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Abstract

This paper establishes a between-host cholera model with temperature dependent parameter.
This is done using system of ODEs to analyse the effect of temperature change on cholera
disease. The model analysis reveals that when R0 < 1, the disease free equilibrium point
is locally and globally asymptotically stable. It is also noticed that if R0 > 1, the endemic
equilibrium point is locally asymptotically stable. The sensitivity analysis of model
parameters shows that R0 depends intensively on infection rate of pathogen α1 normalized
with temperature. An increase in infection rate of pathogen α1 that is dependent on
temperature by 10% would increase R0 by 10% and decreasing it by 10% reduces R0
by 10%; hence, increasing the temperature of the environment where the pathogen lives
would help reduce the rate of infection of the pathogen, thus reducing the reproduction
number R0. We conducted numerical simulation of the model in response to temperature
changes, and the results indicate that V ibrio cholerae pathogens multiply faster at 230C
but between 230C < T ≤ 430C the pathogen multiplication is hindered, therefore, at
230C, more pathogens active to cause infection compared to high temperatures.

Keywords: Between-Host Cholera Model; Temperature dependent Parameter

1 Introduction

Cholera is one of the acute diarrhoeal disease that results when people take food/water contaminated
with cholera pathogen known as Vibrio cholerae. Cholera continues to threaten human life and, therefore,
is a pointer to social and human development. In order to extend efforts in the fight against cholera,
governments worldwide and healthcare organizations have included specific measures in a set of controls,
such as use of clean water, food quality, sanitation and vaccination.

Even with vaccination against cholera, Vibrio cholerae is still found in the human small intestine and
is either defecated or transferred between people [17]. From research [18], the typical standard state
environmental temperature is, on average 20.00C to 25.00C, and the average axillary body temperature is
37.00C, the upper limit of which is regarded as 38.00C. The study done in [1] concludes that temperature
influences the rate of disease transmission through various characteristics that affects the vector population,
including the reproduction rate, development period, mortality rate, and the period with which the vector
bites. As theoretical work has also pointed out, many other functions and most life history characters
are temperature sensitive, and these traits generally exhibit non-linear temperature slopes [1]. From the
cross-sectional research, it has been evidenced that cholera incidence has been more dominant when there
is interchange of seasons persistently involving the human population and cholera disease [4].
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Impacts on the quality of drinking waters can be related to changes in environmental conditions such as
climate. Flooding can worsen waste-water treatment plants or septic systems or cause combined sewerage
systems to overflow and pollute nearby water surfaces or wells. In addition, attention is being paid to
the presence of pathogens in storm waters[4]. Also, sanitary water conditions are another problem during
drought, as the available water has concentrated contamination. Besides, multiple uses of water from the
same water body, for example, cleaning, bathing, and drawing water during drought, may raise the risk of
water contamination and, therefore exposure to cholera disease.

A study by Arquam et al [8] formulated an SIR model given by;

dShk(t)

dt
= −βh(k)Shk(t)Ihk(t)− βvhb(T )Shk(t)In(t)

dIhk(t)
dt

= βh(k)Shk(t)Ihk(t) + βvhb(T )Shk(t)Iv(t)− µhIhk(t)

dRhk(t)

dt
= µhIhk(t) (1)

where b(T ) is the bitting rate that is a function of temperature. The study aimed to find a correlation
between temperature and the spread of vector diseases. Since the research found that favourable temperature
enhance the transfer of the disease from vector to host, consequently, to the host population. The study
additionally demonstrates that the disease’s spread rate escalates as the threshold value b(T ) is squared
and is dependent on temperature and this shows that temperature increases the critical threshold value of
the spreading rate of the disease.

Population migration frequently influences malaria prevalence in relation to temperature fluctuations;
therefore, Eunice et al[13] formulated a model to predict the effect of these factors in Nigeria. A new
deterministic model analyzes the effect of temperature fluctuations and immigration on malaria incidence
in Nigeria at the population level. There is also the transmission of disease by immigrants into the
community. However, this demonstrates the scenario of backward bifurcation in the absence of immigration.
The analysis of DFE of the model proved that the steady-state of prevalence rate of the disease is locally
asymptotically stable when there are no infective immigrants. However, the outcome demonstrates that
the model possesses an endemic equilibrium stage if the immigration parameter is positive. When there
is no disease induced death, it is possible to demonstrate that the endemic equilibrium point is globally
attractive. Hence, numerical studies of the model reveal that in Nigeria, the risk of malaria rises with
mean temperatures in the range (22 to 28)0C.

Salisu and Danbaba [9] formulated a model on the impact of temperature fluctuations on controlling
malaria. It rises with births because new individuals who are wholly susceptible to the disease are
continuously added to the population. This population strengthens through the depreciation of vaccinated-
acquired immunity by wholly vaccinated people and weakens through vaccination. From this, it can be
deduced that a proportion of these individuals get infected with malaria after effective interaction with
ineffective mosquitoes at a temperature dependent rate λH(T ), given by;

λH(T ) =
βV HMI(t)

NV (t)
(1− ϵBαB)αM (T )

The study constructs and discusses both a non-autonomous and autonomous models for malaria transmission
in a population. We use it to forecast the effect of temperature fluctuations on the spread of cholera disease.

Therefore, a between-host cholera model that has temperature dependent parameter is developed in this
paper, the infection rate of the pathogen α1 that is dependent on temperature is incorporated both on
long and short cycle transmission roots. This will help us understand the dynamics of cholera disease with
temperature change.
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2 Model Description, Formulation and Analysis

We divide the human population into three categories: Susceptible individuals S(t), Infected individuals
I(t) and the Recovered individuals R(t). B(t) is incorporated in the model which indicates the Vibrio
cholerae concentration as a function of time. The system enlists vulnerable people being recruited at
a constant rate β. Through interaction, the following factors reduce the population of the susceptible
individuals: infection resulting from interaction with the Vibrio cholerae in the environment (long cycle)
at the rate θ and in the house-hold (short cycle) at a rate θ1. Notably, the transmission rates through
the long and short cycle is regulated through ω and ϕ. Susceptible individuals are reduced through oral
vaccination at the rate v. Interaction with the cholera pathogen Vibrio cholerae creates the infected
population the rate δA

In formulation of this model, the environment’s temperature is considered as a determining factor in the
multiplication of Vibrio cholerae and its ability to cause infection; hence, the temperature dependent
parameter α1(T ) is incorporated into both the long and short cycle transmission routes. The number of
infected people produced owing to the route time generated by the interaction of the susceptible individuals
with the pathogen in the environment is given by ωθ SBα1(T )

K+B
.

ϕθ1SIα1(T ) is the rate at which people are infected by the short route, as a result of infected individuals
interacting with the susceptible. The rate of infection-related death, natural death, and infection recovery
reduces the infected population at the rates σ, µ and γ respectively. K is carrying capacity of vibrios.
Additionally, susceptible individuals receive vaccination at the rate v. The natural death contribute to
this population’s reduction at a rate µ. The concentration of the vibrio is generated into the population
at a rate ϵ through the action of the infected individuals [15] and is cleared by natural death at the rate
µ1.

The system of ODEs based on the description above is:

dS

dt
= (1− δ)A+ βS − ωθSBα1(T )

K +B
− ϕθ1SIα1(T )− (v + µ)S

dI

dt
= δA+

ωθSBα1(T )

K +B
+ ϕθ1SIα1(T )− (γ + ϵ+ µ+ σ)I

dR

dt
= γI + vS − µR

dB

dt
= ϵI − µ1B (2)

2.1 Positivity and Boundedness of the Model

Proposition 1. Solutions of model (2) are positive in the region defined as ψ = (S, I,R) ∈ R3
+ × R

Proof. Considering the first equation of (2), we see that

dS

dt
= (1− δ)A+ βS − ωθSBα1(T )

K +B
− ϕθ1SIα1(T )− (v + µ)S (3)

= −{ωθBα1(T )

K +B
+ ϕθ1Iα1(T ) + (v + µ)}S

This implies that S(t) > S0e
−

∫ t
0

ωθBα1(T )
K+B

+ϕθ1Iα1(T )+(v+µ)dt > 0

This implies that S(t) > 0.
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From the second equation of model (2) given by;

dI

dt
= δA+

ωθSBα1(T )

K +B
+ ϕθ1SIα1(T )− (γ + ϵ+ µ+ σ)I

> −(γ + ϵ+ µ+ σ)I

In a similar manner it results in I(t) > I0e
−

∫ t
0 (γ+ϵ+µ+σ)dt > 0

This implies that I(t) > 0.

Also from the third equation of model (2) given by;

dR

dt
= γI + vS − µR

Which results in R(t) = R0e
−

∫ t
0 (µ)dt > 0

This implies that R(t) > 0.

Therefore the region ψ = (S, I,R) ∈ R3
+ is a positive invariant set for the system of equation (2). Hence,

the solutions of model (2) are all positive.

Since model (2) formulated describes human population, the population will always remain bounded. We
use Proposition (2) to prove for boundedness of the model as follows;

Proposition 2. Solutions of model (2) are bounded for t ≥ 0 in the region ψ ∈ R3
+

Proof. Given N(t) := S(t) + I(t) + R(t) as the total number of human population. From the system of
equation (2);

N ′(t) ≤ δA− µ(S + I +R) ≤ δA− µN(t)

N ′(t) ≤ δA− µN(t)

Integrating both sides of N ′(t) ≤ δA− µN(t) with respect to (t) given by;∫
N ′(t)dt ≤

∫
(δA− µN(t))dt

N(t)eµt ≤
∫
δA

µ
eµtdt

Integrating the right side of N(t)eµt ≤
∫

δA
µ
eµtdt with respect to (t) yields

N(t)eµt ≤ δA

µ2
eµt + C

N(t) ≤ δA

µ2
+ Ce−µt

lim
t→∞

N(t) ≤ δA

µ2

Therefore, N(t) is bounded. From Proposition (1) and (2), solutions of model (2) are positive and bounded
provided t ≥ 0. Hence, system (2) is epidemiologically meaningful for its solutions to be considered in
ψ.
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3 Basic Reproduction Number, R0.

Definition 3.1. The basic reproduction number (R0) is the number of secondary infections resulting from
the introduction of an infective individual into a population of susceptible individuals.

Applying the method of next generation matrix approach given by Van den and Watmough [14] to
determine the basic reproduction number R0, consider the matrix formed by;

R0 = FV −1.

Where F is the Jacobian of F which refers to the rate of new infection and V is the Jacobian of V which
is the matrix for the transition terms. From model (2) the associated matrices are;

F =


ωθSBα1(T )

K+B
+ ϕθ1SIα1(T )

0
0
0

 (4)

V =


(γ + ϵ+ µ+ σ)I

0
−(γI + vS) + µR

−ϵI + µ1B

 (5)

The reproduction number R0 = ρ(FV −1) is the spectral radius of the matrix FV −1. Therefore;

R0 =
(1− δ)Aϕθ1α1(T )

(v + µ− β)(γ + ϵ+ µ+ σ)
(6)

Since R0 is a measure of the severity of an epidemic, it determines whether the disease will invade in a
population. Epidemiologically, this implies that if R0 < 1 the infection dies out and if R0 > 1 the disease
persist in the population which may result to occurrence of the disease.

3.1 Existence of DFE point

This is a state in which there is no cholera disease, hence I = B = 0.

Proposition 3. For the model (2) there always exists a DFE point denoted (S0, I0, R0, B0).

Proof. Since at disease free equilibrium point, the rate of change of the model equation (2) are assumed
to be zero. Therefore

(1− δ)A+ βS − ωθSBα1(T )

K +B
− ϕθ1SIα1(T )− vS − µS = 0

δA+
ωθSBα1(T )

K +B
+ ϕθ1SIα1(T )− (γ + ϵ+ µ+ σ)I = 0

γI + vS − µR = 0

ϵI − µ1B = 0

Since at DFE the infection compartments are zero, let I = 0 and B = 0, by substituting I = 0, B = 0
into equations 2 yield;

(1− δ)A+ βS − vS − µS = 0

δA = 0
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vS − µR = 0

Solving the above equation yields

S =
(1− δ)A

(v + µ− β)

I = 0

B = 0

R =
v(1− δ)A

µ(v + µ− β)

Therefore the DFE of model (2) is;

(S0, I0, R0, B0) = (
(1− δ)A

(v + µ− β)
, 0,

v(1− δ)A

µ(v + µ− β)
, 0)

Hence the DFE point of model (2). This means that there is no infection in the DFE of the model (2).

3.2 Local Stability of the Disease Free Equilibrium (DFE)

Theorem 3.1. The DFE of model (2) is locally asymptotically stable when R0 < 1 and unstable when
R0 > 1 For any time t ≥ 0

Proof. Substituting the DFE points in the jacobian matrix of (2) yields;

JDFE =


β − (v + µ) −ϕθ1(1−δ)Aα1(T )

v+µ−β
0 −ωθ(1−δ)Aα1(T )

K(v+µ−β)

0 ϕθ1(1−δ)Aα1(T )
v+µ−β

− (γ + ϵ+ µ+ σ) 0 ωθ(1−δ)Aα1(T )
K(v+µ−β)

v γ −µ 0
0 ϵ 0 −µ1

 (7)

Consider the equation
| JDFE − λI |= 0

yielding;

∣∣∣∣∣∣∣∣∣
β − (v + µ)− λ −ϕθ1(1−δ)Aα1(T )

v+µ−β
0 −ωθ(1−δ)Aα1(T )

K(v+µ−β)

0 ϕθ1(1−δ)Aα1(T )
v+µ−β

− (γ + ϵ+ µ+ σ)− λ 0 ωθ(1−δ)Aα1(T )
K(v+µ−β)

v γ −µ− λ 0
0 ϵ 0 −µ1 − λ

∣∣∣∣∣∣∣∣∣ = 0 (8)

Since the eigenvalues are strictly real and negative, this confirms local asymptotic stability as it can be
seen clearly that λ1 = −µ and λ2 = −µ1. For the next two eigenvalues, consider Jordan 2×2 block matrix

A2 =

∣∣∣∣ β − (v + µ)− λ −ϕθ1Sα1(T )
0 ϕθ1Sα1(T )− (γ + ϵ+ µ+ σ)− λ

∣∣∣∣ (9)

To find the eigenvalues we find the determinant of (A2) yield:

[β − (v + µ)− λ][ϕθ1Sα1(T )− (γ + ϵ+ µ+ σ)− λ]− [0× (−ϕθ1Sα1(T ))] = 0

λ2 − λ[(v + µ− β)− (γ + ϵ+ µ+ σ) + ϕθ1Sα1(T )]−
(v + µ− β)[(v + µ− β)(γ + ϵ+ µ+ σ)] + ϕθ1S = 0

Let
a = 1
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b = −[(v + µ− β)− (γ + ϵ+ µ+ σ) + ϕθ1Sα1(T )]

c = (v + µ− β)[(v + µ− β)(γ + ϵ+ µ+ σ)] + ϕθ1Sα1(T )

Solving quadratically the previous equation gives;

λ3,4 =
−b±

√
b2 − 4ac

2a
Substituting a, b and c;

λ3,4 =
−b±

√
b2 − 4ac

2

Whenever R0 < 1, ϕθ1
(1−δ)A
(v+µ−β)

α1(T ) < (γ+ ϵ+µ+ σ) and β < (v+µ) then λ3 < 0, λ4 < 0. Hence all the
four roots are real and negative, it implies that DFE is locally asymptotically stable if R0 < 1, otherwise
unstable.

This means that even if there is a slight variation in the DFE, model (2) solutions will end up in DFE if
R0 < 1.

Epidemiologically, if a few infectious individuals are placed in a fully susceptible population, then there
is a high chance of infecting less than one individual in its entire period of infectivity, this means cholera
disease would die out if R0 < 1; otherwise the disease may spread.

3.3 Global Stability of the Disease Free Equilibrium (DFE)

In this section, the global asymptotic stability of the DFE of the model (2) is explored. Using the Matrix
theoretic method; let

f(x, y) = (F − V )x−F(x, y) + V(x, y)

Then x
′
= (F − V )x− f(x, y)

Now let f(0, y) = 0 and ωT ≥ 0 be the left eigenvector of the nonnegative V −1F corresponding to the
eigenvalue ρV −1F = ρFV −1 = R0. Therefore the following results provide a general method to construct
Lyapunov function for x

′
= (F − V )x − f(x, y). This type of Lyapunov function was used to determine

the global dynamics for disease models for instance [6] [7].

Theorem 3.2. From a study [16], let F , V and f(x, y) be defined as in f(x, y) = (F−V )x−F(x, y)+V(x, y)
and F = [ ∂Fi

∂xj
(0, y0)] and V = [ ∂Vi

∂xj
(0, y0)] respectively. If f(x, y) ≥ 0 in Γ ⊂ Rn+m

+ , F ≥ 0, V −1 ≥ 0 and

R0 ≤ 1, then the function C = ωTV −1x is a Lyapunov function on Γ.

Proof. From model (2)

F =


ωθSBα1(T )

K+B
+ ϕθ1SIα1(T )

0
0
0

 (10)

And

V =


(γ + ϵ+ µ+ σ)I

0
−(γI + vS) + µR

−ϵI + µ1B

 (11)
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Differentiating C along solution of

x
′
= F(x, y)− V(x, y), y

′
= g(x, y)

Gives;

C
′
= C

′
|(x′

=F(x,y)−V(x,y),y
′
=g(x,y)) = ωTV −1x

′
= ωTV −1(F − V )x− ωTV −1f(x, y)

= (R0 − 1)ωTx− ωTV −1f(x, y)

Since ωT ≥ 0, V −1 ≥ 0 and f(x, y) ≥ 0 in Γ, then the last term is nonpositive.

If R0 ≤ 1, then C
′
≤ 0 in Γ and therefore C is a Lyapunov function for x

′
= F(x, y)− V(x, y).

Theorem 3.3. Let F , V and f(x, y) be defined as in f(x, y) = (F − V )x − F(x, y) + V(x, y) and F =
[ ∂Fi
∂xj

(0, y0)] and V = [ ∂Vi
∂xj

(0, y0)] respectively. Suppose that f(x, y) ≥ 0 with f(x, y0) = 0 in Γ, F ≥ 0,

V −1 ≥ 0 and V −1F is irreducible. Assuming that the DFE system y
′
= g(0, y) has a unique equilibrium

y = y0 > 0 that is globally asymptotically stable in Rm
+ . Then the following results holds for x

′
= F(x, y)−

V(x, y), y
′
= g(x, y).

(i) Provided R0 < 1, DFE is GAS in Γ

(ii) Provided R0 > 1, DFE is unstable and the system x
′
= F(x, y) − V(x, y), y

′
= g(x, y) is uniformly

persistent and there exists at least one EE

Proof. Since C = ωTV −1x is a Lyapunov function for x
′
= F(x, y)−V(x, y), y

′
= g(x, y) provided R0 < 1.

Since V −1F is irreducible , it follows that ω > 0.

Hence by (R0 − 1)ωTx− ωTV −1f(x, y), C
′
= 0 implying that ωTx = 0 and thus x = 0.

If R0 > 1, then by (R0 − 1)ωTx − ωTV −1f(x, y), C
′
= (R0 − 1)ωTx > 0 provided x > 0 and y = y0. By

continuity C
′
> 0 in a neighborhood of P0. Therefore, solutions in the positive cone sufficiently close to

P0 move away from P0, this implies that P0 is unstable.

Epidemiologically implying that if a large number of infectious individuals are introduced into a fully
susceptible population, the disease would die off if there are no secondary infections produced whenever
R0 < 1, otherwise the disease would spread.

3.4 Local Stability of the Endemic Equilibrium (EE) Points

This is a state in which an infection persists in the population. To obtain EE points, the model (2) is
solved simultaneously.

Theorem 3.4. The endemic equilibrium point EE∗(S∗, I∗, R∗, B∗) of model (2) is locally asymptotically
stable whenever R0 > 1.

Proof. When the system of equations in model system (2) is equated to zero

(1− δ)A+ βS − ωθSBα1(T )

K +B
− ϕθ1SIα1(T )− vS − µS = 0

δA+
ωθSBα1(T )

K +B
+ ϕθ1SIα1(T )− (γ + ϵ+ µ+ σ)I = 0

γI + vS − µR = 0

ϵI − µ1B = 0
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Adding the equations above and solving for I Yields;

I∗ =
µ+ σ

A

When I∗ is substituted into ϵI − µ1B = 0 yields

ϵ(
µ+ σ

A
)− µ1B = 0

Hence

B∗ = ϵ(
µ+ σ

µ1A
)

Substituting I∗ and B∗ into

δA+ βS − ωθSB∗α1(T )

K +B∗ − ϕθ1SI
∗α1(T )− vS − µS = 0

S∗ =
[ϕθ1α1(T )(µ+σ)

A
+ ωθα1(T )

τA
+ v + µ− β]

δA

Substituting I∗ and S∗ into γI + vS − µR = 0 yields

R∗ = [
γ(µ+ σ)

A
+

v

µδA
(
ϕθ1α1(T )(µ+ σ)

A
+
ωθα1(T )

µ1A
+ v + µ− β)]

Let

g = (v + µ) + β − ωθB∗α1(T )

K +B∗

h =
ωθB∗α1(T )

K +B∗ + ϕθ1I
∗α1(T )

The jacobian matrix of (2) is given by

JEE∗ =


−g − ϕθ1I

∗α1(T ) −ϕθ1S∗α1(T ) 0 −ωθS∗Kα1(T )

(K+B∗)2

h ϕθ1S
∗ − (γ + ϵ+ µ+ σ) 0 ωθS∗Kα1(T )

(K+B∗)2

v γ −µ 0
0 ϵ 0 −µ1

 (12)

To find the eigenvalues, consider the characteristics equation

| λI − JEE∗ |= 0

Yields; ∣∣∣∣∣∣∣∣∣
−g − λ −ϕθ1S∗ 0 −ωθS∗Kα1(T )

(K+B∗)2

h ϕθ1S
∗α1(T )− (γ + ϵ+ µ+ σ)− λ 0 ωθS∗Kα1(T )

(K+B∗)2

v γ −µ− λ 0
0 ϵ 0 −µ1 − λ

∣∣∣∣∣∣∣∣∣ = 0 (13)

From (13) which can be written as (λ+ µ)(λ+ µ1)(λ
2 + bλ+ c) = 0

Where

b = [(v + µ− β) +
ωθB∗α1(T )

K +B∗ + ϕθ1I
∗α1(T )] + ((γ + ϵ+ µ+ σ)− ϕθ1S

∗α1(T ))

And

c = [(v + µ− β) +
ωθB∗α1(T )

K +B∗ + ϕθ1I
∗α1(T )]((γ + ϵ+ µ+ σ)− ϕθ1S

∗α1(T ))−

[
ωθB∗α1(T )

K +B∗ − ϕθ1I
∗α1(T )]ϕθ1S

∗α1(T )
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It implies that λ1 = −µ and λ2 = −µ1. Hence it can clearly see that λ1 = −µ, λ2 = −µ1 are negative.

To find the remaining eigenvalues of (13), let λ2 + bλ+ c = 0 such that
When λ2 + bλ + c = 0 is solved yield b = λ3 + λ4 and c = λ3λ4. Hence whenever R0 < 1, then
2(ωθB∗α1(T )

K+B∗ )+ (v+µ− β) < (γ+ ϵ+µ+σ) I∗

S∗ . If β < v+µ then b > 0, c > 0. Therefore, λ3 < 0, λ4 < 0.
Therefore all the roots are real and negative and EE∗ is locally asymptotically stable whenever R0 > 1,
otherwise unstable.

This means that a small perturbation of the EE, the solutions of the model (2) will always converge to
the EE whenever R0 > 1.

Epidemiologically it implies that if a few infectious individuals are introduced into a fully susceptible
population and there are new secondary infections produced whenever R0 > 1, then the disease would
persist in the population.

4 Sensitivity Analysis

Sensitivity analysis is the responsiveness of a model to an input variable or parameter. We conduct this
analysis to understand the impact of changing a parameter’s value on the models’s compartment. These
parameters are useful in determining the pattern of the spread of an infection [11]. This is done by
employing the normalized forward sensitivity index of the variable to the parameter, which represents the
ratio of the relative change in the parameter [11]. This is why this index is defined using partial derivatives.

Definition 4.1. The normalized forward sensitivity index of a variable R0 that depend differentiability on
a parameter p is defined by;

θR0
p =

∂R0

∂p

p

R0

p is the parameter whose sensitivity index is to be measured [11].

Hence, to understand the dynamics of the disease spread, the sensitivity indices of this primary reproduction
number R0 regarding the parameters should be ascertained. The R0 of model 2 is given by;

R0 =
(1− δ)Aϕθ1α1(T )

(v + µ− β)(γ + ϵ+ µ+ σ)

Let c1 = (µ − β), c2 = (ϵ + µ + σ) , c3 = (γ + µ + σ), c4 = (v + µ), c5 = (v − β), c6 = (γ + ϵ + σ),
c7 = (v + µ− β) and c8 = (γ + ϵ+ µ). We now analyze the sensitivity indices of the parameter R0 yields
For ϕ;

∂R0

∂ϕ
× (

ϕ

R0
) =

θ1(1− δ)Aα1(T )

(v + c1)(γ + c2)
× ϕ(v + c1)(γ + c2)

ϕθ1(1− δ)Aα1(T )
= 1

For θ1
∂R0

∂θ1
× (

θ1
R0

) =
ϕ(1− δ)Aα1(T )

(v + c1)(γ + c2)
× θ1(v + c1)(γ + c2)

ϕθ1(1− δ)Aα1(T )
= 1

For α1(T )
∂R0

∂α1(T )
× (

α1(T )

R0
) =

ϕθ1(1− δ)A

(v + c1)(γ + c2)
× α1(T )(v + c1)(γ + c2)

ϕθ1(1− δ)Aα1(T )
= 1

For v

∂R0

∂v
× (

v

R0
) =

ϕθ1(1− δ)Aα1(T )

(γ + c2)
× [−(v + c1)

−2 × v(v + c1)(γ + c2)

ϕθ1(1− δ)Aα1(T )
] = − v

v + µ− β

For µ
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∂R0

∂µ
× (

µ

R0
) =

ϕθ1(1− δ)Aα1(T )

(µ2 + µc6 + µc5 + c5c6)2
× (2µ+ c6 + c5)µ(µ+ c5)(µ+ c6)

ϕθ1(1− δ)Aα1(T )
=

− µ(2µ+ c6 + c5)

(µ2 + µc6 + µc5 + c5c6)

For β
∂R0

∂β
× (

β

R0
) =

ϕθ1(1− δ)Aα1(T )

(γ + c2)
[−(c4 − β)−2]

−β(c4 − β)(γ + c2)

(ϕθ1(1− δ)Aα1(T ))
=

β

v + µ− β

For γ

∂R0

∂γ
× (

γ

R0
) =

ϕθ1(1− δ)Aα1(T )

(v + c1)
× [−(γ + c2)

−2]× γ

ϕθ1(1− δ)Aα1(T )
= − γ

(γ + µ+ σ)

For ϵ

∂R0

∂ϵ
× (

ϵ

R0
) =

ϕθ1(1− δ)Aα1(T )

(v + c1)
× [−(ϵ+ c3)

−2]× ϵ(v + c1)(ϵ+ c3)

(ϕθ1(1− δ)Aα1(T ))
= − ϵ

ϵ+ µ+ γ + σ

For σ

∂R0

∂σ
× (

σ

R0
) =

ϕθ1(1− δ)Aα1(T )

(c7)
[−(c8 + σ)−2]× σc7(c8 + σ)

ϕθ1(1− δ)Aα1(T )
= − σ

γ + µ+ σ + ϵ

Using parameter values in Table 2 the sensitivity indices of R0 in Table 1 are obtained.

These indices measures the relative change in R0 with the parameter change. Thus, by employing these
indices, therefore, using these indices, we identify the parameters that significantly influences R0 and
necessitate focussing on them for intervention strategies.

Table 1. Sensitivity indices of R0 with respect to the model parameter

Parameters Sensitivity indices

ϕ 1
θ1 1
γ −0.45454545
α1 1
β 0.0714285714
ϵ −0.083333
σ −0.25
v −0.8333333
µ −0.34375

From Table 1 we discuss these parameters and how they affect the R0 of our SIRB cholera temperature
dependent disease transmission model.

From the sensitivity analysis of the parameters of model (2), it is revealed that R0 is much more sensitive
to the infection rate of pathogen α1 that is dependent on temperature. An increase in infection rate of
pathogen α1 that is dependent on temperature by 10% would increase R0 by 10% and decreasing it by
10% reduces R0 by 10%.

Sensitivity analysis also reveals that R0 is also sensitive to the control through the short cycle ϕ, which
decreases R0 by 10%, recovery rate of humans from the infection γ that reduces R0 by 8.6538% and by
4.454545% due to vaccination of susceptible and increase in environmental temperature by 10% respectively.
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As well, if the rate of recovery of infected individuals γ is raised by 10%, then there shall be decline in R0

by 8.6538%

By doing this sensitivity analysis, the study now recommends that the temperature of the environment
should be raised because the infection rate of the pathogen is known to be reliant on temperature, as
evidenced by the lesser R0 in the event that there is a rise in the temperature of the environment.

5 Numerical Simulation

In this section, we use the temperature-dependent SIRB between-host cholera model to numerically solve
the model system (2), substantiating the theoretical findings. This is done by first plugging in the initial
values obtained from relevant literature, as shown in Table 2.

Subsequently, we obtain the results in section (5.2) by fitting the model equations (2) in the MATLAB
software, using the parameter values in Table 2.

5.1 Parameter Values

Values of the parameters in Table (2) are derived from literature, and others through estimation.

Table 2. Parameter values for the Between-Host Cholera Model

Description Parameters Initial value Source

Susceptible S
1000

Estimated

Pathogens B
100000

[19]

Temperature(T0 - Average
room temperature and T -
Possible max temperature of
a human body due to an
infection)

T0 = 230C and T = 430C Estimated

Natural death rate µ 0.06 day−1 [19]
death due to infection σ 0.7 [20]
vaccination rate v 0.2 [19]
Rate of recovery γ 0.1 [20]
Rate of recruitment of S β 0.02 Estimated
Natural death rate of B µ1 0.06 Estimated
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5.2 Simulation Results and Discussion

Simulation results presented in this paper is based on the SIR − B model that is related to fluctuations
with regard to the dynamics of cholera disease, this results are concentrated on this aspect as described in
Fig (1), Fig (2), Fig (3) and Fig (4). Our simulation results is focused on the effect of temperature on
the dynamics of cholera disease. The key focus is in Fig (2) which shows the behaviour in population of
Vibrio cholerae for different values of temperature.

A study [21] that analyzes water quality in wet and dry seasons under climate change recommends the
discovery that a large number of polluting substances usually get into the water basin. This is due to
there being no collection systems for sewage and refineries; the waste water from the surrounding villages
also drops into the water basin; in turn, they dump a lot of pollutants into the basin. The findings of this
study established that, during the dry season, when the temperature is high, there is little clean water for
use, and this leads to water pollution. This means that cholera disease will still prevail in the dry season,
and this implies that appropriate measures should be taken to curb it. The simulation results demonstrate
this for the between-host cholera model with temperature dependent parameter as shown in the figures:
Fig (1), Fig (2), Fig (3) and Fig (4) respectively.

In Figure (1), is a graph of B when T = 430C and T = 230C. The population of B at T = 430C is
reduced at a faster rate but when T = 230C the population of B is high, this is an indication that vibrios
spread and multiply faster at T = 230C but they spread and multiply at lower rate when the temperature
is high. This is clearly seen in Figure (2)

Figure 1: B against time for T = 430C and T = 230C
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Figure 2: B against temperature in degree Celsius

In Figure (3), is a graph of susceptible population when T = 430C , T = 300C up-to T = 230C. The
population of susceptible reduces at a faster rate when the temperature is T = 230C and at a lower rate
when the temperature is high (T = 430C). This implies that at T = 230C there are more pathogens
present to cause infection hence more susceptible individuals are being infected.

Figure 3: S against time when T = 430C , T = 300C and T = 230C
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In Figure (4), when T = 230C the population of the infected individuals increases at a higher rate
compared to when the temperature is T = 300C and T = 430C respectively. This shows that at T = 230C
there are more pathogens active to cause infections which leads to many individuals being infected, after
sometimes this population decreases. Despite the differences in environmental temperature where the
pathogens live(food or water), there will still be infected individuals which shows persistence in cholera
disease.

Figure 4: I against time when T = 430C and T = 230C

6 Conclusion

We have developed a between-host cholera model with temperature dependent parameter. The model’s
equilibrium points, both local and global DFE, remain stable when R0 < 1, indicating the pathogen’s
extinction in an individual. On the other hand, when R0 > 1, the DFE becomes unstable. The model also
has endemic equilibrium point which is locally asymptotically stable when R0 > 1, which means that there
is persistent infection. We conducted a numerical analysis to visually depict the model’s analytic solutions,
and the simulation outcome reveals that V ibrio cholerae pathogens can multiply and spread more quickly
at 230C. However, their multiplication slows down between 230C < T ≤ 430C. Consequently at 230C,
the number of pathogens active to cause infection is higher than at higher temperatures. Therefore, due to
changes in climatic conditions, most areas experience temperature intervals between 230C to 430C , which
explains why, despite the use of cholera vaccines, cholera epidemics persist. Sensitivity analysis of model
(2) parameters is done to find how sensitive the parameters of model (2) are, we look at the infection rate
of pathogen α1 which changes with temperature. This lowers R0 by 10%. Recovery rate of humans from
the infection γ will also reduce R0 by 4.454545%. Through sensitivity analysis, the study suggest that
increasing the temperature of the food or water would help reduce the infection rate of the pathogen that
depends on temperature since this would help reduce the reproduction number R0.
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7 Recommendations

This study recommends that the movement of individuals should be considered for further study to
investigate the dynamics of the model as individuals move from dry areas to wet areas.
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