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ABSTRACT

Batch testing is a fundamental testing scheme that results into substantial saving

in terms of cost and time. It is mainly applicable in cases with large population

sizes and low prevalence rates. Studies on Batch testing have shown that Adap-

tive Batch testing is more efficient than Non-Adaptive Batch testing particularly

as the number of stages increases. Most recent studies on Batch testing have

shown that even with truncation in inspection, Adaptive Batch testing remains

more efficient. In this study a Three-Stage Adaptive Batch testing Model with

errors without Truncation is presented with the view to establishing whether or

not it is more efficient than the truncated estimator. Maximum Likelihood Es-

timate (MLE) method is used to obtain the estimator and Crammer-Rao Lower

Bound method to determine the variance of the estimator. Data is obtained

through simulation by the help of R-Software tool .The efficiency of the Estima-

tor relative to the Adaptive estimator with truncation was determined with the

view to performing a comparative analysis between the two. Model verification

is done and the results show that Three stage-Adaptive Batch testing model

with errors without truncation is more efficient than truncated estimator in the

presence of errors. This study is significant in the sense that it brings forth a

new model in the literature of estimation in batch testing, a Model that would

find application in various fields such as HIV/AIDS , Blood donation, quality

control among others.
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CHAPTER ONE

INTRODUCTION

1.1 Background information

Batch testing is a fundamental tool used in identifying defective items from a

large population with low prevalence rates. It is designed to reduce the number

of tests required to identify defective items, thus very economical in terms of time

and cost. In this scheme items from a given population are pooled and tested as

a single entity [5]. Batch testing has been known to reduce the variance of the

estimator thereby making it more efficient, [13] , [15].

Batch testing is categorized into two; Adaptive and Non-Adaptive. In a Non-

Adaptive scheme, a large population is divided into ’n’ batches and are subjected

to testing, [5]. The results obtained are then used to construct the Non-adaptive

scheme. Adaptive scheme on the other hand involves partitioning the popula-

tion into ’n’ Batches depending on the number of stages using a predetermined

partitioning parameter. The Batches are then tested in stages and the obtained

results are used in constructing the adaptive model, [12].

1.2 Statement of the problem

Efficiency in Batch testing is a fundamental property in determining the applica-

bility of any constructed estimator. Previous studies on Adaptive Batch testing

with errors did not consider the effect of truncation on the efficiency of the es-

timator. Since truncated probabilities are incomplete, it gives us an ability to

estimate and relate it with complete probability. It is against this background

that this study presents a Three-Stage Adaptive Batch testing model for esti-

mating prevalence of a trait without truncation with errors with the view to
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establishing the effect of truncation on the efficiency of the Estimator.

1.3 Objective of the Study

1.3.1 Main Objective

To develop a Three-stage adaptive batch testing estimator of prevalence of a trait

without truncation.

1.3.2 Specific Objectives

The specific objectives of this study are:

(i)To construct a Three-stage adaptive batch testing estimator with test errors.

(ii)To determine the efficiency of the constructed estimator.

(iii)To compare the efficiency of the estimator constructed with that of the

truncated estimator.

1.4 Significance of the Study

This study does a comparative analysis between two models of estimation with

test errors in order to identify the scheme that is better. The identified scheme

would find application in the many situations that require estimation of preva-

lence such as HIV prevalence, quality control among others.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Batch testing has been widely used as a sampling scheme that is very instrumen-

tal in reducing the time and cost of testing especially when the items of interest

are rare, [5], [13] and [16]. The scheme has had a rich history, dating back to

Dorfman [5] and his seminar work during the world war (II) when they estimated

the proportion of diseased individuals among the US soldier.

2.2 Non-Adaptive Batch testing

Dorfman,[5] introduced the statistical and mathematical concepts of batch test-

ing. He used it to estimate the proportion of diseased individuals among the

US soldiers by dividing a large population of size say, N into n Batches for the

purpose of testing blood samples of diaftles to detect syphilis. He Assumed

that if n Batches were subjected to test and X found to test positive and let p

be the probability of classifying a batch as positive, then X follows a binomial

distribution with parameters n and p expressed as

X ∼ Binomial(n, p) (2.1)

.

In his testing, Dorfman,[5] realised savings of upto 80% in terms of cost and time.

Thompson, [15] studied estimation using Batch testing procedure and according

to him, if X Batches test positive on the test, then X has a binomial distribution

with parameters n and 1-(1-p)k or simply expressed as

3



X ∼ Binomial(n, 1− (1− p)k) (2.2)

where,

1− (1− p)k (2.3)

is the probability that a batch tests positive. He used this model to obtain the

MLE, p̂ of p as

p̂ =
[
1− X

n

] 1
k

(2.4)

Recent studies have seen a large number of scholars engage in Batch testing in

different fields such as estimation of HIV/AID’s prevalence without necessarily

identifying the subject [2],[1],[6],[9], quality control process [16] and phytopathol-

ogy, [7]. Batch testing need not only be applied to a population in identification

of a trait but also on other populations with limited intention of re-testing the

items. For example, if a batch of fruit items is being tested for contamination ,

the interest may not be on identifying the particular items which are defective.

The need may instead be on estimating the ratio of the positive items so as to

remove them from a given market population.

Brookmeyer, [3] presented a simple stage determination analysis of the general

Multi-Stage Batch testing model for estimating disease prevalence. He altered a

Single-Stage Batch testing study originally proposed by Thompson,[15] to esti-

mate HIV incidence rates from prevalence studies of early HIV infections by use

of a Polymerance Chain Reaction (PCR) assay for HIV Ribonucleic Acid (RNA).

He established that if the disease is significantly rare, pooling increases efficiency

of the estimator of prevalence unlike the individual testing, because lesser tests

are necessary [3].

Nyongesa, [10] introduced the idea of error terms thereby altering the Thompson
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model [15]. He obtained the MLE p̂, of prevalence p as

p̂ = 1−
[ η − x

n

η + φ− 1

] 1
k

(2.5)

and established that the model was more efficient in situations where test kits

had low sensitivity and specificity.

Wanyonyi, [16] carried out estimation of proportion of a trait by Batch testing

with errors in inspection as applied to quality control process and established

that in a given population the probability of detecting a defective Batch is much

affected by the cut off value and the total size of the Batch. He illustrated that

this probability increases with increase in the total size of the batch at a given

value of sensitivity and specificity. However this rate reduces at high cut off

value.

2.3 Adaptive Batch Testing Scheme

Oliver-Hughes and Swallow, [13] proposed a Two-Stage Adaptive Batch testing

model which they used to estimate small proportions. They used Maximum

Likelihood Estimation (MLE) method to estimate the proportion and Crammer-

Rao Lower Bound method to obtain the variance of the estimator. They divided

the population in two Batches, that is to say λn Batches tested at Stage one and

(n-λn) Batches tested at stage two; where λ is a partitioning parameter used to

partition the Batches. The MLE’s at stages one p̂1 and two p̂2 were established

and the results obtained were more impressive compared to the single stage

estimator p̂ because the estimator p̂2 at stage two, p̂2 (adaptive), was found to

be more sufficient and efficient than the single stage estimator (Non-adaptive).

They further established that, efficiency increases with increase in stages from

one to two.

Okoth, [11] generalised the Oliver-Hughes and Swallow model by introducing

error terms. With introduction of the error terms the probabilities that a batch
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tests positive at stage one and two were established as,

π1(p) = η(1− (1− p)k1 + (1− φ)(1− p)k1 (2.6)

and

π2(p) = η(1− (1− p)k2) + (1− φ)(1− p)k2 (2.7)

respectively. Utilizing these probabilities the estimator at stage two was estab-

lished as the solution to

x1k1q
k1 [(1− φ)− η]

η − (η + (1− φ))qk1
+
x2k2(x1)q

k2(x1)[(1− φ)− η]

η − (η + (1− φ))qk2(x1)
=

(nλ1 − x1)k1qk1 [(1− φ) + η]

1− [η − (η + (1− φ))qk1 ]
+

(nλ2 − x2)k2qk1(x1)[(1− φ) + η]

1− [η − (η + (1− φ))qk2(x1)]
(2.8)

and its variance as (Var(p̂A)),

V ar(p̂A) =
π1(p)π2(p)(1− π1(p))(1− π2(p))

R
(2.9)

where,

R = (η + φ− 1)2[π2(p)(1− π2(p))λNk21(1− p)2k1−2

+ π1(p)(1− π1(p))λnk22(x1)(1− p)2k1−2]

2.4 Truncated Models

Truncated probability distributions are an example of conditional distributions.

They arise from restricting the range of a given probability distribution. They

are used in many scientific practical statistics, mostly in areas where there is

need to give a record or understand occurrences which are bound to result from

values that lie below or above a given threshold [8]. The use of processes that
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require simulation has gained fame in many different areas of industry. With

the high rate of development in computers computation methods are becoming

easier [4].

Truncation also happens when a function is expanded and only a specified num-

ber of terms considered in the succeeding work. In the study upon which this

study is bench marked a truncated model in which a simple binomial expansion

procedure is applied, was considered.

Recall that Equation (2.3) is the probability that a batch test positive. To obtain

this probability we first need to determine the probability that a batch test neg-

ative since this is only the case when all the constituents of a batch are negative.

Suppose that in a batch we have k constituent objects each with a probability

(1-p) of testing negative, then the probability that the batch test negative will

be given by,

k∏
i=1

(1− p) = (1− p)k (2.10)

Equation (2.10) can be binomially expanded and truncated to the required

number of terms as,

(1− p)k = 1− kp+
1

2
k(k − 1)p2 +O(P 3) (2.11)

Equation (2.11) which is truncated after the term of order two is the truncated

probability that a batch tests negative from which truncated models have been

constructed [12].

Okoth et.al [12] extended this work to a Multi-Stage case. In their development,

they truncated the model and established that the adaptive testing scheme is

more efficient than the non-adaptive testing scheme with truncation incorpo-

rated.

One notable model in their work was the Estimator at stage-three where MLE

was found the solution to

7



k1X1(1− pk1 + p)

π1

+
k2(X1)x2(1− pk2(X1) + p)

π2

+
k3(X2)X3(1− pk2(X2) + p)

π3

=
(λ1n−X1)k1(1− pk1 + p)

(1− π1)

+
(λ2n−X2)k2(X1)(1− pk2(X1) + p)

(1− π2)

+
((1− λ1 − λ2)n−X3)k3(X2)(1− pk3(X2) + p)

(1− π3)
(2.12)

and whose variance was found as

V ar(p̂3) =
π3(p)π2(p)π1(p)(1− π2(p))(1− π2(p))(1− π3(p))

B
(2.13)

where

B = (η + φ− 1)2[λ1nπ2(p)π3(p)(1− π2(p))1− π3(p)(k1 − pk21 + pk1)
2 (2.14)

+ λ2nπ1(p)π3(p)(1− π1(p))(1− π3(p))(k2(x1)− pk22(x2) + pk2(x1))
2

+ (1− λ1 − λ2)nπ1(p)π2(p)(1− π1(p))(1− π2(p))(k3(x1)− pk23(x1) + pk3(x1))
2]

The truncation in Equation (2.11) can be solved by use of Equation (2.10) which

is complete. Three-Stage adaptive estimator of prevalence of a trait without

truncation is developed in this study and studies the effect of truncation by

comparing with Okoth et.al [12] model at stage three where truncation was

done.
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CHAPTER THREE

MODEL FORMULATION

3.1 Introduction

In this chapter a three stage adaptive estimator p̂B without truncation by incor-

porating errors is constructed. Further, its efficiency relative to the three stage

adaptive estimator with truncation is determined. The chapter is outlined as

follows;

A general overview of Adaptive batch testing is presented in Section 3.2 while

Three-stage Adaptive batch testing is discussed in Section 3.3 and it’s asymptotic

variance in Section 3.4

3.2 Adaptive batch testing

Adaptive batch testing involves testing batches in stages after partitioning the

population. The batch size is updated from one stage to the next.

We note at this point that the batch size at any given stage depends on the

results obtained at previous stages. The Batches are tested to establish defective

Batches across the stages. The outcome obtained at a stage depends on the

outcome at a previous stage. The following methods were used in the current

study.

3.2.1 Method of Maximum likelihood Estimation

The estimator of the prevalence trait is obtained by use of Maximum Likelihood

Estimation (MLE) method. The likelihood function of random variable Xj where

j=1,2,...n is defined to be the joint density of the n random variables which is

considered to be a function of θ and denoted by L(θ).

9



i.e

L(θ) = f(Xj, θ) =
n∏
i=1

f(Xj, θ)

L(θ) = f(X, θ) =
n∏
i=1

f(Xj, θ)

The maximum likelihood estimate of θ is the value of θ that maximises the

likelihood function L(θ),thus

∂

∂θ
L(θ) = 0 (3.1)

to which is equivalent to maximising the log likelihood ,i.e

∂

∂θ
logL(θ) = 0 (3.2)

.

3.2.2 Cramer-Rao Lower Bound (CRLB) Method

The CRLB method is used a method for finding the lower bound of the variance

of an unbiased estimator of prevalence trait constructed estimator. Suppose Xj

is random variable from a given population having density function f(Xj,θ)with

respect to the measure µ where θ ε
⊙

. Let T=t(Xj) be an unbiased estimator

for θ under the regularity conditions :

(i) θ lies in the open interval
⊙

of the real line.

(ii) ∂
∂θ
f(Xj, θ) exist ∀ θε

⊙
, ∀ x

(iii)
∫
T (X)

∏n
j=1 ∂µ can be differentiated under the integral sign for any T (X)

10



(iv) 0 < E[ ∂
∂θ

ln f(Xj, θ)]
2 <∞ ∀ θε

⊙
and ∃∀θ if the above assumptions hold,

then

V ar(T ) ≥ [τ ,(θ)]2

nEθ[
∂
δθ

ln f(Xj, θ)]2
(3.3)

if T is unbiased then the numerator is 1

∴ under the assumptions, if Eθ(T ) = θ + b(θ), then

V arθ(T ) ≥ (1 + b,(θ))2

nE[ ∂
δθ

log f(Xj, θ)]2
(3.4)

T is unbiased

∴ V arθ(T ) ≥ 1

nE[ ∂
δθ

log f(Xj, θ)]2
(3.5)

∴ V arθ(T ) ≥ 1

I(θ)
(3.6)

obtaind from the fishers information

Equation (3.6) is Cramer-Rao inequality and the right hand side of this inequality

is known as Cramer-Rao Lower Bound for the variance of the unbiased estima-

tors. Numerical simulations of this model were carried out in R to graphically

illustrate the behaviour of the solutions of the estimated model.The efficiency of

the estimator relative to the adaptive estimator with truncation shall be deter-

mined with the view to performing a comparative analysis between the two.

3.3 Three-stage adaptive batch testing model

In this scheme batches are partitioned into three and tested at three stages.

Suppose we define N as the size of population which is partitioned into n homo-

geneous batches each of which of size k. In this case λ1n, λ2n and λ3n batches

of sizes each k1 ,k2 and k3 are tested at stages one, two and three respectively.

The diagrammatic representation of this model is as shown in Figure 3.1

11



 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

21 
i1 n1 

Stage 1 ,λ1n  

Batches 
11 

+ _ 

12 

 

21 

 

i2 

 

n2 
Stage 2, λ2n 

 Batches 

+ _ 

13 

 

31 

 

i3 

 

n3 

 

Stage 3, λ3n 

Batches 

 

+ - 

Figure 3.1: Schematic representation of Three stage Adaptive Batch

Testing Model

From Figure 3.1, when a batch is tested, it either yields positive or negative

results; with the probability that a batch tests positive as 1−(1−p)k and (1−p)k

as the probability that a batch tests negative [11].

The batch size at this stage is k3 and it depends on k2 and k1. This is determined

as ,

k3 = argmin(V arp̂2) (3.7)

If X3 is the number of defective batches at stage 3, conditioned on X1 and X2

then X3 follows a Binomial distribution with parameters λ3n and π3 simply

written as

X3|X1X2 ∼ Bi(λ3n, π3) (3.8)
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where π3 is the probability that a batch tests positive at stage three and is given

by,

π3 = η[1− (1− p)k3(x2)] + (1− φ)(1− p)k3(x2) (3.9)

The final Three stage adaptive estimator of p, p̂B is the MLE based on the joint

distribution of X1,X2 and X3.

Here η and φ are the error terms referred to us sensitivity and specificity of the

test kit respectively. In this case sensitivity is the probability of a positive batch

truly tests as positive and sensitivity is the probability of a negative batch truly

tests as negative.

This joint distribution is given by,

f(X3, X2, X1) = Bin(λ1n, η[1− (1− p)k1 ] + (1− φ)(1− p)k1)

× Bin(λ2n, η[1− (1− p)k1(x1)] + (1− φ)(1− p)k2(x1))(3.10)

× Bin(λ3n, η[1− (1− p)k3(x2)] + (1− φ)(1− p)k3(x2))

To find MLE we find the likelihood function of equation (3.10) which is given by

f(X3, X2, X1) =

 nλ1

x1

 [η(1− (1− p)k1) + (1− φ)(1− p)k1 ]x1

× [1− (η − η(1− p)k1 + (1− φ)(1− p)k1)]nλ1−x1

×

 nλ2

x2

 [η(1− (1− p)k2(x1)) + 1− φ)(1− p)k2(x1)]x2

× [1− (η − η(1− p)k2(x1)) + (1− φ)(1− p)k2(x1))]nλ2−x2(3.11)

×

 nλ3

x3

 [η(1− (1− p)k3(x2)) + 1− φ)(1− p)k3(x2)]x3

× [1− (η − η(1− p)k3(x2)) + (1− φ)(1− p)k3(x2))]nλ3−x3

Introducing the constant of proportionality, Equation (3.11) becomes
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f(X3, X2, X1) ∝ [η(1− (1− p)k1) + (1− φ)(1− p)k1 ]x1

× [1− (η − η(1− p)k1 + (1− φ)(1− p)k1)]nλ1−x1

× [η(1− (1− p)k2(x1)) + (1− φ)(1− p)k2(x1)]x2 (3.12)

× [1− (η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1))]nλ2−x2

× [η(1− (1− p)k3(x2)) + (1− φ)(1− p)k3(x2)]x3

× [1− (η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x2))]nλ3−x3

Next we find the natural logs

Inf(X3, X2, X1) ∝ x1In[η − η(1− p)k1) + (1− φ)(1− p)k1 ]

+ (nλ1 − x1)In[1− [η − η(1− p)k1 + (1− φ)(1− p)k1 ]]

+ x2In[η − η(1− p)k2(x1)) + (1− φ)(1− p)k2(x1)] (3.13)

+ (nλ2 − x2)In[1− [η − η(1− p)k2(x1) + (1− φ)(1− p)k(x1)]]

+ x3In[η − η(1− p)k3(x2)) + (1− φ)(1− p)k3(x2)]

+ (nλ3 − x3)In[1− [η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x2)]]

The derivative with respect to p of Equation (3.13) is obtained as

∂

∂p
f(X3, X2, X1) =

x1[ηk1(1− p)k1−1 + k1(1− φ)(1− p)k1−1]

η − η(1− p)k1 + (1− φ)(1− p)k1

− (nλ1 − x1)[ηk1(1− p)k1−1 + k1(1− φ)(1− p)k1−1]

1− [η − η(1− p)k1 + (1− φ)(1− p)k1 ]

+
x2[ηk2(x1)(1− p)k2(x1)−1 + k2(1− φ)(1− p)k2(x1)−1]

η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)
(3.14)

− (nλ2 − x2)[k2η(1− p)k2(x1)−1 + k2(1− φ)(1− p)k2(x1)]
1− [η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)]

+
x3[ηk3(x2)(1− p)k3(x2)−1 + k3(1− φ)(1− p)k3(x2)−1]

η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x2)

− (nλ3 − x3)[k3η(1− p)k3(x2)−1 + k3(1− φ)(1− p)k3(x2)]
1− [η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x1)]

14



The MLE of pB, p̂B, is given by the solution to Equation(3.15)

x1k1(1− p)k1 [(1− φ)− η]

η − η(1− p)k1 + (1− φ)(1− p)k1
+

x2k1(x1)(1− p)k2(x1)[(1− φ)− η]

η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)

+
x3k3(x1)(1− p)k3(x1)[(1− φ)− η]

η − η(1− p)k3(x1) + (1− φ)(1− p)k3(x1)

=
(nλ1 − x1)k1(1− p)k1 [(1− φ) + η]

1− [η − η(1− p)k1 + (1− φ)(1− p)k1 ]
+

(nλ2 − x2)k2(1− p)k1(x1)[(1− φ) + η]

1− [η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)]

+
(nλ3 − x3)k3(1− p)k3(x2)[(1− φ) + η]

1− [η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x2)]
(3.15)

Next we establish the asymptotic variance of pB, var(p̂B) which does not

require that we find p̂B

3.4 Asymptotic variance of p̂B

Asymptotic variance is useful in determining Asymptotic Relative Efficiency

(ARE) of an estimator. To determine variance, we recall Equation (3.12) and let

π1(p) = [η(1− (1− p)k1) + (1− φ)(1− p)k1 ] (3.16)

π2(p) = η(1− (1− p)k2(x1)) + (1− φ)(1− p)k2(x1) (3.17)

π3(p) = η(1− (1− p)k3(x2)) + (1− φ)(1− p)k3(x2) (3.18)

(1− π1(p)) = 1− [η − η(1− p)k1 + (1− φ)(1− p)k1 ] (3.19)

(1− π2(p)) = 1− [η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)] (3.20)

(1− π3(p)) = 1− [η − η(1− p)k3(x1) + (1− φ)(1− p)k3(x1)] (3.21)

The first and second derivatives of Equations (3.16), (3.17), (3.18), (3.19),

(3.20) and (3.21) are given as
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∂

∂p
π1(p) = ηk1(1− p)k1−1 − k1(1− φ)(1− p)k1−1 (3.22)

∂2

∂p2
π1(p) = k1(k1 − 1)(1− φ)(1− p)k1−2 − ηk1(k1 − 1)(1− p)k1−2(3.23)

∂

∂p
(1− π1(p)) = k1(1− φ)(1− p)k1−1 − ηk1(1− p)k1−1 (3.24)

∂2

∂p2
(1− π1(p)) = ηk1(k1 − 1)(1− p)k1−2 − k1(k1 − 1)(1− φ)(1− p)k1−2

(3.25)

∂

∂p
π2(p) = ηk2(x1)(1− p)k2(x1)−1 − k2(x1)(1− φ)(1− p)k2(x1)−1

(3.26)

∂2

∂p2
π2(p) = k2(x1)(k2(x1)− 1)(1− φ)(1− p)k2(x1)−2 − ηk2(x1)(k2(x1)− 1)(1− p)k2(x1)−2

(3.27)

∂

∂p
(1− π2(p)) = k2(x1)(1− φ)(1− p)k2(x1)−1 − ηk2(x1)(1− p)k2(x1)−1

(3.28)

∂2

∂p2
(1− π2(p)) = ηk2(x1)(k2(x1)− 1)(1− p)k2(x1)−2 − k2(x1)(k2(x1)− 1)(1− φ)(1− p)k2(x1)−2

(3.29)

∂

∂p
π3p) = ηk3(x2)(1− p)k3(x2)−1 − k3(x2)(1− φ)(1− p)k3(x2)−1

(3.30)

∂2

∂p2
π3(p) = k3(x2)(k3(x2)− 1)(1− φ)(1− p)k3(x2)−2 − ηk3(x2)(k3(x2)− 1)(1− p)k3(x2)−2

(3.31)
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∂

∂p
(1− π3(p)) = k3(x2)(1− φ)(1− p)k3(x2)−2 − ηk3(x2)(1− p)k3(x1)−1

(3.32)

∂2

∂p2
(1− π3(p)) = ηk3(x2)(k3(x1)− 1)(1− p)k3(x2)−2 − k3(x2)(k3(x2)− 1)(1− φ)(1− p)k3(x2)−2

(3.33)

Substituting Equations (3.16), (3.17) and (3.18), in Equation (3.12) we ob-

tain,

f(X3, X2, X1) ∝ π1(p)
(x1)(1− π1(p))nλ1−x1π2(P )x2(1− π2(p))nλ2−x2π3(P )x3(1− π3(p))nλ3−x3

(3.34)

Next we find the natural log on Equation (3.34)

lnf(X3, X2, X1) ∝ (x1)lnπ1(p) + (nλ1 − x1)ln(1− π1(p))

+ x2lnπ2(p) + (nλ2 − x2)ln(1− π2(p))

+ x3lnπ3(p) + (nλ3 − x3)ln(1− π3(p)) (3.35)

The first and second derivatives of Equation (3.35) with respect to p are

obtained as,

∂

∂p
lnf(x3, x2, x1) =

x1
π1(p)

∂

∂p
π1(p) +

(nλ1 − x1)
(1− π1(p))

∂

∂p
(1− π1(p))

+
x2
π2(p)

∂

∂p
π2(p) +

(nλ2 − x2)
(1− π2(p))

∂

∂p
(1− Π2(p))

+
x3
π3(p)

∂

∂p
π3(p) +

(nλ3 − x3)
(1− π3(p))

∂

∂p
(1− π3(p)) (3.36)

and
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[
∂2

∂p2
lnf(X3, X2, X1)] = [x1[

π1(p)
∂2

∂p2
π1(p)− ∂

∂p
π1(p)

∂
∂p
π1(p)

π2
1(p)

]

+ (nλ1 − x1)[
(1− π1(p)) ∂2

∂p2
(1− π1(p))− ∂

∂p
(1− π1(p)) ∂

∂p
(1− π1(p))

(1− π1(p))2
]

+ x2[
π2(p)

∂2

∂p2
π2(p)− ∂

∂p
π2(p)

∂
∂p
π2(p)

π2
2(p)

]

+ (nλ2 − x2)[
(1− π2(p)) ∂2

∂p2
(1− π2(p))− ∂

∂p
(1− π2(p)) ∂

∂p
(1− π2(p))

(1− π2(p))2
]

+ x3[
π3(p)

∂2

∂p2
π3(p)− ∂

∂p
π3(p)

∂
∂p
π3(p)

π2
3(p)

]

+ (nλ3 − x3)[
(1− π3(p)) ∂2

∂p2
(1− π3(p))− ∂

∂p
(1− π3(p)) ∂

∂p
(1− π3(p))

(1− π3(p))2
]]

(3.37)

respectively.

To find the expectation of X1, X2, X3 in Equation (3.37), we note that for a bi-

nomial distribution, E(x)=np. In this case E(x1) = nλ1π1(p), E(x2) = nλ2π2(p)

and E(x3) = nλ3π3(p)

Substituting for E(x1), E(x2)andE(x3) in Equation (3.37), factoring and simpli-

fying we obtain

E[
∂2

∂p2
lnf(X3, X2, X1] = (nλ1)[

π1(p)
∂2

∂p2
π1(p)− ∂

∂p
π1(p)

∂
∂p
π1(p)

π1(p)
]

+ [
(1− π1(p)) ∂2

∂p2
(1− π1(p))− ∂

∂p
(1− Π1(p))

∂
∂p

(1− π1(p))
(1− π1(p))

]

+ (nλ2)[
π2(p)

∂2

∂p2
π2(p)− ∂

∂p
π2(p)

∂
∂p
π2(p)

π2(p)
]

+ [
(1− π2(p)) ∂2

∂p2
(1− π2(p))− ∂

∂p
(1− Π2(p))

∂
∂p

(1− π2(p))
(1− π2(p))

]

+ (nλ3)[
π3(p)

∂2

∂p2
π3(p)− ∂

∂p
π3(p)

∂
∂p
π3(p)

π3(p)
]

+ [
(1− π3(p)) ∂2

∂p2
(1− π3(p))− ∂

∂p
(1− π3(p)) ∂

∂p
(1− π3(p))

(1− π3(p))
]
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(3.38)

Next we substitute for ∂2

∂p2
π2(p),

∂2

∂p2
(1 − π1(p)),

∂2

∂p2
π2(p),

∂2

∂p2
(1 − π2(p)),

∂2

∂p2
π3(p), and ∂2

∂p2
(1− π3(p)) in Equation (3.38) and obtain

E[
∂2

∂p2
lnf(x3, x2, x1)] = −nλ1k1(1− p)2k1−2[(

η2k1 − 2ηl1(1− φ) + k1(1− φ)2

[η − η(1− p)k1 + (1− φ)(1− p)k1 ]

+
[k1(1− φ)2 − 2ηk1(1− φ)− η2k1]

1− [η − η(1− p)k1 + (1− φ)(1− p)k1 ]
]

− nλ2k2(x1)(1− p)2k2(x1)−2[(
η2k2(x1)− 2ηk2(x1)(1− φ) + k2(x1)(1− φ)2

[η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)]
)

+ (
[k2(x1)(1− φ)2 − 2ηk2(x1)(1− φ) + η2k2(x1)]

1− [η − η(1− p)k2(x1) + (1− φ)(1− p)k2(x1)]
)]

− nλ3k3(x1)(1− p)2k3(x2)−2[(
η2k3(x2)− 2ηk3(x1)(1− φ) + k3(x2)(1− φ)2

[η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x1)]
)

+ (
[k3(x2)(1− φ)2 − 2ηk3(x2)(1− φ) + η2k3(x2)]

1− [η − η(1− p)k3(x2) + (1− φ)(1− p)k3(x1)]
)] (3.39)

Which reduces to:

E[
∂2

∂p2
lnf(X3, X2, X1)] = −nλ1k1(1− p)2k1−2[(

η2k1 − 2ηk1(1− φ) + k1(1− φ)2

π1(p)

+
[k1(1− φ)2 − 2ηk1(1− φ)− η2k1]

1− π1(p)
]

+ −nλ2k2(x1)(1− p)2k2(x1)−2

× [(
η2k2(x1)− 2ηk2(x1)(1− φ) + k2(x1)(1− φ)2

π2(p)
)

+ (
[k2(x1)(1− φ)2 − 2ηk2(x1)(1− φ) + η2k2(x1)]

1− π2(p)]
)]

+ −nλ3k3(x1)(1− p)2k3(x2)−2

× [(
η2k3(x2)− 2ηk3(x2)(1− φ) + k3(x2)(1− φ)2

π3(p)
)

+ (
[k3(x2)(1− φ)2 − 2ηk3(x2)(1− φ) + η2k3(x2)]

1− π3(p)
)](3.40)
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Factorising and rearranging Equation (3.40) we obtain ,

E[
∂2

∂p2
lnf(X3, X2, X1)] = −nλ1k21(1− p)2k1−2[

η2 − 2η(1− φ) + (1− φ)2

π1(p)(1− π1(p))
]

+ −nλ2k22(x1)(1− p)2k2(x1)−2[
η2 − 2η(1− φ) + (1− φ)2

π2(p)(1− π2(p))
]

+ −nλ3k23(x2)(1− p)2k3(x2)−2[
η2 − 2η(1− φ) + (1− φ)2

π3(p)(1− π3(p))
]

(3.41)

Now

E[
∂2

∂p2
lnf(X3, X2, X1)] = −nλ1k

2
1(1− p)2k1−2(η + φ− 1))2

π1(p)(1− π1(p))

+ −nλ2k
2
2(x1)(1− p)2k2(x1)−2(η + φ− 1)2

π2(p)(1− π2(p))

+ −nλ3k
2
3(x2)(1− p)2k3(x2)−2(η + φ− 1)2

π3(p)(1− π3(p))
(3.42)

Therefore,

−E[
∂2

∂p2
lnf(X3, X2, X1)] = (η + φ− 1))2[

nλ1k
2
1(1− p)2k1−2

π1(p)(1− π1(p))
+
nα2k

2
2(x1)(1− p)2k2(x1)−2

π2(p)(1− π2(p))

+
nλ3k

2
3(x2)(1− p)2k3(x1)−2

π3(p)(1− π3(p))
] (3.43)

Writing Equation (3.43) as a single fraction we have

−E[
∂2

∂p2
lnf(X3, X2, X1)] =

A

π1(p)π2(p)π3(p)(1− π1(p))(1− p2(p))(1− π3(p))
]

(3.44)

Where

A = (η + φ− 1))2[π2(p)π3(p)(1− π2(p))(1− π3(p))nλ1k21(1− p)2k1−2(3.45)

+ π1(p)π3(p)(1− π1(p))(1− π3(p))nλ2k22(x1)(1− p)2k2(x1)−2

+ π1(p)π2(p)(1− π1(p))(1− π2(p))nλ3k23(x3)(1− p)2k3(x2)−2
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V ar(p̂B) =
1

IN
= [

1

−E[ ∂
2

∂p2
lnf(X3, X2, X1)]

] (3.46)

V ar(p̂B) =
π1(p)π2(p)π3(p)(1− π1(p))(1− π2(p))(1− π3(p))

A
(3.47)

Equation (3.44) is fisher information IN
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter the results of Asymptotic Relative Efficiency (ARE) generated

by R software tool are discussed. The highlights of this study will enable us to

make necessary conclusion and recommendations to this study.

4.2 Asymptotic Relative Efficiency (ARE)

In this section results on ARE of the three-stage adaptive Batch Testing Esti-

mator without truncation with errors relative to the three-stage Adaptive batch

testing Estimator with truncation with error is presented.

The computation of ARE was accomplished by dividing Equations (2.13) by

(3.47) given by

V ar(p̂3)

V ar(p̂B)

Upon simplification we obtain

ARE =
A

B
(4.1)

where ,

A = (η + φ− 1))2[π2(p)π3(p)(1− π2(p))(1− π3(p))nλ1k21(1− p)2k1−2(4.2)

+ π1(p)π3(p)(1− π1(p))(1− π3(p))nλ2k22(x1)(1− p)2k2(x1)−2

+ π1(p)π2(p)(1− π1(p))(1− π2(p))nλ3k23(x3)(1− p)2k3(x2)−2
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and

B = (η + φ− 1)2[λ1nπ2(p)π3(p)(1− π2(p))1− π3(p)(k1 − pk21 + pk1)
2 (4.3)

+ λ2nπ1(p)π3(p)(1− π1(p))(1− π3(p))(k2(x1)− pk22(x2) + pk2(x1))
2

+ (1− λ1 − λ2)nπ1(p)π2(p)(1− π1(p))(1− π2(p))(k3(x1)− pk23(x1) + pk3(x1))
2]

Utilizing Equation (4.1) in R, Tables 4.1, 4.2 and 4.3 were obtained.

Table 4.1: ARE values of p̂B relative to p̂3 when η=φ

at specified values of p

p η = φ = 0.99 η = φ = 0.95 η = φ = 0.90 η = φ = 0.85 η = φ = 0.80

0.10 1.5383 1.4764 1.4999 1.4864 1.4764

0.14 2.4339 2.3424 2.3811 2.3596 2.3424

0.18 6.5765 6.0859 6.3029 6.1842 6.0859

0.20 12.3877 10.9777 11.5792 11.2462 10.9777

0.22 7.9072 7.9582 7.95312 7.9451 7.9582

0.24 2.5095 2.8015 2.6657 2.7385 2.8015

0.28 0.4102 0.4984 0.4585 0.4801 0.4984

0.30 0.2025 0.2564 0.23254 0.2455 0.2564

Table 4.1 provides ARE values at different values of p when η = φ. From the

table it is evident that ARE values are all greater than one across the various

values of p at low prevalence rate, (i.e p < 0.28). This means that the estimator

without truncation is more efficient than the Truncated Estimator. ARE values

increase between 0.10 and 0.20 and then they start to decrease at

p > 0.20. This implies that the non-truncated estimator performs better at lower

values of p. This is a good observation for this model because batch testing is

done on population with low prevalence rates.

23



Table 4.2: ARE values of p̂B relative to p̂3 when η is constant at 99%

and φ varies

p η = 0.99, η = 0.99, η = 0.99, η = 0.99, η = 0.99,

φ = 0.80 φ = 0.85 φ = 0.90 φ = 0.95 φ = 0.98

0.10 1.5107 1.527 1.5489 1.5797 1.6167

0.14 2.3322 2.343 2.4356 2.4907 2.5545

0.18 6.0268 6.1926 6.4060 6.6887 7.02319

0.20 11.2352 11.8175 12.5899 13.6564 15.0480

0.22 8.5861 8.9824 9.4850 10.1411 11.07124

0.24 2.8993 2.9609 3.0329 3.1179 3.2582

0.28 0.4718 0.4758 0.4803 0.4852 0.4996

0.30 0.2323 0.23413 0.2358 0.23766 0.2451

Table 4.2 provides ARE values at different values of p, when η is held constant

and φ varies. From the table all the ARE values are greater than one at low

prevalence rates (p<0.28). The efficiency increases as the values of φ increase.

This implies that in the presence of test errors non-truncated estimator are more

efficient than truncated estimator with increase in specificity of the test kits.
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Table 4.3: ARE values of p̂B relative to p̂3 when φ is constant at 99%

and η varies

p η = 0.80, η = 0.85, η = 0.90 η = 0.95 η = 0.98,

φ = 0.99 φ = 0.99 φ = 0.99 φ = 0.99 φ = 0.99

0.10 1.5107 1.5270 1.5488 1.5796 1.6049

0.14 2.3623 2.3942 2.4357 2.4907 2.5330

0.18 6.0267 6.1924 6.4060 6.6887 6.9056

0.20 11.2353 11.81755 12.5899 13.6564 14.5333

0.22 8.5860 8.9824 9.4850 10.1411 10.6395

0.24 2.8992 2.9609 3.0329 3.1179 3.1765

0.28 0.4718 0.475 0.4809 0.4852 0.4884

0.30 0.2325 0.2341 0.2358 0.2376 0.2388

Table 4.3 provides generated ARE values at different values of p, when φ is

held constant and η varies. Results show that the ARE values are greater than

one at low values of p. The efficiency increases as η increases. The observations

on Tables 4.2 and 4.3 shows that the model performs better when sensitivity and

specificity are high. These observations are graphically illustrated as in Figures

4.1, 4.2 and 4.3 below.
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Figure 4.1: Plot of ARE values vs p when η = φ at specified values of

p

Figure 4.2: Plot of ARE values vs p when η is constant at 99% and φ

varies
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Figure 4.3: Plot of ARE values vs p when φ is constant at 99% and η

varies
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATION

5.1 Introduction

Our study focussed on the effect of truncation on the efficiency of a constructed

estimator. In this chapter we give the conclusion as per the objectives of the

study and necessary recommendations for future work.

5.2 Conclusions

Evidently from the above discussions the three stage adaptive batch testing esti-

mator without truncation with errors is more efficient than truncated estimator

in presence of errors as we notice that all the ARE values are all greater than

one at lower values of p. The Estimator performs better at higher values of

sensitivity and specificity (η=φ=0.99) than at lower values (η=φ=0.80). It also

performs better at low prevalence rates (p≤ 0.28). Since Batch testing targets

low prevalence rates, the model in this study befits this kind of scenario (low

prevalence rates) given that it performs better than the Truncated Model.

5.3 Recommendation

After comparison, we realise that Non-truncated models outperforms Truncated

models. We therefore recommend a generalised use of Non-truncated models of

up to ’n’ stages in statistical fields that require batch testing as it yields better

results. However, in the absence of errors will the same scenario depict across

the n stages? This perhaps presents an avenue for further research.
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