Show simple item record

dc.contributor.authorAbuga, Joseph Motanya
dc.contributor.authorOjiema, Michael Onyango
dc.contributor.authorKivunge, Benard Muthiani
dc.date.accessioned2023-09-12T11:52:55Z
dc.date.available2023-09-12T11:52:55Z
dc.date.issued2023-01-01
dc.identifier.urihttps://d1wqtxts1xzle7.cloudfront.net/99695627/1266-libre.pdf?1678513778=&response-content-disposition=inline%3B+filename%3DRegular_Elements_and_Von_Neumann_Inverse.pdf&Expires=1689848804&Signature=L9rcgjQv-rAy5EWdZWxh9FjRvubB2ruEwuWvpmQUWuoWXmaPNzEqIVXFhj9-vHkeh3ld4M6lR96eLhWC8VpqtWYnWzPCmhBREROX-S~vpuCSOre~~sOgdrLj3d9IMZQZVsgd7xGSC8lAI09F1LbxWhO5LGRSN5uEXROkYbz~mVQj030pT7nU5iyyM0~Yt8AjC5Zh-MZt4p08yN1YWfA2ndCThu1AWqaOxLv8BMJ6HkzhHyGcXcDIjazifC1WPFFtPh~uuXpsICpAQfj3~QTKgWaBBH2vdsYBMtK8tYPO9nwP5Nr~ATk5-pMh1d26qVdvg0dAyKcgQPywNHmwR3q~-g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
dc.identifier.urihttp://ir-library.mmust.ac.ke:8080/xmlui/handle/123456789/2266
dc.description.abstractLet N be a zero-symmetric local near-ring. An element x ∈ N is either regular, zero or a zero divisor. In this paper, we construct a class of zero symmetric local near-ring of characteristic p k ; k ≥ 3 admitting an identity frobenius derivation, characterize the structures and orders of the set R(N ), the regular compartment with an aim of advancing the classification problem of algebraic structures. The number theoretic notions relating the number of regular elements to Euler’s phi-function and the arithmetic functions of Galois near-rings are adopted. Using the Fundamental Theorem of finitely generated Abelian groups, the structures of R(N ) are proved to be isomorphic to cyclic groups of various orders. The study also extends to the automorphism groups Aut(R(N )) of the regular elements.en_US
dc.language.isoenen_US
dc.publisherAsian Research Journal of Mathematicsen_US
dc.subjectRegular, Elements, Von-Neumann, Inverses , Class of Zero, Symmetric, Local, Near-Rings, Admitting, Frobenius, Derivationsen_US
dc.titleRegular Elements and Von-Neumann Inverses of a Class of Zero Symmetric Local Near-Rings Admitting Frobenius Derivationsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record