Hindawi

Mathematical Problems in Engineering
Volume 2022, Article ID 6385673, 12 pages
https://doi.org/10.1155/2022/6385673

Research Article

@ Hindawi

Computation of the Fault-Tolerant Metric Dimension of

Certain Networks

Humera Bashir (9, Zohaib Zahid

, and Michael Onyango Ojiema

University of Management and Technology (UMT), Lahore, Pakistan

Correspondence should be addressed to Michael Onyango Ojiema; mojiema@mmust.ac.ke

Received 12 December 2021; Accepted 23 February 2022; Published 21 March 2022

Academic Editor: Muhammad Faisal Nadeem

Copyright © 2022 Humera Bashir et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

The notion of metric dimension originated in the twentieth
century by the work done by Slater [1, 2] and latter inde-
pendently by Harary and Melter [2]. The initial concept was
introduced to locate the intruder in any network but the
development and impact of the notion was far reaching in
coming years. Several applications of metric related network
parameters can be seen in social networking, navigation,
communications, and engineering, pharmaceutical chem-
istry. The fault tolerance of a networking system is its ability
to perform in case of malfunction of one of the source nodes.
The fault tolerant metric dimension of a network can be
regarded as a process of uniquely identification of each node
of a network in case a malfunction occurs in one of the
source node. This allows fault tolerant metric dimension
more adaptability and flexibility for practical purposes than
the parent notion.

For a simple network N = (V(N), E(N)), the size of
least distant route between any two of its nodes s, w is re-
ferred as distance between them, notated as d (s, w). If R =
{n,n,,...,n} is an arrayed collection of nodes in N then
the vector (d (n, ni))f:1 is called a representative vector of the
node n wrt. R notated as r(n|R). The collection R con-
taining distinct representative vectors corresponding to
distinct nodes is referred as resolving collection of nodes. A
resolving collection of nodes with least members is called
basis for the network N and its size is referred as metric
dimension of N, represented by dim (N).

The limitations in the parent notion of metric dimension
of having deviation at only one position between the

representative tuples of vertices led Estrado-Moreno et al., to
introduce a generalized notion of k— metric dimension in
2014 (see [3]). Thus, the notion of the k— metric dimension
was introduced, which becomes the metric dimension, for
k =1, denoted by dim (N). The equivalent condition on the
existence of k— metric basis and related results were pre-
sented by Estrado-Moreno et al. in [4]. Further the notion
was explored in context of generalized metric spaces in [6]
and respectively for lexicographic product of graphs and
corona product of graphs, in [5, 6]. The extension of this
concept to the more general case of non-necessarily con-
nected graphs is studied in [7]. The complexity of some k—
metric dimension problems revealed that its computation is
NP-hard (see [8]). This motivated the study of notion k-
metric dimension problems for particular values of k. The
notion for k =2, is referred as fault tolerant metric di-
mension, which was introduced by Hernando in 2008 (see
[9]). Here, we include a formal definition of the notion: Let
R = {n;,n,,...,n} beanarrayed collection of nodes in N. If
for each pair of nodes a,b € V(N) their absolute difference
representation AD((a,b)|R) = (ldy (a,n)) —dy (b,n))|,
.., ldy(a,m) —dy (b,n;)]) contains more than one zeros,
then the collection R is referred as a fault-tolerant resolving
set (FTRS) for N. An FTRS of the least size in N is called as
fault tolerant metric basis (FTMB) and its size is the fault
tolerant metric dimension (FTMD) of N, notated by g (N).

The notion FTMD have been extensively discussed by
several researchers. In this regard, FTMD for prism related
graphs and circulant graphs have been studies in [10, 11],
FTMR of lexicographic product and some other classes have
been discussed in [12, 13], FTMD of certain wheel related
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graphs can be seen in [14]. Further, FTMD for convex
polytopes and triangular lattices are computed in [15, 16].
Recently, in 2020, Huo et al. computed FTMD for gener-
alized prism graph and Mobious ladders and latter in 2021
Bashir et al. discussed FTMD of some classes of rotationally
symmetric graphs (see [17, 18]). Some other related de-
velopments can also be seen in [19, 20]. Following are the
two theorems which will be helpful in computing our main
results.

Theorem 1 (see [3]). For any graph Gdim(G) < g (G).

Theorem 2 (see [3]). If G#P,, then p(G) = 3.

The symmetric planer graphs, like generalized
Petersen and sunlet networks have key importance in the
fields of telecommunication, navigation and networking
due to the structure of these networks which results in
uniform rate of data transfer and thereby optimizing the
resources used.

1.1. Main Results. The study conducted in this article, lead to
following main results

Theorem 3

(1) For n>3,

(s.) {3, ifnis3,5,7 or9, 0
O] = 4, else.
(2) For n>3,
3, ifn=3,
p(P(n,1)) = (2)
4, else.
(3) For n>5,
(P(n.2)) 4, forevenn, 3)
n,2)) =
© 4or5, foroddn.

The rest of the article is organized in the following
manner: In Section 2, the FTMD of family of n— sunlet
graph S, is computed. The Section 3 comprises of the
computation of FTMD of family the generalized Petersen
graph P(n,t), for t = 1. We also computed the FTMD of
P (n,2) for even nand some tight bounds are obtained for
odd n. An application of the current work in context of
navigational routing problem is furnished in Section 4.
Lastly, the paper is concluded with open problems in
Section 5.
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2. The FTMD of family of the n — sunlet graph

The family of n— sunlet graph denoted by S, is the graph
obtained by attaching n pendant edges to a cycle graph C,, as
shown in Figure 1. The vertex set V (S,) = {u;, v;|1 <i<n}
and edge set E(S,) = {u;u;,,, u;v;]1 <i<n}, where subscripts
are to be read modulo #. In the following lemma, the metric
dimension of the family of #n— sunlet graph S, is presented.

Lemma 1. The metric dimension of S,, for n>3 is

2, ifnisoddorn =4,
dim(S,) = (4)
3, else.
Proof. In order to prove the theorem, following cases can be
considered: O
Case 1. (When n is odd)

Let n=2m+1, for m>1 and take R = {ul,u(mm)}.
Representation of the vertices u; and v; with respect to R is
shown in Table 1.

We can see that for all a,b € V(S,), (alR) #r (b|R).
Hence, R is a resolving set. This implies that dim(S,) <2.
Since, dim (G) = 1 if and only if G is a path graph, therefore,
dim(S,) = 2.

Case 2. (When n = 4)
It can be easily verified that R = {v;,v,} is a minimal
resolving set for S,. Therefore, we have dim(S,) = 2.

Case 3. (When n is even and n=>6)

Let n=2m, for m>3 and take R = {“p“zs”(mz/z)}-
Representation of the vertices u; and v; with respect to R is
shown in Table 2.

We can see that for all a,b e V(S,), r(alR) #r(b|R).
Hence, R is a resolving set. Therefore, dim(S,) <3. It is
exclusively required to prove that dim (S,,) # 2, for n> 6. This
can be achieved by showing that S, is unable to have a
resolving set of order 2, leading to the following possibilities:

a) If R = {Ml, ui} with 1<i<m, then
r(u,|R) =r(v,|R).
b) 1f R ={v,v} then
| r(,IR), ifl<i<m,
T(un—l|m) = { T(V2|§R), 1f1 —m.
c) If R = {u, v} then
| r(vIR), ifl<i<m,
T’(un—l|m) - { 1’(1/2|§R), 1f1 —m
dy 1f R = {v,u}, then
| r(,IR), ifl<i<m,
([ R) = r(v,|R), ifi = m.

Hence, in all above possibilities, it is concluded that S,
does not have a 2 cardinality resolving set. This concludes the
proof. O

The above lemma will be helpful in the following result.

Theorem 4. The FTMD of S,, for n>3 is



Mathematical Problems in Engineering

FIGURE 1: n— sunlet graph §,.

TaBLE 1: Representation of nodes in S,, for even n.

i r(u;|R)

i r(v;IR)

(i-1,m-i+1)
(n-i+l,i-m-1)

(i,m—i+2)
(n—i+2,i—m)

TaBLE 2: Representation of nodes in S, for even n>6.

i r(u;|R)

i r(v;IR)

G-Li-2m—i+1)
n-i+l,n—i+2,i-m-1)

Gi-1,m—-i+2)
(n-—i+2,n—i+3,i—m)

if nis3,5,7or9,

s) -1 (5)
K‘)( n)_{4

. else.

Proof. In order to show the assertion, following cases can be
considered: O

Case 1. (Whenn =3,5,70r9)

It can be immediately confirmed that R = {v,,v,,v;},
whenn=3and R = {V1’V(n—1/z)) Vn—Z}’ when n=5,7,9, are
FTRSs for S,. This implies that g (S,,) < 3. Since, by Lemma 1,
S,, has metric dimension 2 (when # is odd), therefore, by
using Theorem 1, it is clear that @ (S,) > 3. This implies that

©(S,) = 3.

Case 2. (When n = 4)
Take R = {u,, u,, u3,u,}. Then the representation of the
vertices u; and v; with reference to the above said set R are

(01 1)2) 1)) lfl = 1,

_ (13 0) 1; 2)) ifl = 2,
(1| R) = 1 Lo, ifics’ and

| (1,2,1,0), ifi=4,

[(1,2,3,2), ifi=1,

_ (2) 17 2; 3)7 lfl = 2,

r(v;|R) = 3 (3212) ific3

[ (2,3,2,1), ifi=4.

We can observe that more than one zeros exist in the
AD ((a,b)|R), for each a,b € V(S,). Hence, R is a FTRS.
Therefore, in view of Lemma 1 togather with Theorem 1, we
conclude that dim(S,) = 2 < (S,) <4. The only thing that
remains to show is @ (S,) # 3. The Table 3 shows that S, has
no FTRS of cardinality 3. Hence, g (S,) = 4.

Case 3. (When n is even and n>6)

Let n = 2m, for m >3 and take R = {uy, u,, 1,1, U,,.,}-
Representation of the vertices u; and v; with respect to R is
shown in Table 4.

We can observe that more than one zeros exist in the
AD((a,b)|R), for each a,b € V (S,). Hence, R is a FTRS.
Now, by Lemma 1 and Theorem 1, we have @ (S,) = 4.

Case 4. (When n is odd and n>11)

Let n=2m+1 with m25 and take
R = {u,uy, U1, U,.,}. Representation of the vertices u;
and v; with respect to R is shown in Table 5.

Therefore, in lights of Lemma 1 combined with the
Theorem 1, we have dim (S,)) = 2 < (S,) <4. The only thing
that remains to show is g (S,,) # 3. In order to achieved that
S, is unable to have a FTRS of order 3, we have the following
possibilities:

a) If R = {ul,ui,uj} such that i,j€{2,3,...
and i< j, then AD ((u,v,)|R) = (2,0,0).

,m+ 1}
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TABLE 3: 3— subsets of V(S,) and pair of vertices where absolute difference representation has atleast two zeros.

R (x, ) A D((x, y)IR)
{uy,uy, 0} with 2<i<4 (uyovy) (0,0,2)
{ul,u3, u4} (uza u4) (0,2,0)
{V1’V2’V3} (uy,uy) (2,0,0)
?1’ V2s V4}}: (uy, u3) (0,0,2)

Vi, Vs, vy (uy,uy) (0,0,2)
{uy, v, v} with 1<i<4 (uy, uy) (0,0,2)
{uy,v5,v;} with 2<i<4 (uy,vy) (0,0,2)
{141,1/3,1/4} (Mz, u4) (0,0,2)
{vi,u,u;} with 1<i<4 (uy, 1y) (0,0,2)
{vi,u,, u3} (uy,v,) (2,0,0)
{le Uy, M4} (u]) u3) (2,0, 0)
{V1>u3; 144} (u2> V3) (2,0,0)

TaBLE 4: Representation of nodes in S, for even n>6.

i r(u;|R) i r (v;|R)

i=1 (0,1,mym—1) 1 (1,2,m+ 1,m)

2<i<m (i-Li-2,m+1—-i,m+2—i) 2<i<m+1 (bi-1l,m+2—i,m+3—i)
i=m+1 (m,m—-1,0,1) i=m+2 (mym+1,2,1)
m+2<i<n n—i+l,n—i+2,i-m-1,i—-m-2) m+3<i<n n-i+2,n—i+3,i-mi-m-1)

TaBLE 5: Representation of nodes in S, for odd n>11.

i r(u;|R) i r(v;IR)

i=1 (0,1,m,m) 1 (L2,m+1,m+1)
2<i<m+1 (i-1i-2m+1—i,m+2—1i) 2<i<m+1 (i-1l,m+2—i,m+3—1i)
i=m+2 (m,m,0,1) i=m+2 (m+1,m+1,2,1)
m+3<i<n n—-i+ln—i+2,i-m-1,i—-m-2) m+3<i<n n—i+2,n—i+3,i-mi-m-1)

b) If R = {ul, j} such that 4,j€{2,3,...,n} and (0,0,1), ifj=m+1,

i<m<j, then AD((#,,7)IR) :{ (0,0,2), else ©

and if 2R={u1,v1,vj}, with m<j<n, then
(0,0,1), ifj=m+1, AD ((t,-1,v,)|R) = (0,0,2).

AD ((u,,v,)|R) = ' 6
(o)1) { (0,0,2), else. ©) e)If R= {vl,ui,uj}, such that i,j€{1,2,...,m+ 1}

and i< j, then
For pendant vertices v;, consider R = {vl,vi,vj} with

1<i<j<m+1and 1<i<m< j<n. The proofs are similar
as Cases (a) and (b) respectively.

g D5 = o .
) IfER:{ul,vi,vj},suchthatz,]e{l,2,...,m+1}and (0,0,2), ifl<i<m-1,m<j<m+1,
i< j, then AD((u,_,,v,)IR) = (0,0,2) fori=1, j= (9)

m+ 1 and

(0,0,0), ifl<i<j<m-—1,

and AD (V1> Upi)IR) = (1,0,0) fori=m, j =m+ 1.

) If R= {vl,ui,uj}, such that i,j€{1,2,...,n} and

(0,2,0), ifi=1,j#m+1, i<m< j then

AD((u,,v,)IR) =1 (0,0,1), ifi#l,j=m+]1, (7)

(0,0,0), else. (0,0,1), forj=m,

d) If R= {ul,vi, vj}, such that i,j€{2,3,...,n} and AD ((uy-1v,)IR) = 1 (0,0,0), forj=mn, (10)
i<m< j, then (0,0,2), otherwise.
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Hence, in all above possibilities, we conclude that there is
no FTRS for S, containing exactly 3 nodes. This concludes
the proof. O

3. The FTMD of family of The Generalized
Petersen graphs P (n,t)

Coxeter was the first one to introduce the generalized notion
of Petersen graphs P(n,t) in 1950 (see [23]). It is an im-
portant class of graphs with vertex set V(P(nt)) =
{u,vill<i<n} and edge set E(P(n,t)) = {vvy1,u;v;
u;u; |1 <i<mn}, where subscripts are to be read modulo n
and 1<t<(n-1/2). The Petersen graphs P(8,1) and
P(8,2) are shown in Figures 2 and 3 respectively.

The forthcoming lemma will be resourceful in the
computation the FTMD in regards to family of the gener-
alized Petersen graph P (#, 1).

Lemma 2 (see [24]). For the generalized Petersen graph
P(n,1);

2, foroddn,
dim (P (n, 1)) ={ (11)

3, forevenn.

Theorem 5. The FTMD of P(n, 1), for n>3 is

3, ifn=3,
p(P(n, 1)) ={ (12)

4, else.

Proof. In order to show the assertion, following cases can be
considered: O

Case 1. (When n is even)

Take R = {u;,u,,v;,v,}, then for the vertices u; and v;
the representation is shown in Table 6.

Since it can be observed that more than one zeros exist in
the AD((a,b)|R), for each a,b € V(P(n,1)). Therefore,
© (P (n,1)) <4. Hence, in view of Lemma 2 together with the
Theorem 1, we conclude that g (P(n, 1)) = 4.

Case 2. (When # is odd)
This case is further subdivided as follows:

Case 2a. (When n = 3)

For P(3,1) is can be confirmed immediately that R =
{uy,uy,uz} is its FTRS. This implies that @(P(3,1))<3.
Therefore, in view of the Lemma 2 and the Theorem 1, we
conclude that @ (P(3,1)) = 3.

Case 2b. (When n is odd and n>5)

Let n=2m+ 1, for m>1 and take R = {u;, uy, vy, 1,},
then for the vertices u; and v; the representation is shown in
Table 7.

Since it can be observed that more than one zeros exist in
the AD((a,b)|R), for each a,b € V(P(n,1)). Therefore,
@ (P(n, 1)) <4. Hence, in view of Lemma 3 and Theorem 1,

V7
Y6 “
Vs

FIGURE 2: The Petersen graph P (8, 1).

Vg

V7 V1
ug
U uy
U, u
Ve 6 2 v,
Us U3
Uy

Vs V3

V4

FIGURE 3: The Petersen graph P (8,2).

we have dim (P (n, 1)) =2 <@ (P(n, 1)) <4. It is exclusively
required to prove that g (P (n,1)) # 3. This can be achieved
by showing that P (#,1) is unable to have a resolving set of
order 3, leading to the following possibilities:

a)If R= {ul,ui,u]-} such that i,j€{2,3,...
and i< j, then AD ((u,v,)|R) = (2,0,0).

b) If R = {ul,ui,uj} such that 4,j € {2,3,...,n} and
i<m< j, then

,m+ 1}

(0,0,1), ifj=m+1,
AD((un,vl)IiR) - (0,0,2), else (13)

olIf R= {ul,vi, vj}, such that 4,j € {1,2,...,m} and
i< j,then AD((uy,v,)IR) = (2,0,0) andif j=m + 1,
then

(0,2,0), ifi=1,
AD((v,u,)IR) :{ (0.0.0), 2<i<m (14)

d) If R= {ul,v,-, v]-}, such that 4,j € {1,2,...

i<m< j, then

,n} and
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TABLE 6: Representation of nodes in P(n, 1) for even n.
i r(u;|R) r(v;|R)
1 (0,1,1,2) (1,2,0,1)
2<i<m+1 (i-1,i-2,i,i—1) (i,i—1,i—1,i—2)
m+2<i<n n—i+ln—i+2,n—i+2,n—i+3) (n—i+2,n—i+3,n—i+1l,n—i+2)

TABLE 7: Representation of nodes in P(n,1) for odd n>5.

i r (wIR) r(v|R)
1 (0,1,1,2) (1,2,0,1)

2<is<m+1 (i—-1,i—2,i,i—1) (i,i—1,i—1,i—2)
i=m+2 (mym,m+1,m+1) (m+1,m+ 1,m,m)
m+3<i<n n-i+ln—i+2,n—i+2,n—i+3) n—-i+2,n—i+3,n—-i+1l,n—i+2)

TaBLE 8: Representation of nodes in P(n,2) for n =0 mod4n>8 and even i.

i (even) r(u;|R) r (vIR)

i=2 (3,3, (m+4/2), (m+4/2)) (2,2, (m+2/2), (m+2/2))

4<i<m (i +4/2), (i+2/2), (m—i+6/2), (m—i+8/2)) ((i+2/2), (i/2), (m —i+4/2), (im —i+6/2))
i=m+2 ((m +4/2), (m + 4/2),3,3) ((m+2/2), (m+2/2),2,2)
m+4<i<n (n—i+6/2), (n—i+8/2), (i—m+4/2), (i—m+2/2)) (n—i+4/2), (n—i+6/2), (i—m+2/2), (i—m/2))

TaBLE 9: Representation of nodes in P(n,2) for n =0 mod4n>8 and odd i.

i (odd) (1 |R) r(v;IR)

1 (0,1, (m/2), (m—2/2)) (1,2, (m+2/2), (m/2))
3<i<m-1 ((i-1/2), (i=3/2), (im—i+1/2), (im—i+3/2)) (i +1/2), (i —1/2), (im—1i+3/2), (im—i+5/2))
i=m+1 ((m/2), (m—2/2),0,1) ((m +2/2), (m/2),1,2)

m+3<i<n-1

((n—i+1/2), (n—i+3/2), (i—-m-1/2), (i —m—3/2)) ((n—i+3/2),(n—i+5/2), (i-m+1/2), (i —m—1/2))

TABLE 10: Representation of nodes in P(n,2) for n =2 mod4 and n> 10 and even i.

i (even) r(u;|R) r(v;IR)

i=2 (3,3, (m+5/2), (m+ 3/2)) (2,2, (m+3/2), (im+1/2))

4<i<m+1 ((i+4/2), (i+2/2), (m—i+7/2), (im—i+9/2)) (i +2/2), (i/2), (m —i+5/2), (m—i+7/2))
i=m+3 ((m +3/2), (m +5/2),3,3) ((m +1/2),t(m + 3/2)n,q2,2))
m+5<i<n (n—i+6/2),(n—i+8/2), (i—-m+3/2), (i—m+1/2)) (n—i+4/2),(n—i+6/2), i-m+1/2), (i—-m-1/2))

TaBLE 11: Representation of nodes in P(#,2) for n =2 mod4 and n>10 and odd i.

i (odd) r (u;|R) r (v;|R)

1 (0,1, (m - 1/2), (m - 3/2)) (1,2, (m+1/2), (m - 1/2))

i=3 (1,0, (m —1/2), (m —1/2)) (2,1, (m+1/2), (m + 1/2))

5<i<m ((1-1/2), (i-3/2), (m—i+2/2), (im—i+4/2)) (G +1/2), (i —1/2), (m—i+4/2), (im—i+6/2))
i=m+2 (m—-1/2), (im-1/2),0,1) (m+1/2), (im+1/2),1,2)

i=m+4 ((m - 3/2), (im—1/2),1,0) (n—1i+3/2), (n—i+5/2), (i—-m/2), (i—m-2/2))
m+6<i<n (n—i+1/2), (n—i+3/2), (i—m—2/2), (i—m—4/2)) (n—=1i+3/2), (n—i+5/2), (i—-m/2), (i—m-2/2))

and if i=1 and jEmM+1 then
AD ((u,, v)IR) = (0,2,0).

0,0,0), ifi#1,j= 1, .
( ) it j=me+ Therefore, all the aforesaid cases reveal that P (n, 1) have

AD((v;,u,)IR) =4 (0,0,2), ifi#1,j#m+1, (15)  not FTRS of cardinality 3. This concludes the proof. O

(0,2,0), ifi=1,j=m+]1, The upcoming theorem will be aided by the following
lemma.
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(T(z/z +w) “(T/T +u) T1) (T (z/T +w) “(T/mw) “€0) [-u=1
((T/e+1-u)(g/c+um—1)(g/c+u—1) (T/e +1-u) (T/1+1-u)) ((T/e+1—u) (gym—1) (gw —1) (T/S +1-u) (T/1 -1 -u)) g-uUsS1Sg+u
(9—w—ucF(g/c —w—u)(g/S - wt - u)) (T/e+1-u) (g —1) (T —1) (T/s+1—-u) (T/1 -1 - 1)) 9+ut=1

((¢/1 +w —u) TT(T/1 —w—u) (g/¢ —w—u)) ((g/g +1—u) (que—1) (T/wm —1) “(¢/s +1—u) (¢/1 -1 —u)) FHuw=1

((¢/% +w) T0(T/T + ) (/) ((¢/ +w) T1(T/T + ) (T/§ —w —u)) Tru=1

((T/¥ +w) € T(T/T + ) (T/T + ) ((g/T +w) ¢ T(T/m) (T/1 — wt — u)) w=1

((T/v+1) (T/g —1—u) (T/s —1—u) (T +1) (T/¥ +1) ((¢/w) ¢ (/T — w) (¢/c + ut)) =1
((¢/v+1) “(T/g —1—u) (T/s —1—u) (Tt +1) (T/v +1) ((T/T+1) (T/9 +1—w) (¢/F +1— ) ((T/1) T/9 + 1)) P-wsisy

(T (t/7 +u) “(¢/m +w) 7€) (T (g/T+w) “(T/T+w) ‘1°%) =1

(/') 4 (xl'm) 4 (u24d) 1

‘1 UdAD PUB 6T U PUR  POW [ = U 10J (T ‘U)J Ul sapou Jo uonejuasaiday 71 a1av],
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(0“(¢/T +w) “(T/T + ) ‘1°7) (T “(g/m) “(T/T +u) ‘0°¢) u=1
(-u@n+w-n(ge+wm—1) (Te+1-u) (Te+1-u) ((Te+r-u) (g1 —w—1) (g1 +u—1) (gt —u) (¢/y +1-u)) T-uUSISL+w
((¢/1 —w —u) T¢(T/g —w—u) (g/¢ —w—u)) ((T/z+r—u) Q1 —w—1) Q1 +uw—1) (Tr—u) (¢/y +1-u)) S+u=1

(/7 +u) 0T (¢/us) “(T/T + ) ((g/e+1-u)(g1—w—1) Q1 +uw—1) (¢ —u) (T/y +1-u)) e+uw=1

((¢/g +w —u) T1(T/T + W) (T/T + ut)) ((¢/T +u) T (T/m) (T/T + ut)) [+u=1

((Ts+1) (v —1-u)(¢/p—1-u) (T/e+1) (T +1)) ((¢/T +wmw) (g/L —wh —u) (T/L — wh—u) (/T +ut) (g/ut)) [—w=1
(/s +1) (Tp —1—u) (T/py—1-u) (T/s +1) (T +1)) (/g +1) (/9 —1—u) (T/9—1—u) (/S +1) (TT +1)) C-wS1S¢
(T(¢/w +w) “(2/v + W) ‘TT) (T(/T +u) “(T/T +w) €°1) =1

(16]') + (1]'m) 4 (ppo) !

‘1 ppO pue 6 U puB Fpowl [ =

u 10J (7 ‘U)d ul sapou jo uonejuasaiday g1 a1av],
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(0(¢/1 —w) “(T/1 + W) TT) (T(¢/1 — ) “(T/1 + W) €°0) [-u=1
(T-1-u‘(g/T+uw—1)(g/g +w—1) (g/g +1-u) (71 +1-u)) ((T/1+1-u)(Q1-w—1)(T1+uw—1) (/S +1-u) (¢/1—1—u)) C-uUSIS/+w
((¢/1 —w) T¢“(¢/1 —wh) “(T/€ — wt)) (T +1—u) (g1 —w—1) (T/T+w—1) (T/s+1—u) (71 -1 -u) GHu=1

((T/1 —w) 0“1 (/¢ +ut) “(T/1 — us)) ((T/t+1—u) (g1 —ut—1) (g1 +ub—1) (g/S +1—u) (/1 —1—u)) CHu=1

((z/g +w) T°1 (/g +ut) (gt —u)) ((¢rg +w) TT(T/1 +u) (T/1 — w)) [+uw=1

((T/S + ) F ¢ (T/1 +ut) “(¢/c +wi—u)) ((T/e +u) ‘¢ ¢ (/1 — ) “(T/1 + wt)) I—w=1

((T/9+1) (T/s—1—-u) (TS —1—u) (T/t+1) ([T/¥ +1)) ((¢/H+1) (T/L—1-u) (T/L—1—-u) (T/1) (T/9 +1)) E-—WS1SY
(€“(T/s +u) “(T/S + ) T°€) (T +1) (T/L—1—u)(¢/L—-1-u) (¢/1) (T +1)) =1

(1]") 4 (1l'n) 4 (u249) 1

‘1 U9AD pue [ ZU pUR § POW ¢ = U 10] (7 ‘U)J Ul $9pou Jo uonejuasaiday 1 a1av],
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(T(g/c+w—1) (Tt +w—1) 1°7)
(1 = i=puL x(g/g +wt — 1Y (g/g +ut — )b u(g/g +1-u)14(g/g +1— 1))
(¢ +1—u)‘c—w—17—w—1(g/c+1—u) (T +1-u))

(T(T/€ +ut) “(T/T + ) 0°¢)
((¢/g+1—u) (gu—1) (T/w —1) “(¢/1 -1 —u) (/¢ + 1 - u))
(/g +1—u) (gyu—1) (T/ue—1) (T/1 —1—u) (T/c +1—u))

u=1
—us>i1>8+u
O+ WSISH+ U

((T/1 + ) TO(T/T +ud) (T/1 + ) ((¢/e+1-u)(g/9—1-u) (g/g —1—-u) (gt —u) (¢/1 +1)) THuw=1

((T/S +w) ‘€ T(T/€ + uh) “(T/€ + ) ((T/z+1-u)(T/9—1—-u) (/8 —1—-u) (¢t —u) (T/1 +1)) w=1
((Ts+n) (v —1-u) (¢/9—1—u) (T +1) (TS +1)) (/e +1) (/9 —1—u) (g/8—1-u) (¢/s+1) (¢/1 +1)) -us1S¢
(Ty—wc—weeTT) (T(T/1 +w) “(T/g + ) €°1) =1

(1l") 4 (xl'm)+ (ppo) 1

‘1 ppo pue [[ U PUB § POW ¢ = U 10J (T ‘U)J Ul sapou Jo uonejuasaiday :G1 a14Vv],
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Lemma 3 (see [21]). For n>5, dim(P(n,2)) = 3.

Theorem 6. The FTMD of P(n,2), for n>5 is

(P(n.2)) { 4, for evenn, (16)
e | 4or 5, foroddn.

Proof. In order to prove the theorem, following cases can be
considered: O

Case 1. (When n is even)
The case is further subdivied as follows:

Case la. (When n = 6)

It can be immediately confirmed that R = {u;, u, us, v, }
is a FTRS for P(6,2). This implies that @(P(6,2))<4.
Therefore, in lights of Lemma 3.3 combined with Theorem 1,
it is concluded that @ (P(6,2)) = 4.

Case 1b. (When n=0 mod4 and n>8)

Let n=2m, for even m>4 and take
R = {uy, U3, 1,1, Uy} Then for the vertices u; and v; the
representations are shown in Table 8 and 9.

Case Ic. (When n =2 mod4 and n>10)

Let n=2m, for odd m=5 and take
R = {u,us,,,,5, U4} Then for the vertices u; and v, the
representations are shown in Table 10 and 11.

The Cases 1b and 1c indicates that more than one zeros
exist in the AD((a,b)|R), for each a,b € V(P(n,2)) im-
plying that g (P (n,2)) <4. Therefore, in lights of Lemma 3
combined with the Theorem 1, we conclude that
©p(P(n,2) =4

Case 2. (When n=1 mod 2)
The case is further divided as below:

Case 2a. (When n=75,7)

It can be immediately confirmed that R = {u;, u,, v5, v5}
and R = {uy,u,, v, v;} is FTRS for P(5,2) and P(7,2) re-
spectively. This implies that @(P(n,2))<4 for n=>5,7.
Therefore, in lights of Lemma 3 combined with Theorem 1, it
is concluded that (P (n,2)) =4 for n=5,7.

Case 2b. (When n=1 mod4 and n>9)

Let n=2m+1, for even m>4 and take
R = {U,,_1> Uy V2> Vs Vu)> then for the vertices u; and v,
the representations are shown in Table 12 and 13.

Case 2c. (When n=3 mod4 and n>11)

Let n=2m+1, for odd m>5 and take
R = {1, 1, Uy V2> Vinss» Vot Jothen the representations of
the vertices u; and v; are shown in Table 14 and 15.

The Cases 2b and 2c¢ indicates that more than one zeros
exist in the AD ((a, b)|R), for each a,b € V (P (n,2)). Hence,
R is a FTRS. Hence, in view of Lemma 3 combined with the
Theorem 1, we conclude that

11

TaBLE 16: Representation of nodes in P(8,2) with respect to R.

i r(1;|R) r(vR)
1 (0,1,2,1) (1,2,3,2)
2 (3,3,4,4) (2,2,3,3)
3 (1,0,1,2) (2,1,2,3)
4 (4,3,3,4) (3,2,2,3)
5 (0,1,0,1) (3,2,1,2)
6 (4,4,3,3) (3,3,2,2)
7 (1,2,1,0) (2,3,2,1)
8 (3,4,4,3) (2,3,3,2)

dim(P(n,2)) =3<4<p(P(n,2))<5. This concludes the
proof. O

Remark 1. This can be verified easily that @ (P (n,2)) =4,
when n = 15, by using the resolving set R = {u;,u,, vs, vg}.
Similarly, it can be verified that g (P (n,2)) #4, for n = 17.

4. Application

The current section is included with an application of FTMD
in context of navigational optimization problem is discussed.
The essence of a navigational routing problem is to reach
targeted location and avoiding mixing of apparently similar
locations. If the targeted locations are referred as nodes and
the roads connecting them as edges of a network, then the
process of uniquely identifying each node of the network
with respect to certain minimum collection of its reference
nodes is a realization of metric dimension in networks.
Further, if one of the location in the reference collection of
nodes is unreachable, then the minimum number of such
reference nodes providing unique identification of each
location in network is realization of FTMD of network. As
an illustrative case, consider navigating in a network P (8, 2),
consisting of node set V(P(8,2))
= {uy, 1y, s, Uy Us, Uy Uy, U, V1, V), V3, Vo Vs, Ve, V7o Vg @S
shown in Figure 3. Then the unique identification of each
node with respect to minimum collection of reference nodes
R = {u,,u;,us,u,} is shown in Table 16.

It can be seen that the set R is minimum set representing
each node uniquely even if one of the nodes in it is un-
reachable. Therefore, it is concluded that if the navigation
coordinates is in accordance with the set R, then the
navigational routing will be optimal.

5. Conclusion

In the current study, the FTMD of the families n— sunlet
graph S, and the generalized Petersen graph P (n, 1), fort = 1
is computed, which were found to be constant. We also
computed the constant FTMD of P (n, 2) for even n and tight
bounds are obtained for odd n. Finally, the article is con-
cluded with the following open problems. [22-25].

Open Problem 1. For what values of odd »n the FTMD of
family of the generalized Petersen graph P(n,2) is 4 or 5.

Open Problem 2. Find the FTMD of family of the gener-
alized Petersen graphs P (n,t) for t > 3.
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