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ABSTRACT
The coronavirus disease 2019 (COVID-19) is caused by the severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2). The virus is primarily transmitted
to humans through inhaling respiratory droplets produced by sneezing, coughing,
and conversing closely with an infectious person (direct transmission) or indirectly
through contact with contaminated surfaces (indirect transmission). To Prevent
and control the fast spreading of COVID-19, health providers and governments
around the world have used containment measures such as lockdown, travel bans,
cessation of movement, social distancing, proper hygiene, and hand sanitization,
among others. Despite these safeguards, the virus continues to spread, although
at a slower rate. The disease is linked to a range of infectious periods and hu-
man movement (diffusion). Vaccination has proved to be effective in minimising
the severity of the disease. Most of the COVID-19 dynamics models so far done
have employed a constant coefficient of transmission, whereas infectiousness of an
individual varies with time. Thus, an SEIR model is developed to assess the effect
of the varying transmission coefficient in the dynamics of COVID-19. The model
solutions were checked for well-posedness to ensure that they are both positive and
bounded. The next generation matrix approach is applied to determine the effective
reproduction number, Rω. The bifurcation analysis showed that when the trans-
mission coefficient β > β∗ then Rω > 1 and the disease would spread, otherwise
the disease will die out. The numerical simulation showed that reducing the trans-
mission coefficient would curtail the spread of infection. The existing COVID-19
diffusive models do not establish the minimum travelling wave speed that connects
the Disease Free Equilibrium (DFE) and the Endemic Equilibrium (EE) enabling
infection. Thus, a diffusive COVID-19 model is developed and analyzed to assess
the effect of human movement. Existence of travelling wave solutions of the model
are shown. Exact solutions to the traveling wave are computed using the Tangent
hyperbolic method (Tanh Method). Faced with the inadequate supply of COVID-
19 vaccines especially in developing world, it is imperative to determine the critical
mass to be vaccinated so as to attain herd immunity. Thus, a COVID-19 model in-
corporating vaccination is developed and analyzed. Sensitivity analysis done with
respect to key parameters of the vaccine reproduction number, RV , indicates that
control strategies should target increasing the rate of vaccination with high efficacy
vaccines. The study results suggest that a high rate of vaccination (γ) and high
efficacy vaccine (ϑ) are critical in achieving herd immunity also known as ’popula-
tion immunity’ and control disease spread within the population. Optimal control
analysis shows that an optimal infection control is achieved by increasing the rate
of vaccination and reducing infection by administering a high efficacy vaccine, thus
reducing the probability of transmission. Numerical simulations show that when
vaccination rates and vaccine efficacy are high, the number of infections fall sharply.
The findings of this study highlight the significance of interventions and in partic-
ular the specific targets for health care providers in mitigating the transmission of
COVID-19.
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CHAPTER ONE

INTRODUCTION

1.1 Background Information

The coronavirus disease 2019 (COVID-19) is a highly contagious respiratory dis-

ease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

[37, 38]. COVID-19 is an RNA virus, like flu and measles, that has the ability to

mutate [2]. Severe Acute Respiratory Syndrome (SARS) and Middle East Res-

piratory Syndrome (MERS) viruses are related to COVID-19 [2]. The virus was

detected in late December 2019 in Wuhan city, Hubei Province, China. On March

11th, 2020, the World Health Organization (WHO) declared the disease a global

pandemic, according to [62, 64]. The epidemic has had a detrimental influence on

the economy, society, and health-care systems in almost all countries around the

world [2, 4].

It is transmitted through inhalation of respiratory droplets from an infectious per-

son emitted through sneezing, coughing, and having a close conversation, as well

as contact with contaminated surfaces [2, 17]. COVID-19 incubation period is the

time between virus exposure and onset of symptoms. This is on average 5–6 days,

but can be as long as 14 days [35, 65]. The most common COVID-19 symptoms

include fever, dry cough, and fatigue. Other symptoms are body ache and pain,

sore throat, diarrhoea, headache, loss of taste and smell, difficulties in breathing,

rash on skin and discoloration of fingers and toes [17, 18, 45].
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Cardiovascular disease, respiratory disease, cancer, and infectious diseases (e.g HIV

AIDS, Pneumonia, Influenza, Tuberculosis e.t.c ) are examples of pre-existing con-

ditions, and substance abuse can increase COVID-19 morbidity and mortality [2].

Moreover, pre-existing environmental, demographic conditions (e.g. age, sex, lo-

cation e.t.c) and socioeconomic conditions (e.g. level of education, income, em-

ployment e.t.c) have the potential to influence COVID-19 incidence rate [5]. For

example temperature variability influences COVID-19 transmission, such as high

humidity and temperature leads to reduced COVID-19 transmission rate [61].

There were no specific antiviral prophylaxis and therapeutics against COVID-19

during the early stages of its outbreak and therefore non-pharmaceutical interven-

tions such as isolation, quarantine, contacts tracing, lockdown and cessation of

movement were employed [38]. These interventions were aimed at suppressing and

mitigating the epidemic which threatened to overwhelm health-care systems glob-

ally. These prevention measures appear to be successful in reducing the number of

deaths and hospitalizations [5, 38].

SARS-CoV-2 viral load in the respiratory track peaks at the time of symptom

onset or within the first week of illness, then declines. This implies that the most

infectious potential exists just before or within the first five days of symptom onset

[17]. The role of symptomatic and pre-symptomatic transmission (1-2 days before

symptom onset) in the spread of COVID-19 is likely to be greater than that of

asymptomatic transmission [18, 51]. This brings into play the idea of a varying

transmission coefficient and it would be worthwhile to assess its effects on the

dynamics of COVID-19 transmission in humans.
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COVID-19 pandemic dynamics are complex in both time and space. These dy-

namics are caused by a variety of factors, including the spatial distribution of

the population’s social and economic levels, as well as mobility patterns within a

given country [11]. The mobility of individuals from areas with higher COVID-19

prevalence rates exposes individuals in low risk areas to infection. When infected

individuals travel to regions that are infection free they might transmit the virus

to local residents and cause disease outbreaks. The transfer of infections from a

high concentration region to a low concentration region causes a wave of transfer

of infection. Equally, movement of susceptible individuals to high risk regions may

expose them to contract infection. Restriction of human mobility is considered as

an effective strategy to control spreading of the disease. However, it is still un-

clear whether mobility restriction is a proportional response to control the ongoing

COVID-19 pandemic [68]. The purpose of this study is to investigate the impact

of human mobility and possibly suggest measures towards reducing the speed of

the wave of transfer of infection from high to low risk areas.

Vaccination has been a major public health tool in modern medicine used in min-

imizing the impact of many infectious diseases of humans [43, 52]. A vaccine is

any biologically derived substance that, when administered to a susceptible host,

elicits a protective immune response. Vaccines help the body to prepare for disease

by taking advantage of the fact that the immunity knows how to defend against

infectious organisms, which are typically a virus, bacterium, or toxin [53]. The two

vaccination strategies available are mass and ring vaccination. The term “mass

vaccination” refers to the immunisation of the entire population, whereas “ring

vaccination,” also known as “surveillance and containment,” refers to the targeted

immunisation of primary and secondary contacts. It is a social responsibility choice

of an individual to get vaccinated. However, offsetting the fear and adverse side
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effects of the vaccine has to be done [27]. If individuals choose not to be vaccinated,

they may become infected, which will inflict larger costs for recovery [67].

Currently, vaccines such as BNT162b2 (Pfizer), mRNA1273 (Moderna), ChAd0x1

nCoV-19 (Astra Zeneca), Sputnik, Sinopharm, Johnson & Johnson vaccines among

others are being administered worldwide. Vaccines have different efficacy and mech-

anisms of action [39]. Majority of these vaccines presently have high efficacy and

safety levels, which makes them suitable for use in mass vaccination campaigns.

Thus, setting up strategies of vaccination became crucial to control the COVID-

19 pandemic. Furthermore, vaccination programs may differ across regions due

to differences in implementation [4, 14]. For example, some nations were vacci-

nating their entire population (mass vaccination) and some high risk population

(ring/targeted vaccination). The vaccination of a high risk group in a given popu-

lation may result in herd immunity for entire population. Faced with inadequate

supply of COVID-19 vaccines, vaccine hesitancy, and refusal/delay of accepting

vaccination [48], what fraction of a country’s population should be vaccinated in

such a ring/targeted vaccination programme to attain herd immunity?

1.2 Statement of the Problem

The continued spreading of COVID-19 posses a threat to human health, irrespec-

tive of the preventive and control measures in place. This has inflicted substantial

burden on the health sector globally. The movement of infected humans (diffusion)

has greatly facilitated the spread of COVID-19. Many countries imposed some in-

terventions such as lockdown, travel restrictions and cessation of movement among

others in a bid to minimize the chain of spreading of the virus, with varying degree

of success. The existing COVID-19 diffusive models do not establish the mini-

mum travelling wave speed that connects the Disease Free Equilibrium (DFE) and
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the Endemic Equilibrium (EE) to enable infection. COVID-19 transmission has

exhibited a varying infectiousness which may be attributed to a varying transmis-

sion coefficient [17, 57], contrary to the constant transmission coefficient assumed

in most studies so far. The inadequate supply of COVID-19 vaccines especially

in the developing countries has lead to the implementation of different vaccination

strategies leading to different outcomes. Therefore it is imperative to determine the

critical mass to be vaccinated so as to attain herd immunity in a given population.

This study therefore proposes to develop and analyze COVID-19 dynamics model

with intervention (i.e., varying transmission coefficient, diffusion and vaccination).

1.3 Research Objectives

1.3.1 Main Objective

To develop and analyze a COVID-19 dynamics model with varying transmission

coefficient, diffusion, and vaccination.

1.3.2 Specific Objectives

The specific objectives of this research study are;

(i) To develop a deterministic COVID-19 dynamics model with varying transmis-

sion coefficient and analyze the bifurcation dynamics arising from varying

transmission coefficient.

(ii) To develop a diffusive COVID-19 dynamics model and determine the minimum

wave speed required for a traveling wave to cause infection.

(iii) To develop a deterministic COVID-19 dynamics model with vaccination to

determine the critical mass of individuals to be vaccinated so as to attain

herd immunity.
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1.4 Justification of the Study

COVID-19 outbreak in late December 2019 in the Chinese city of Wuhan sparked

global concern. This continued spread of COVID-19 across the world triggered

an unprecedented crisis in public health, medical facilities, economic development,

and social stability. This study sought to explore the dynamics of COVID-19

under a varying transmission coefficient, which is characteristic of the infection.

Furthermore human mobility continues to play a significant role in the transmission

of this disease and therefore a diffusive model is appropriate. The optimal analysis

with vaccination as a strategy is critical in determining targets for transmission

control.

1.5 Significance of the Study

The mathematical modelling of viral infection is important in the health sector

understanding of transmission dynamics, and prevention and control interventions.

A model that incorporates interventions is thus critical in enhancing efforts to

reduce the spread of COVID-19 and, eventually, eradicating the viral infection in

the population. The findings of this study highlight the significance of interventions

and in particular the specific targets for health care providers in mitigating the

transmission of COVID-19. Furthermore, the model’s formulation and analysis

will add to the existing mathematical biology body of knowledge.

1.6 Methods of the Study

To achieve the objectives of this study the following methods were used;

(i) COVID-19 dynamics model with varying transmission coefficient (β(x, t)) is

developed and analysed. Bifurcation analysis of the varying transmission

coefficient (β(x, t)) is carried out to determine the nature of the steady states

and assess the conditions for the spread of the virus in a given population.
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(ii) Diffusive COVID-19 dynamics model is developed and analysed. The diffusive

model is presented as partial differential equation (PDE) of the form;

∂N

∂t
= F (N) +D∇2N

= F (N) +D
∂2N

∂x2
(1.1)

where N(t, x) = S(t, x) + E(t, x) + I(t, x) +R(t, x)

and S(t, x), E(t, x), I(t, x) and R(t, x) denote the density of susceptible, ex-

posed, infected and recovered individuals at a location x ∈ Ω ⊂ Rn and time

t, respectively, Ω is open set in region Rn; F (N) represents the transmission

dynamics of infection in a population; D is the diffusion coefficient. The

symbol ∇2 = ∂2

∂x2
is the Laplace operator in 1-dimensional space (1-D).

(iii) The vaccination compartment is introduced into the model developed in (i)

to determine the critical mass of individuals to be vaccinated so as to attain

herd immunity. The rate of vaccination of susceptible population shall be

given by γ where, (0 < γ ≤ 1) and the vaccine efficacy parameter is defined

by ϑ where, 0 ≤ ϑ ≤ 1.

(iv) Well-posedness of the model solutions is carried out to show that solutions

are positive and bounded. Analysis of the formulated models is done to

determine the condition for the spread of the disease in a given population.

Data is to be obtained from literature, ministry of health-Kenya (MOH-K)

website database.

(v) Numerical simulation of the models are carried out using MATLABTM soft-

ware to graphically illustrate the long term behavior of solutions of the models

developed in this research.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Mathematical models have been used widely in various biological applications such

as ecology, population dynamics, tumor growth (cancer), immunology, epidemi-

ology, e.t.c. These models have long been used to generate quantitative data in

epidemiology and to provide useful guidelines for outbreak management and policy

development [62]. Interest in infectious disease modeling has been revived due to

relapse and recurrence of diseases [29]. The pioneers of epidemic modeling Ker-

mack and McKendrick [33], developed an SIR model to explain the dynamics of

communicable diseases (e.g., the bubonic plague). This has given birth to model-

ing frameworks such as the SEIR and SIRS [15]. This chapter provides a review of

some mathematical models for COVID-19 disease and other disease-related models

that may be useful in this research

2.2 Some COVID-19 Epidemiological Models

The study of the distribution, determinants and control of infectious diseases is

known as epidemiology [6]. Compartmental models play important role in epi-

demiological modeling. Such models divide a given population into homogeneous

sub-populations. In infectious disease models the individuals in a population are

categorized into classes/compartments depending on their status with reference to

the disease progression, i.e., susceptible, exposed, infective, or recovered, e.t.c.

An SEIQR (Susceptible-Exposed-Infected-Quarantined-Recovered) model to inves-

tigate the spread of COVID-19 is developed and analysed in [8]. The following ODE
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system governs the model;

Ṡ(t) = Λ + νR− µS − αIS − βES,

Ė(t) = αIS + βES − (δ + µ)E,

İ(t) = δE − (µ+ κ+ ω + ρ)I, (2.1)

Q̇(t) = ρI − (τ + µ+ σ)Q,

Ṙ(t) = τQ+ ωI − (ν + µ)R.

where “ · ” denotes the component’s derivative with respect to time t. Λ is the

recruitment rate into susceptible class; (λ := αI + βE) is the rate of progression

from class S(t) to E(t); δ is the rate at which an individual develops symptoms; ρ

is the rate of quarantine; κ, is infection induced mortality rate; ω is the recovery

rate without quarantine; σ is the disease induced mortality rate among patients

who are quarantined, while τ is the recovery rate of individual in quarantine; ν is

the rate of becoming susceptible again, and µ is the natural mortality rate. The

authors assumed that individuals who are quarantined cannot transmit the virus

since they are isolated. The model’s disease-free equilibrium point was found to be

globally asymptotically stable whenever R0 < 1. It was demonstrated that endemic

states exist if the basic reproduction number is greater than unity (R0 > 1). The

Routh-Hurwitz criterion and appropriate Lyapunov functions are used to show that

the endemic states are asymptotically stable locally and globally, whenever R0 > 1.

The dynamics of COVID-19 disease transmission with two categories of susceptible

humans is studied using a deterministic model (i.e., immigrant susceptible and lo-

cal susceptible) [10]. The model exhibits a globally stable disease-free equilibrium

point whenever the basic reproduction number, R0 < 1. For R0 > 1, the endemic

equilibrium is also shown to be globally stable. Sensitivity analysis showed that

use of personal protective equipments (PPEs) and personal hygiene (d), transmis-
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sion probability (β), average number of contacts of infected person per unit time

in days (c), the rate at which the exposed develop clinical symptoms and the rate

of recovery (ρ) are important factors to consider in the fight against the spread of

COVID-19 infection. The authors recommend implementation of efforts such as

quarantine, isolation, travel bans, lock-downs and use of PPEs would curtail the

spread of COVID-19.

An SEQJIIτR mathematical model for COVID-19 transmission dynamics and

control is developed in [63]. The model is represented by the ODE system shown

below:

dS

dt
= Λ− α(1− x)S − µS,

dE

dt
= α(1− x)S − [θ(1 + y) + β + µ]E,

dQ

dt
= θ(1 + y)E − (η + µ)Q,

dJ

dt
= ηQ+ φ(1 + z)I − (µ+ σ + r + ρ)J,

dI

dt
= βE − [φ(1 + z) + λ+ σ + µ]I, (2.2)

dIτ
dt

= γJ − (ω + µ+ σ)Iτ ,

dR

dt
= γI + ρJ + ωIτ − µR.

where α = α1E+α2Q+α3J+α4T+α5Iτ
N

where x, y, z are control parameters. The pa-

rameter x, is the enlightenment control measure for the susceptible individuals

to observe social distance, washing of hands always or the use of hand sanitizer,

covering of mouth when talking, coughing and sneezing, y is the enlightenment con-

trol measure for exposed individual to be quarantined and z is the enlightenment

control measure for the infected individual to be isolated. Both the disease free

equilibrium (DFE) and endemic equilibrium (EE) were found to be locally asymp-

totically stable whenever R0 < 1 and R0 > 1 respectively. The results show that

control intervention strategies should target quarantine, isolation, and treatment
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rates as such would eliminate the disease from the population with time. Moreover

increasing the rates at which the suspected and confirmed cases of COVID-19 are

quarantined and isolated respectively reduces the spread of the global pandemic.

A mathematical model is presented in [12]. To effectively control the COVID-19

disease outbreak, an optimal control function is added to the model. The authors

incorporate three major control efforts into the model to control the spread: isola-

tion, quarantine, and hospitalisation. These efforts are divided into five functions;

u1(t) denote isolation of the susceptible communities, u2(t) denote contact track

measure by which susceptible individuals with contact history are quarantined,

u3(t) denote contact track measure by which infected individuals are quarantined,

u4(t) denotes control effort of hospitalizing the infected (I1) and u5(t) denote con-

trol effort of hospitalizing the infected (I2). The existence and characterization of

optimal control were established using Pontryagin’s maximum principle. The DFE

and EE were found to be locally asymptotically stable. The findings indicate that

implementing the available control measures optimally will significantly reduce in-

fectious populations.

A compartmental mathematical model for analyzing COVID-19 transmission is de-

veloped and analyzed in [66]. The authors aimed to explore the optimal control

for the novel COVID-19 using non-clinical approach such as lock-downs, frequent

hand-wash, use of face mask, and alcohol base hand sanitizer. Sensitivity test

was done to obtain the indexes of the parameters of the model. Hamilton and

Lagrangian methods were used to investigate the existence of an optimal control.

The authors showed that the most active transmission parameters are interposed

by introducing control variables.
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A mathematical model for the dynamics of COVID-19 is presented in [1]. An

optimal control function is added to the model in order to effectively control the

outbreak. The main control are; isolation, quarantine, and hospitalization. The

result shows that adopting the available control measures to their full potential will

greatly reduce infectious populations.

A mathematical model for COVID-19 transmission dynamics and analysis of crit-

ical and hospitalized cases with bed requirements is presented in [54]. The model

is used to calculate peak magnitude for exposed, asymptomatic infectious, symp-

tomatic infectious, hospitalized, ICUs admissions and number of COVID-19 deaths

over time. COVID-19 spread scenario and endpoints of disease are also computed.

The infection rate, recovery rate, case fatality rate, and the basic reproduction num-

ber are calculated over time. The social distance parameter, various age classes,

hospital beds for severe cases, and ICU beds or ventilators for critical cases are

all included in the model. The results show that the model would be useful in

determining various critical parameters such as daily hospitalisation rates, daily

death rates, and the need for normal and ICU beds during peak infection days.

The models so far discussed in this section propose implementation of efforts such

as quarantine, isolation, cessation of movement, travel bans and lock-downs to

reduce the spread of COVID-19. It is evident that human mobility (diffusion)

has a major impact on the dynamics of COVID-19 transmission. Furthermore,

the models assumed constant transmission coefficient which is not realistic since

ability of COVID-19 infectious person to infect another person change with space

and time. Studies have shown that COVID-19 infectiousness is high 2 days prior

to symptoms onset and 5 days after symptoms display [17, 18, 19, 51].
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2.3 Models with Time-dependent Parameters

A rigorous hybrid model and data-driven approach to risk scoring is presented in

[34], which is based on a time-varying SIR epidemic model and ultimately each

community has a simplified color-coded risk level. The model is represented by the

ODE system shown below:

dS(t)

dt
= −βS(t)I(t)

N
,

dI(t)

dt
= β

S(t)I(t)

N
− σI(t), (2.3)

dR(t)

dt
= σI(t).

where σ, is the recovery rate which is equal to 1
DI

denote the average infectious

number of days, β, is the effective contact rate. The authors demonstrated how

to calculate this risk score using another useful infection spread metric, Rt = βt
σ

,

the time-varying average reproduction number indicating the number of individu-

als infected would infect in turn. A parameter Γt = I(t).Rt
DI .S(t)

is introduced denoting

the probability of someone currently healthy getting infected in the next 24 hours

based on their locality. The approach proposed here allows for quantification of

uncertainty in the estimates of Rt and Γt in the form of confidence intervals.

A poisson model with time-varying transmission and removal rates is presented in

[31]. The model is given below;

ds(t)

dt
= −β(t)s(t)i(t),

di(t)

dt
= β(t)s(t)i(t)− γ(t)i(t), (2.4)

dr(t)

dt
= γ(t)i(t).

where, β(t) > 0 is the infection’s time-varying transmission rate at time t, num-

ber of infectious contacts per unit time, and γ(t) > 0 is the time-varying removal
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rate at t. The reproduction number with respect to time is given as R0(t) = β(t)
γ(t)

.

The model accounts for possible random errors in reporting and estimate a time-

dependent disease reproduction number R0(t), which may reflect the effectiveness

of virus control strategies. The method is applied to study the pandemic in sev-

eral severely impacted countries, and analyze and forecast the evolving spread of

COVID-19. The authors developed aninteractive web application to help other

readers use their method.

A mathematical model that tracks transmission and recovery rates over time t is

proposed in [20]. The human population is subdivided into three classes namely;

S(t), denotes the numbers of susceptible persons; X(t), the numbers of infected

persons and R(t), the numbers of recovered persons at time t. The following ODEs

govern the model;

dS(t)

dt
= −β(t)S(t)X(t)

n
,

dX(t)

dt
=

β(t)S(t)X(t)

n
− γ(t)X(t), (2.5)

dR(t)

dt
= γ(t)X(t).

where,

S(t) +X(t) +R(t) = n.

The transmission rate β(t) and recovering rate γ(t) are functions of time t. The

The numerical results show that the one-day prediction errors for the number of

infected people X(t) and the number of recovered people R(t) are nearly 3% for

the data-set collected. The model can track the transmission rate β(t) and the

recovering rate γ(t) with respect to time t, and precisely forecast the COVID-19

outbreak’s future trend in China. The authors also examined the independent

cascade (IC) model for disease propagation to better understand the impact of

social distance. The propagation probabilities in the IC model were linked to the
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transmission and recovery rates in the SIR model by the authors. They discov-

ered that social distancing strategies can reduce the effective reproduction number.

The models discussed in this section haven’t captured some important demographic

and epidemiological parameters (vital dynamics) such as the recruitment rate to

the susceptible class, disease induced and natural mortality rates.Furthermore, the

virus is exposed to the susceptible individuals (individuals infected but not yet

infectious). Therefore it would be important consider a class of exposed individuals,

which is absent in the models presented above.

2.4 Models Incorporating Diffusion

Reaction-diffusion epidemic models are generally standard epidemic models that

assumes that there is movement and interaction of individuals in a given popu-

lation in space. This implies that there is spatial distribution and interaction of

individuals in their physical environs. Human mobility may be due to travel, mi-

gration between localities, countries, or towns. A reaction-diffusion equation model

is presented as partial differential equations (PDEs) of the form,

∂u

∂t
= F (u) +D∇2u, (2.6)

where u =: u(t, x) represents the density/concentration of state u. For instance,

u =: S(x, t) represents the susceptible individuals in a position x ∈ Ω ⊂ Rn at a

time t, where Ω is a open set; F (u) represents infection dynamics of an individual

occupying a given point x at time t; D is the diffusion term that corresponds to

mobility of an individual in space, and ∇2 is the Laplace operator. Many diseases

limit the movement of those who are infected, but this is not the case for those who

are exposed. Because the exposed are more mobile than the infected, they play a

crucial role in disease transmission [56].
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A reaction-diffusion model is developed in [38]. The authors described the COVID-

19 spread by taking into account the daily average movement of susceptible (S),

exposed (E), and asymptomatic individuals (Ia). The model was calibrated using

data from confirmed infections and deaths in France, as well as their initial spatial

distribution. They proposed that only those who are vulnerable, exposed, and

asymptotic are moving. The dynamics are governed by a system of three partial

differential equations (PDE) and three ordinary differential equations (ODEs), as

shown below;

∂tS − d(t)∆S = −ω(t)(βeE + βsIs + βaIa)
S

N
,

∂tE − d(t)∆E = ω(t)(βeE + βsIs + βaIa)
S

N
− δE,

∂tIa − d(t)∆Ia = (1− ρ)δE − γIa, (2.7)

I
′

s = ρδE − (γ + µ+ ν)Is,

U
′

= νIs − (γ + µ)U,

R
′

= γ(Ia + Is + U).

where x = (x, y) ∈ Ω ⊂ R2, t > 0 and the densities of susceptible individual (S),

exposed individual (E), symptomatic infected individual (Is), asymptomatic in-

fected individual (Ia), and removed individual (R). Parameter estimation is done.

The basic reproduction number, R0, is derived. The spatial spread of COVID-19

from March 16 to June 16, 2020 was depicted using numerical simulations based on

a combination of level-set and finite differences. The authors compared unlockdown

mapping scenarios based on distancing variations or partially spatial lock-downs.

The spatial results show that without intervention, the total number of infected

is high, and the entirecountry would suffer greatly. Since COVID-19 is spread

through contact, population density is an important source of transmission.
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A system for parameterizing the bass diffusion model using COVID-19 data is pre-

sented in [55]. The principle of system dynamics is used to develop this continuous

model. In the powersim simulation tool, the model’s parameters are tuned to fit

the data using a genetic algorithm. The validation is carried out using standard

simulation validation techniques. The input data for the experiments were ob-

tained from publicly accessible databases. The study specifically considered data

collected in Austria, France, Italy, South Korea, Slovenia, and Switzerland. The

model can be used to make rough estimates with high correlation, but there will be

differences between the model and the actual system response. The results show

that COVID-19 pandemic’s first wave exhibited an S-shaped growth pattern that

can substantially be described by the Bass diffusion model.

In the model presented in [28], the authors used Markovian Agents, a flexible

modelling technique capable of representing the dynamics of large populations in-

teracting in space and time, to study the evolution of COVID-19 in Italy. The aim

was to demonstrate that this modelling approach, which is based on mean field

analysis models, performs well in describing the diffusion of phenomena such as

COVID-19. The study describes the application of this modelling approach to the

Italian scenario, and the results were validated against real data from the official

documentation of COVID-19 diffusion in Italy. The outcomes correspond to the

major actions taken by the Italian government and their consequences. The study

focused on a general diffusion of the infection and does not explore the existence

of the travelling wave solutions.

2.5 Models Incorporating Vaccination

An epidemiological SEIR-model is presented and analysed in [4]. The authors

estimated the parameters of the model that accounts for different severity lev-
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els using daily COVID-19 reports from Chicago and NYC from 01-March-2020 to

28-November-2020. The authors used time-dependent model parameters in order

to achieve data adherent predictions. The model is used to forecast various vac-

cination scenarios in which the campaign begins at various times ranging from

01-October-2020 to 01-April-2021.The findings indicate that the earlier the vacci-

nation campaign begins, the greater the potential impact on reducing COVID-19

cases, hospitalizations, and deaths. Furthermore, the rate at which cases, hospi-

talizations, and deaths increase as vaccination begins later depends heavily on the

shape of the infection incidence in each city.

The effect of vaccination frequency and vaccine intrinsic efficacy on COVID-19

prevalence, hospitalizations, and deaths is studied in [39]. To investigate these

various scenarios, the authors create a compartmental mathematical model and

employ computational methodologies. This enables the identification of some key

factors in achieving the vaccination programmes’ objectives. The authors used

metrics related to the outcomes of the COVID-19 pandemic to assess the impact of

vaccine efficacy and vaccine inoculation pace. The rate at which vaccine is admin-

istered has a higher impact on reducing the burden of the COVID-19 pandemic.

The results show that health institutions should prioritise increasing vaccine in-

oculation rates and raising public awareness about the importance of COVID-19

vaccines.

In order to estimate the impact of COVID-19 vaccination delays on the number

of cases and deaths in Brazil, a mathematical model is formulated in [7]. The

authors simulated their model for the populations of the State of Sao Paulo and

Brazil as a whole, varying vaccine efficacy and population compliance scenarios.

The model predicts that in the absence of vaccination, the number of COVID-19-
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related deaths will rise. The findings show that the current delay in vaccination

schedules observed in many countries has serious consequences in terms of disease

mortality. This should serve as a warning to health officials to expedite the process

so that the greatest number of people can be immunized in the shortest amount of

time.

Based on the vaccine availability, COVID-19 vaccination strategies differ across

countries. Vaccines from Pfizer, Morderna, Oxford AstraZeneca, Sputnik V, John-

son & Johnson, Covaxin, Covishield, and others are being administered globally.

Due to an insufficient supply of COVID-19 vaccines, many developing countries

are vaccinating only high-risk populations (ring/targeted vaccination). Vaccinat-

ing high-risk individuals in a given population may result in herd immunity for the

entire population. So, what fraction of a country’s population should be vaccinated

in such a ring vaccination programme to attain herd immunity?

From literature reviewed above, it is evident that a varying transmission coefficient,

an existing vaccination strategy, and human mobility (diffusion) are important fac-

tors to consider in the dynamics of COVID-19 transmission. This study therefore

proposes to develop and analyze COVID-19 dynamics with intervention (i.e., vary-

ing transmission coefficient, diffusion and vaccination). The models developed in

this study are in the form of ordinary and partial differential equations.
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CHAPTER THREE

DYNAMICS OF COVID-19 MODEL WITH VARYING
TRANSMISSION COEFFICIENT

3.1 Introduction

In this chapter, COVID-19 dynamics model with varying transmission coefficient

is developed and analysed. The model is described, formulated, and checked for

well-posedness. The steady-state existence and basic reproduction number are

computed. Finally, bifurcation, sensitivity, and numerical simulations are carried

out. COVID-19 infectiousness is highest within the first five (5) days of symptom

onset, after which it decreases. Asymptomatic transmission is less likely to spread

SARS-CoV-2 than symptomatic and pre-symptomatic transmission (1-2 days be-

fore symptom onset) [18, 51]. Therefore, contrary to the constant transmission co-

efficient assumed in most previous studies, COVID-19 transmission has exhibited

varying transmission coefficient [17, 57]. Therefore, a model with varying transmis-

sion coefficient is developed, and its effect on COVID-19 transmission dynamics is

investigated.

3.2 Model Description and Formulation

Despite the fact that there are underlying conditions that predisposes someone

to a higher risk of contracting COVID-19 disease, the population under study is

assumed to have an equal level of susceptibility. Individuals in this category are

referred to as susceptible individuals, which are denoted by the symbol S(t). When

susceptible individuals are exposed to the virus they undergo an incubation period,

which is the time between virus exposure and onset of symptoms. This is on aver-

age 5–6 days, but can be as long as 14 days [35]. The incubating individuals here in

this study are categorised as the exposed class, denoted by E(t). Following the end
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of an exposure period, the incubating individuals transit into the infection class

denoted by I(t). The infectious potential of COVID-19 is significantly greater just

before or within five days of the onset of symptoms [17]. Therefore, the infected

class I(t) in this study will include both individuals with and without symptoms.

Depending on the severity of the disease symptoms and the intervention strategies

in place, the infected individuals may die or recover from the disease. Thus, the

class R(t) denotes the number of individuals who have recovered from the infection.

The recruitment of individuals into the susceptible class is through births at the per

capita rate Λ. The susceptible humans become infected through a force of infection

β(x,t)I
1+ηI

, where β is the varying transmission coefficient. Following an outbreak, sev-

eral containment measures are implemented to control the disease’s spread. The

constant η, is the half-maximal human saturation constant of the infected individ-

uals in the presence of prevention measures. It is considered to be of Michaelis

Menten form to account for saturation of the human infection [60]. The saturated

incidence given by β(x,t)SI
1+ηI

, is reasonable due to the fact that as the infected indi-

viduals increase they reach a saturation point. The number of infected individuals

decreases as the susceptible population increases due to psychological effects, be-

havioral changes, or preventive measures taken by the affected individuals [3]. The

rate of progression from the exposed to infected class is taken as ε. The rates of

natural and disease-induced mortality are µ and δ, respectively. The recovery rate

from the infection is taken as λ and ω is the adherence to ministry of health -Kenya

(MOH-K) COVID-19 protocols, where (0 < ω < 1).
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The above model description translates into the following schematic flow diagram.
 

 

 

  

 

 

      

    

 

  

 

𝜇𝑆 

 

Λ 𝜇𝐼 

 

𝜇𝐸 

𝐸 𝑆 

𝑅 
𝜇𝑅 

 

 

𝐼 
𝛿𝐼 

  

 

𝜀𝐸 

(1 − 𝜔)𝛽(𝑥, 𝑡)𝑆𝐼

1 + 𝜂𝐼
 

𝜆𝐼 

Figure 3.1: COVID-19 Dynamics Model Schematic Flow Diagram

From the schematic diagram and description above, proposed model is represented

by the following system of ordinary differential equations (odes)

dS

dt
= Λ− (1− ω)β(x, t)SI

1 + ηI
− µS,

dE

dt
=

(1− ω)β(x, t)SI

1 + ηI
− (µ+ ε)E, (3.1)

dI

dt
= εE − (µ+ λ+ δ)I,

dR

dt
= λI − µR.

where; S = S(t), E = E(t), I = I(t), and R = R(t),

{S,E, I, R} ∈ R4
+

.

Table 3.1: The Descriptive Summary of the Model Parameters.

Parameter Description Unit/value units Source
Λ Recruitment rate 3.178×10−5 day−1 [39]
µ Natural mortality rate 3.91× 10−5day−1 [7]
δ Disease mortality rate 1.03× 10−6day−1 [6, 39]
β(x, t) Transmission coefficient (0 - 1.0) day−1 Variable
ω Adherence to COVID-19 protocols (0 - 1.0) day−1 Variable
ε Transition rate from E to I 0.0877 day−1 [10]
η Human saturation constant 0.05 Estimated
λ Human recovery rate 0.125 day−1 [25]
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3.3 Well-posedness of the Model

In this section well-posedness of the model solutions is discussed. Model (3.1)

describes the human population and therefore, its solutions as shown below are

positive and bounded for all time t ≥ 0.

3.3.1 Positivity of Solutions

Proposition 3.3.1. Let the initial conditions be

Ω = {(S(0), E(0), I(0), R(0)) ≥ 0 ∈ R4
+}.

Then the solutions set

{S(t), E(t), I(t), R(t)}.

of model (3.1) are positive ∀t ≥ 0.

Proof. Considering the first equation in model (3.1), that is

dS

dt
= Λ− (1− ω)β(x, t)SI

1 + ηI
− µS,

where

dS

dt
≥ −

[
(1− ω)β(x, t)I

1 + ηI
+ µ

]
S,

integration by variable separation to get∫
dS

S
≥

∫
−
[

(1− ω)β(x, t)I

1 + ηI
+ µ

]
dt,

thus

S(t) ≥ S(0)e−[
∫ τ
0

(1−ω)β(x,τ)I(τ)
1+ηI(τ)

+µ]dτ ,

which implies that

S(t) ≥ 0 ∀t ≥ 0.

In a similar way, all the other variables can be shown to be positive ∀t ≥ 0. Hence

all solutions of model (3.1) are positive in the region Ω.

23



3.3.2 Boundedness of Solutions

Model (3.1) is analyzed in a suitable feasible region

Ω = {(S,E, I, R)(t) ∈ R4
+ : S(t) + E(t) + I(t) +R(t) ≤ Λ

µ
}

where S(t) + E(t) + I(t) +R(t) = N(t).

Using Proposition 3.3.2 below, the model solutions are shown to be bounded for

all t ≥ 0 in the region Ω.

Proposition 3.3.2. For all time t ≥ 0, the solutions of model (3.1) are bounded

in the region Ω.

Proof. The solutions of model (3.1) are positively invariant of Ω, i.e., all solutions

starts in Ω and remain in the region Ω for all t ≥ 0. The rate of change of human

population N(t), is given by

dN

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
,

which implies that

dN

dt
= Λ− µ(S(t) + E(t) + I(t) +R(t))− δI,

dN

dt
≤ Λ− µN,

By variation-of-constant formula, it follows that

lim sup
t→∞

N(t) ≤ Λ

µ
,

Thus, N(t) ≤ Λ
µ

. This implies that the solution set {S(t), E(t), I(t), R(t)} are

bounded in the feasible region Ω, i.e,

Ω = {{(S(t), E(t), I(t), R(t)}|S(t) + E(t) + I(t) +R(t) ≤ Λ

µ
, (S,E, I, R)(0) ≥ 0}.

Hence, all solutions of model (3.1) are bounded in the region Ω.

Clearly, from Proposition 3.3.1 and Proposition 3.3.2 all solutions of model (3.1)

are shown to be positively invariant in the region Ω. Thus, model (3.1) is mathe-

matically and epidemiologically well posed in a biological feasible region Ω.
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3.4 Existence of DFE and the Basic Reproduction Number R0

The model’s disease-free equilibrium (DFE) point is defined as the state in which

no COVID-19 infection exists in the population under study.

Proposition 3.4.1. The disease-free equilibrium of model (3.1) exists and is given

by E0 = (S0, E0, I0, R0) = (Λ
µ
, 0, 0, 0).

Proof. Let S 6= 0, E = 0, I = 0, and R = 0 and substituting into the model (3.1)

yields

E0 = (S0, E0, I0, R0),

= (
Λ

µ
, 0, 0, 0).

which is model (3.1) only disease-free equilibrium point. Therefore, the DFE

denoted by E0 is given by E0 = (Λ
µ
, 0, 0, 0).

3.4.1 Reproduction Number

The basic reproduction number, denoted by the symbol R0, is defined as the average

number of secondary infections caused by a single infectious individual introduced

into a fully susceptible population during his/her period of infectivity [6]. If R0 < 1,

then on average an infectious individual produces less than one new infection dur-

ing the infectious period and hence the infection cannot spread in the population.

Conversely, if R0 > 1, then an average infectious individual produces more than a

single infection during his/her infectious period and the infection will invade and

grow in the population. The next generation matrix method is used to obtain the

basic reproduction number [58].

The basic reproduction number R0 = ρ(FV −1), is the spectral radius of the next

generation matrix, FV −1 where F and V are the matrices of the next genera-

tion [58]. The operator FV −1, the next generation matrix is constructed from
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matrices of partial derivatives of Fi (rate of appearance of new infection in the

ithcompartment) and Vi = V−i − V+
i (transfer rate/transition rate into and out of

the disease compartment i) with respect to the infected compartments (E and I)

evaluated at DFE. The matrices F and V are given by

F =

(
∂Fi(E0)

∂xj

)
,

V =

(
∂Vi(E0)

∂xj

)
,

From the infectious subsystem of model (3.1),

F =

( (1−ω)β(x,t)SI
1+ηI

0

)
,

and

V =

(
(µ+ ε)E

(µ+ λ+ δ)I − εE

)
,

Therefore, the transition matrices F and V evaluated at E0 = (Λ
µ
, 0, 0, 0) are;

F =

 0 (1−ω)β(x,t)Λ
µ

0 0

 ,

and

V =

 µ+ ε 0

−ε µ+ λ+ δ

 ,

Then V is invertible and V −1 exists, which is given by;

V −1 =

 1
µ+ε

0

ε
(µ+ε)(µ+λ+δ)

1
µ+λ+δ

 ,

and the next generation matrix FV −1 is

FV −1 =

 (1−ω)β(x,t)εΛ
µ(µ+ε)(µ+λ+δ)

(1−ω)β(x,t)Λ
µ(µ+λ+δ)

0 0

 ,
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Since intervention measures in this case the adherence to COVID-19 protocols

(ω) has been applied the reproduction number is now referred to as the effective

reproduction number, denoted by Rω, where ρ(FV −1) is the spectral radius of the

next generation matrix, (FV −1). Therefore,

Rω =
(1− ω)β(x, t)εΛ

µ(µ+ ε)(µ+ λ+ δ)
. (3.2)

The effective reproduction number, Rω, is a measure of the severity of an epidemic

in the presence of an intervention and one of the most important parameters,

determining whether or not the disease will infiltrate a population. This means

that if Rω < 1, the infection is eradicated, whereas if Rω > 1, the disease will

persists in the population and may cause an epidemic.

3.5 Bifurcation Analysis of the Model

Bifurcation is the study of how the nature of a dynamical system changes (stabil-

ity). Local bifurcation occurs when a parameter affects the stability of a dynamical

system’s equilibrium (fixed) point. Many epidemic models have two equilibrium

points: disease free equilibrium (DFE) and endemic equilibrium (EE). The DFE

point exists when the effective reproduction number, Rω < 1 and there exists an

endemic equilibrium point when Rω > 1. In this study, bifurcation analysis is

proposed to investigate the effect of varying transmission coefficient on disease oc-

currence.

Let β∗ be the bifurcation parameter in equation (3.2). Setting Rω = 1 and making

β∗ the subject of the formula in equation (3.2) yields

β∗ =
µ(µ+ ε)(µ+ λ+ δ)

(1− ω)εΛ
. (3.3)

The bifurcation values of the transmission coefficient are now computed. When

the parameter values in Table 3.1 are substituted into equation (3.3) as ω is varied,

the following results are obtained;
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Case(i) If ω = 0.9, then β∗ = 1.5391. This means that whenever β > β∗ =

1.5391, Rω > 1 and the disease is endemic, and β < β∗ the disease is eradi-

cated from the population.

Case(ii) If ω = 0.5, then β∗ = 0.3078. This means that if β > β∗ = 0.3078, then

Rω > 1 and the disease will be endemic, and if β < β∗ = 0.3078, the disease

will die out in the population.

Case(iii) If ω = 0.1, then β∗ = 0.1710. This means that whenever β > β∗ =

0.1710, Rω > 1 and the disease is endemic, and β < β∗ = 0.1710 the disease

is eradicated from the population.

Table 3.2: Parameters and their Unit Values used are as follows:

Case ω µ Λ ε λ δ β∗

(i) 0.9 0.0000391 0.00003178 0.087 0.125 0.00000103 1.5391

(ii) 0.5 0.0000391 0.00003178 0.087 0.125 0.00000103 0.3078

(iii) 0.1 0.0000391 0.00003178 0.087 0.125 0.00000103 0.1710

The bifurcation values of β∗ as ω is varied are given in Table 3.2. As shown in

cases (i) (ii), and (iii), when the effective reproduction number Rω decreases or

increases from unity, the DFE and EE change their nature from stable to unsta-

ble and vice versa. Depending on the orientation of the bifurcation parameter

β∗, bifurcations can be forward or backward. Forward (supercritical) bifurcation

occurs when there is DFE that is locally asymptotically stable whenever Rω < 1

and the EE is locally asymptotically stable whenever Rω > 1. which means when

the bifurcation parameter is less than the threshold, there are no endemic states.

Backward (subcritical) bifurcation occurs when stable disease-free equilibrium and

endemic equilibrium coexist whenever Rω < 1 [22]. Backward bifurcation will be

determined by the infectious person’s behavior during or after recovery, with the
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possibility of reinfection into the susceptible class. Backward bifurcation means

there is possible reinfection though Rω < 1.

Now using the center manifold theory of bifurcation analysis [16, 47], the type of

bifurcation at Rω = 1 is investigated.

Theorem 3.5.1. Consider the general system of ODEs with a parameter β∗

dx

dt
= f(x, β∗), (3.4)

f : R→ Rn and f ∈ C2(R2 × R) where 0 is the system’s equilibrium point and

(i) A = Dxf(0, 0) = dfi
dxi

(0, 0) is the linearization matrix of the system given by

(3.4) around the point of equilibrium 0 with β∗ evaluated at 0 Zero is a simple

A eigenvalue, and all other A eigenvalues have negative real parts.

(ii) The nonnegative right eigenvector u and left eigenvector v of matrix A corre-

spond to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkuiuj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkui
∂2fk
∂xi∂β∗

(0, 0).

The local dynamics of equation (3.4) around the equilibrium point 0 are fully de-

termined by the sign of a and b.

i. If a > 0, b > 0 when β∗ < 0 with |β∗| � 1, then 0 is locally asymptotically stable

and there exists a positive unstable equilibrium; when 0 < β∗ � 1, then 0 is

unstable and there exists a negative locally asymptotically stable equilibrium.

ii. If a > 0, b < 0 when β∗ < 0 with |β∗| � 1, then 0 is unstable, and there exists

a locally asymptotically stable negative equilibrium; when 0 < β∗ � 1, then 0

is stable, and a positive unstable equilibrium appears.
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iii. If a < 0, b > 0 with |β∗| � 1, then 0 is unstable; when 0 < β∗ � 1, then 0 is

locally asymptotically stable, and there exists a positive unstable equilibrium

point.

iv. a < 0, b > 0 when β∗ < 0 changes from negative to positive its stability from

stable to unstable. Corresponding to a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Let S = x1, E = x2, I = x3, R = x4 and β := β∗. Substituting in the system (3.1),

to obtain

dx1

dt
= f1 = Λ− (1− ω)β∗x1x3

1 + ηx3

− µx1,

dx2

dt
= f2 =

(1− ω)β∗x1x3

1 + ηx3

− (µ+ ε)x2, (3.5)

dx3

dt
= f3 = εx2 − (µ+ λ+ δ)x3,

dx4

dt
= f4 = λx3 − µx4.

Using β∗ as the bifurcation parameter, which occurs Rω = 1, solving for β∗ to

obtain

β∗ =
µ(µ+ ε)(µ+ λ+ δ)

(1− ω)εΛ
.

Taking β∗ as a bifurcation value. Evaluating the Jacobian matrix of the system

(3.1) at DFE, to obtain JE0 yields

JE0 =


−µ 0 − [(1−ω)β∗Λ]

µ
0

0 −(µ+ ε) [(1−ω)β∗Λ]
µ

0

0 ε −(µ+ λ+ δ) 0
0 0 λ −µ

 (3.6)

Two eigenvalues of the Jacobian matrix (3.6) are ξ1,2 = −µ, and the other two are

obtained from the reduced matrix A given by

A =

[
−(µ+ ε) [(1−ω)β∗Λ]

µ

ε −(µ+ λ+ δ)

]
(3.7)
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The eigenvalues of A are given by

ξ3,4 =
1

2

[
−B ±

√
B2 − 4(1−R0)

]
where B = (2µ+ ε+ λ+ δ)

Clearly when Rω = 1, JE0 has eigenvalues with negative real part and a zero

eigenvalue (one eigenvalue of JE0 vanishes). Therefore in such a case, the centre

manifold theory is therefore applied. Let the right eigenvector ~u = (u1, u2, u3, u4)T

associated to the Jacobian JE0 obtained from (JE0).~u = 0. Hence

u1 =
−(1− ω)β∗Λ

µ2
u3,

u2 =
(1− ω)β∗Λ

µ(µ+ ε)
u3,

u3 = u3,

u4 =
λ

µ
u3.

Again, let the left eigenvector ~v = (v1, v2, v3, v4)T associated to JE0 obtained from

(JE0)
T .~v = 0, where (JE0)

T is the transpose of JE0 . Thus

v1 = 0,

v2 =
ε

(µ+ ε)
v3,

v3 = v3,

v4 =
λ

µ
v3.

From the property ~u.~v = 1, yields

(1− ω)β∗Λε

µ(µ+ ε)2
u3v3 + u3v3 +

λ2

µ2
u3v3 = 1

u3v3 =
µ2(µ+ ε)2

(1− ω)β∗Λµε+ µ2(µ+ ε)2 + λ2(µ+ ε)2
. (3.8)

This implies that u3 > 0 if v3 > 0. The non-zero partial derivatives associated with

f = (f1, f2, f3, f4) at point E0 of system (3.5) are

∂2f1

∂x1∂x3

=
∂2f1

∂x3∂x1

= −(1− ω)β∗,
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∂2f2

∂x1∂x3

=
∂2f2

∂x3∂x1

= (1− ω)β∗,

∂2f1

∂x3∂β∗
=
−(1− ω)Λ

µ
,

∂2f2

∂x3∂β∗
=

(1− ω)Λ

µ
.

From the above partial derivatives, since v1 = 0, a and b are given by

a = v2u1u3
∂2f2

∂x1∂x3

(E0) + v2u3u1
∂2f2

∂x3∂x1

(E0),

=
−2u2

3v3ε(µ+ λ+ δ)2

Λ(µ+ ε)
.

b = u3v2
∂2f2

∂x3∂β∗
(E0),

=
(1− ω)εΛu3v3

µ(µ+ ε)
.

Clearly a > 0 when v3 < 0 and b > 0 when v3 > 0, the following theorem holds:

Theorem 3.5.2. Model (3.1) exhibits a backward bifurcation at Rω = 1 when a > 0

and v3 < 0. A positive unstable endemic equilibrium point exists when β∗ is zero,

and a positive stable equilibrium point exists when β∗ changes from negative to

positive. As a result, given that v3 > 0, the endemic equilibrium point E∗ is locally

asymptotically stable for Rω > 1 but close to 1 when a < 0.

3.6 Sensitivity Analysis of the Effective Reproduction Number

The sensitivity analysis is performed to determine the effect of the parameters

on the effective reproduction number. Sensitive parameters are those that have

a significant impact on infection/transmission dynamics. Using the normalised

forward sensitivity index from [21]. The model parameter M sensitivity index is

given by

ΥRω
M =

∂Rω

∂M
× M

Rω

. (3.9)

The effective reproduction number Rω of the model (3.1) is given by;

Rω =
(1− ω)β(x, t)εΛ

µ(µ+ ε)(µ+ λ+ δ)
.
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The sensitivity indices are;

ΥRω
Λ =

∂Rω

∂Λ
× Λ

Rω

= 1,

ΥRω
β =

∂Rω

∂β
× β

Rω

= 1,

ΥRω
ω =

∂Rω

∂ω
× ω

Rω

= − ω

1− ω
,

ΥRω
µ =

∂Rω

∂µ
× µ

Rω

= −(1 +
µ

µ+ ε
),

ΥRω
ε =

∂Rω

∂ε
× ε

Rω

=
µ

µ+ ε
,

ΥRω
λ =

∂Rω

∂λ
× λ

Rω

= − λ

µ+ λ+ δ
,

ΥRω
δ =

∂Rω

∂δ
× δ

Rω

= − δ

µ+ λ+ δ
.

Table 3.3 gives a summary of the sensitivity indices of Rω evaluated at the baseline

parameters values given in Table 3.3.

Table 3.3: Sensitivity Indices of Rω to Model Parameters.

Parameter Description Unit Value Sensitivity index
Λ Recruitment rate 3.178×10−5 day−1 1
β(x, t) Transmission coefficient (0 - 1.0) day−1 1
ω Adherence to COVID-19 (0 - 1.0) day−1 [-1, 0]

protocols
µ Natural death rate 3.91× 10−5day−1 -1.000449223
ε Transition rate from E to I 0.0877 day−1 0.000499223
λ Human recovery rate 0.125 day−1 0.999679
δ Disease mortality rate 1.03× 10−6day−1 -0.000008237

From Table 3.3, an increase of the rate of recruitment, Λ, into the susceptible by

1% and the varying transmission rate β(x, t) by 1% would lead to an increase of

the value of the effective reproduction number Rω by 1%. An increase of the trans-

mission coefficient by unit will increase the effective reproduction number Rω by

1%. An increase of the adherence to the ministry of health COVID-19 protocols

by unit would reduce the effective reproduction number by 1%. An increase of

the natural mortality rate by unit would reduce the effective reproduction number

by 1.0003128%. The sensitivity analysis above shows Rω is most sensitive to the
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per capita recruitment rate, the varying transmission coefficient, and the adher-

ence to M.O.H-K COVID-19 guidelines/protocols, and the natural mortality rate.

The sensitivity analysis results proposes that control strategies should target these

parameters, so as to curtail the spreading of COVID-19.

3.7 Numerical Simulation and Discussion

In this section, the graphical simulation of model (3.1) are presented. The effect of

a varying transmission coefficient β are investigated through simulations.

(a) (b)

(c)

Figure 3.2: Plots (a), (b), and (c) show varying transmission coefficient
β at 0.02, 0.09, and 0.5 respectively.
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Figure 3.2, plots (a), (b), and (c) show the dynamics of the susceptible, ex-

posed, infected and recovered humans with varied values of the transmission co-

efficient β := β(x, t). It is observed that the susceptible humans reduce with

a decrease of β and vice versa. When β = 0.5, the value of Rω is given as

Rω = 1.624 > 1, which is greater than unity. When β = 0.09, the value of

Rω is given as Rω = 0.2924 < 1, which is less than unity and when β = 0.02, the

value of Rω is given as Rω = 0.06497 < 1, which is also less than unity. This shows

that reducing the transmission coefficient would gradually reduce the population’s

infection rate. This may be achieved by reducing the interaction between infectious

individuals and susceptible population through measures such as maintenance of

social distancing, observing personal hygiene, use of face masks, e.t.c.

The varying transmission coefficient β(x, t), which varies depending on the popu-

lation in a given region, plays a critical role in the spread of COVID-19 in different

localities within the affected regions. Because of the high rate of infectivity in a re-

gion, some parts of the country (particularly densely populated areas) were locked

down and movement restrictions was imposed. The study recommends that reduc-

ing transmission would optimize the fight against COVID-19 transmission in the

population based on the analytical and numerical results obtained. It is concluded

that when the transmission coefficient is low, the disease spreading will decrease.

This suggests that prevention efforts should focus on lowering the transmission

coefficient.
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CHAPTER FOUR

DYNAMICS OF COVID-19 MODEL WITH DIFFUSION

4.1 Introduction

COVID-19 emerged in the city of Wuhan, Hubei Province, China, and quickly

spread all over the world [32]. This global spreading was greatly facilitated by

movement of infectious individuals from Wuhan city (the epicenter) to other parts

of the world where there were no COVID-19 infections. When infected people

travel to infection-free areas, the risk of infecting the locals is high and this may

result into a spike of infections. Studies have confirmed that COVID-19 dynamics is

influenced by human mobility [11]. Diffusion will be defined here as the movement

of infectious individuals from a high-risk COVID-19 infection territory to a low-risk

area. A diffusive COVID-19 dynamics model with constant transmission coefficient

is developed and analysed.

4.2 Model Formulation

The transmission dynamics of infectious diseases are influenced by the movement

of infectious individuals from one region to another. The movement of individuals

from one location to another was ignored in the model (3.1) as in reality individ-

uals are distributed in space and naturally interact with one another. Therefore,

diffusivity terms are added to the model (3.1) to investigate the effects of diffusion

(human mobility) in COVID-19 transmission dynamics. The existence of travelling

wave solutions and their exact solutions of the model are investigated in order to

determine the minimum wave speed that may cause an infection. The diffusivity

of susceptible, exposed, infected, and recovered individuals are d1, d2, d3, and d4

respectively.
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To capture the mobility of individuals in a given population, the following model

with spatial diffusion is developed;

∂S

∂t
− d1∇2S = Λ− βSI

1 + ηI
− µS,

∂E

∂t
− d2∇2E =

βSI

1 + ηI
− (µ+ ε)E, (4.1)

∂I

∂t
− d3∇2I = εE − (µ+ λ+ δ)I,

∂R

∂t
− d4∇2R = λI − µR.

where {S(x, t), E(x, t), I(x, t), R(x, t)} ∈ Ψ × T ⊂ R4
+ × R. Human mobility is

considered in one-dimensional space i.e., ∇2 = ∂2

∂x2
. The result can be extended

into higher-dimensional space, such as 2-dimensional space. It is assumed that

susceptible humans are recruited at a constant rate Λ. Humans who are susceptible

to infection are infected by an infectious individual through force of infection βI
1+ηI

, where, β is the transmission coefficient. The half-maximal human saturation

constant of infected individuals is η. The saturated incidence given by βSI
1+ηI

, is

reasonable due to the fact that as the infected individuals increase they reach a

saturation point. The rate of progression from the exposed to infected classes is

taken to be ε. The rates of natural and disease-induced mortality are µ and δ,

respectively. The recovery rate from the infection is taken as λ.

4.3 Well-posedness of the Model

The model (4.1) describes human population and therefore its solutions as shown

below are positive and bounded for all time t ≥ 0. The analysis of the model is

done under zero flux boundary conditions (no movement across the boundary of

∂Ψ).

∂S

∂n
=
∂E

∂n
=
∂I

∂n
=
∂R

∂n
= 0. (4.2)
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where ∂
∂n

, denotes the normal outward derivative on ∂Ψ. Let the initial conditions

be as follows:

S(x, t) = S(x, 0) ≥ 0, E(x, t) = E(x, 0) ≥ 0, I(x, t) = I(x, 0) ≥ 0,

R(x, t) = R(x, 0) ≥ 0. (4.3)

For x ∈ (−∞,+∞), where Ψ denotes a bounded domain Ψ ⊂ R4
+ with smooth

boundary ∂Ψ and t ≥ 0.

Definition 4.3.1. A function f is called locally Lipschitz continuous if there

exists a neighbourhood U of x for every x in X such that f restricted to U is

Lipschitz continuous [13].

Definition 4.3.2. A real-valued function f : R → R is called Lipschitz con-

tinuous if there exists a positive real constant K such that, for all real x and y,

then;

|f(x)− f(y)| ≤ K|x− y|.

Proposition 4.3.1. Suppose that the initial conditions (4.3) hold, then the solu-

tions of model (4.1) are non-negative in [0, +∞) for all t ≥ 0.

Proof. Model (4.1) can be expressed as an abstract Banach space X = C̄(Ψ)×C(Ψ̄)

in the form

u
′

= Au(t) + F (u(t)), t > 0

u(0) = u0 ∈ X. (4.4)

where u = (S,E, I, R)T , u(0) = (S(x, 0), E(x, 0), I(x, 0)R(x, 0))T and Au(t) =

(d1S, d2E, d3I, d4R)T and

F (u(t)) =


Λ− βSI

1+ηI
− µS

βSI
1+ηI
− (µ+ ε)E

εE − (µ+ λ+ δ)I
λI − µR

 . (4.5)
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Clearly, the function F is locally Lipschitz continuous in X, so model (4.1) has

local solutions on the interval [0, Tmax), where Tmax is the maximal existence time

for model (4.1) solutions [26].

The model (4.1) can also be written as follows;

∂S

∂t
− d1∇2S = F1(S,E, I, R),

∂E

∂t
− d2∇2E = F2(S,E, I, R), (4.6)

∂I

∂t
− d3∇2I = F3(S,E, I, R),

∂R

∂t
− d4∇2R = F4(S,E, I, R).

The functions Fi(S,E, I, R), i = 1, 2, 3, 4, 5 are continuously differentiable and

satisfy the following conditions F1(0, E, I, R) = Λ ≥ 0, F2(S, 0, I, R) = 0 ≥ 0,

F3(S,E, 0, R) = 0 ≥ 0, F4(S,E, I, 0) = 0 ≥ 0, for all {S,E, I, R} ≥ 0. Since

(S,E, I, R) ≥ 0 with positive initial conditions, then model (4.1) solutions are

positive.

Proposition 4.3.2. Model (4.1) solutions are bounded in the region Ψ× T for all

t ≥ 0.

Proof. To check for the boundedness, adding all the equations in (4.1) and setting

D = max{d1, d2, d3, d4} to obtain

∂N(x, t)

∂t
≤ Λ− µN +D∇2N, (4.7)

The inequality (4.7) has a unique solution of the form

∂N(x, t)

∂t
≤ Λ−

∫ ∞
−∞

µN√
4Dπt

e
(−x2)
4Dt dx, (4.8)

where the fundamental solution of inequality (4.8) is given by

K(x, t) =


1√

4Dπt
e(−x

2

4Dt
) x ∈ R t > 0

0 x ∈ R t < 0

(4.9)
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The one-dimensional reaction-diffusion equation (4.9) satisfies the following condi-

tions.

K(x, t) =

∫ +∞

−∞

1√
4Dπt

e(−x
2

4Dt
)dx = 1, (4.10)

Hence

dN

dt
≤ Λ− µN, (4.11)

Since N(x, t) > 0, solving the inequality (4.11) and taking the limit as t → ∞

yields

lim sup
t→∞

N(x, t) ≤ Λ

µ
. (4.12)

Hence N(x, t) is bounded.

From Proposition 4.3.1 and Proposition 4.3.2, it is clear that model (4.1) solutions

are positive and bounded for t ≥ 0. Thus, model (4.1) is mathematically and

epidemiologically meaningful, and it is now sufficient to consider its solutions in

Ψ× T .

4.4 Basic Reproduction Number and the Existence of Equilibrium Points

Following the steps as shown in section 3.4.1 the basic reproduction number of

model (4.1) without diffusion is given by;

R0 =
βεΛ

µ(µ+ ε)(µ+ λ+ δ)
. (4.13)

Proposition 4.4.1. Model (4.1) has a disease free equilibrium denoted by E0 =

(S0, E0, I0, R0) = {Λ
µ
, 0, 0, 0} where S0 = Λ

µ
, E0 = I0 = R0 = 0.

Proof. In model (4.1) setting S 6= 0, E = 0, I = 0 and R = 0 yields

E0 = {S0 =
Λ

µ
,E0 = 0, I0 = 0, R0 = 0},

= {Λ

µ
, 0, 0, 0}.

which is the only disease-free equilibrium of the model (4.1).
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The endemic equilibrium is the state at which the disease remains persistence in a

given population.

Proposition 4.4.2. The endemic equilibrium E∗ of the model (4.1) exists whenever

R0 > 1.

Proof. The endemic equilibrium exists, if I∗ > 0 whenever R0 > 1. Consider an

endemic equilibrium E∗ = {S∗, E∗, I∗, R∗} satisfying;

Λ− βS∗I∗

1 + ηI∗
− µS∗ = 0,

βS∗I∗

1 + ηI∗
− (µ+ ε)E∗ = 0, (4.14)

εE∗ − (µ+ λ+ δ)I∗ = 0,

λI∗ − µR∗ = 0.

where {S∗ 6= 0, E∗ 6= 0, I∗ 6= 0, R∗ 6= 0}.

From the first equation of model (4.14) obtains

S∗ =
Λ(1 + ηI∗)

βI∗ + µ(1 + ηI∗)
. (4.15)

substituting equation (4.15) into second equation of (4.14) yields

E∗ =
βΛI∗

(µ+ ε)(βI∗ + µ(1 + ηI∗))
. (4.16)

Now substituting equation (4.16) into the third equation of (4.14) yields

I∗ =
µ(R0 − 1)

β + µη
. (4.17)

It is clear from equation (4.17) that I∗ > 0 when R0 > 1. This implies that there

exists an endemic equilibrium for model (4.1) whenever R0 > 1.

4.5 Spatial Dynamics Analysis

In this section, the model (4.1) is analysed to investigate the spatial dynamics of

COVID-19 disease transmission dynamics. The approach used in [40, 41], is em-

ployed to determine the existence of travelling wave solutions and seek to determine

the speed at which COVID-19 infection spreads in a population.
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4.5.1 Existence of the Travelling Wave Solutions

Traveling wave solutions are solutions with a specific shape that incorporate time

and spatial variables via moving coordinates. The spatial transition from one

steady state to another is described by such a solution. The goal of this section is

to determine the traveling wave fronts that connect the disease-free and endemic

stable states. The travelling wave solution of the model (4.1) is determined fol-

lowing the approach used in [40]. The travelling wave solutions of model (3.1) are

shown using the approach used in [40, 59].

Proposition 4.5.1. For all time t ≥ 0 and v > 0, then there exists a traveling

wave solutions of model (4.1).

Proof. Define a new variable of the form z = k(x − vt), v > 0, where v is the

propagating wave speed of model (4.1) in one-dimensional space and k is the wave

number. Let S(x, t) = S(z), E(x, t) = E(z), I(x, t) = I(z), and R(x, t) = R(z).

Then model (4.1) can be transformed into the following set:

−vkS ′ − d1k
2S
′′

= Λ− βSI

1 + ηI
− µS,

−vkE ′ − d2k
2E
′′

=
βSI

1 + ηI
− (µ+ ε)E, (4.18)

−vkI ′ − d3k
2I
′′

= εE − (µ+ λ+ δ)I,

−vkR′ − d4k
2R
′′

= λI − µR.

where ′ denotes the partial derivative with respect to the new variable z. System

(4.18) can be expressed as follows;

d1k
2S
′′

+ vkS
′
+ Λ− βSI

1 + ηI
− µS = 0,

d2k
2E
′′

+ vkE
′
+

βSI

1 + ηI
− (µ+ ε)E = 0, (4.19)

d3k
2I
′′

+ vkI
′
+ εE − (µ+ λ+ δ)I = 0,

d4k
2R
′′

+ vkR
′
+ λI − µR = 0.
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which can further be expressed as

S
′′

+H1S
′
+ F1(S,E, I, R) = 0,

E
′′

+H2E
′
+ F2(S,E, I, R) = 0, (4.20)

I
′′

+H3I
′
+ F3(S,E, I, R) = 0,

R
′′

+H4R
′
+ F4(S,E, I, R) = 0,

where

F1 =
1

d1k2
(Λ− βSI

1 + ηI
− µS), F2 =

1

d2k2
(
βSI

1 + ηI
− (µ+ ε))E,

F3 =
1

d3k2
(εE − (µ+ λ+ δ)I), F4 =

1

d4k2
(λI − µR).

and

Hi =
v

dik
, i = 1, 2, 3, 4

Setting the variables x1 = S
′
, x2 = E

′
, x3 = I

′
, x4 = R

′
, then model (4.20) is

transformed into a system of first order differential equations:

Y = [x1, S, x2, E, x3, I, x4, R] ∈ R8

and

dY

dz
= f(Y ) =



−H1x1 − F1

x1

−H2x2 − F2

x2

−H3x3 − F3

x3

−H4x4 − F4

x4


, (4.21)

with boundary conditions

lim
z−→−∞

(x1, S, x2, E, x3, I, x4, R) = E0,

lim
z−→+∞

(x1, S, x2, E, x3, I, x4, R) = E∗.
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where E0 denotes the disease-free equilibrium point and E∗ denotes the endemic

equilibrium point A travelling wave solution is then a trajectory that connects E0

and E∗.

Computing the Jacobian matrix of model (4.20) yields

J =



−H1 − 1
d1k2

( βI
(1+ηI) − µ) 0 0 0 − 1

d1k2
βS

(1+ηI)2
0 0

1 0 0 0 0 0 0 0

0 − 1
d2k2

βI
(1+ηI) −H2

(µ+ε)
d1k2

0 − βS
d2k2(1+ηI)2

0 0

0 0 1 0 0 0 0 0

0 0 0 ε
d3k2

−H3
(µ+λ+δ)
d3k2

0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 λ
d4k2

−H4
µ

d4k2

0 0 0 0 0 0 1 0


(4.22)

Evaluating the Jacobian in equation (4.22) at the Disease-free equilibrium E0 =

(Λ
µ
, 0, 0, 0, 0) yields

JE0 =



− v
d1k

µ
d1k2

0 0 0 βΛ
µd1k2

0 0

1 0 0 0 0 0 0 0

0 0 − v
d2k

(µ+ε)
d2k2

0 − βΛ
µd2k2

0 0

0 0 1 0 0 0 0 0

0 0 0 ε
d3k

− v
d3

(µ+λ+δ)
d3k2

0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 λ

d4k2
− v
d4k

µ
d4k2

0 0 0 0 0 0 1 0


(4.23)

The eigenvalues of the Jacobian matrix (4.23) evaluated at the disease-free equi-

librium, ξ1, ..., ξ8 are:

ξ1,2 =
−v ±

√
v2 + 4µd1

2d1k
,

ξ3,4 =
−v ±

√
v2 + 4(µ+ ε)d2

2d2k
, (4.24)

ξ5,6 =
−v ±

√
v2 + 4(µ+ λ+ δ)d3

2d3k
,

ξ7,8 =
−v ±

√
v2 + 4µd4

2d4k
.

Clearly, ξ1, ..., ξ8 are real-valued eigenvalues. Therefore, the travelling wave solu-

tions have real eigenvalues if v > 0 for all t ≥ 0. Model (4.1) has travelling wave
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solutions which propagate at a speed v > 0, joining the DFE to EE.

There is a travelling wave profile that connects the disease-free and endemic equi-

librium. In epidemiological terms, this means that if infectious individuals are

introduced into a susceptible population, a transition zone of infectious individuals

will form, propagating at minimum speed vmin := v∗, where v ≥ v∗.

4.5.2 Exact Solutions of the Traveling Wave

In this section the exact solution of the traveling wave is investigated. To find

the exact solution of wave propagation, the Hyperbolic Tangent Method (Tanh

Method) is used. In comparison to other existing techniques, the method is concise

and straightforward [41]. The Tanh method was first described in [42]

The tanh method is used in the following steps:

1. To find solitary wave solutions to the nonlinear partial differential equation of

form

ut = F (u, uxx, ...), (4.25)

The solution to equation (4.25) is proposed to be a polynomial

F (W ) =
N∑
n=0

anW
n, (4.26)

A travelling wave solution would use the coordinates z = k(x − vt) and u(x, t) =

u(z), where u(z) represents the localised, wave solution with velocity v [41]. Con-

sequently, the given PDEs are transformed into ODEs (see in equations (4.18) and

(4.19))

2. The center step is to introduce W = tanh(z) as a new independent variable,

and the derivatives are then changed to:

W
′

= sech2(z) = 1− tanh2(z) = 1−W 2, (4.27)

dF (W )

dz
= (1− tanh2(z))

dF (W )

dW
= (1−W 2)

dF (W )

dW
, (4.28)

d2F (W )

dz2
= (1−W 2)

d

dW

[
(1−W 2)

dF (W )

dW

]
. (4.29)

45



The degree of the polynomial is then determined as in equation(4.26) by equating

each of the equation’s two highest exponents to obtain a linear system for N , and

that system is then solved by rejecting any solution N that is not a positive integer

[41].

3. After determining the degree of the polynomial and its coefficients, an, n =

0, 1, 2, ..., N , the nonlinear system is solved using the following assumptions:

• All of the parameters in the problem are strictly positive.

• The coefficient of the highest power of W term must be non-zero.

• The wave number k is considered to be positive.

4. Finally, the coefficients and parameters solutions are substituted into the origi-

nal equation.

Since the first three equations of model (4.19) are independent of the last one,

i.e., R(x, t) = N(x, t) − S(x, t) − E(x, t) − I(x, t), it suffices to consider model

(4.19) with three equations as follows:

d1k
2S
′′

+ vkS
′
+ Λ− βSI

1 + ηI
− µS = 0,

d2k
2E
′′

+ vkE
′
+

βSI

1 + ηI
− (µ+ ε)E = 0, (4.30)

d3k
2I
′′

+ vkI
′
+ εE − (µ+ λ+ δ)I = 0,

The transformation W = tanh(z) is used to seek the closed solutions. The travel-

ling wave solutions are as follows:

S(W ) = F1(W ) =
N∑
n=0

anW
n,

E(W ) = F2(W ) =
N∑
n=0

bnW
n, (4.31)

I(W ) = F3(W ) =
N∑
n=0

cnW
n,
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Substituting (4.31) into (4.30) yields;

d1k
2(1−W 2)

d

dW

[
(1−W 2)

dF1

dW

]
+ vk(1−W 2)

dF1

dW
+ Λ− βF1(W )F3(W )

1 + ηF3(W )
− µF1(W ) = 0

d2k
2(1−W 2)

d

dW

[
(1−W 2)

dF2

dW

]
+ vk(1−W 2)

dF2

dW
+
βF1(W )F3(W )

1 + ηF3(W )
− (µ+ ε)F2(W ) = 0

d3k
2(1−W 2)

d

dW

[
(1−W 2)

dF3

dW

]
+ vk(1−W 2)

dF3

dW
+ +εF2(W )− (µ+ λ+ δ)F3(W ) = 0

(4.32)

Now substituting F1(W ) in equation (4.31) into the first equation of (4.32) and

solving for F1(W ) one obtains;

d1k
2(1−W 2)

d

dW

[
(1−W 2)

d

dW

N∑
n=0

anW
n

]
+ vk(1−W 2)

d

dW

N∑
n=0

anW
n + Λ−

β
∑N

n=0 anW
n
∑N

n=0 cnW
n

1 + η
∑N

n=0 cnW
n

− µ
N∑
n=0

anW
n = 0 (4.33)

⇒ d1k
2(1−W 2)

d

dW

[
(1−W 2)

N∑
n=0

nanW
n−1

]
+ vk(1−W 2)

N∑
n=0

nanW
n−1 + Λ−

β
∑N

n=0 ancnW
2n

1 + η
∑N

n=0 cnW
n
− µ

N∑
n=0

anW
n = 0 (4.34)

⇒ d1k
2(1−W 2)

[
N∑
n=0

n(n− 1)anW
n−2 −

N∑
n=0

n(n+ 1)anW
n

]
+ vk

N∑
n=0

nanW
n−1 −

vk

N∑
n=0

nanW
n+1 + Λ− β

∑N
n=0 ancnW

2n

1 + η
∑N

n=0 cnW
n
− µ

N∑
n=0

anW
n = 0 (4.35)

⇒ d1k
2

[
N∑
n=0

n(n− 1)anW
n−2 −

N∑
n=0

n(n+ 1)anW
n −

N∑
n=0

n(n− 1)anW
n +

N∑
n=0

n(n+ 1)anW
n+2

]

+ vk

N∑
n=0

nanW
n−1 − vk

N∑
n=0

nanW
n+1 + Λ−

β
∑N

n=0 ancnW
2n

1 + η
∑N

n=0 cnW
n
− µ

N∑
n=0

anW
n = 0 (4.36)

To obtain the value of N , balance highest term of W (linear and nonlinear terms)

i.e., from the first term, WN+2, the second term, WN+1 , the third term, W 2N , and
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the last term is WN . Therefore, 2N = 2 + N hence N = 2. Since z → +∞ then

W → +1, we assume the travelling wave solution takes the following form;

F1(W ) = a0(1−W )(1 + a1W ), (4.37)

Now substituting the second equation of (4.31) into the second equation in (4.32)

yields

d2k
2(1−W 2)

d

dW

[
(1−W 2)

d

dW

N∑
n=0

bnW
n

]
+ vk(1−W 2)

d

dW

N∑
n=0

bnW
n +

β
∑N

n=0 anW
n
∑N

n=0 cnW
n

1 + η
∑N

n=0 cnW
n

− (µ+ ε)
N∑
n=0

bnW
n = 0 (4.38)

⇒ d2k
2(1−W 2)

d

dW

[
(1−W 2)

N∑
n=0

nbnW
n−1

]
+ vk(1−W 2)

N∑
n=0

nbnW
n−1 +

β
∑N

n=0 ancnW
2n

1 + η
∑N

n=0 cnW
n
− (µ+ ε)

N∑
n=0

bnW
n = 0 (4.39)

⇒ d2k
2(1−W 2)

[
N∑
n=0

n(n− 1)bnW
n−2 −

N∑
n=0

n(n+ 1)bnW
n

]
+ vk

N∑
n=0

nbnW
n−1 −

vk
N∑
n=0

nbnW
n+1 +

β
∑N

n=0 ancnW
2n

1 + η
∑N

n=0 cnW
n
− µ

N∑
n=0

bnW
n = 0 (4.40)

⇒ d2k
2

[
N∑
n=0

n(n− 1)bnW
n−2 −

N∑
n=0

n(n+ 1)bnW
n −

N∑
n=0

n(n− 1)bnW
n +

N∑
n=0

n(n+ 1)bnW
n+2

]

+ vk
N∑
n=0

nbnW
n−1 − vk

N∑
n=0

nbnW
n+1 +−

β
∑N

n=0 ancnW
2n

1 + η
∑N

n=0 cnW
n
− (µ+ ε)

N∑
n=0

bnW
n = 0 (4.41)

Now, in the resulting equation, balance the highest linear and nonlinear terms of

W , i.e., from the first term, WN+2, the second term, WN+1 , the third term, W 2N ,

and the last term is WN . Then 2N = 2 + N where N = 2 and therefore, the

solution take the form;

F2(W ) = b0(1−W )(1 + b1W ), (4.42)
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Lastly, substituting the third equation of (4.31) into the third equation of (4.32)

yields;

d3k
2(1−W 2)

d

dW

[
(1−W 2)

d

dW

N∑
n=0

cnW
n

]
+ vk(1−W 2)

d

dW

N∑
n=0

cnW
n

+ ε

N∑
n=0

bnW
n − (µ+ λ+ δ)

N∑
n=0

cnW
n = 0

⇒ d3k
2(1−W 2)

d

dW

[
(1−W 2)

N∑
n=0

ncnW
n−1

]
+ vk(1−W 2)

N∑
n=0

ncnW
n−1

+ ε
N∑
n=0

bnW
n − (µ+ λ+ δ)

N∑
n=0

cnW
n = 0

⇒ d3k
2(1−W 2)

[
N∑
n=0

n(n− 1)cnW
n−2 −

N∑
n=0

n(n+ 1)cnW
n

]
+ vk

N∑
n=0

ncnW
n−1 −

vk
N∑
n=0

ncnW
n+1 + ε

N∑
n=0

bnW
n − (µ+ λ+ δ)

N∑
n=0

cnW
n = 0

⇒ d3k
2

[
N∑
n=0

n(n− 1)cnW
n−2 −

N∑
n=0

n(n+ 1)cnW
n −

N∑
n=0

n(n− 1)cnW
n +

N∑
n=0

n(n+ 1)cnW
n+2

]

+ vk

N∑
n=0

ncnW
n−1 − vk

N∑
n=0

ncnW
n+1 + ε

N∑
n=0

bnW
n − (µ+ λ+ δ)

N∑
n=0

cnW
n = 0 (4.43)

To obtain the parameter N , balance the highest linear and nonlinear terms of

highest order in the resulting equation, which yields N = 0, implying that cn = 0,

thus, the solution takes the form;

F3(W ) = c0(1−W )(1 + c1W ) = 0 (4.44)

where c0 = 0 and c1 = 0. Therefore, F3(W ) = 0.

Substituting equation (4.37), (4.42), and (4.44) into equation (4.32), the following

results are obtained;

⇒ d1k
2(1−W 2)

d

dW

[
(1−W 2)a0(−1 + a1(1− 2W ))

]
+ vk

[
a0(1−W 2)(−1 + a1(1−W ))

]
+ Λ− µ [a0(1− w)(1 + a1W )] = 0
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⇒ d1a0k
2(1−W 2)

d

dW

[
a1 − 1− 2a1W − a1W

2 +W 2 + 2a1W
3
]

+ (4.45)

vka0

[
a1 − 1− 2a1W − a1W

2 +W 2 + 2a1W
3
]

+ Λ− µa0

[
1 + a1W −W − a1W

2
]

= 0

⇒ d1k
2a0

[
−2a1 − 2a1W + 2W + 8a1W

2 + 2a1W
3 − 2W 3 − 6a1W

4
]

+ (4.46)

vka0

[
a1 − 1− 2a1W − a1W

2 +W 2 + 2a1W
3
]

+ Λ− µa0

[
1 + a1W −W − a1W

2
]

= 0

From equation (4.46) yields the system of algebraic equations for a0, a1, k, and v:

W 3 : a1d1k − d1k + a1v = 0,

W 2 : 8a1d1k
2 + vk − vka1 + µa1 = 0, (4.47)

W 1 : 2d1k
2 − 2d1k

2a1 − 2a1vk − µa1 + µ = 0,

W 0 : 2a0a1d1k
2 + a0a1vk + vka0 − Λ + µa0 = 0,

Substituting equation (4.42) into (4.32) yields;

⇒ d2k
2(1−W 2)

d

dW

[
(1−W 2)b0(−1 + b1(1− 2W ))

]
+ vk

[
b0(1−W 2)(−1 + b1(1−W ))

]
+ Λ− (µ+ ε) [b0(1− w)(1 + b1W )] = 0

⇒ d2k
2b0(1−W 2)

d

dW

[
b1 − 1− 2b1W − b1W

2 +W 2 + 2b1W
3
]

+ (4.48)

vkb0

[
b1 − 1− 2b1W − b1W

2 +W 2 + 2b1W
3
]
− (µ+ ε)b0

[
1 + b1W −W − b1W

2
]

= 0

⇒ d2k
2b0

[
−2b1 − 2b1W + 2W + 8b1W

2 + 2b1W
3 − 2W 3 − 6b1W

4
]

+ (4.49)

vkb0

[
b1 − 1− 2b1W − b1W

2 +W 2 + 2b1W
3
]
− (µ+ ε)b0

[
1 + b1W −W − b1W

2
]

= 0

From equation (4.49) yields the algebraic equation system for b0, b1, k, and v:

W 3 : b1d2k − d2k + b1v = 0,

W 2 : 8b1d2k
2 + vk − vkb1 + (µ+ ε)b1 = 0, (4.50)

W 1 : 2d2k
2 − 2b1d2k

2 − 2b1vk − (µ+ ε)b1 + (µ+ ε) = 0,

W 0 : 2b1d2k
2 − vkb1 + vk + (µ+ ε) = 0.
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Solving the algebraic linear systems in ai and bi i = 0, 1 (4.47) and (4.50) with the

aid of Mathematica and Matlab yields;

a0 =
4Λ

3µ
, a1 = 1, k = ±1

2

√
− µ

2d1

, and v ≥ 0, (4.51)

b0 = 0, b1 = 0, c0 = 0

In view of (4.51), the travelling wave solutions are given by;

S(x, t) =
4Λ

3µ
(1− tanh2[k(x− vt)]), k = ±1

2

√
− µ

2d1

, v ≥ 0 (4.52)

E(x, t) = 0

The equations result (4.52) indicates that the COVID-19 wave of infection attacks

the susceptible population with a solitary-wave front with a velocity v ≥ 0. This

means that introducing a few infectious individuals into a completely susceptible

population creates a moving transition zone. This shows that COVID-19 trans-

mission occurs when infectious individuals move from one region to another, and

thus there exists a travelling wave front connecting the disease free equilibrium

and the endemic equilibrium with a minimum wave speed v∗ ≥ 2
√
µd1 > 0 on the

susceptible population.

4.6 Numerical Simulations and Discussion

In MATLABTM software (PDE-PE) is used to illustrate the graphical simulation

describing the behaviour of model solutions (4.1). The simulation parameters are

obtained from the literature, while others are estimates. For simulation purposes,

the initial populations are assumed to be S(0, x) = 3000, E(0, x) = 2000, I(0, x) =

1500, and R(0, x) = 1000.

Simulation analysis of the model (4.1) are presented to graphically illustrate the be-

haviour of the solutions of the model with varying diffusivity rates.
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Table 4.1: The Descriptive Summary of the Model Parameters

Parameter Description Unit/value units Source
Λ Recruitment rate 3.178×10−5 day−1 [39]
µ Natural mortality rate 3.91× 10−5day−1 [39]
δ Disease mortality rate 1.03× 10−6day−1 [6, 39]
λ Human recovery rate 0.125 day−1 [5]
β Transmission coefficient 0.02 day−1 Estimated
ε Transition rate from E to I 0.0877 day−1 [10]
η Human saturation constant 0.05 Estimated
d1 Susceptible diffusivity constant (0 - 1.0) km day−1 Variable
d2 Exposed diffusivity constant (0 - 1.0) km day−1 Variable
d3 Infected diffusivity constant (0 - 1.0) km day−1 Variable
d4 Recovered diffusivity constant (0 - 1.0) km day−1 Variable

(a) (b)

Figure 4.1: Plots (a) and (b) show the simulations of the susceptible
humans corresponding to the rate of diffusion, (a) d1 = 0.1 day−1, (b)
d1 = 0.9 day−1

(a) (b)

Figure 4.2: Plots (a) and (b) show the simulations of the exposed humans
corresponding to the rate of diffusion, (a) d2 = 0.1 day−1, (b) d2 = 0.9
day−1

Figure 4.1 plots (a) and (b) show simulations of susceptible humans for varying

diffusivity rate values, d1 at 0.1 and 0.9 respectively. The number of the suscep-
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(a) (b)

Figure 4.3: Plots (a) and (b) show the simulations of the infected humans
corresponding to the rate of diffusion, (a) d3 = 0.1 day−1, (b) d3 = 0.9
day−1

tible humans reduces faster when diffusivity rate is high and also reduces with an

increase in space. When d1 = 0.9, it would take less days for a pool of susceptible

humans to be exposed to the virus. When diffusivity rate is low, d1 = 0.1, there is

a slow increase of exposed individuals.

Figure 4.2 plots (a) and (b) show simulations of exposed humans for varying diffu-

sivity rate values, d2 at 0.1 and 0.9 respectively. They show that the number of the

exposed humans increases faster when diffusivity rate is high and also increases with

space. Figure 4.3 plots (a) and (b) show the spatiotemporal simulations of infected

humans for varying diffusivity rate values of d3. They show that as rate of diffu-

sion (human mobility), d3 increases the number of infected individuals increases.

This means that, human mobility has an effected in the transmission dynamics of

COVID-19. Infectious individuals will spread to regions where there is no infec-

tion until an equilibrium is reached. The numerical result demonstrates that the

movement of infectious individuals causes the disease to persist in the population.

This results in the formation of a wave profile, implying that the introduction of an

infective individual into a susceptible population results in infection propagation.
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From the study findings, COVID-19 persists in the population if there exists move-

ment of infected individuals. The introduction of an infected individual into a

purely susceptible population would cause “a propagating wave” of infection in the

population. Therefore, a travelling wave profile exists that connects the disease-free

equilibrium and the endemic equilibrium. The results in this study are in agree-

ment with the study done in [40, 59]. The Tanh method was successfully applied

to establish exact solutions of the model. The result revealed that COVID-19 wave

of infection attacks the susceptible population with a solitary-wave front with a

velocity v ≥ 0. Provided that v∗ > 0 is the minimum speed required to cause

an infection in the susceptible population. From the numerical simulations, it is

shown that human mobility play crucial role for disease transmission. Therefore,

control interventions such as, lockdown, travel restrictions, cessation of movement

e.t.c., that would reduce human mobility may play a major role in reducing the

spread of COVID-19. These interventions targets at creating barriers to curtail the

spread of the virus in the affected regions.
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CHAPTER FIVE

DYNAMICS OF COVID-19 MODEL WITH VACCINATION

5.1 Introduction

In modern medicine, vaccination has been an important public health technique

for reducing the burden of many human infectious diseases [43, 44, 52]. COVID-19

vaccines such as Pfizer, Morderna, AstraZeneca, Sputnik, Sinopharm, Johnson &

Johnson, and others are currently being administered around the world. Due to a

shortage of COVID-19 vaccines in many developing countries, different vaccination

strategies have been implemented, with varying results. Ring and targeted vacci-

nation techniques are among them [4]. For example in Kenya prioritization is given

to adult population (Due to their low immunity level) [48]. COVID-19 dynamics

model with vaccination as an intervention is proposed in this study.

5.2 Model Formulation

To assess the impact of vaccination as a control intervention, a compartment of

vaccinated individuals is introduced into the model (3.1). It is assumed that the

vulnerable population will be vaccinated at a rate γ, where (0 < γ ≤ 1). When vac-

cinated individuals are exposed to the virus, they may contract the virus depending

on the type of vaccine efficacy level administered to an individual. Thus, the prob-

ability of vaccinees contracting an infection is given by β1 := (1 − ϑ)β, where β

is the probability of virus transmission of the susceptible individual upon interac-

tion with an infectious individual. The vaccine efficacy parameter ϑ is defined as

(0 < ϑ ≤ 1). Since the vaccinee is assumed to have acquired vaccine-induced im-

munity, the probability of transmission (β1) is assumed to be lower than β [30, 39].

The natural mortality rate in the human population is assumed to be µ.
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The above model description translates into the following schematic flow diagram.
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Figure 5.1: A Schematic Flow Diagram of COVID-19 Dynamics Model
with Vaccination

From the description above, the model is represented by the following set of ordi-

nary differential equations (odes)

dS

dt
= Λ− βSI

1 + ηI
− (µ+ γ)S,

dV

dt
= γS − β1V I

1 + ηI
− µV,

dE

dt
=

(βS + β1V )I

1 + ηI
− (µ+ ε)E, (5.1)

dI

dt
= εE − (µ+ λ+ δ)I,

dR

dt
= λI − µR.

where; β1 < β, S = S(t), V = V (t), E = E(t), I = I(t), R = R(t),

{S, V, E, I, R} ∈ R5
+

5.3 Well-posedness of the model

Since the model (5.1) describes the human population, all state variables will re-

main positive, so solutions of the model (5.1) with positive initial conditions will

remain positive and non-negative for all t ≥ 0.
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5.4 The Vaccine Reproduction Number and the Disease Free Equilib-
rium

In this section the vaccine reproductive number RV and the disease-free equilibrium

of model (5.1) are computed.

5.4.1 The Disease-free equilibrium

The disease-free equilibrium (DFE) point of model (5.1) is defined as the absence

of infection in the population under study.

Proposition 5.4.1. There exists a DFE of model (5.1) given by

E0 = (S0, V 0, E0, I0, R0) = { Λ

µ+ γ
,

γΛ

µ(µ+ γ)
, 0, 0, 0}.

Proof. From the first and second equations of model (5.1) where S 6= 0, V 6= 0,

and E = I = R = 0, then S0 = Λ
µ+γ

and V 0 = γΛ
µ(µ+γ)

. Therefore, model (5.1) has

a disease free equilibrium given by

E0 =

[
Λ

µ+ γ
,

γΛ

µ(µ+ γ)
, 0, 0, 0

]
.

5.4.2 Vaccine Reproduction Number RV

The vaccine reproduction number, RV , is a threshold quantity that can predict the

spread of a disease in a given population in the presence of an intervention, e.g,

vaccination. The vaccine reproduction number is given by RV = ρ(FV −1), where

(FV −1) is the spectral radius of the next generation matrix (FV −1) as computed

in section 3.4.1. Therefore,

RV =
Λεβ(µ+ (1− ϑ)γ)

µ(µ+ ε)(µ+ λ+ δ)(µ+ γ)
,

=
Λεβ

µ(µ+ ε)(µ+ λ+ δ)
.
(µ+ (1− ϑ)γ)

(µ+ γ)
,

= R0

[
µ+ (1− ϑ)γ

µ+ γ

]
. (5.2)
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where the basic reproduction number R0 is computed in equation (4.13).

The vaccine reproduction number RV is a measure of the severity of an epidemic

and one of the most important parameters, as it determines whether or not the

disease will infiltrate a population. This means that if RV < 1, the infection dies

out, whereas if RV > 1, the disease persists in the population and may cause an

epidemic.

5.5 The Effect of Vaccination Rate and Vaccine Efficacy on the COVID-
19 Epidemic

In this section, the proportion/fraction of the population to be vaccinated so as to

reach a herd immunity is investigated. Consider the vaccine reproduction number

RV of the model (5.1) given by

RV =
Λεβ(µ+ (1− ϑ)γ)

µ(µ+ ε)(µ+ λ+ δ)(µ+ γ)
,

= R0

[
µ+ (1− ϑ)γ

µ+ γ

]
. (5.3)

Now taking RV < 1, since in the presence of interventions such as vaccination RV

will be less than unity.

RV = R0

[
µ+ (1− ϑ)γ

µ+ γ

]
< 1, (5.4)

then

R0

[
µ+ (1− ϑ)γ

µ+ γ

]
< 1, (5.5)

Making the rate of vaccination γ the subject in equation (5.5), one obtains

γ >
µ[R0 − 1]

[1−R0(1− ϑ)]
. (5.6)

From equation (5.6), in the presence of an infection i.e., for a fixed R0 > 1

[3.49 − 4.11][32]. Taking R0 = 4.11, it is clear that when the efficacy of a cer-

tain vaccine is low, say at 76%, ϑ = 0.76, the rate of vaccination γ would be
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higher. This means that there would be need to vaccinate high proportion of in-

dividuals so as to reach a herd immunity. On the other hand, when a vaccine

efficacy is high, say 90%, ϑ = 0.9, the rate of vaccination, γ, would be lower. This

means that a small population need to be vaccinated so as to reach a herd immunity.

Furthermore, from equation (5.3);

RV = R0

[
µ+ (1− ϑ)γ

µ+ γ

]
.

when the vaccination rate γ = 0 or ϑ = 0, then RV = R0. As the vaccination rate

increases, with a constant vaccine efficacy, then RV will be reducing with time. On

the other hand, with rate of vaccination held at a constant, as the efficacy of a

certain vaccine increases then RV will also be reducing with time. Thus, the values

of the rate of vaccination and the vaccine efficacy can be used to determine the

intensity of control measures that need to be implemented in order to contain the

COVID-19 epidemic.

Kenya’s government had planned to vaccinate about 27, 246, 033 which is approx-

imately 50% of its population by end of June 2022 in a phased approach [48]. As

of June 4th, 2022, Kenya had administered a total of 18, 271, 847 vaccines across

the country. Only 8, 462, 289 people were fully vaccinated, accounting for 31.1% of

the target population [46]. Herd immunity, also known as community immunity,

occurs when a large proportion of a region’s or country’s population is immune

to a specific disease. This means that the individuals are immune to the disease,

preventing an occurrence of epidemic. Herd immunity against COVID-19 in Kenya

should be achieved by immunizing a significant proportion of its citizens [24, 46].
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Figure 5.2: Estimated Vaccine Effectiveness of COVID-19 Prevention
Based on Interim Data from Late-stage Clinical Trials
Source: Respective Companies, The Lancet, Butantan Institute, Feb,
2021

Figure 5.2 show the estimated effectiveness of COVID-19 vaccines based on interim

data from late-stage clinical trials done between November 2020 and January 2021.

BNT162b2(Pfizer and BioNTech) have the highest effectiveness with 95% and the

lowest is Coronavac(Sinovac) with 50% effectiveness.

5.6 Sensitivity Analysis

The degree to which an input parameter influences a model’s output is known as

sensitivity. Sensitivity analysis of the vaccine reproduction number can be used

to develop a mitigation strategy that will slow the spread of the pandemic by

lowering RV , [23]. Sensitive parameters are those that have a significant impact

on an infection’s transmission dynamics. The normalised forward sensitivity index,

[21], the sensitivity indices of the model as shown in section 3.6 with an vaccine

reproduction number of model (5.1) given in equation (5.3);

RV =
Λεβ(µ+ (1− ϑ)γ)

µ(µ+ ε)(µ+ λ+ δ)(µ+ γ)
,
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RV = R0

[
µ+ (1− ϑ)γ

µ+ γ

]
. (5.7)

The sensitivity indices are as computed below;

ΥRV
Λ =

∂RV

∂Λ
× Λ

RV

= 1,

ΥRV
β =

∂RV

∂β
× β

RV

= 1,

ΥRV
γ =

∂RV

∂γ
× γ

RV

=
(1− ϑ)γ

µ+ (1− ϑ)γ
− γ

µ+ γ
,

ΥRV
ϑ =

∂RV

∂ϑ
× ϑ

RV

= − ϑγ

µ+ (1− ϑ)γ
.

In a similar manner all other parameters can be computed.

Table 5.1 gives a summary of the RV sensitivity indices evaluated at the baseline

parameter values given in Table 5.2.

Table 5.1: Sensitivity Indices of RV with Respect to the Model Param-
eters.

Parameter Description Sensitivity index
Λ Recruitment rate 1
β Transmission Coefficient 1
ε Transition rate from E to I -0.999843
µ Natural death rate 7.81816576×10−5

γ Rate of vaccination -0.8984463
ϑ Vaccine efficacy -0.9998436
λ Recovery rate -0.999679
δ Disease mortality rate -0.000008237

From the sensitivity analysis as presented in Table 5.1, an increase of the rate

of vaccination γ by 1% leads to a decrease of the effective reproduction RV by

0.89844626%. An increase of the vaccine efficacy ϑ by 1%, leads to a decrease of

the vaccine reproductive number RV by 0.9990436%. From the sensitivity indices in

Table 5.1, the rate of vaccination and the vaccine efficacy are among the sensitive

parameters of RV . An increase in the rate of vaccination with a high vaccine
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efficacy, leads to a decrease in the vaccine reproduction number. Consequently

control strategies should target an increased rate of vaccination and administration

vaccines of high efficacy levels.

5.7 Optimal Analysis with Vaccination as a Preventive Strategy

An optimal control problem is constructed to effectively control COVID-19 virus

spread and optimizing the vaccination program. From the sensitivity analysis in

section 5.6 above, it is shown that the rate of vaccination γ and the vaccine efficacy

ϑ are among the most sensitive parameters of the vaccine reproduction number RV .

Therefore in this section, optimal control is performed to understand the effects

of these parameter on optimum vaccination program. To determine the optimum

vaccination program of COVID-19, let the variables γ∗ and β∗1 =: (1− ϑ)β be the

control variables. As a result, an optimum control problem is constructed, with the

goal of reducing the number of individuals infected with COVID-19. To accomplish

this, the following objective function is developed:

J =

∫ τ

0

[P0S + P1V + P2E + P3γ
2 + P4β

2
1 ]dt, (5.8)

where [0, τ ] is the entire time horizon over the control applied and P0, P1, P2, P3, P4

are positive weights that balance the relative importance of terms in the objective

functional J . An optimal control γ∗, β∗1 is chosen as;

J(γ∗, β∗1) = min{J(γ, β1)}, (5.9)

such that (γ, β1) are measurable with 0 ≤ γ ≤ β1 ≤ 1. This necessary condition

that optimal control must satisfy, from the Pontryagin’s Maximum Principle [49].

The Hamilitonian function is;

H = P0S + P1V + P2E + P3γ
2 + P4β

2
1 + Φs[Λ−

βSI

1 + ηI
− (µ+ γ)S] +

ΦV [γS − β1V I

1 + ηI
− µV ] + ΦE[

(βS + β1V )I

1 + ηI
− (µ+ ε)E]

+ΦI [εE − (µ+ λ+ δ)I] + ΦR[λI − µR].
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where ΦS, ΦV , ΦE, ΦI , and ΦR are the adjoint variables. Using the Pontryagin’s

maximum principle and the existence for optimal control [49, 50] to obtain the

expression of optimal controls in order to minimize the number of infections in the

population and the cost of control strategies. The following proposition is applied

Proposition 5.7.1. For the optimal control (γ, β1) that minimizes J(γ, β1), the

adjoint variables ΦS, ΦV , ΦE, ΦI , and ΦR satisfy the following ordinary differential

equations

dΦS

dt
= P0 − ΦS

βI

1 + ηI
− (µ+ γ)ΦS + γΦV + ΦE

βI

1 + ηI
,

dΦV

dt
= P1 − ΦV

βI

1 + ηI
− µΦV + ΦE

β1I

1 + ηI
,

dΦE

dt
= P2 − (µ+ ε)ΦE + εΦI , (5.10)

dΦI

dt
= −ΦS

βS

(1 + ηI)2
− ΦV

β1V

(1 + ηI)2
+ ΦE

(βS + β1V )

(1 + ηI)2
− ΦI(µ+ λ+ δ) + λΦR,

dΦR

dt
= µΦR.

with tranversality conditions

ΦS(τ) = ΦV (τ) = ΦE(τ) = ΦI(τ) = ΦR(τ) = 0,

thus the optimal control takes the characterization form

γ∗ = max

[
0,min

(
1,
S(ΦS − ΦV )

2P3

)]
(5.11)

β∗1 = max

[
0,min

(
1,
V I(ΦV − ΦE)

2(1 + ηI)P4

)]
(5.12)

Proof. The Hamilitonian H in equation (5.10) is differentiated with respect to the

state variables, S, V, E, I, R respectively. Thus, the adjoint of the system can be

written as;

ΦM = − ∂H
∂M

,

for

M = {S, V, E, I, R},
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By the Pontryagin’s Maximum Principle [49, 50], H can be maximized with respect

to γ and β1, that is;

0 =
∂H

∂γ
|γ∗ = 2P3γ − ΦSS − ΦV S,

⇒ γ∗ =
S(ΦS − ΦV )

2P3

.

0 =
∂H

∂β1

|β∗1 = 2P4β1 − ΦV
V I

1 + ηI
+ ΦE

V I

1 + ηI
,

⇒ β∗1 =
V I(ΦV − ΦE)

2(1 + ηI)P4

.

Taking the bounds on γ and β1 into account, the characterization of γ∗ and β∗1

is obtained as shown in equations (5.11) and (5.12) respectively. Now using the

control arguments 0 ≤ γ ≤ β1 ≤ 1, then;

γ∗ =


0 if ξ∗1 ≤ 0
ξ∗1 if 0 < ξ∗1 < 1
1 if ξ∗1 ≥ 1

(5.13)

β∗1 =


0 if ξ∗2 ≤ 0
ξ∗2 if 0 < ξ∗2 < 1
1 if ξ∗2 ≥ 1

(5.14)

where

ξ∗1 =
S(ΦS − ΦV )

2P3

.

ξ∗2 =
V I(ΦV − ΦE)

2(1 + ηI)P4

.

Since the optimal control switches at most once, then the control objective function

constructed in this study must have been optimal.

In recent decades, control theory has been widely applied in many fields. Optimal

control, particularly in epidemiology, could be very useful in controlling mathe-

matical models depicting the spread of infectious diseases [9]. The appropriate
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regulation of disease dynamics is specified in the form of restrictions, according to

the biological interpretation of the objective functional. The control’s objectives

must be met exclusively within these limits. Furthermore, lowering illness preva-

lence requires reducing the total number of infectious cases. This entails increasing

the rate of vaccination (γ) while decreasing the coefficient of contracting the infec-

tion β1 = (1 − ϑ)β. Increased vaccination rates, administering of high efficacious

vaccine would help maximize control strategies against COVID-19 transmission

dynamics.

5.8 Numerical Simulation and Discussion

The parameters used for simulation are obtained from literature and others are

estimate (cf. Table 5.2). These parameter values are varied within realistic limits.

To simulate model (5.1) the following parameter are used;

Table 5.2: The Descriptive Summary of the Model Parameters.

Parameter Description Unit/value units Source
Λ Recruitment rate 3.178×10−5 day−1 [39]
µ Natural mortality rate 3.91× 10−5day−1 [7]
δ Disease mortality rate 0.103× 10−5day−1 [6, 39]
β Transmission probability 0.02 day−1 Estimated
β1 Vaccinee transmission probability 0.05 day−1 Estimated
ϑ Vaccine efficacy (0 - 1.0) Variable
γ Rate of vaccination (0 - 1.0) Variable
ε Transition rate from E to I 0.5 day−1 Estimated
η Human saturation constant 0.05 Estimated
λ Human recovery rate 0.125 day−1 [25]

For purposes of simulation, unless otherwise stated, the initial populations are

assumed to be S(0) = 3000, V (0) = 2000, E(0) = 1500, I(0) = 1200, and R(0) =

1000. The numerical simulation aims to analyze the change in state of COVID-19

virus progression over time, as well as the impact of variation in vaccination rate

and vaccine efficacy on COVID-19 transmission dynamics. This is accomplished
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by varying the parameters ϑ and γ while holding the other parameters constant.

Simulation analysis of the model (5.1) are presented.

Figure 5.3: The effect of variation in vaccine efficacy (ϑ) on infection
dynamics

Figure 5.4: The effect of variation in vaccination rate (γ) on infection
dynamics
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Figure 5.3 show the graph of infected individuals against time with varying vaccine

efficacy ϑ. In the presence of a constant rate of vaccination at 50%, it would take

less time for a pool of infected individual to reduce when the vaccine administered

is of high efficacy, say 90% efficacy as depicted in the graph. On the other hand

when the vaccine efficacy is low, it would take longer time for the infected individ-

uals reduce, therefore COVID-19 infection would persist in the population.

Figure 5.4 show the graph infected individuals with a varying rate of vaccination

with vaccine efficacy of 90%. It is observed that when the rate of vaccination

(γ = 0.90), the number of infected individuals decrease sharply within the first few

days and when the rate of vaccination is very low (γ = 0.30) the number of infected

individuals are reducing at slower rate.

Given the emergence of highly transmissible new variants, decreased vaccine effec-

tiveness, and unequal vaccine availability, there is growing concern that vaccination

may fail to produce herd immunity [48]. Vaccination offers a very powerful method

of COVID-19 disease control [30, 36, 39]. The result show that the critical level

of vaccination so as to reach a herd immunity would be approximately 50% and

above with an efficacy rate > 80% is required to eradicate the infection from the

population. Some vaccines currently on offer have very low efficacy and therefore

having a disadvantageous effects.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

In this chapter, conclusions and recommendations are drawn from the study.

6.2 Conclusions

In this study, COVID-19 transmission dynamics mathematical model with inter-

ventions is developed and analysed. The dynamics of COVID-19 with varying

transmission rate is developed and analysed in the first model. The bifurcation

analysis show that the varying transmission rate plays a major role on the COVID-

19 transmission dynamics. It is clear from the numerical simulations that reducing

the transmission coefficient would curtail the spreading of the infection. This may

be achieved by reducing the interaction between infectious humans and susceptible

population through measures such as cessation of movements and social distancing.

In the second model, a diffusive COVID-19 dynamics model with constant trans-

mission coefficient is developed and analysed in order to focus solely on the effect

of diffusion (human mobility). When infected individuals are introduced into a

fully susceptible population, the model analysis reveals that a moving transition

from the disease free equilibrium to the endemic equilibrium occurs. The Tanh

Method is used to compute the exact solutions of the travelling wave front. From

the numerical analysis it is shown that human mobility play a crucial role in the

disease transmission. Therefore, interventions that have an effect on diffusion, such

as lockdown, travel restrictions, and cessation of movement, among others, may be

important in controlling and preventing the spread of COVID-19.
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Finally, a model incorporating vaccination is developed and analysed. The sensi-

tivity analysis indicates that the rate of vaccination, γ, and the vaccine efficacy

ϑ are among the most influential parameter of RV . An increase in the rate of

vaccination with highly efficacy vaccine reduces the vaccine reproduction number.

Control strategies should therefore target these parameters. From optimal control,

increasing vaccination rates and administering highly effective vaccines would help

maximise control strategies against COVID-19 transmission dynamics. Based on

numerical simulations of the effect of vaccination on the transmission dynamics

of COVID-19, control strategies should aim to increase vaccination rates with a

high efficacy vaccine. The model analysis suggests that an effective vaccination

program will aid in the control of COVID-19 disease spread. This study showed

that an effective vaccination program may possibly eliminate the infection in the

population.

6.3 Recommendations

The risk assessment and management of COVID-19 infection has sparked worldwide

interest. The following recommendations and possible extensions of the work are

made based on the results obtained;

• It would be desirable to investigate the nature of travelling wave stability and

the spatial spread in higher-dimensional space.

• Many countries are having stocks of vaccines which are nearly expiring and a

large population is yet to be vaccinated. Research into the effects of vaccine

hesitancy on COVID-19 transmission dynamics may be conducted.

• Future research could focus on an age-dependent SVEIR model to determine

the suitable vaccination strategies to be applied with respect to age.
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APPENDICES

1. MATLAB codes for Figure 3.2, (a), (b), and (c)

function dy=M1( ,y)

Lambda=0.00003178; lambda=0.5; beta=varying; eta=0.05; mu=0.0000391;

epsilon=0.2; delta=0.00000103; omega=0.5;

dy=[3000 2000 1500 1000]’;

dy(1)=Lambda-(((1-omega)*beta*y(1)*y(3))/(1+eta*y(3)))-mu*y(1);

dy(2)=(((1-omega)*beta*y(1)*y(3))/(1+eta*y(3)))-(epsilon+mu)*y(2);

dy(3)=epsilon*y(2)-(delta+mu+lambda)*y(3);

dy(4)=lambda*y(3)- mu*y(4);

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-6 1e-4 1e-6]);

[T1,Y1]=ode45(’M1’,(0:0.1:30),[3000,2000,1500,1000]);

[T2,Y2]=ode45(’M2’,(0:0.1:30),[3000,2000,1500,1000]);

[T3,Y3]=ode45(’M3’,(0:0.1:30),[3000,2000,1500,1000]);

plot(T1,Y1(:,1),’b’,T1,Y1(:,2),’g’,T1,Y1(:,3),’r’,’linewidth’, 2);

plot(T2,Y2(:,1),’b’,T2,Y2(:,2),’g’,T2,Y2(:,3),’r’,’linewidth’, 2);

plot(T3,Y3(:,1),’b’,T3,Y3(:,2),’g’,T3,Y3(:,3),’r’,’linewidth’, 2);

legend(′ω = 0.1′,′ ω = 0.5′,′ ω = 0.7′);

legend(′β = 0.02′,′ β = 0.09′,′ β = 0.5′);

legend(’Susceptibles’,’Exposed’,’Infected’);

ylabel ’No. Human Population (S(t), E(t), I(t), R(t))’;

xlabel ’Time in days’;

2. MATLAB codes for Figure 4.1, 4.2, and 4.3

function value = initial2(x) value = [3000;2000;1500;1000];

function [pl,ql,pr,qr] = bc2(xl,ul,xr,ur,t)

pl = [0;ul(2);0;ul(4)]; ql = [1;0;1;0];

pr = [ur(1);0;ur(3);0]; qr = [1;1;1;1];

function [c,b,s] = eqn2(x,t,u,DuDx)

M=0.00003178; b1=0.02; d=.5; m=0.0000391; g=0.5; h=0.00000103; e=0.05;
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c = [1; 1; 1; 1];

b = [.3; .3; .3; .9999].*DuDx;

F1=(M-((b1*u(1)*u(3))/(1+d*u(3)))-m*u(1));

F2=(b1*u(1)*u(3)/(1+d*u(1)))-(m+e)*u(2);

F3=e*u(2)-(m+g+h)*u(3);

F4=h*u(3)-m*u(4);

s = [F1;F2;F3;F4];

m = 0;

t = linspace(0,40,40);

x = linspace(0,10,80);

sol = pdepe(m,@eqn2,@initial2,@bc2,x,t);

u1=sol(:,:,1); u2=sol(:,:,2); u3=sol(:,:,3); u4=sol(:,:,4);

surf(x,t,u1); surf(x,t,u2); surf(x,t,u3); surf(x,t,u4);

xlabel(’Space(km)’);

ylabel(’Time(days)’);

zlabel(’Susceptible Humans’);

zlabel(’Exposed Humans’);

zlabel(’Infected Humans ’);

3. MATLAB codes for Figure 5.3 and 5.4

function dy=M4( ,y)

Lambda=0.00003178; lambda=0.5; beta=0.005; vartheta=0.5, 0.7, 0.9; beta1=(1-

vartheta)*beta; eta=0.05; mu=0.0000391; epsilon=0.5; delta=0.00000103;

gamma=0.3, 0.5, 0.9 ;

dy=[500 300 200 150 100]’;

dy(1)=Lambda-((beta*y(1)*y(3))/(1+eta*y(3)))-(mu +gamma)*y(1);

dy(2)=gamma*y(1)-((beta*y(2)*y(3))/(1+eta*y(3)))- mu*y(2);

dy(3)=((beta*y(1)*y(3))/(1+eta*y(3)))+((beta1*y(2)*y(3))/(1+eta*y(3)))-(epsilon+mu)*y(3);

dy(4)=epsilon*y(3)-(delta+mu+lambda)*y(4);

dy(5)=lambda*y(4)- mu*y(5);
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options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-6 1e-4 1e-6]);

[T4,Y4]=ode45(’M4’,(0:0.01:50),[5000,2000,1500,1200,800]);

[T5,Y5]=ode45(’M5’,(0:0.01:50),[5000,2000,1500,1200,800]);

[T6,Y6]=ode45(’M6’,(0:0.01:50),[5000,2000,1500,1200,800,0]);

plot(T4,Y4(:,4),’b’,T5,Y5(:,4),’g’,T6,Y6(:,4),’r’,’linewidth’, 2);

plot(T5,Y5(:,2),’b’,T5,Y5(:,3),’g’,T5,Y5(:,4),’r’,’linewidth’, 2);

plot(T6,Y6(:,1),’b’,T6,Y6(:,2),’g’,T6,Y6(:,3),’r’,’linewidth’, 2);

legend(′ϑ = 0.5′,′ ϑ = 0.7′,′ ϑ = 0.9′);

legend(′γ = 0.3′,′ γ = 0.5′,′ γ = 0.9′);

ylabel ’Susceptible Individuals (S)’;

ylabel ’Vaccinated Individuals (V)’;

ylabel ’Exposed Individuals (E)’;

ylabel ’Infected Individuals (I)’;

ylabel ’Recovered Individuals (R)’;

xlabel ’Time(days)’;
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