Show simple item record

dc.contributor.authorAbuga, Joseph Motanya
dc.contributor.authorOjiema, Michael Onyango
dc.contributor.authorKivunge, Benard Muthiani
dc.date.accessioned2023-09-12T11:52:28Z
dc.date.available2023-09-12T11:52:28Z
dc.date.issued2023-01-28
dc.identifier.urihttps://d1wqtxts1xzle7.cloudfront.net/99740226/1270-libre.pdf?1678621049=&response-content-disposition=inline%3B+filename%3DAutomorphism_Groups_of_Regular_Elements.pdf&Expires=1689848513&Signature=WoleyOIsU8tvXaxlPm23rsJkWkZzMcs7qL1RSVnFJ-Bi2pP9ZXBUFZ5rpYsRf8eDiKmGwut1mvwVbaz-rX-w5~NedY2dVL~07VR2TCcHDmxZfEEB3oPlFs9GvUegvPquHMC22QRxiVIfb5iLq1wA31aeSPDXi1K73jyGthxBpGWsdTKF4c48QYhAK6vYhzxHEz1z8Bc313Q7dXVFuu93Dmxnt0WrkhadAnl466C4hl~ke9W25weR0hdmMKr~T2BOh0LoBOBIMAWtWK6vMCQibUJ07qGiwZt7YqXj6l8KnbWa0mQzMRIGtR-RXsOoN8DzH14RbaJvluybSPet46mYDw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
dc.identifier.urihttp://ir-library.mmust.ac.ke:8080/xmlui/handle/123456789/2265
dc.description.abstractThis paper presents the classification of the invariant subgroups of the automorphism groups of the regular elements obtained from finite local near-rings, the appropriate algebraic structure to study non-linear functions on finite groups. Just as rings of matrices operate on vector spaces, near-rings operate on groups. In this paper, we construct classes of zero symmetric local near-ring of characteristic p k ; k = 1, 2 , k ≥ 3 admitting frobenius derivations, characterize the structures of the cyclic groups generated by the regular elements R(N ) as well as the structures and the orders of the automorphism groups Aut(R(N )) of the regular elementen_US
dc.language.isoenen_US
dc.publisherAsian Research Journal of Mathematicsen_US
dc.subjectAutomorphism, Groups, Regular, Elements , Von-Neumann, Inverses,Local, Near-Rings, Admitting, Frobenius ,Derivationsen_US
dc.titleAutomorphism Groups of Regular Elements with Von-Neumann Inverses of Local Near-Rings Admitting Frobenius Derivationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record