• Login
    View Item 
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    •   MMUST Institutional Repository
    • University Journals/ Articles
    • Gold Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Insecticide resistance exerts significant fitness costs in immature stages of Anopheles gambiae in western Kenya

    Thumbnail
    View/Open
    s12936-021-03798-9.pdf (811.2Kb)
    Date
    2021-06-09
    Author
    Osoro, Joyce K.
    Machani, Maxwell G.
    Ochomo, Eric
    Wanjala, Christine
    Omukunda, Elizabeth
    Munga, Stephen
    Githeko, Andrew K.
    Yan, Guiyun
    Afrane, Yaw A.
    Metadata
    Show full item record
    Abstract
    Background Despite increasing documentation of insecticide resistance in malaria vectors against public health insecticides in sub-Saharan Africa, there is a paucity of information on the potential fitness costs of pyrethroid resistance in malaria vectors, which is important in improving the current resistant management strategies. This study aimed to assess the fitness cost effects of insecticide resistance on the development and survival of immature Anopheles gambiae from western Kenya. Methods Two-hour old, first instar larvae (L1) were introduced and raised in basins containing soil and rainwater in a semi-field set-up. Each day the number of surviving individuals per larval stage was counted and their stage of development were recorded until they emerged as adults. The larval life-history trait parameters measured include mean larval development time, daily survival and pupal emergence. Pyrethroid-resistant colony of An. gambiae sensu stricto and susceptible colony originating from the same site and with the same genetic background were used. Kisumu laboratory susceptible colony was used as a reference. Results The resistant colony had a significantly longer larval development time through the developmental stages than the susceptible colony. The resistant colony took an average of 2 days longer to develop from first instar (L1) to fourth instar (L4) (8.8 ± 0.2 days) compared to the susceptible colony (6.6 ± 0.2 days). The development time from first instar to pupa formation was significantly longer by 3 days in the resistant colony (10.28 ± 0.3 days) than in susceptible colony (7.5 ± 0.2 days). The time from egg hatching to adult emergence was significantly longer for the resistant colony (12.1 ± 0.3 days) than the susceptible colony (9.6 ± 0.2 days). The pupation rate (80%; 95% (CI: 77.5–83.6) vs 83.5%; 95% (CI: 80.6–86.3)) and adult emergence rate (86.3% vs 92.8%) did not differ between the resistant and susceptible colonies, respectively. The sex ratio of the females to males for the resistant (1:1.2) and susceptible colonies (1:1.07) was significantly different. Conclusion The study showed that pyrethroid resistance in An. gambiae had a fitness cost on their pre-imaginal development time and survival. Insecticide resistance delayed the development and reduced the survivorship of An. gambiae larvae. The study findings are important in understanding the fitness cost of insecticide resistance vectors that could contribute to shaping resistant management strategies.
    URI
    https://doi.org/10.1186/s12936-021-03798-9
    https://malariajournal.biomedcentral.com/articles/10.1186/s12936-021-03798-9
    http://ir-library.mmust.ac.ke:8080/xmlui/handle/123456789/1908
    Collections
    • Gold Collection [985]

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback
     

     

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MMUST Library copyright © 2011-2022  MMUST Open Access Policy
    Contact Us | Send Feedback