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Abstract
Let R be a completely primary finite ring and J be its Jacobson

radical. A class of such rings in which J4 = (0), J3 �= (0) has been
constructed. Moreover, the structures of their groups of units have
been determined for all the characteristics of R.
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1 Introduction

The background information on completely primary finite rings can be ob-
tained from [1, 5]. The notations used in this paper are standard, see e.g [5].
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The classification of finite rings, still remains open. Several authors have con-
structed finite rings whose Jacobson radical or group of units yield a particu-
lar structure. For instance, in [2], the author has obtained structures of unit
groups of classes of completely primary finite rings in which the product of any
three zero divisors is zero. It is well known that if R is a finite field, then the
group of units is cyclic. In [3], Gilmer characterized all rings whose groups of
units are cyclic. In this paper, we have constructed rings in which the product
of any four zero divisors is zero. Moreover, their groups of units have been
characterized. From the well known Raghavendran’s result (see[5],Theorem
2), we notice that if J4 = (0), J3 �= (0), then characteristic of R is p, p2, p3

and p4.

2 Rings of characteristic p

Let R
′
= GR(pr, p) be the Galois ring of order pr and characteristic p. Sup-

pose U , V and W are finitely generated R
′

modules such that dimR′U = s,
dimR′V = t, dimR′W = λ and s + t + λ = h. Let {u1, ..., us}, {v1, ..., vt} and
{w1, ..., wλ} be the generators of U , V and W respectively so that R = R

′⊕U⊕
V ⊕W is an additive abelian group. Further, assume that s = 1, t = 1, λ = h−2
so that R = R

′⊕R
′
u⊕R

′
v⊕∑h−2

j=1 R
′
wj and pu = pv = pwj = 0, 1 ≤ j ≤ h−2.

On R, define multiplication as follows:
(r0, r1, r2, ..., rh)(s0, s1, ..., sh) = (r0s0, r0s1+r1s0, r0s2+r2s0+r1s1, r0s3+r3s0+
r1s2 + r2s1, ..., r0sh + rhs0 + r1s2 + r2s1). It is easy to verify that the given mul-
tiplication turns R into a commutative ring with identity (1, 0, ..., 0).

Proposition 1. The ring constructed in this section is completely pri-
mary of characteristic p and

J = R
′
u ⊕ R

′
v ⊕

λ∑
j=1

R
′
wj

J2 = R
′
v ⊕

λ∑
j=1

R
′
wj

J3 =

λ∑
j=1

R
′
wj

J4 = (0)

Proposition 2. see e.g [2]. Let R be a completely primary finite ring (not
necessarily commutative). Then, the group of units, R∗ of the ring R contains
a cyclic subgroup < b > of order pr − 1 and R∗ is a semi direct product of
1 + J and < b > .
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Proposition 3. Let R be the ring constructed in this section, and J be
its Jacobson radical. Then

R∗ ∼= Zpr−1 × Z
r
p2 × (Zr

p)
λ if p �= 2

for every prime integer p and positive integer r.

Proof. Let ξ1, ..., ξr ∈ R
′
with ξ1 = 1 such that ξ1, ..., ξr ∈ R

′
/pR

′
form a

basis for R
′
/pR

′
regarded as a vector space over its prime subfield Fp.

For every prime integer p, 1 + J is a direct product of the following r(h − 1)
cyclic subgroups with their respective orders

{(1 + ξνu)αν | 1 ≤ αν ≤ p2}, 1 ≤ ν ≤ r

{(1 + ξνwj)
βν | 1 ≤ βν ≤ p}, 1 ≤ ν ≤ r, 1 ≤ j ≤ λ

The structure of R∗ follows from the above Proposition 2.

3 Rings of characteristic p2

Let R
′

= GR(p2r, p2) be the Galois ring of order p2r and characteristic p2.
Suppose U , V and W are finitely generated R

′
modules such that dimR′U = s,

dimR
′V = t, dimR

′W = λ and s + t + λ = h. Let {u1, ..., us}, {v1, ..., vt} and
{w1, ..., wλ} be the generators of U , V and W respectively so that R = R

′⊕U⊕
V ⊕W is an additive abelian group. Further, assume that s = h−1, t = 1, λ = 0
so that R = R

′ ⊕ ∑h−1
j=1 R

′
uj ⊕ R

′
v where puj �= 0, p2uj = 0, 1 ≤ j ≤ s and

pv = 0. On R, define multiplication as follows:
(r0, r1, r2, ..., rh−1, rh)(s0, s1, ..., sh−1, sh) = (r0s0 + p

∑h−1
i,j=1 risj , r0s1 + r1s0, ...,

r0sh−1 + rh−1s0, r0sh + rhs0) where rh, sh ∈ R
′
/pR

′
.It is easy to verify that the

given multiplication turns R into a commutative ring with identity (1, 0, ..., 0, 0).

Proposition 4. The ring constructed in this section is completely pri-
mary of characteristic p2 and

J = pR
′ ⊕

s∑
j=1

R
′
uj ⊕ R

′
v

J2 = pR
′ ⊕ p

s∑
j=1

R
′
uj ⊕ R

′
v

J3 = p

s∑
j=1

R
′
uj

J4 = (0).
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Proposition 5. Let R be the ring constructed in this section, and J be
its Jacobson radical. Then

R∗ ∼= Zpr−1 × (Zr
p2)s × (Zr

p)
2

for every prime integer p and positive integer r.

Proof. Let ξ1, ..., ξr ∈ R
′

with ξ1 = 1 such that ξ1, ..., ξr ∈ R
′
/pR

′
form

a basis for R
′
/pR

′
regarded as a vector space over its prime subfield Fp. It

therefore suffices to characterize 1+J , for the structure of R∗ will easily follow
from Proposition 2.
For every prime integer p, 1 + J is a direct product of the following r(s + 2)
cyclic subgroups with their respective orders

{(1 + pξν)
α} | 1 ≤ α ≤ p}, 1 ≤ ν ≤ r

{(1 + ξνuj)
βj | 1 ≤ βj ≤ p2}, 1 ≤ ν ≤ r, 1 ≤ j ≤ s

{(1 + pξνv)kν | 1 ≤ kν ≤ p}, 1 ≤ ν ≤ r

The structure of R∗ follows from the above Proposition 2.

4 Rings of characteristic p3

Let R
′

= GR(p3r, p3) be the Galois ring of order p3r and characteristic p3.
Suppose U , V and W are finitely generated R

′
modules such that dimR′U = s,

dimR′V = t, dimR′W = λ and s + t + λ = h. Let {u1, ..., us}, {v1, ..., vt} and
{w1, ..., wλ} be the generators of U , V and W respectively so that R = R

′⊕U⊕
V ⊕W is an additive abelian group. Further, assume that s = h−1, t = 1, λ = 0
so that R = R

′ ⊕ ∑h−1
j=1 R

′
uj ⊕ R

′
v where p2uj �= 0, p3uj = 0, 1 ≤ j ≤ s and

pv = 0. On R, define multiplication as follows:
(r0, r1, r2, ..., rh−1, r̃h)(s0, s1, ..., sh−1, s̃h) = (r0s0, r0s1+r1s0, ..., r0sh−1+rh−1s0,
r0s̃h + r̃hs0 +

∑h−1
i,j=1 risj) where ri, sj ∈ R

′
/p2R

′
and r̃h, s̃h ∈ R

′
/pR

′
.It is

readily verified that the given multiplication turns R into a commutative ring
with identity (1, 0, ..., 0, 0̃).

Proposition 6. The ring constructed in this section is completely pri-
mary of characteristic p3 and

J = pR
′ ⊕

s∑
j=1

R
′
uj ⊕ R

′
v

J2 = p2R
′ ⊕ p

s∑
j=1

R
′
uj ⊕ R

′
v
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J3 = pR
′
v

J4 = (0).

Proposition 7. Let R be the ring constructed in this section, and J be
its Jacobson radical. Then its group of units is characterized as follows:

R∗ ∼=
⎧⎨
⎩

Z2r−1 × Z2 × Z2 × Z
r−1
4 × Z

r
8 × Z

r
4 × (Zr

2)
s−1 if p = 2

Zpr−1 × Z
r
p2 × Z

r
p2 × (Zr

p2)s if p �= 2

Proof. Let ξ1, ..., ξr ∈ R
′
with ξ1 = 1 such that ξ1, ..., ξr ∈ R

′
/pR

′
form a

basis for R
′
/pR

′
regarded as a vector space over its prime subfield Fp.

If p = 2, consider ν = 1, ..., r and y ∈ R
′
such that x2 + x + y = 0 over R

′
/pR

′

has no solution in the field R
′
/pR

′
. We easily notice that 1 + J is a direct

product of the following r(s + 2) + 1 cyclic subgroups with their respective
orders.

{(−1 + 4ξ1)
α | α = 1, 2}

{(1 + 4y)β | β = 1, 2}
{(1 + 2ξν)

κν | κν = 1, ..., 4}, 2 ≤ ν ≤ r

{(1 + 2ξνuj)
τjν | τjν = 1, 2}, ν = 1, ..., r; j = 1, ..., s − 1

{(1 + ξνus−1 + ξνus)
γν | γν = 1, ..., 4}, ν = 1, ..., r

{(1 + ξνus + ξνv)δν | δν = 1, ..., 8}, ν = 1, ..., r

If p �= 2, 1 + J is a direct product of the following r(s + 2) cyclic subgroups
with their respective orders:

{(1 + pξν)
αν | αν = 1, ..., p2}, ν = 1, ..., r

{(1 + ξνuj)
βjν | βjν = 1, ..., p2}, j = 1, ..., s; ν = 1..., r

{(1 + ξνv)αν | αν = 1, ..., p2}, ν = 1, ..., r.

In both cases, the structure of R∗ follows from Proposition 2.

5 Rings of characteristic p4

Let R
′

= GR(p4r, p4) be the Galois ring of order p4r and characteristic p4.
Suppose U , V and W are finitely generated R

′
modules such that dimR′U = s,

dimR′V = t, dimR′W = λ and s + t + λ = h. Let {u1, ..., us}, {v1, ..., vt} and
{w1, ..., wλ} be the generators of U , V and W respectively so that R = R

′⊕U⊕
V ⊕W is an additive abelian group. Further, assume that s = h, t = 0, λ = 0 so
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that R = R
′⊕∑s

j=1 R
′
uj where puj = 0, 1 ≤ j ≤ s. On R define multiplication

as follows:
(r0, r1, r2, ..., rh)(s0, s1, ..., sh) = (r0s0, r0s1 + r1s0, ..., r0sh + rhs0) where ri, sj ∈
R

′
/pR

′
, 1 ≤ i, j ≤ s. This multiplication turns R into a commutative ring

with identity (1, 0, ..., 0).

Proposition 8. The ring constructed in this section is completely pri-
mary of characteristic p4 and

J = pR
′ ⊕

s∑
j=1

R
′
uj

J2 = p2R
′

J3 = p3R
′

J4 = (0).

Proposition 9. Let R be the ring constructed in this section, and J be
its Jacobson radical. Then its group of units is characterized as follows:

R∗ ∼=
⎧⎨
⎩

Z2r−1 × Z2 × Z4 × Z
r−1
8 × (Zr

2)
s if p = 2

Zpr−1 × Z
r
p3 × (Zr

p)
s if p �= 2

Proof. See Proposition 5 in [4].
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