA, and sometimes occur in the same rield (Mugisa et al., 2016). A less common third symptom variant, called mosaic rosette, resulting from mixed infection by the Sat-RNA causing chlorotic and green mottled variant, has been reported from East Africa (Scott et al., 1996; Waliyar et al., 2007). Infected groundnut leaves may also show symptoms other than the typical chlorotic or green rosette (Naidu et al., 1999).

In Eastern Uganda, green rosette symptoms predominate (Okello et al., 2014). This is in contrast with the findings of Wangai et al. (2001), who reported that chlorotic rosette symptoms of GRD have been the predominant form throughout SSA and Western Kenya. The dynamics of the GRD virus symptomatology, therefore, needs constant monitoring. For example, in Nigeria, a there was shift from green to chlorotic rosette over a period of about 20 years. The shift could be due to changes in the genome sequences of GRD associated agents or other factors (Okello et al., 2014).

Survey done by Wangai et al. (2001) showed that GRD incidence ranged between 40% in areas of Western Kenya surveyed in the groundnut growing seasons of 1997-1998 and Sat-RNA shared 89 to 95% nucleotide identity with those from Malawi and Nigeria. Since then, no other survey has been conducted to ascertain the current status of GRD in the region. In addition, no genomic sequences of any of the GRD associated viruses existed in the GeneBank from Western Kenya. With the dynamics of the disease, this hinders proper diagnosis of GRD and development of management strategies. This study determined the distribution of GRD and assessed the sequence diversity of Sat-RNA of isolates from Western Kenya.

Mukoye et al. 23

MATERIALS AND METHODS

Field survey

The GRD diagnostic sampling was conducted in all the major groundnut growing areas in Western Kenya during the short rains (October to December 2016) and long rains season (May to July, 2017). The following counties were covered: Bungoma, Busia, Homabay, Kakamega, Siaya and Vihiga. Sampling of groundnut farms was done by stopping at regular predetermined intervals, of 3 to 8 km along motorable roads that traverses each sampling area. The survey was conducted, by walking through groundnut field and visually inspecting groundnut crops for symptomatic leaves. Disease incidence was calculated according to Reddy (1991), as scored using a rating scale according to Reddy (1991) where: low incidence = 1-20%; moderate incidence = 21-49%, and high incidence = 50-100%. The types of GRD symptoms observed were recorded. The collected data on GRD virus incidence and severity, was subjected to analysis of variance (ANOVA), using Statistical Analysis System (SAS) program version 9.3.1 software (SAS Institute, 2013). Pairwise comparisons of means were done using Least Significance Differences (LSD) for multiple-means

Symptomatic and asymptomatic leaves were collected in 10 ml falcon tubes containing RNA/ater® RNA Stabilization Solution and put in a cool box. The samples were kept in the fridge and used for molecular studies. Geographical Positioning System (GPS) (entrex venture HC GARMINTM), was used to record the latitude, longitude and altitude of the sampled farms.

RNA extraction, sequencing and sequence analyses

Total RNA was extracted from the leaf samples using RNeasy Mini Kit (Qiagen) according to the manufacturers' protocol and used for double-stranded cDNA synthesis using the SuperScript II (Thermo Fisher Scientific, Waltham, USA) kit. The cDNA was columnpurified with the DNA Clean and ConcentratorTM-5-DNA kit (Zymo Research, Irvine, USA). The samples were then processed with the transposon-based chemistry library preparation kit (Nextera XT, Illumina) following manufacturer's instructions. The fragment sizes structure of the DNA libraries was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). The indexed denatured DNA libraries were sequenced (200-bp paired-end sequencing) on the Illumina MiSeq platform (Illumina). Reads quality check was done using FastQC (version 0.11.5).

Reads quality check was done using FastQC (version 0.11.5). Reads were then trimmed to remove poor quality sequences using Trimmomatic (V 0.36) software (Bolger et al., 2014). Trimmed reads (Haas et al., 2013) were used for *de novo* assembly and contigs aligned to the viral genomes database (ftp://ftp. ncbi.nih.gov/genomes/Viruses/all.fna.tar.gz/, downloaded on October 2017) using CLC Genomics Workbench 10.1.2. The assembled contigs were subjected to a BLASTn search against the GenBank database (Altschul et al., 1990). Complete and partial GRV Sat-RNA sequences used for comparison and phylogenetic analyses were retrieved from GenBank (http://www.ncbi.nlm.nih.gov/). Phylogenetic analyses and comparisons were performed using the MEGA X (Kumar et al., 2018). Tobacco bushy top virus - KU997687.1 TBTV was used as an outgroup.

*Corresponding author. E-mail: btemukoye@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> License 4.0 International License

24 Int. J. Genet. Mol. Biol.

Table 1. Mean GRD incidence (%) per County

County	Season	N	*Mean (%)	Std. error of mean (+/-)
Durana	Long rain	45	30.89 ^b	4.534
Bungoma	Short rain	47	66.51 ^b	4.295
Ducia	Long rain	74	43.36 ^b	3.526
Busia	Short rain	108	46.56 ^b	2.728
Usershaw	Long rain	73	48.60 ^b	3.919
Homabay	Short rain	55	48.22 ^b	4.025
14-1	Long rain	30	43.47 ^b	5.283
какатеда	Short rain	17	94.12 ^a	4.779
<u>.</u>	Long rain	31	33.94 ^b	4.820
Siaya	Short rain	26	43.23 ^b	6.645
Vihiga	Short rain	20	47.50 ^b	6.412
Total	Long rain	253	41.51	1.962
TULAI	Short rain	273	53.04	1.909

*Means with the same letter within the column are not significantly different.

Table 2: Percentage frequency of the occurrence of the three main GRD symptoms in western Kenya.

Symptom	Percent
Chlorotic rosette (CR)	58.6
Green rosette (GR)	27.4
Mosaic (MS)	14.1

RESULTS

A total of 526 farms were sampled in six (6) counties (253 in long rain and 273 in short rain). Generally, GRD incidence was high during the short rain season (53%) than the long rain season (41%) in all counties. High mean GRD incidence was recorded in Kakamega in the short rain season (68.92%) while moderate incidence was in Bungoma (30.89%) during the long rain season. There was a significant difference in GRD incidence among the counties (p=0.011, df=521, F=3.322). Siaya County had the overall lowest incidence which was significantly different from that of Kakamega but did not vary significantly from that of Bungoma, Busia, Vihiga and Homabay counties (Table 1).

Generally, GRD infected plants were dwarf with increased tillering although some were tall but expressed other major symptoms associated with GRD. The main symptoms observed in all counties in order of abundance, starting from the most common, were chlorotic rosette, green rosette and mosaic. Chlorotic rosette was recorded in 58.6% of the surveyed farms, green rosette in 27.4% while mosaic was observed 14.1% of farms (Table 2). Other symptoms observed were leaf rolling, upward leaf curling and severe leaf bunching (Figure 1). The distribution of the major symptoms is shown in Figure 2.

Diversity of GRV Sat-RNA

Six complete genomes of GRV Sat-RNA were assembled. The sequences varied slightly in the number of nucleotides (nt) ranging between 896 and 901 nt (Table 3).

The six Sat-RNAs from Kenya were then compared with those from the GeneBank. In the phylogenetic tree, all Kenyan isolates formed two distinct clusters together with Malawian isolates. Isolates E7 and E8 clustered with M11S, isolates BUG1-21, BG3-18 and KG8-1 clustered together with M16S while isolate EG16-5 is grouped with

Figure 1. Some of the virus-like symptoms observed in the surveyed fields. A: Dwarfed plant with green rosette; B: Severe chlorosis (yellow) on young leaves and dwarfing; C: Severe young leaf rolling and bunching on a dwarfed plant; D: Mosaic mostly on young leaves.

M24S. All Nigerian isolates clustered together is similar to Ghanaian isolates. Sequence identities between 88 and 100% of the Kenyan isolates and those from Malawi, Nigeria and Ghana were revealed. Very close identities between 92 and 100% were observed between the Kenyan isolates and those from Malawi, followed by Nigerian isolates (90-93%) and least with Ghanaian isolates (86-89%). Isolate BUG1-21 had 100, 99 and 98% identities with M16S, M12S, and M11S, respectively, which are all green rosette variants and 94% with M24S (chlorotic variant). While the other Western Kenya isolates (KG8-1, BUG1-21, BG3-18, E7 and E8) had 92 to 95% identity with Malawian isolate M24S (chlorotic rosette variant), isolate EG16-5 (Kakamega) showed the closest identity (97%) with this isolate. The same isolate EG16-5 was the only that clustered together with M24S, all chlorotic isolates (Z29702.1, Z29703.1) and yellow blotch (Z29710.1, Z29711.1). Isolates E7 and E8 were closest to Malawian isolate M11S with 97 and 99% identity, respectively. Isolates BG3-18 and KG8-1 were closest to Malawian isolates M16S displaying 97% identity (Figure 3).

DISCUSSION

Groundnut rosette disease is the most prevalent disease of groundnuts in Western Kenya. The disease was recorded in every county that was surveyed with incidences of up to 100%. The short rain season recorded higher incidence (53%) than the long rains (41%). This can be attributed to the high vector pressure during the short rains as compared to the long rains season when the aphid pressure is low as a result of heavy rains that wash the insects away. This concurs with the findings by Mugisa et al. (2016) that periods of long rains negatively affected GRD progression when aphid pressure is low.

All major GRD symptoms were observed in the surveyed region with chlorotic rosette being the most prevalent followed by green rosette. This concurs with Wangai et al. (2001) who reported chlorotic rosette to be the most prevalent GRD symptom in the region. The high prevalence of the chlorotic rosette could also be attributed to its higher transmission efficiency compared to green rosette. In a study, Misari et al. (1988a), reported

26 Int. J. Genet. Mol. Biol.

Figure 2. A map of Western Kenya showing the distribution of GRD symptoms in the surveyed counties. MS-Mosaic, GR-Green Rosette, CR-Chlorotic Rosette.

minimum acquisition feeding periods of 4 and 8 h for chlorotic and green rosette, respectively and the median latent periods of 26.4 and 38.4 h, respectively, for

chlorotic and green rosette. In this study, a new symptom, the mosaic, which had not been previously reported in Western Kenya, was observed in most of the

Table 3. Description of the Sat-RNA sequences assembled.

Sample ID	Sat-RNA ID	Sequence length (nt)	County of origin
EG16	EG16-5	901	Kakamega
E7	E7	896	Siaya
E8	E8	897	Busia
BUG1	BUG1-21	901	Busia
KG8	KG8-1	898	Kakamega
BG3	BG3-18	901	Bungoma

Figure 3. Phylogenetic tree of Western Kenya Sat-RNA and GeneBank isolates. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree is rooted on Sat-RNA of a distantly related *Umbravirus* (Tobacco bushy top virus - KU997687.1 TBTV). Bootstrap confidence values (500 replications) are shown.

surveyed counties. This suggests that there is evolution of new variants of Sat-RNA that might be causing these new symptoms. A total of 10 variants of Sat-RNA have been reported as being associated with the various GRD symptoms (Blok et al., 1994). A mixture of either variants, especially the chlorotic and green rosette and/or the mild ones, are likely to induce the mosaic symptoms (Naidu et al., 1998). It is therefore possible that the variants of sat-RNA reported in this study occur in Western Kenya in mixed infections, thus causing the mosaic observed. It is worth noting that from the Next Generation Sequences (NGS) used in this study, order than GRV Sat-RNA, other viruses were detected (data not shown) and could be the reason for some of the new symptoms observed on groundnuts (Mukoye et al., 2018).

The Western Kenya Sat-RNAs sequences showed close identity (92-100%) to Malawian isolates than those from Ghana and Nigeria (88-93%). This implies that the genetic diversity of the Sat-RNA become more varied with wide geographical distance. Kenya and Malawi are located in Eastern Africa while Ghana and Nigeria are in West Africa thus having a wider geographical separation than Malawi. This finding is in line with Wangai et al. (2001) who observed a closer sequence relationship between Kenyan Sat-RNA isolates and those from Malawi. However, this study has reported sequence identity of up to 100% with Malawian isolates as opposed to 95% reported by Wangai et al. (2001). This suggests that more variants of Sat-RNA exist in Western Kenya that are contributing to the diverse symptoms expressed by GRD. Since this study used NGS which has been demonstrated to be more reliable in detection of new or poorly characterized viruses (Rott et al., 2017), it has revealed new variants of Sat-RNA in Western Kenva. Besides, there were variations among the Western Kenya Sat-RNA isolates similar to Malawian isolates where they formed distinct clusters in the phylogenetic tree. The isolate EG16-5 was the most distinct and clustered together with chlorotic and yellow blotch Sat-RNA variants. This suggests that this isolate is related to the chlorotic rosette symptom that was prevalent in the surveyed areas.

This study concludes that GRD is still the major viral disease of groundnuts in Western Kenya and occurs wherever groundnuts are grown in the region. The disease expresses varied symptoms with chlorotic rosette being the most prevalent form. The observed variations in the symptoms were due to the presence of diverse variants of the symptom inducing agent, Sat-RNA. The use of NGS has revealed that new variants of Sat-RNA exist in Western Kenya

The six Kenyan Sat-RNAs have been deposited in the GeneBank with accession numbers LC469779, LC472299, LC472300, LC472301, LC472302 and LC472303.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests

ACKNOWLEDGEMENTS

This work was funded by Royal Society of UK, International Foundation for Science, National Research Fund (NRF-Kenya) and ILRI BecA hub. They are grateful to Dr. Wellington Ekaya and the entire BecA capacity building team for allowing this work to be done at the BecA labs.

REFERENCES

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215:403-410
- Blok VC, Ziegler A, Robinson DJ, Murant AF (1994). Sequences of 10 variants of the satelitte- like RNA -3 of groundnut rosette virus. Virology 20225-32. Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: A flexible trimmer
- for Illumina Sequence Data. Bioinformatics, btu170.
- Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J. Pochet N. Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8-1494-1512
- Kayondo SI, Rubaihayo PR, Ntare BR, Gibson PI, Edema R, Ozimati A, Okello DK (2014). Genetics of resistance to groundnut rosette virus
- Okeino DK (2014). Generations of resistance to groundhut rosette virus disease: African Crop Science Journal 22:21-29. idula N, Okoko N, Bravo-Ureta BE, Thuo M, Wasilwa L (2010). A preliminary analysis of yield differences in groundhuts between research and non-research farmers in Kenya. In paper presented at the 12th KARI biennial scientific conference, 8-12 November 2010, Number 10, 2014. Naiobi Kenya.
- Nation Kenya, Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549.
- Kumar PL, Waliyar F (2007). Diagnosis and detection of viruses infecting ICRISAT mandate crops: Methods Manual. Patancheru 502 324, Andhra Pradesh, India; International Crops Research Institute for the Semi-Arid Tropics 133 p.
- Misari SM, Abraham JM, Demski JW, Ansa OA, Kuhn CW, Casper R, Breyel E (1988a). Aphid transmission of the viruses causing chlorotic and green rosette diseases of peanut in Nigeria. Plant Disease 72.250-253
- NL200-253 Mugisa IO, Karungi J, Akello B, Ochwo-Ssemakula MKN, Biruma M, Okello DK, Otim G (2016). Determinants of groundnut rosette virus disease occurrence Uganda Elseviercropprotectionjournal.http://dx.doi.org/10.1016/j.cropro.2015. 10.019
- Mukoye B, Mangeni BC, Sue J, Ndong'a MFO, Were HK (2018). Next generation sequencing as a tool in modern pest risk analysis: a case study of groundnuts (*Arachis hypogaea*) as a potential host of new viruses in Western Kenya. Kenya Plant Health Inspectorate Service 2^{nd} phytosanitary conference, $4^m - 8^m$ June, 2018, Nairobi – Kenya. Mutegi CK (2010). The extend of aflatoxin and aspergillus section flavi,
- penicillium sp. and Rhizopus sp. contamination of peanuts from households in Western Kenya and the causative factors of contamination. PhD dissertation, University of Kwazulu-
- Natal, Pietermaritzburg South Africa. Natal, Pietermaritzburg South Africa. Naidu RA, Bottenberg H, Subrahmanyam P, Kimminns FM, Robinson DJ, Thresh JM (1998). Epidemiology of groundnut rosette virus
- uisease: Current status and future research needs. Annals of Applied Biology 132:525-548. Naidu RA, Kimmins FM, Deom CM, Subrahimanyam P, Chiyeubekeza AJ, van der Merwe PJA (1999). Groundnut rosette: Avirus disease affecting groundnut production in Sub-Saharan Africa. Plant Disease 83:700-709.
- Okello DK, Birima M, Deom CM (2010). Overview of groundnut

research in Uganda: Post, present and future. African Journal of Biotechnology 9:6448-6459.

- Biotechnology 9:6448-6459.
 Okello DV, Akello LB, Tukamuhabwa P, Odongo TL, Ochwo-Ssemakula M, Adriko J, Deom CM (2014). Groundnut rosette disease symptom types, distribution and management of the disease in Uganda. African Journal of Plant Science 8:153-163.
 Olorunju PE, Ntare BR, Pande S, Reddy SV (2001). Additional sources of resistance to groundnut rosette disease in groundnut germplasm and breeding lines. Annals of Applied Biology 159:259-268.
 Reddy DVR (1991). Groundnut viruses and virus diseases; Distribution, identification and control. Review of Plant Pathology 70:665-678.
 Rott M, Xiang Y, Boyes I, Belton M, Saeed H, Kesanakurti P, Hayes S, Lawrence T, Birch C, Bhagwat B, Rast H (2017). Application of Next Generation Sequencing for diagnostic testing of tree fruit viruses and viroids. Plant Disease 101:1489-1499.
 SAS Institute (2013). SAS/STAT 9.3.1: User guide. SAS Publishers,
- SAS Institute (2013). SAS/STAT 9.3.1: User guide. SAS Publishers, India.
- India. Scott KP, Farmer MJ, Robinson DJ, Torrence L, Murant AF (1996). Comparison of the coat protein of groundnut rosette assistor virus with those of other *luteovirus*. Annals of Applied Biology 128:77-83. Taliansky ME, Robinson DJ (1997). Trans-acting untranslated elements of groundnut rosette virus satelitte RNA are involved in symptom production. Journal of General Virology 78:1277-1285.

- Taliansky ME, Robinson DJ (2003). Molecular Biology of umbraviruses: Phantom warriors. Journal of General Virology 84:1951-1960.
 Tamura K, Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:51-526.
 Waliyar F, Kumar PL, Ntare BR, Monyo E, Nigam SN, Reddy AS, Osiru M, Diallo AT (2007). A Century of Research on Groundnut Rosette Disease and its Management. Information Bulletin no.75.Patancheru 502 324, Andhra Pradesh, India. International Crops Research Institute for the Semi-Arid Tropics 40 p. ISBN 978-92-9066-501-4.
 Wangai AW, Pappu SS, Pappu HR, Okoko N, Deom CM, Naidu RA (2001). Distribution and characteristics of groundnut rosette disease in Kenya. Plant Disease 85:470-474.