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ABSTRACT 

One of the most popular languages in the web domain is Cascading Style Sheet (CSS). 
The language has evolved over time with the latest development being the introduction 
of CSS preprocessors which has made it possible to write CSS codes in a faster and 
efficient way. Therefore, the migration from CSS to CSS preprocessors by the front-
end developers has been tremendous. There are several CSS preprocessors available 
in the industry with the Syntactically Awesome Style Sheets (SASS) becoming one of 
the most preferred preprocessors. This elevation of SASS is as a result of influence by 
its new syntax SCSS (Sassy Cascading Style Sheets) which is closer to CSS syntax. 
Although SCSS is very promising, it has inherent complexity which keeps increasing 
with time as a result of maintenance practices. The Entity-Attribute-Metric (EAM) 
model was used to describe the process followed to identify SCSS metrics while the 
Boehm model was used to identify the maintainability sub-characteristics. In addition, 
the Muketha’s structural attributes classification framework was extended so as to 
develop the SCSS structural attributes classification framework. The measurement of 
software complexity via software metrics for different software’s and software 
paradigms has continued to gain grounds over the years. There exists several structural 
CSS metrics but they cannot be directly applied to SCSS because SCSS has richer 
features than CSS. In addition, there is no existing framework that can be used to guide 
the definition of SCSS structural complexity metrics. To close the gaps identified, the 
researcher developed an SCSS complexity attributes classification framework which 
was validated through an expert opinion survey. This study proposed a suite of SCSS 
structural complexity metrics which were theoretically validated via Weyuker’s 
properties and Kaner framework. In addition, a tool was developed to automate the 
collection and computation of metric values. The data collected was analyzed through 
descriptive statistics (frequencies, mean and standard deviation) and inferential 
statistics (Spearman’s rho, ANOVA tests, and principle component analysis). 
Empirical studies by way of experimentation were conducted and all the proposed 
metrics strongly correlated with the three aspects of maintainability, namely, 
understandability, modifiability, and testability. Additionally, the metrics were found 
to be important for the measurement of SCSS complexity. The findings of this study 
show that all the proposed metrics can serve as maintainability predictors for SCSS.  
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DEFINITION OF OPERATIONAL TERMS 

 

Empirical Validation: This is the involvement of experiments and surveys to gain 

knowledge on a particular subject. 

Maintainability: The ease with which software codes can be understood, modified, 

and tested. 

Modifiability: This is how easy it is to incorporate changes to an SCSS code. 

Regular CSS: This refers to  Cascading Style Sheets (CSS). 

Software Attribute: This is the structural feature or property of a software artifact. 

Software Complexity: This refers to how difficult it is to understand, modify and 

test a program. 

Software Metric: This is a quantitative measure of a degree to which a software 

artifact possesses some property. 

Testability: This is how easy it is to identify errors or faults in an SCSS code. 

Theoretical Validation: This is a formal and practical approach for proving the 

soundness of metrics.  

Understandability: This is how easy it is to comprehend an SCSS code. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

This chapter gives fundamental information concerning the complexity of Sassy 

Cascading Style Sheets code (SCSS) and how it contributes to the difficulty in 

maintaining the code and the need to measure and control software complexity. The 

objectives to achieve for this study, research questions which are directly mapped with 

objectives, significance of the study, scope of the study, limitations, and contributions 

of this study are also presented in this chapter. 

 

1.2 Background to the Study 

Web-based applications are developed for personal use, and for private and public 

institutions. These applications use different languages and one of the integral parts in 

their development is Cascading Style Sheets (CSS) language (Adewumi, Misra 

&Ikhu- Omoregbe, 2012). CSS is the standard language for styling structured 

documents, such as HTML and XHTML. HTML (Hyper Text Markup Language) is 

used to create content while CSS is concerned with the presentation of the web 

documents written in HTML, XHTML (Extensible HTML) and it can also be applied 

in any XML (Extensible Markup Language) document to bring about aesthetically 

pleasing and user-friendly interfaces. Basically, the motivation for the use of CSS is 

to separate content from presentation (Adewumi et al., 2012).  

 

Web systems have over the years evolved from simple hypertext markup language 

(HTML)-based applications to complex cascading style sheets (CSS)-based 

applications (Adewumi et al., 2012). Further developments have seen the 
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incorporation of traditional programming language concepts into the regular CSS 

language resulting in CSS preprocessors. The invention of CSS preprocessors has 

made the writing of CSS codes faster, efficient, and more maintainable. Therefore, 

CSS preprocessors have gained popularity with front-end developers and 54 % of them 

use it in their development tasks in the recent past. A CSS preprocessor is a program 

that converts the written codes into CSS codes which can be rendered by the web 

browser. There exist several CSS Preprocessors such as Sass, Less, Stylus, CSS-crush, 

Myth, and Rework. (Mazinanian & Tsantalis, 2016). 

  

SASS (Syntactically Awesome Style sheets) preprocessor is one of the most popular 

CSS Preprocessor and governments such as the United States Federal Government 

advises its front-end developers to use SASS preprocessor to develop style sheets and 

this has made it very popular in the industry globally (Mazinanian & Tsantalis, 2016). 

Sass preprocessor has two syntaxes, .sass, which is the older syntax and .scss which is 

the new and improved standard (Cederholm, 2013). The new syntax SCSS (Sassy 

Cascading Stylesheets) is closer to CSS syntax, and it introduces the concepts of SASS 

preprocessor thus making it popular between the two SASS syntaxes (Cederholm, 

2013; Catlin & Catlin, 2011). Therefore, the focus of this study was on Sassy 

cascading style sheets.  

 

SASS preprocessors add extra functionality such as the use of variables, nesting rules, 

mixins functions, operators, control directives (@for, @if, @else, @each, @while and 

if() and selector inheritance. The introduction of these new features makes the 

language have inherent complexity in comparison to regular CSS which has a simple 

syntax. This kind of complexity increases with time each and every time new rule 
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blocks are added to the existing stylesheet code (Mazinanian & Tsantalis, 2016).  

Software complexity refers to how code is difficult to understand,modify and test, thus 

its high levels lead to software that is unreliable and difficult to maintain (Ogheneovo, 

2014; Mesbah & Mirshokraie, 2012; Shao & Wang, 2003). This raises the need to 

investigate the complexity of SCSS files which can lead to codes that have errors, are 

difficult to understand, modify and test.  

 

This risk of having complex SCSS code implies that there is a need to control its level 

of complexity. Software metrics are central in measurement and control of software 

complexity (Misra, Adewumi, Fernandez-Sanz, & Damasevicius, 2018; Muketha, 

Ghani, Selamat & Atan, 2010a). This is achieved by the metrics providing feedback 

to the software designers concerning complexity thus influencing the decisions made. 

When there is a lack of this feedback, decisions are made in an ad-hoc manner (Misra 

& Cafer, 2012).  

 

There are efforts made to define software metrics in the web domain such as CSS 

complexity metrics (Adewumi et al., 2012), software metrics for XML schema (Basci 

& Misra, 2011a), web services (Basci & Misra, 2009; Basci & Misra, 2011b) and 

Document Type Definition (DTDs) (Basci & Misra, 2008). This implies that metrics 

should be defined to achieve desirable complexity levels for SCSS. 

 

1.3 Statement of the Problem 

Front-end web developers are increasingly adopting the use of SCSS because it allows 

ease of development and maintainability of Web applications (Mazinanian & 

Tsantalis, 2016). However, SCSS codes have inherent complexity that increase due to 
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maintenance activities. In addition, a substantial number of web developers and 

several of them still use regular CSS, because they perceive that it still has simpler 

syntax than SCSS (Mazinanian & Tsantalis, 2016; Lie & Bos, 2005). 

 

Researchers agree that high levels of software complexity lead to software that is 

difficult to maintain (Misra, 2018; Ogheneovo, 2014; Adewumi et al.,2012; Ghosheh, 

Black, & Qaddour, 2008). Therefore, a comprehensive and relevant set of measurable 

attributes should be identified, then metrics which are based on the attributes should 

be defined to measure complexity with the aim of controlling it. Although there are 

several structural CSS metrics proposed in the literature, they cannot be directly 

applied to SCSS because they do not capture the unique structural properties of SCSS. 

Furthermore, although the development of metrics tool has been recognized by various 

studies as a necessary step for making the metrics acceptable in the software industry, 

most of the reviewed CSS metrics either lack tool support or the tools are not efficient 

(Adewumi, Emebo, Misra & Fernandez, 2015;.Basci & Misra, 2011; Misra & Cafer, 

2012; Thaw & Misra, 2013; Misra et al., 2018). 

 

Another aspect of the problem is that there is no existing comprehensive framework 

that can be used as a guide to define SCSS metrics. The existing frameworks consider 

attributes in procedural languages, object oriented programming (OOP) domain, 

business process models but not SCSS language.This lack of a comprehensive 

framework means that definition of SCSS metrics can only be defined in an adhoc 

manner, which is  not good for the software industry. 
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1.4 Objectives 

The following section stipulates the general and specific objectives achieved by this 

study. 

 

1.4.1 General Objective 

The main objective of this study was to define relevant and comprehensive SCSS 

measurable attributes and to determine a valid suite of structural complexity metrics 

that can be used as maintainability predictors of SCSS code. 

 

1.4.2 Specific Objectives 

The specific objectives of this study are: 

i. To determine a set of SCSS attributes that affect its structural complexity. 

ii. To define structural complexity metrics for SCSS code. 

iii. To develop a functional and usable metrics analysis tool for SCSS metrics 

computation. 

iv. To validate the structural complexity metrics for SCSS using a controlled 

laboratory experiment. 

 

1.5 Research Questions 

i. Which attributes can determine the structural complexity of SCSS code? 

ii. Which metrics can evaluate the structural complexity of SCSS code? 

iii. How can you automate calculation of SCSS metrics? 

iv. Which metrics are effective in predicting the maintainability of SCSS code? 
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1.6 Research Hypotheses  

A set of six pairs of hypotheses were formulated to answer research question four. 

Each pair represents the null and alternative hypotheses of each of the dependent 

variables to be tested, namely, understandability, modifiability, testability, 

understanding time, modifying time, and testing time. 

a. Understandability hypotheses 

i. Null Hypothesis (H0-u): There exists no significant correlation between 

the SCSS metrics and subjects rating of understandability of SCSS files. 

ii. Alternative Hypothesis (H1-u): There exists significant correlation 

between the SCSS metrics and subjects rating of understandability of 

SCSS files. 

b. Modifiability hypotheses 

i. Null Hypothesis (H0-m): There exists no significant correlation between 

the SCSS metrics and subjects rating of modifiability of SCSS files. 

ii. Alternative Hypothesis (H1-m): There exists significant correlation 

between the SCSS metrics and subjects rating of modifiability of SCSS 

files. 

c. Testability hypotheses 

i. Null Hypothesis (H0-t): There exists no significant correlation between 

the SCSS metrics and subjects rating of testability of SCSS files. 

ii. Alternative Hypothesis (H1-t): There exists significant correlation 

between the SCSS metrics and subjects rating of testability of SCSS files. 
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d. Understanding time hypotheses 

i. Null Hypothesis (H0-ut): There exists no significant correlation between 

the SCSS metrics and understanding time of SCSS files. 

ii. Alternative Hypothesis (H1-ut): There exists significant correlation 

between the SCSS metrics and understanding time of SCSS files. 

e. Modifying time hypotheses 

i. Null Hypothesis (H0-mt): There exists no significant correlation between 

the SCSS metrics and modifying time of SCSS files. 

ii. Alternative Hypothesis (H1-mt): There exists significant correlation 

between the SCSS metrics and modifying time of SCSS files. 

f. Testing time hypotheses 

i. Null Hypothesis (H0-tt): There exists no significant correlation between 

the SCSS metrics and testing time of SCSS files. 

ii. Alternative Hypothesis (H1-tt): There exists significant correlation 

between the SCSS metrics and testing time of SCSS files. 

 

1.7 Significance of the Study 

This study aimed at proposing complexity metrics for SCSS. To achieve this, the study 

began by developing an SCSS attribute classification framework which assisted in 

identifying all the possible factors that would contribute to the complexity of SCSS. 

Complexity metrics were defined, theoretically and empirically validated, and the 

findings indicated that the metrics are useful for predicting SCSS Maintainability. 

Therefore, researchers in software metrics can use the developed framework to aid in 

identifying structural complexity attributes or extend it depending on the uniqueness 

of various software artifacts. The SCSS designers and programmers can use the 



8 
 

metrics to predict SCSS maintainability. A metrics tool was developed for the purpose 

of automating the collection and computation of SCSS metrics, this means that the 

users of the tool will quickly receive response which are accurate and make 

conclusions based on the results acquired. For instance, metrics values can assist SCSS 

programmers in making certain decisions such as restructuring of SCSS code with 

high coupling level.  

 

This study provided the background on which other researchers can refer to define 

metrics in stylesheets field especially with CSS preprocessors.  

 

1.8 Scope of the Study 

This study focused on SCSS syntax (.scss) of SASS preprocessor, it didn’t look at the 

alternative SASS syntax known as SASS syntax (.sass). Therefore, all the SASS files 

not conforming to .scss syntax were not considered in this study. 

 

The proposed metrics were static metrics and so dynamic aspects were not considered 

in this study. In addition, the metrics focused on structural aspects of SCSS code, 

meaning other forms of software complexity were not considered. 

 

Finally, this study focused on maintainability aspect of software quality, and other 

software quality factors such as portability, reliability, usability, efficiency and 

functionality did not form part of this study. 
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1.9 Limitations of the Study 

A limitation of the study refers to the aspects that the researcher knows may affect the 

validity of the study conclusion and results generalizability, however, the researcher 

has no control over (Kumar, 2011; Mugenda & Mugenda, 2008). The identification of 

SCSS industry experts was a challenge. To overcome this challenge, snowballing 

technique was used. 

 

1.10 Contributions of the Thesis 

This thesis made the following contributions: 

i. An SCSS structural complexity attributes framework was developed and 

validated through an expert’s opinion survey. 

ii. A set of four SCSS metrics were defined for measuring the structural 

complexity of SCSS code. 

iii. A metrics tool called Structural Complexity Metrics Tool (SCMT) for 

SCSS was developed for metrics computation. This tool was validated 

through experiments and proved to be functional and usable 

iv. The proposed SCSS metrics were proved to be theoretically sound via 

Weyuker’s properties and Kaner’s framework 

v. The empirical validation of the proposed SCSS metrics proved that they 

can predict the maintainability of SCSS code. 

 

1.11 Thesis Organization 

This thesis is divided into eight chapters as described below: 

 



10 
 

The first chapter presents an introduction of the thesis. It includes a detailed 

description of the background to the study, research problem, objectives, the 

significance of the study, scope of research, limitations, and contributions of this 

study. 

 

The second chapter presents a review of related literature. It includes literature on 

structural properties of SCSS, software complexity attributes classification, existing 

software complexity metrics, metrics validation methods, metrics tools, and software 

maintainability. The gaps in literature were also identified. 

 

The third chapter is the research methodology and it describes the research philosophy, 

research design, a summary of the research process, research strategy, sampling 

strategy, research instruments, validation and reliability of research instruments, how 

to analyze data, and ethical considerations of this research. 

 

The fourth chapter presents the structural complexity attributes complexity framework 

for SCSS, and it covers the architecture of the proposed framework which at high level 

has four categories, intra-module attribute, inter-module attribute, hybrid attribute, and 

extra-module attribute. The chapter describes how the framework can be applied in a 

real-life scenario and finally the framework descriptive validation results are presented 

in terms of SCSS experts background knowledge, relevance, and comprehensiveness 

of the framework. 

 

The fifth chapter is the structural complexity metrics for SCSS. It defines the metrics, 

Average Block Cognitive Complexity, Nesting Factor, Selector Use Inheritance Level, 



11 
 

and Coupling Level. The metrics were validated theoretically via Weyuker’s 

properties and Kaner framework. Finally, each metric was demonstrated through a 

real-life scenario to prove that they are intuitional. 

 

The sixth chapter presents the structural complexity metrics tool for SCSS. It describes 

the requirements for tool development, tool architecture and design such as user 

interface design, form layout design, and algorithm design. The chapter also presents 

the metrics tool validation results. 

 

The seventh chapter is the experimental validation of structural complexity metrics for 

SCSS. The experiment which consists of subjective and objective phases is described. 

This chapter presents the validation results in terms of correlation, ANOVA and 

principle component analysis (PCA). 

 

The eighth and final chapter presents summary, conclusion and future work of the 

study. This includes a general conclusion of the study findings as well as future 

research directions.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a detailed analysis of literature in the area of CSS, SCSS, 

software attributes or indicators, software complexity metrics, metrics tools, validation 

of metrics and software maintainability models. Research gaps are also identified thus 

forming a theoretical basis upon which this research work was established. 

 

2.2 Background Information on Cascading Style Sheets (CSS) 

The CSS language is composed of a sequence of style rules, where each rule has a 

selector that selects the elements needed to style in the HTML or XML document 

(Hissom, 2011).  This language is used by the web developers to define the look and 

feel of structured documents such as HTML and XML. The web developers have over 

the years increasingly used CSS in their everyday development tasks of web-based 

software (Mazinanian & Tsantalis, 2016). 

 

CSS has evolved over the years from CSS1 to CSS3. More recent extensions of CSS 

have also been proposed such as CSS preprocessors. CSS1 was a simple version with 

about 50 properties and is mostly used for screen-based presentations. CSS2 includes 

all CSS1 properties plus an additional around 70 properties of its own. The additional 

properties have for instance enabled CSS2 to describe aural presentations and page 

breaks that couldn’t be done earlier. An enhanced CSS 2.1 was also released that added 

more features such as the ability to describe the parts that are supported by two or 

more browsers (Lie & Bos, 2005). Finally, CSS3 is split into modules such as 

selectors, box model, backgrounds and borders, text effects, image values and replaced 
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content, 2D/3D transformations, animations, multiple column layouts, and user 

interface (Hissom, 2011). The purpose of modularization is to have multiple 

specifications, where each specification has its own progression path (Hissom, 2011). 

 

Post CSS3, developments have taken the direction of CSS preprocessors. Several CSS 

preprocessors have so far been proposed such as Syntactically Awesome Style Sheets 

(SASS), Less, Stylus, CSS-Crush, Myth and Rework with each of them having unique 

syntaxes (Mazinanian & Tsantalis, 2016; Charpentier et al., 2016). CSS preprocessors 

add extra features to those found in regular CSS such as the use of variables, nesting 

of rules, use of mixins, use of function calls, inheritance, use of control flow statements 

and use of operators (Mazinanian & Tsantalis, 2016).  

 

Variables are defined to store one or more style values and represent data, such as 

numeric values and characters (Mazinanian & Tsantalis, 2016). A variable enables 

reuse of the style values stored in the stylesheets. In stylesheets, variables can be used 

to set up colors and fonts (Henley, 2015). In some instances, variable values are 

manipulated using arithmetic operators and by passing them to preprocessor built-in 

function (Mazinanian & Tsantalis, 2016). 

 

Rule nesting is like class nesting in object-oriented programming. According to 

Mazinanian and Tsantalis (2016), CSS Preprocessors permit a rule to be placed inside 

another rule as a way of combining multiple CSS rules within one another.  

 

Some other powerful features introduced by CSS preprocessors include mixins and 

user-defined functions. While mixins store multiple values, functions are invoked to 
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allow the use of parameters (Mazinanian & Tsantalis, 2016; Henley, 2015). Mixins 

and functions are beneficial in that they help to avoid writing repetitive codes 

(Mazinanian & Tsantalis, 2016).  

 

Other new features include inheritance, control directives, and operators. In the SASS 

preprocessor, for instance, inheritance uses the @extend directive to share or extend 

the behavior of an existing selector (Mazinanian & Tsantalis, 2016). Control directives 

are the equivalent of the control-flow statement in object-oriented programming. 

These directives include @if, @for, @each, and @while statements (Henley, 2015) 

and are used for applying a style many times with variations (Catlin & Catlin, 2011). 

Finally, CSS preprocessors have introduced operators which include addition, 

subtraction, division, multiplication, relational operators and equality operators 

(Henley, 2015). 

 

2.3 SASS Pre-Processor 

Though there are many available CSS pre-processors for use in the software industry, 

the SASS pre-processor is one of the most popular (Mazinanian & Tsantalis, 2016). 

SASS pre-processor supports two syntaxes, Sassy CSS (SCSS) which uses the .scss 

extension and indented syntax which uses the .sass extension. SCSS is the newer of 

the two syntaxes and the most popular among front web developers because it is a 

superset of CSS making migration to SCSS a lot easier, it is easy to use the existing 

stylesheets and incorporate SASS features, and it is also more expressive meaning its 

more logically grouped, for example, one can compress several lines of codes in SASS 

into just fewer lines in SCSS (Cederholm, 2013). Fig. 1 shows a family tree of SASS 

pre-processor. 
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  Figure 2.1: SASS Pre-processor Syntaxes 

 

The basic building component of an SCSS is a rule block. A rule block is made up of 

a selector and one or more attributes (Adewumi et al., 2012). The selector points to 

the HTML element to be styled while attributes specify the style on the element. An 

attribute is also known as property name and can have one or more values. SCSS has 

other blocks such as mixin blocks (comprising of a @mixin directive with opening 

and closing braces), function blocks (comprising of @function directive with opening 

and closing braces), control directives block (comprising of control directive i.e. @if, 

@each, @for, @elseif with opening and closing braces), and media blocks (it 

comprises of @media with opening and closing braces). An SCSS block is defined as 

any block that consists of a selector or @rule directive, opening brace, set of attributes 

and/or directives and a closing brace. 

 

Sassy CSS is a style sheet language whose aim is to determine how the web pages are 

presented. In contrast, the aim of conventional programming languages such as Java, 

C++, etc. is to automate processes. Basically, SCSS is used to describe data while 

regular programming languages modify data. There are several differences between 

SASS PRE-PROCESSOR 

SASS SCSS 
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SCSS and regular programming languages. Table 2.1 presents the differences between 

SCSS and other structured and object-oriented software. 

 

Table 2.1: Comparison between Traditional and SCSS Software 

Criteria  Traditional software SCSS software 

Modularized by Modules/classes SCSS block e.g. rule block, 
function directive block, mixin 
block, etc. 

Parent module Coordination of rest of the 
program is via main function, 
module, class, or method. 

None 

Program 
statement 

Simple statements e.g. 
assignment. 

Attributes and rule directives. 

Control-flow 
structure 

Sequence, branch, loop, and 
calls 

Branch, loops, and calls 

Data types Variables/constants Variables 

Data definition Data types are language-
specific  

SCSS relies on SASS Pre-processor 
data types 

Programming 
scope 

Programs for performing 
calculations e.g. computing the 
product of two numbers 

Programs for formatting the 
presentation of web pages. e.g. 
assigning font size 12 to a 
paragraph  

 

A simple alert rule block is shown in Figure 2.2 with three regular attributes, i.e. 

padding, font-size, and text-align. Padding has been used to generate a space of 15px 

around the element’s content while font-size sets the size of text as 1.2em. Finally, 

text-align centers the content of the element where the alert class is implemented. 
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. alert { 

padding: 15px; 

font-size: 1.2em;  

text-align: center;  

          } 

Selector and opening brace 

Three attributes each ending 
with a semicolon 

Closing brace 

 

 

 

 

 

 

 

 

Figure 2.2: An Alert Rule Block 

 

An illustration of multiple blocks is shown in Figure 2.3. The figure has one mixin 

block which can be called in various places of the code. It also has five rule blocks 

where the three of them are nested. The figure also demonstrates the use of variables 

and selector inheritance. 
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      Figure 2.3: SCSS Code with Multiple Blocks 

$color-accent: #9c3;  
 
 
 
 
 
 
 
 

 

.alertA { 

padding: 15px; 

font-size: 1.2em; 

text-align: center; 

background: $color-accent; 

@include infobox; 

} 

.alertB{ 

@extend .alertA; 

background: #6b9; 

} 

 

 
 
 
 
 
 
 
 
 

@mixin infobox { 

width: 200px; 

border: 1px solid red; 

color: red; 

} 

header{ 

width: 90%; 

position: absolute; 

height: 97px; 

.countries-list{ 

left: -55px; 

top: 100px; 

@include infobox; 

li{ 

display: block; 

margin-bottom: 5px; 

} 

} 

} 

Mixin block declaration 

Use of variable in the attribute 

Variable declaration 

Use of mixin in alertA rule block 

Inheritance of alertA selector 

Nesting of SCSS rule blocks 
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2.4 Software Complexity 

Software complexity is how hard it is for a program to be understood, modified and 

tested (Harrison, , Magel, Kluczny, & Dekok, 1982; Boehm et al., 1978; Curtis et al., 

1979). IEEE (1998) defines software complexity as an estimate of effort that is 

required to develop, maintain and execute the code. Software complexity is divided 

into various categories, such as computational complexity, representational 

complexity, functional complexity, organizational complexity and structural 

complexity (Mens, 2016; Henderson-Sellers, 1996). This categorization is an effort 

towards measuring the different dimensions of software.   

 

2.4.1 Software Complexity Measurement 

Measurement is the process of assigning numbers or symbols to various features of 

objects (Fenton & Bieman, 2014). In software engineering, measurement of software 

products is a process which involves defining, collecting and analyzing data, and it 

makes the designers understand and control their complexity (Fenton & Bieman, 2014; 

McGarry et al., 2002).  

 

Measurement is based on formal models such as the Goal Question Metric (GQM) 

(Basili, 1992), Balanced Scorecard (BSC) (Martinsons, Davison & Tse, 1999), and the 

Entity-Attribute-Metrics model (EAM) (Fenton and Pfleeger, 1997). The GQM 

focuses on the organizational goals and has a wider scope which is at the project level 

(Basili, 1992) while the BSC which has its origin from strategic management, focuses 

on aspects of finance, clients, internal, and learning and development (Martinsons, 

Davison & Tse, 1999). The EAM model focuses directly on an object or entity such 
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as an SCSS code and is one of the most popular models for defining metrics(Muketha 

et al., 2011). 

 

The proponents of EAM model Fenton and Pfleeger (1997), in effort to create an 

industry standard for determining the process of defining metrics identified three 

major stages, which include identification of entity to measure (e.g. project, product 

and process), identification of the entity’s attributes that need to be measured, and then 

deriving metrics for each of the attributes. These three steps are described in Figure 

2.4. 

 

 

 

 

 

Figure 2.4: Software Metrics Definition Process 

 

2.4.2 Software Complexity Attributes Classification 

The various defined metrics in literature, target a particular type of software and are 

derived from a specific software attribute. For example, the popular McCabe’s 

Cyclomatic Complexity metric is based on the control flow attribute of software 

(McCABE, 1976), while Chidamber and Kemerer metrics such as the Depth of 

Inheritance Tree (DIT) and Number of Children (NOC) are based on inheritance 

attribute (Chidamber & Kemerer, 1994).  

 

Software Entity 

Identify software 
artifact or entity to 
measure e.g. SCSS 

code 

Software Attribute 

Identify software 
attributes e.g. 
inheritance 

Software 
Metrics  

Define 
inheritance 

metric e.g. level 
of selector 
inheritance 
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The identification of the right attributes for a given software can help in the evaluation 

and improvement of a software product (Morasca & Briand, 1997; Muketha, 2011). 

Software attribute is defined as the feature or property of a product (Bukhari et al., 

2015) and these features of a product determine the type of measurement for it.  

 

Several researchers have proposed classification schemes for software attributes in an 

effort to aid metrics definition (Fenton and Bieman, 2014; Fenton, and Pfleeger, 1997; 

Morasca, 2015, Daud and Kadir, 2014, Muketha, 2011; Falah & Magel,2015; Mens, 

2016; Henderson-Sellers, 1996). Some of these existing software attributes 

classification schemes provide a general treatment of complexity (Fenton & Bieman, 

2014; Fenton & Pfleeger, 1997; Morasca, 2015), while others focus on a specific kind 

of complexity (Daud and Kadir, 2014; Henderson-Sellers, 1996; Muketha, 2011).  

 

Fenton and Bieman (2014), proposed three categories for deriving the attributes to 

measure namely; process, product, and resources. The product category which is the 

focus of this study further classified attributes as internal or external attributes. Internal 

attributes are those that can be measured directly such as the size of code while 

external attributes are measured indirectly, such as reliability and maintainability. The 

limitation of this classification is that the modularity of the attributes such as control 

flow, data flow, cohesion, and coupling is not known.  

 
In another study, Falah and Magel (2015) identified four ways of categorizing software 

attributes into product, process, people, and value to the customer. In this classification 

scheme, structural complexity falls under the product category. Structural complexity 

is further divided into control flow complexity, data complexity, and size attributes. 

The limitation of this classifications scheme is like the Fenton and Bieman 
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classification, in that, the level of modularity of the attributes is not provided, meaning 

we can’t tell whether all the possible attributes of software are captured. 

 

Daud and Kadir (2014) have classified software structural attributes into static and 

dynamic attributes. These authors identified three structural attributes, coupling, 

cohesion and complexity which fall under both static and dynamic. These attributes 

are the most popular in measuring service-oriented architecture (SOA). The limitation 

of this classification is that it identified the attributes from the literature and not from 

the structural properties of SOA. Meaning that the attributes identified may not fully 

represent SOA structural complexity. 

 

Mens (2016) identified four major dimensions of software complexity, including 

theoretical complexity, the complexity of use, organizational complexity and 

structural complexity. Theoretical complexity was further divided into computational 

and algorithmic complexity, the complexity of use was divided into functional and 

usability, while structural complexity was divided into module level and system level. 

This classification scheme does not show what attributes can be derived from module 

level and system level hence it’s not comprehensive. 

 

Henderson-Sellers (1996) categorized software complexity into computational 

complexity, psychological complexity, and representational complexity. The author 

further divided psychological complexity into structural complexity, programmer 

characteristics and problem complexity. Structural complexity was further divided 

into intra and inter-module categories. The intra-module category is further divided 

into size, control flow, and cohesion attributes while the inter-module category is 
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specialized into the coupling attribute. This classification scheme is one of the most 

popular in terms of structural complexity classification (Muketha, 2011). However, its 

limitation is that it overlooks some new dimensions of structural complexity found in 

SCSS software and how they are implemented. The SCSS structural dimensions or 

features are discussed in depth in section 2.4.3.2. The Henderson-Sellers classification 

is illustrated in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5: Software Complexity Classification  

(Source: Henderson-Sellers, 1996) 

 

The part of structural complexity in the Henderson-Sellers classification scheme has 

been extended by introducing the hybrid category to the existing inter and intra-
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module categories (Muketha, 2011). The hybrid attribute category blends intra-

module and inter-module attributes. Muketha’s framework is the more recent and 

comprehensive in the context of structural complexity. However, just like the 

Henderson-Sellers scheme, it is limited in that it overlooks some new dimension of 

structural complexity introduced in SCSS software. The uniqueness of SCSS 

dimensions are discussed in section 2.4.3.2. Figure 2.6 illustrates the classification 

framework. Intra-module attributes focused on an individual process which is 

equivalent to a module while inter-module attributes focused on the interaction of two 

modules. Finally, hybrid attributes blends intra- and inter-module attributes. 

 

 

 

 

 

 

 

 

 

      Figure 2.6: Extended Structural Complexity Classification  

     (Source: Muketha, 2011) 

 
SCSS is an extension of Cascading Style Sheets (CSS) and it combines CSS features 

and traditional software features such as the use of variables, mixins, functions and 

control flows (Mazinanian and Tsantalis, 2016). This uniqueness of SCSS software 

means that the existing classification schemes cannot be used to sufficiently identify 

the structural attributes for SCSS.  

 

Structural complexity  

Intra-module attributes Inter-module attributes  Hybrid attributes  
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2.4.3 Structural Complexity 

Structural complexity is defined as the way in which the program elements are 

organized and interact within the software system (Ramasubbu and Kemerer, 2012; 

Darcy, Slaughter & Kemerer, 2005). It focuses on the design and structure of software 

(Laird and Brennan, 2006) and is concerned with the measurement of internal 

attributes which are assessed by the difficulty of performance of tasks such as the 

writing of codes, modifying and testing of software (Mens, 2016; Riguzzi, 1996).  

 

2.4.3.1 Structural Complexity Properties for Traditional Software 

Many authors consider size, length, coupling, and cohesion as part of structural 

complexity (Muketha, 2011; Henderson-Sellers,1996; Khan, Mahmood, Amralla, & 

Mirza, 2016). For instance, the lines of code (LOC) metric, also called the physical 

lines of code, has been used as a size measure, and to some extent, as a complexity 

measure.  The related logical lines of code (LLOC) metric, has been found to have 

higher accuracy when compared to LOC because it eliminates comment lines, auto-

generated code lines, header files, ineffective code lines, compiler directives, labels, 

and empty case statements (Khan et al., 2016). For example, Adewumi et al. (2012) 

proposed size in terms of lines of rules for cascading style sheets while Misra & Cafer 

(2012) considered size in terms of lines of JavaScript code on condition that the only 

lines to be factored were those that consisted of variable or operators.  

 

The concept of inheritance has been recognized as one of the most important features 

for software reuse. In object-oriented languages, inheritance supports class hierarchy 

design and captures the is-a relationship between a class and sub-class (Chung, & Lee, 

1992). Inheritance has been studied in object-oriented languages extensively (Chung, 
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& Lee, 1992;, Chawla & Nath,2013; Gill & S. Sikka,2011;Misra et al., 2011). Though 

inheritance supports reuse, it can increase complexity if not used in the proper range 

(Chawla & Nath,2013). Style sheets provide a unique way of supporting inheritance 

because there are no classes and sub-classes as provided for in the object-oriented 

domain.  

 

Nesting complexity has also been studied as an important property. Nesting reflects 

the level of nesting within constructs or control structures (Li, 1987). Constructs are 

such as if, case, for, while, and do-until can be nested. A statement that is at the 

innermost level is harder to understand, meaning that it contributes more to complexity 

than other statements (Chhillar & Bhasin, 2011). In SCSS, nesting occurs with 

selectors, and the more the selectors are deeply nested the more complex an SCSS 

code becomes (Frain, 2013). 

 

Coupling has been defined as the measure of the strength of association established by 

a connection from one module to another (Stevens, Myers, & Constantine, 1974). It 

has been argued that the stronger the coupling between modules, the more difficult 

these modules are to understand, change and correct, resulting in more complex 

software. Coupling has been studied in the domain of procedural programming 

(Stevens et al., 1974) and object-oriented programming (Chidamber & Kemerer,1994; 

Li & Henry,1993; Abreu and Melo, 1996). While coupling as a complexity measure 

has been studied in procedural and object-oriented languages it has not been addressed 

in the stylesheets’ domain. The SCSS language implements coupling in a unique way. 

The modules also known as rule blocks are coupled to each other through an external 

module, unlike in OOP where modules are directly coupled to each other. 
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Coupling in OOP is demonstrated in Figure 2.7, where Class B methods and variables 

can be accessed by both Class A and Class C. When a change is introduced in Class 

B methods and attributes, it affects Class A and Class C. 

 

 

 

   Figure 2.7: Coupling in OOP  

 

Coupling in SCSS is demonstrated in Figure 2.8, where there are three rule blocks or 

modules namely, rule block A, rule block B and rule block C. These rule blocks are 

not connected to each other directly but share global data in form of mixins and 

variables. When a change is made to any of the mixin or variable, the effects are 

replicated in all the rule blocks. 

 

 

 

 

 

 

 

    Figure 2.8: Coupling in SCSS  

 

The aspect of cohesion is discussed extensively in the procedural and object-oriented 

domain. Cohesion is defined as the  single-mindedness or relatedness of a module 

component (Bieman and Ott, 1994). When a module is highly cohesive, it means, all 

 
Class A { 
    attributes; 
    methods; 
} 

Class B { 
    attributes; 
    methods; 
} 

Class C { 
    attributes; 
    methods; 
} 

Rule Block A{ 
    attributes; 
    directives; 
} 

Mixins and 
Variables 

Rule Block B { 
    attributes; 
    directives; 
} 

Rule Block C { 
    attributes; 
    directives; 
} 
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the defined elements in a module perform a single task. Therefore, it’s the goal of 

software designers to make a program as cohesive as possible. 

 

The complexity of code can be expressed through control structures, and therefore, a 

program which implements control structures is regarded as more complex in 

comparison to the program without control structures (Chhillar and Bhasin, 2011). The 

complexity of a program is directly proportional to the cognitive weights of Basic 

Control Structures (Misra and Cafer, 2012). For example, iterative control structures 

like for loop, while, and do…while contribute more complexity than decision making 

control structures such as if…then…else. 

 

2.4.3.2 Structural Properties for SCSS 

SCSS combines the characteristics of CSS, such as the use of selectors, rule blocks, 

and declarations with those of traditional software such as inheritance, nesting, and 

coupling (Mazinanian and Tsantalis, 2016). The combination of these features makes 

the front web developers create more efficient and maintainable code. 

 

Arbitrary and meaningful variables are one of the causes of complexity and if a 

variable’s name is arbitrary given, then the comprehensibility of that code will be 

lower (Kushwaha & Misra, 2006). In essence, variable names should be meaningful 

in programming and if variable names are taken arbitrarily they may increase the 

difficulty in understanding four times more than the meaningful names (Kushwaha & 

Misra, 2006). SCSS introduced variables to enable developers to easily maintain 

stylesheets and they are prefixed with a dollar sign ($). These variables can be global 

or scoped. Global variables are variables that are defined on its own line, and they 
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apply to the whole sheet, while scoped variables appear within a selector and will only 

appear to that selector and its children (Catlin & Catlin, 2011). 

 

A rule block basically consists of properties and values which together form a 

declaration or an attribute. The more the number of attributes defined in a regular CSS 

rule block, the more complex it is (Adewumi et al., 2012). SCSS has more factors that 

contribute to its rule block complexity, for example, use of operators, use of variables, 

use of function calls, implementation of rule blocks within another rule block and use 

of control directives such as @if, @for, @each, @while, @else if, and if () function. 

 

SCSS provides a unique way of supporting inheritance by use of selector inheritance 

(Netherland, Eppstein, Weizenbaum & Mathis  2013).  The selectors are extended in 

an SCSS rule block by use of @extend directive (Cederholm, 2013). This means that 

all the attributes of the inherited selector are implemented in the rule block that the 

selector has been extended. Figure 2.9 has code that illustrates the use of selector 

inheritance. The code has two rule block which has a selector named .alarm and is 

inherited by .alarm-positive selector. This means that the .alarm-positive selector will 

have five attributes or declarations i.e. padding, font size, text align, color and 

background. 
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Figure 2.9: Selector Inheritance 

SCSS allows nesting of rules inside each other instead of repeating selectors in a 

separate declaration (Cederholm, 2013). Figure 2.10 illustrates nesting by placing the 

message rule block inside infobox rule block.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10: Nesting of Rules 

 

SCSS consists of rule blocks, a rule block consists of properties and values which 

together form a declaration or an attribute. The more the number of components 

defined in a CSS rule block, the more complex it is (Adewumi et al., 2012). SCSS has 

. alarm{  

padding: 15px;  

font-size: 1.2em;  

text-align center;  

color: $color-accent; 

} 

. alarm-positive { 

@extend .alarm;  

background: #9c3; 

} 

Alarm selector 

Alarm positive selector 
 
Alarm selector inheritance 

.infocon { 

height: 300px; 

.messicon { 

border: 1px solid red; 

} 

} 

.infocon {  

height: 300px;  

} 

.infocon .messicon {  

border: 1px solid red; 

} 

 

Non-nested rules Nested rules 
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several components which contribute to rule block complexity, for example, attributes 

or declarations, operators, variables, function calls, control directives, include 

directive and extend directive. 

 

In SCSS, coupling is manifested when the declared properties such as mixins and 

variables are used in several places of the code, meaning that the properties can be 

changed without realizing you are affecting multiple objects at once or not noticing 

which elements are being affected by the changes.  In stylesheets, cohesion is viewed 

as the rule blocks having a single attribute (Adewumi et al., 2012).  

 

SCSS implements a number of control directives which provide flow and logic to the 

CSS code. These control directives are; if(), @if, @else, @for loop, @while, and 

@each (Cederholm, 2013). In the Stylesheets field the use of control structures has 

not been considered by researchers in relation to software complexity.  

 

2.5 Existing Software Complexity Metrics 

The practice of defining software metrics has been continuing over the years for 

different kinds of software domains such as procedural, object-oriented, and web-

based domains. Software metrics assess software from diverse perspectives to reflect 

the software internal quality such as maintainability (Arar & Ayan, 2016). The use of 

software complexity metrics has been recognized in software engineering as a way of 

controlling software complexity. Software metrics play a great role in measuring the 

level of success and failure of software, and this informs the software issues that 

require the attention of designers (Misra et al., 2018; Muketha et al., 2010b; 

Parthasarathy & Anbazhagan, 2006; Verner & Tate, 1992). 
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The following sub-sections present existing complexity metrics in the various domains 

of traditional programming languages, object-oriented languages, web-based 

languages including scripting web languages such as CSS.  

 

2.5.1 Complexity Metrics for Traditional Software 

Metrics such as Lines of Code (LOC), Function point (FP), McCabe cyclomatic 

complexity metric and Halstead’s software science metrics are well known and 

frequently used to measure software complexity. These metrics targeted procedural 

languages which have major differences with SCSS syntax as shown in Table 2.1, 

meaning the metrics cannot be directly applied to SCSS.   

 

2.5.1.1 Lines of Code (LOC) 

The line of code is the oldest, simplest and most widely used metrics for calculation 

of program size (Debbarma, M., Debbarma, S., Debbarma, N., Chakma & Jamatia, 

2013; Kandpal & Kandpal, 2012). LOC counts the number of instructions of a program 

in terms of SLOC (source lines of code) and excludes comments and blank lines. LOC 

is criticized for its lack of accountability, lack of cohesion with functionality, 

programmer and language dependent and lack of counting standards (Kandpal & 

Kandpal, 2012). There are alternatives to SLOC such as KLOC (thousands or Kilo of 

lines of code), KDSI (thousands of delivered source instructions), NCLOC (non-

commented lines of code), and the number of characters or number of bytes (Kandpal 

& Kandpal, 2012). However, both LOC and its variants portray similar limitations. 
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2.5.1.2 Function Point (FP) 

The Function Point metric was initially proposed by Albrecht and his contemporaries 

at IBM in the mid-1970 (Albrecht, 1979). The FP metric is used for systems 

measurement from a functional perspective regardless of the technology implemented. 

The metric basically breaks down a system into smaller components to enhance the 

understandability and analysis of the system (Praveen, Agarwal & Srivastava, 2018). 

Function points are weighted sum of inputs, outputs, queries, internal and external 

files, and are used to indirectly measure a project or application functionality (Kaur & 

Maini, 2016). 

 

The ultimate measure of software productivity is the number of functions a 

development team can produce given a certain amount of resource, regardless of the 

size of the software in lines of code. FP metric addresses some of the problems 

associated with LOC and productivity measures, especially the difference in LOC 

counts that result because different levels of languages are used.  

 

The FP technique depends on the counts of distinct types in the following five 

categories of external inputs, number of external outputs, number of logical internal 

files, number of external interface files, and number of external inquiries (Borade & 

Khalkar, 2013). External inputs refer to each user input that adds or changes data in 

an internal file, for-example input of data via input screen to add to the student’s 

information. The external outputs are outputs by each user that provides application-

oriented information, such as a report that contains the number of students pursuing a 

certain course. The logical internal files are the logical groups of data that are within 

the application’s boundary and form part of the database. For example, group of 
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information related to the student such as registration number, student name, course, 

year of study, etc. The external interface files are all machine-readable interfaces such 

as data files which reside outside the application and are used for reference purpose 

only. For example, information concerning students’ fees can be used by an academic 

application, but all the information on students’ fees is maintained by the student’s 

fees application. Finally, the external inquiries are the user inquiries, where an online 

input results in an immediate response in form of an online output, this input data 

doesn’t update the internal logical files  For- example a student can query on his results 

for a certain academic year (Borade & Khalkar, 2013). 

 

The formula for computing the function points (FP) is: 

FP = Count Total * [0.65 + 0.01 ∑ (Fi)] 

Where Count Total is the sum of all function points entries and Fi is the sum of degree 

of influence of each of the systems characteristics in consideration. 

 

This approach is very difficult to implement practically because function points are 

computed manually, and an experienced person is required to use this technique 

(Praveen, Agarwal & Srivastava, 2018). 

 

2.5.1.3 Halstead’s Metrics 

Halstead’s metrics known as Halstead software science was introduced to build a 

theory that describes measurable software attributes. This metric assumes that a 

program consists of only operators and operands The attributes program length, 

volume, vocabulary, level, and programming effort were deemed as sufficient 

measurement attributes (Halstead, 1977). Scientific methods were introduced to 
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analyze software features and structure using Halstead’s software science (Awode et 

al., 2017). 

 

The Halstead metric is defined based on the following four numbers (Halstead, 1977): 

ɳ1: Number of non-repetitive (distinct) operators 

ɳ2: Number of non-repetitive (distinct) operands 

N1: Number of all operators 

N2: Number of all operands 

 

The various measures derived from the four numbers are: 

i. The measure for program length, which is the total number of operators 

and operands  

N = N1 + N2 

 

ii. The measure for the vocabulary of the program is the sum of the number 

of distinct operands and operators 

n = ɳ1 + ɳ2 

 

iii. The measure for volume (V) is the count of the functional points in the 

program 

Halstead defined the volume, V, of a program to be 

V= (N1 + N2) log2 (ɳ 1 + ɳ 2) 

   = N log2 (n) 
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iv. The measure for program difficulty (D) is proportional to the total number 

of unique operators and total usage of operands 

D = (n1 * N2) / (2 *n2) 

 

v. The measure of effort (E) required to implement a program or 

understanding the program is directly proportional to difficulty and volume 

E = D * V 

vi. The measure of number of bugs (B) expected in the program is proportional 

to effort 

B =  E * (0.667 / 3000) 

 

vii. The measure of time (T) taken to write the program is proportional to effort 

T = E / S 

       Where S = 18 seconds. 

 

Halstead metrics addressed LOC weakness where computer algorithm has been 

defined as a collection of tokens (Halstead, 1977). However, they have been criticized 

as being difficult to compute and depends on a code that is complete (Dhawan & Kiran, 

2012). In addition, Halstead metrics are criticized as being confused and inadequate, 

though they are reasonable from a measurement theory perspective (Fenton, 1994). 

Though SCSS language makes use of operators and operands the Halstead metric 

doesn’t capture the SCSS structural attributes, meaning it cannot be relied on to 

provide SCSS complexity measure. 
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2.5.1.4 McCabe Cyclomatic Complexity 

McCabe’s metrics are one of the most popularly used metrics that focus on the control 

flow structure of a program (McCabe, 1976). Cyclomatic complexity directly 

measures the number of linearly independent paths through a program source code 

(Madi, Zein, & Kadry, 2013; Khan et al., 2016).  

 

The metric can be defined in two ways: The first approach is the basic formula for a 

single program and is computed as the number of decision statements in a program 

plus one. There are four basic rules for calculating Cyclomatic Complexity (Madi, 

Zein, & Kadry, 2013): 

i. Count the number of all if statements 

ii. Count the number of all cases in a switch statement, except the default and else 

case. 

iii. Count all the loops in the program i.e. do, while and for loop statements 

iv. Count all the try/catch statements 

Finally, compute the total of all numbers from step 1 to step 4, then add 1 

CC = Number of Decisions + 1 

 

The second approach is used for large systems with several interconnected 

components. The graph is drawn and then the cyclomatic complexity is computed with 

the following formula:  

V (G) = e – n + 2p 

 

Where G represents the graph, n vertices are the number of nodes of the graph, e is the 

number of edges of the graph, and p is the number of connected components in a graph 
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The cyclomatic complexity measurement was designed to indicate the testability and 

understandability of a program. This metric is restricted because it simply counts 

decision nodes, and it assigns equal weights for both branch and loop statements 

(Cardoso, 2006; Debbarma et al., 2013). Loops  are more complex than branches are 

more complex than sequences. In addition, the cyclomatic complexity doesn’t 

consider the nesting level of control structures (Debbarma et al., 2013). 

 

2.5.2 Complexity Metrics for Object-Oriented Languages  

Over the years, researchers have proposed numerous object-oriented metrics that could 

be used to measure software complexity. These metrics targeted object-oriented 

languages and since SCSS language is not an OOP language it means that the metrics 

cannot be directly applied to SCSS. SCSS programs have major differences with OOP 

as described in Table 2.1. The subsequent sections present an analysis of these metrics. 

 

2.5.2.1 Chidamber and Kemerer Metrics 

There are several metrics defined for the object-oriented domain; one of the most 

popular is Chidamber and Kemerer (1994) metrics. The C&K metrics (1994) are; 

Weighted Methods per Class (WMC),  Depth of Inheritance Tree (DIT) which 

measures the maximum length from the node to the root of the tree, where deeper trees 

constitute greater design complexity, Number of Children (NOC) which shows the 

number of immediate subclasses subordinated to a class in the class hierarchy, 

Coupling between object classes (CBO) which is the count of the number of other 

classes to which it is coupled, Response for a Class (RFC) which refers to a set of 

methods that can potentially be executed in response to a message received by an 
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object of that class and Lack of Cohesion in Methods (LCOM) which refers to the 

degree of similarity of methods. The larger the number of similar methods, the more 

cohesive a class is. These metrics have been empirically validated by several 

researchers ( Denaro, Lavazza, & Pezze,2003; El-Emam, Melo & Machado, 2001; 

Basili, Briand & Melo,1996; Abreu, Melo & Abreu, F., 1996), however they have 

been found to be deficient theoretically (Koh, Selamat, Ghani & Abdullah, 2008; Li, 

1998). 

 

2.5.2.2 Mishra Inheritance Metrics 

Mishra (2012) proposed two inheritance metrics namely; class level CCI (Class 

Complexity due to Inheritance) and program level ACI (Average Complexity of a 

program due to Inheritance). They metrics are promising in that they have been proven 

to be mathematically sound using Weyuker’s properties. However, these metrics 

require empirical validation to ascertain whether they are can be useful indicators of 

external quality of software. 

 

 2.5.2.3 Abreu and Carapuca Metrics 

Abreu and Carapuca (1994) defined five metrics that can be used to measure 

inheritance in object-oriented software. These include Total Children Count (TCC), 

Total Progeny Count (TPC), Total Parent Count (TPAC), Total Ascendancy Count 

(TAC) and Total length of inheritance chain (TLI). 

 

The TCC is the number of classes that inherit directly, TPC is the number of classes 

that inherit directly or indirectly from a class, TPAC is the number of super classes 

from which a class inherits directly, TAC was defined and represents the number of 
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super classes from which a class inherits directly or indirectly, finally TLI is the total 

number of edges in the inheritance hierarchy graph. These metrics focused only on the 

inheritance aspect of object-oriented software and ignores other structural aspects of 

the software. 

 

2.5.2.4 Lorenz and Kidd Metrics Suite 

Lorenz and Kidd (1994) derived three metrics namely; Number of Methods (NMI), 

Number of Methods Overridden (NMO) and Number of New Methods (NNA). The 

NMI measure counts the total number of methods inherited by a subclass, while NMO 

counts the total number of methods overridden by a subclass and a superclass, and 

NNA counts the number of new methods in a subclass (Mishra, 2012) These metrics 

have been criticized as simplistic and just counts class properties, meaning they cannot 

be relied on to evaluate software quality (Baroni & Abreu, 2003; Harrison, Counsell 

& Nithi, 1997). 

 

2.5.2.5 Li Metrics 

Li (1998) proposed a set of six metrics to remedy the shortcomings of Chidamber and 

Kemerer metrics. The metrics are, Number of Ancestor Classes (NAC), Number of 

Local Methods (NLM), Class Method Complexity (CMC), Number of Descendants 

Classes (NDC), Coupling Through Abstract Data Type (CTA), and Coupling Through 

Message Passing (CTM). 

 

The NAC metric measures the total number of ancestor classes from which a class 

inherits. The NLM metric counts the number of local methods in a class and are 

accessible outside the class. The CMC metric sums the internal structure complexity 
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of all local methods. NDC metric returns the total number of subclasses of a class. The 

CTA counts the total number of classes that are used as abstract data types. Lastly, the 

CTM metric returns the number of different messages sent out from a class to other 

classes, without considering the inheritance feature (Gupta, 2015). Though LI metrics 

addressed limitations in Chidamber and Kemerer metrics, they require modifications 

to strongly predict maintainability (Gupta, 2015).  

 

2.5.2.6 MOOD Metrics Suite 

The MOOD metrics are structural complexity metrics of the Object-oriented domain. 

These metrics were proposed in 1994 (eAbreau & Carapuça, 1994) they include; 

Method Hiding Factor (MHF), Attribute Hiding Factor (AHF), Method Inheritance 

Factor (MIF), Attribute Inheritance Factor (AIF), Polymorphism Factor (PF) and 

Coupling Factor (CF). 

 

The MHF and AHF are proposed as measures of encapsulation. The MHF metric is 

the ratio of the sum of the invisibilities of all methods defined in all classes to the total 

number of attributes defined while AHF is the ratio of the sum of the invisibilities of 

all attributes defined in all classes to the total number of attributes. The MIF and AIF 

are inheritance-based metrics. The MIF metric is the ratio of the sum of the inherited 

methods in all classes to the total number of available methods while the AIF metric 

is the ratio of the sum of inherited attributes in all classes to the total number of 

available attributes in all classes. The PF Metric is the ratio of the actual number of 

the possible polymorphic situation for a given class to the maximum number of 

possible distinct polymorphic situations for the same class in consideration. Then the 

CF metric is the ratio of the maximum possible number of couplings not related to 
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inheritance (Neelamegam & Punithavalli, 2009). These metrics have been criticized 

for not being able to predict errors in classes (Shaik, Reddy & Damodaram, 2012). 

 

2.5.2.7 Misra, Adewumi, Fernandez-Sanz and Damasevicius Metrics 

Misra et al. (2018) proposed a suite of objected oriented complexity metrics. These 

metrics are Method Complexity (MC), Coupling Weight for a Class (CWC), Attribute 

Complexity (AC), Class Complexity (CLC) and Code Complexity (CC). The MC 

metric is computed by summing up all the assigned weights of methods in a class. The 

CWC metric sums the weights of calls and weights of called methods. AC metric 

computes the total number of attributes in a class. The CLC metric computes class 

complexity by summing up AC with MC and finally, the CC metric considers the 

complexity of classes brought by their interactions. The metrics emphasize on the 

inheritance aspect of code, where all classes in the same level are assigned same 

weight and subclasses weights are multiplied. These metrics have been proved to be 

theoretically sound, however, they need to be applied to industry projects to establish 

their usefulness. 

 

2.5.3 Web-Based Metrics  

Several researchers have defined metrics in the web domain. This section describes 

the different metrics based on the existing web-based languages. Since this study 

focuses on web-based metrics the availability of tool support is considered while 

discussing each metric. 
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2.5.3.1 Misra and Cafer Metrics 

Misra and Cafer (2012) proposed JavaScript Cognitive Complexity Measure (JCCM), 

for measuring the design quality of scripts. The motivation for JCCM is to calculate 

the structural and cognitive complexity of JavaScript. This metric considered five 

factors that contribute to JavaScript complexity, the number of lines of codes, the 

number of meaningfully named variables (MNV), the number of arbitrary named 

distinct variables (ANDV), the cognitive weight of basic control structures (BCS’s) 

and the number of operators (NO). The JCCM metric has been proven to conform to 

measurement theory, in addition, the metric has been empirically validated for 

understandability aspect of maintainability. However, there is no indication of tool 

support, meaning its difficult for the industry and researchers to adopt it. Furthermore, 

this metric targets JavaScript language, which means it cannot be used to measure 

programs written in the SCSS language due to the syntactical difference between 

JavaScript and SCSS. 

 

2.5.3.2 Basci and Misra Metrics 

Basci and Misra (2011) defined an entropy measure for the assessment of structural 

complexity of XML. The schema entropy metric measures the schema documents 

complexity due to elements structure diversity. This metric has been validated 

empirically although there is no evidence of theoretical validation and tool support. 

 

Basci and Misra (2011) defined two document type definition (DTD) complexity 

metrics, Entropy metric: E(DTD) and  Distinct Structured Element Repetition Scale 

metric: DSERS(DTD) so as to measure the structural complexity of schemas in DTD 

language. E(DTD) metric value is computed by considering equivalence classes in a 
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schema document. An equivalence class is the one that its elements have the same 

value of fan-in and fan-out and number of attributes. DSERS(DTD) metric measures 

the interface complexity of the schema document. The lower the E metric value and 

the higher the DSERS value the lesser the effort to understand the element structure. 

These metrics have been validated both theoretically and empirically, although no 

support for the automated tool has been seen so far. 

 

Basci and Misra (2009) have also defined a design complexity metric for XML 

Schema documents(XSD) written in W3X XML Schema language. The metric 

C(XSD) measures the complexity of XSD based on the internal architecture of XSD 

components and recursion. It captures all the major factors responsible for XSD 

complexity. These factors are complexity based on elements and attributes definitions, 

elements and attributes group definitions, user-defined or built-in simple type and 

complex type definitions, elements definitions with no recursion and components that 

are included from external schema files. The proposed metric has been validated both 

through an experiment and theoretically through the Kaner and Briand’s framework. 

Tool support for this metric has however not been seen although desirable. 

 

Basci and Misra (2011b), described four XML web service metrics namely data weight 

of a web service description language (DW -WSDL) which is computed by defining 

the sum of the data complexities of each input and output messages, distinct message 

ratio (DMR) metric which counts the number of distinct structured messages, message 

entropy (ME) metric which measures the complexity of similar-structured messages 

and message repetition scale (MRS) metric analyses the varieties in structures of web 

service description language. These four metrics have been theoretically validated 
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using Kaner Framework and Weyuker’s properties. They have also been validated 

empirically although there is no automated tool support. 

 

The Basci and Misra metrics targeted DTD and XML software artifacts which have 

difference with SCSS in terms of syntax, therefore, they cannot be used to measure 

SCSS complexity. 

 

2.5.3.3 Thaw and Misra Metrics 

Thaw and Misra (2013) have defined an Entropy Measure of Complexity (EMC) for 

XML documents. The metric measures the reusable quality of XML schema 

documents. A high EMC value implies that the document is more reusable and that it 

contains inheritance features, elements, and attributes.  Theoretical validation based 

on Kaner framework and Weyuker’s properties were done on the metrics. The metrics 

were also validated empirically. As is the case with most metrics in this domain, no 

tool support has been seen for the EMC metric. In addition, the metric targeted XML 

documents which has major synatactical differences with SCSS, thus cannot measure 

SCSS complexity. 

 

2.5.3.4 Tamayo, Granell and Huerta Metrics 

Tamayo et al. (2011) defined three XML complexity metrics in geospatial web 

services, Data Polymorphism Rate (DPR), Data Polymorphism Factor (DPF), and 

Schemas Reachability Rate (SRR). DPR measures schema polymorphism, DPF  

measures the influence of polymorphic elements in the overall schema complexity, 

and SRR measures the fraction of imported hidden schema components by the 

subtyping mechanisms. These metrics have been empirically validated using a case 
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study and were found to be useful in detecting potential design problems for-example 

a component with too many information items. However, these metrics have not been 

theoretically validated, there is no evidence of tool support and they targeted XML 

software only, meaning that the metrics cannot measure SCSS complexity. 

 

2.5.4 Adewumi, Misra and Ikhu-Omoregbe Metrics  

Adewumi et al. (2012) proposed the first set of metrics in the stylesheet field. The 

metrics focused on CSS and they include, Rule Length (RL), Number of Rule Blocks 

(NORB), Entropy Metric (E), Number of Extended Rule Blocks (NERB), Number of 

Attributes defined per Rule Block (NADRB), and Number of Cohesive Rule Blocks 

(NCRB).  

 

The Rule Length metric measures the number of lines of rules (or code) in a CSS file, 

and it’s intended to measure the size of code.  It is adapted from the popular line of 

code (LOC) metric. The formula for calculating rule length is  

RL = ∑ rule statements 

Where RL is the rule length, and rule statements are the number of executable 

statements in a CSS file. 

The limitation with the RL metric is that it does not consider the non-executable parts 

of CSS code such as white spaces or comment lines. 

 

The Number of Rule Blocks metric counts the number of rule blocks in CSS code. The 

formula for calculating the Number of Rule Blocks is: 

NORB=∑ rule blocks in a CSS file 
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Where NORB is the Number of Rule Blocks in CSS file, and a rule block 

consists of a selector and its declarations. 

 

The NORB metric is similar to the RL metric because it’s intended to measure the size 

of the code, meaning it achieves the same goal as RL.  

 

The Entropy Metric puts the elements with the same structural complexity in the same 

category, this category is referred to as equivalence class(C). The entropy of a CSS 

document is based on n distinct class of elements and is calculated using the relative 

frequencies as unbiased estimates of their probabilities.  P (Ci), i=1, 2…. n. The 

formula for calculating the entropy of CSS file is: 

E=∑P(Ct)log2P(Ct) where t=1…n 

  =∑(1/n) log2(1/n) 

Where E represents the Entropy metric value, P represents the probability of 

occurrence of distinct class elements (C). 

 

The Entropy metric groups similar rule blocks and so when the entropy metric value 

is low the higher the structural similarity of rule blocks meaning the complexity of the 

CSS code is low. 

 

The Number of Extended Rule Blocks metric counts the number of rule blocks that are 

extended in a CSS file. The formula for calculating the Number of Extended Rule 

Blocks of CSS file is:    

NERB=∑ extended rule block(i)  

where NERB represents the Number of Extended Rule Block and i = 1…. N 
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The Number of Attributes defined per Rule Block metric determines the average 

number of attributes defined in the rule blocks of a CSS file. The formula for 

calculating the Number of Attributes defined per Rule Block of CSS file is:  

NADRB = (Total number of attributes in all rule blocks / Total number of rule 

blocks) 

Where NADRB represents The Number of Attributes defined per Rule Block 

 

A higher NADRB metric value leads to higher complexity of the CSS code. 

 

The Number of Cohesive Rule Block metric counts all rule blocks possessing a single 

attribute. The formula for calculating the Number of Cohesive Rule Block of CSS file 

is: 

NCRB=∑ rule block (i) possessing only one attribute  

Where NCRB represents the Number of Cohesive Rule Blocks and i = 1 …. N 

 

The higher the NCRB metric value the lower the complexity of CSS code. 

 
These metrics are specifically for the CSS and the first of its kind in Stylesheets 

domain; and though they have been found to be practically valid, they have not been 

empirically validated and we cannot tell their mathematical soundness. The usefulness 

of the metrics in predicting the external quality of maintainability for CSS cannot, 

therefore, be assured.  
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2.6 Metrics Validation 

There are two main stages required to validate software metrics, these are; theoretical 

validation, and empirical validation (Muketha et al., 2010b; Srinivisan and Devi, 

2014).  

 

2.6.1 Theoretical validation 

The purpose of theoretical validation is to establish whether the proposed metrics are 

mathematically sound. Popular theoretical validation frameworks that are frequently 

cited in software metrics literature include Weyuker’s properties (Weyuker, 1988), 

Briand’s framework (Briand et al., 1996) and Kaner framework (Kaner, 2004). These 

three frameworks have been used extensively by metrics researchers to validate their 

metrics (Adewumi et al., 2012; Misra et al., 2018; Pichler et al., 2010; Geneves, 2012).  

 

2.6.1.1 Weyuker’s Properties 

Weyuker proposed nine properties for validating software complexity metrics 

(Weyuker, 1988). Researchers have argued that it’s not necessary for all the properties 

to be satisfied for a measure to be valid, but it must at least satisfy the majority of the 

properties (Basci & Misra,2011b; Misra et al., 2018). These properties were adopted 

to suit SCSS syntax. 

 

 Property 1 (Noncoarseness): (∃P) (∃Q) (|P| ≠ |Q|) where P and Q are two 

different modules. This property is satisfied when there exist two different 

modules P and Q such that |P| is not equal to |Q|, meaning they don’t return 

similar metric results. 
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 Property 2 (Granularity): Let c be a non-negative number. Then there are 

finitely many modules of complexity c. This property asserts that if a module 

changes then its complexity changes. 

 Property 3 (Nonuniqueness): There can exist distinct modules P and Q  where 

|P| = |Q|. This property affirms that two different modules can have the same 

metric value, this is to say that two modules have the same level of complexity. 

 Property 4 (Design details are important): (∃P) (∃Q)(P ≡ Q &|P| ≠ |Q|). There 

can be two modules P and Q whose external features look the same, however, 

due to different internal structure |P| is not equal to |Q|.  This property asserts 

that two modules with the same number of attributes and directives could 

return different metric values. 

 Property 5 (Monotonicity): (∃P) (∃Q) (|P| ≤ |P; Q| & (|Q| ≤ |P; Q|). This 

property asserts that if we concatenate two modules P and Q, the new metric 

value must be greater than or equal to the individual module. 

 Property 6 (Nonequivalence of interaction): (∃P) (∃Q) (∃R) (|P| =|Q| and  |P; 

R| ≠ |Q; R|) This property implies that if two modules have same metric value 

(P and Q), it doesn’t necessarily mean that when each of the module is 

concatenated with similar module R, the resulting metric values are the same. 

 Property 7 (Permutation): If you have two modules P and Q which have the 

same number of attributes in a permuted order, then |P| is not equal to |Q|. 

 Property 8 (Renaming property): if P is assigned as Q, then |P| = |Q|. Where 

you have two modules P and Q differing only in their selector names, then |P| 

is equal to |Q|. 

 Property 9 (Interaction increases complexity): (∃P) (∃Q) (|P| +|Q| < (|P; Q|). 

This property asserts that there exist two modules P and Q, where the 
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complexity metric value of the two modules when summed up is less than 

when the modules are interacting. 

 

2.6.1.2 Briand’s Property-based Framework 

A property-based approach for software measurement has been proposed to formalize 

software attributes into size, length, complexity, cohesion, and coupling (Briand et al., 

1996). Each of the five attributes contains a set of properties that should be met by the 

metrics being evaluated.  

 
Size: The size of the code C is a function size(C) characterized by the following three 

properties namely; non-negativity, null value and module additivity which should be 

satisfied by the size metrics. 

 Property 1 (Non-negativity): the size of code must never be negative i.e., size 

(C) ≥ 0. 

 Property 2 (Null values): the size of the code is null if there is no module i.e. 

size (C) =0. 

 Property 3 (Module additivity): the code size is the summation of two modules 

(B1 and B2) i.e. Size (C) = size (B1) + size (B2). 

 

Length: The length of the code C is a function length (C) characterized by the 

following five properties namely; Non-negativity, null value, disjoint modules, non-

increasing monotonicity, and non-decreasing monotonicity. 

 Property 1 (Non-negativity): The length of the code cannot be negative. 

 Property 2 (Null value): The length of the code is null if the code has no 

modules. 
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 Property 3 (Disjoint modules): The length of a code that has two separate 

modules is equal to the lengths of the two modules. 

 Property 4 (Non-increasing monotonicity): Adding relation between elements 

of a module does not increase the length of the code. 

 Property 5 (Non- decreasing monotonicity): Adding relation from two modules 

does not decrease the length of code. 

 

Complexity: The complexity of code C is a function complexity (C) that is 

characterized by the following five properties namely; Non-negativity, null value, 

disjoint module additivity, symmetry and module monotonicity. 

 Property 1 (Non-negativity): The complexity of the code cannot be negative. 

 Property 2 (Null value): The complexity of the code is null if the module is 

empty. 

 Property 3 (Disjoint module additivity): The complexity of the code that has 

two modules is the summation of the complexities of the two modules. 

 Property 4 (Symmetry): The complexity of a code is not dependent on how 

you choose to represent code elements relationships. 

 Property 5 (Module monotonicity): The complexity of a code is no less than 

the sum of the complexities of any two of its modules with no relationships in 

common. 

 

Cohesion: The cohesion of the code C is a function cohesion (C) characterized by the 

following four properties namely; Non-negativity and normalization, null value, 

monotonicity, and cohesive modules. 
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 Property 1 (Non-negativity and normalization): The cohesion of the code 

cannot be negative, and the measure should be independent of the size of the 

module. 

 Property 2 (Null value): The cohesion of the code is null if the module is empty. 

 Property 3 (Monotonicity): The relationship between modules cannot decrease 

cohesion. 

 Property 4 (Cohesive modules): The relationship between modules cannot 

decrease cohesion when two modules showing no relationship are 

encapsulated. 

 

Coupling: The coupling of code C is a function coupling (C) that is characterized by 

the following five properties namely; Non-negativity, null value, disjoint module 

additivity, merging of modules and monotonicity. 

 Property 1 (Non-negativity): The coupling of code cannot be negative. 

 Property 2 (Null value): The coupling of the code is null if there is no internal 

relation between the modules. 

 Property 3 (Disjoint module additivity): The coupling of the code increases 

when more modules are added that share global data. 

 Property 4 (Merging of modules): The coupling of the code decreases when 

two modules are merged. 

 Property 5 (Monotonicity): The coupling of the code increases when the 

relationship between modules increases. 
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2.6.1.3 Kaner’s Framework 

Kane’s framework is claimed to be more practical than the formal approach of 

Weyuker’s properties and Briand’s framework (Pichler et al., 2010). The Kaner 

framework evaluates software metrics to establish the purpose of the defined measure, 

scope of the measure, the attributes to measure, natural scale of the attributes to 

measure, natural variability of the attribute, metrics defined, measuring instrument, 

natural scale for the metric, natural variability of readings, relationship of attribute to 

the metric value and the natural and foreseeable side effects based on use of the 

instrument (Kaner, 2004). 

 

2.6.2 Empirical Validation 

Metrics researchers frequently employ experiments, case studies, or surveys in their 

effort to validate their new metrics (Muketha et al., 2010b; Srinivasan & Devi, 2014).  

Empirical validation is conducted to establish the usefulness of new metrics by the 

industry (Muketha et al., 2010b). 

 

2.6.2.1 Experiments 

Out of the three empirical strategies, experimentation is the more frequently used due 

to its formal, rigorous and repeatable characteristics (Muketha et al., 2010b, Wohlin 

et al., 2000). Experimental subjects are randomly assigned different treatments for the 

purpose of keeping one or more variables constant while other variables are 

manipulated. The effects of variable manipulation are observed, measured and 

interpreted (Muketha et al., 2010b).  
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Several software engineering experiments involve human subjects to investigate the 

cause-effect relationship (Easterbrook, Singer, Storey, & Damian, 2008). A family of 

experiments is encouraged such as conducting both subjective and objective 

experiments, to accumulate knowledge on a certain subject (Canfora, García, Piattini, 

Ruiz & Visaggio, 2005). Researches select different kinds of experimental designs. 

For-example within-subject design and between subject designs are some of the most 

popular designs (Muketha et al., 2011; Ko, Latoza & Burnett, 2015). 

 

2.6.2.2 Case Studies  

Case studies involve closer and deeper study on an attribute or relationship between 

several attributes. The context in which the attributes under study are being observed 

is an important factor in case studies (Wohlin et al., 2000). The limitation of this 

approach is that the data collection and analysis is open to researcher’s bias, therefore, 

the selection of cases should follow a defined procedure (Easterbrook et al., 2008). 

 

2.6.2.3 Surveys  

A survey is a technique for collecting information from a sample of individuals in a 

certain population (Easterbrook et al., 2008). The results generated from the sample 

are analyzed and can be generalized to the population (Wohlin et al., 2000). This 

method is considered as a retrospective study where you study a situation and unlike 

experiments and case studies the variables cannot be manipulated (Fenton & Pfleeger, 

1997). In a lot of situations, questionnaires are used to collect data, however other 

instruments such as structured interviews and data logging can be employed 

(Easterbrook et al., 2008). 
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2.7 Metrics Tools 

A metrics tool is a static analyzer software which collects, computes and displays 

metrics values (Lincke, Lundberg, & Löwe, 2008). These tools enable programmers 

to analyze the source code of a programming language (Linos, Lucas, Myers, & Maier, 

2007) and provide insight concerning the quality of the source code (Adewumi et al., 

2015). The metrics tool has become a requirement for acceptability of any metrics 

proposed in the software industry (Adewumi et al, 2015). Therefore, it’s imperative to 

develop a tool for the defined metrics. 

. 

Several metrics tools have been proposed such as Code Counter tool for C and C++ 

(CCCC) (Littlefair, 2001), OOMeter (Alghamdi, 2005), Prest (Kocaguneli, Tosun, 

Bener, Turhan, & Caglayan., 2009), a Multi-language metrics tool (Linos et. al, 2007), 

Business Process Metrics Tool (BPMT) (Muketha, 2011) and CSS Analyzer 

(Adewumi et al., 2015). In the absence of the tool, computation becomes a slow and 

tedious process, thus reducing the acceptability of the metrics in the software industry 

(Adewumi et al., 2015).  

 

Several researchers have proposed metric tools to automate metrics computation. 

CCCC metrics tool by Littlefair, (2001) analyses C++ and Java files, by calculating 

the lines of code, cyclomatic complexity, lines of comments, information flow 

measures by Henry and Kafura (1984) and Chidamber and Kemerer object-oriented 

metrics suite (1994). OOMeter was developed to compute metrics for Java, C# source 

code and Unified Modelling Language models (UML) in eXtensible Mark-up 

Language (XML) format. The tool collects metrics for size, coupling, cohesion and 

complexity (Alghamdi et al., 2005). A Multi-language metrics tool (Linos et al., 2007) 
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has the capability to compute metrics for software developed with many languages 

under Microsoft Visual Studio .NET. Prest is an intelligent tool that extracts common 

static code metrics from C, C++, Java, JSP, and PL/SQL languages, this tool is capable 

of analyzing and predicting errors by applying machine learning concepts (Kocaguneli 

et al., 2009). Business Process Metrics Tool (BPMT) (Muketha, 2011) recognizes 

BPEL source code, collects and compute BPEL process metrics of size, information 

flow, and complexity. CSS Analyzer was developed to automate the computation of 

size metrics, cohesion, and complexity for cascading style sheets (Adewumi et al., 

2015). 

 

The metrics tool makes the work of computing metrics easier and therefore writing 

programs for the static analysis tool is desirable (Adewumi et al., 2015). The 

development of this tool is made easy, especially with the object-oriented paradigm 

languages such as Java which have String tokenizer to enable the splitting of a string 

into tokens and Parser classes which analyze string to find tokens this results to a 

reduction in coding. Programming languages in the .NET family provide the 

functionality to tokenize strings, meaning that they can be used to develop the metrics 

tools. These languages incorporate LINQ (language integrated query) features, that 

enable manipulation of data using a little amount of code which is expressive. These 

capabilities of .NET languages make it easy to  build softwares that recognize 

particular programming language syntax such as software metrics tools (Muketha, 

2011). 

 

The efforts towards defining new software metrics have been going on over the years. 

However, the practice of developing a tool for the metrics is slowly being overlooked 
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and this is not acceptable (Spinellis, 2005; Adewumi et al., 2015). In literature, there 

is evidence of many proposed metrics which are validated but otherwise lack tool 

support.  

 

Misra et al. (2018), defined a suite of object-oriented cognitive complexity metrics; 

Attribute Complexity, Method Complexity, Class Complexity, Message Complexity, 

and Code Complexity. This metrics suite was theoretically and empirically validated; 

however, no tool support was provided for these metrics.  

 

Cognitive Weighted Inherited Class Complexity Metric (Maheswaran and Aloysius, 

2018a), measures the inheritance complexity of a class and  though it was found to be 

a better measure than Weighted Class Complexity (WCC) and Attribute Weighted 

Class Complexity (AWCC) its use in the industry could be undermined by the lack of 

tool.  

 

The interface-based cognitive weighted class complexity metric (ICWCC) is a 

promising metric for measuring class complexity based on defined interfaces 

(Maheswaran and Aloysius,2018b). However, there is no evidence of tool support. 

Mishra (2012), proposed two metrics, Class complexity due to Inheritance and 

Average complexity of a program due to inheritance, these metrics have been 

theoretically validated, however, they don’t have tool support.  

 

In the web domain, there are several metrics that are theoretically and empirically 

validated; however, they lack tool support. For example, Thaw and Misra (2013) 

defined an Entropy Measure of Complexity metric for the measurement of reusability 
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of XML schema documents. Basci and Misra (2011) defined an entropy metric and 

distinct structured element repetition scale metric for the measurement of structural 

complexity of document type definition schemas. To measure JavaScript complexity 

Misra and Cafer (2012) defined JavaScript Cognitive Complexity Measure (JCCM).  

 

2.8 Software Maintainability 

There are several software quality models which recognize maintainability as an 

important aspect of quality. A software quality model is defined by ISO/IEC IS 9126-

1 as a set of characteristics that forms the basis for quality requirements specification 

and evaluation of software products. Maintainability is defined as the ease with which 

a software product can be understood, modified and tested (Boehm, 1978; IEEE, 1993; 

Bandi et al., 2003). The most popular quality models are, McCall Model (McCall, 

Richards, & Walters, 1977), Boehm Model (Boehm et al., 1978), Dromey Model 

(Dromey, 1995), ISO 9126 Model (ISO, 2001) and ISO 25010 Model (ISO/ IEC CD 

25010, 2008). 

 

The McCall model (McCall, Richards, & Walters, 1977), views product quality in 

terms of product review, product operation and product transition. This model was 

able to link the software quality characteristics with metrics; however, its limitation is 

that it lacks accuracy in measurement quality (Dubey, & Ghosh & Rana, 2012; Miguel, 

Mauricio & Rodríguez, 2014). Maintainability software quality is classified under 

product review and has three sub-attributes, simplicity, conciseness and self-

descriptiveness (Miguel, Mauricio & Rodríguez, 2014) as described in Figure 2.11. 
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Figure 2.11: McCall Maintainability Sub-characteristics  

Source: McCall, Richards, & Walters, 1977. 

 

Boehm model software quality model was an improvement on McCall model. The 

maintainability aspect was recognized as an important aspect of software quality. 

Three sub-characteristics of maintainability were defined as; understandability, 

modifiability and testability. According to Boehm (1978) understandability is defined 

as the easiness with which the software can be comprehended or understood, 

modifiability is the easiness to which the software can be changed to fit in new 

requirements and testability is the easiness with which you can identify errors in 

software and correct them. Figure 2.12 visualizes the Boehm maintainability model. 

 

 

 

 

 

Figure 2.12: Boehm’s Maintainability Sub-characteristics  

Source: Boehm et al., 1978. 

 

Dromey (1995) proposed a software quality model to aid in the evaluation of software 

in terms of requirements, design, and implementation This model recognizes 
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maintainability as a software quality attribute, amongst other qualities such as 

functionality, reliability, efficiency, portability and reusability. However, the 

drawback of this model is that it doesn’t specify the sub-attributes that define 

maintainability (Tomar & Thakare, 2011). 

 

ISO 9126 Model is a standard for evaluation of software and is majorly divided into 

four parts, quality model, external metrics, internal metrics and quality in use metrics. 

It identifies maintainability as a high-level software quality characteristic, among 

functionality, reliability, usability, efficiency, and portability. The maintainability sub-

characteristics are defined as analyzability, changeability, stability, testability, and 

maintainability compliance as shown in Figure 2.13. 

 

 

 

 

 

 

 

 

Figure 2.13: ISO-9126 Maintainability Sub-characteristics  

Source: ISO, 2001 

 

The ISO 25010 Model (ISO/ IEC CD 25010, 2008) extended the ISO-9126 model. 

The maintainability quality has eight sub-characteristics, modularity, reusability, 
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analyzability, changeability, modification, stability, testability and compliance. Figure 

2.14 illustrates the maintainability model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: ISO-25010 Maintainability Sub-characteristics  

Source:  ISO/ IEC CD 25010, 2008 

 

The Boehm maintainability model was selected for this study because it’s more 

meaningful from the designer and programmer perspective (Al-Badareen, Selamat, 

Jabar, Din & Turaev, 2011). The ISO-9126 and ISO-25010 though more recent 

software quality models than Boehm model, have a focus on user perspective, and 

therefore were not considered in this study. Moreover, several researchers have sought 

to understand the maintainability of various software and they focused on one or all of 

these aspects of maintainability, that is, understandability, modifiability and testability 

(Muketha, 2011; Rizvi & Khan, 2010; Kiewkanya, Jindasawat, & Muenchaisri., 2004; 
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Genero et al., 2003). Therefore, the researcher believes that by studying the three sub-

attributes of maintainability fully represents software maintainability. 

 

The measurement of external software quality such as maintainability is not possible 

directly, therefore, researchers identify and measure internal attributes such as 

complexity i.e inheritance, coupling, cohesion and nesting to predict the external 

quality of maintainability (Lu et al.,2016; ; Almugrin, Albattah, & Melton, 2016; 

Kumar, Naik, & Rath; 2015; Muketha, 2011; Mishra and Sharma, 2015).  

 
2.9 Gaps Identified in Literature 

A detailed literature survey was done after which several gaps were identified. The 

gaps are summarized in Table 2.2. 

 

Table 2.2: Identified Gaps 

Type of Gap Description of the Gap 

Existing 

classification 

frameworks 

Existing classification frameworks do not fully identify 

the SCSS complexity attributes because of the unique 

unique features found in SCSS when compared to other 

software 

Existing metrics A number of metrics exists for procedural, object-

oriented, web-based domains and style sheets field. 

However, they cannot be be applied to SCSS language 

due to its unique structural features.  

Existing metrics 

tools 

There are several existing static metrics tool, however, 

they  cannot compute SCSS complexity metrics. 
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2.10 Theoretical Framework 

This research was based on the following theoretical foundations, the EAM model 

(Fenton and Pfleeger, 1997), extended structural complexity classification scheme 

(Muketha, 2011), Boehm Model (Boehm et al., 1978), Weyuker’s properties 

(Weyuker, 1988) and Kaner framework (Kaner, 2004). 

 

The EAM model was used to guide in the definition of new metrics and it consists of 

three steps, entity identification, attributes identification and metrics definition based 

on the attributes. This model was extended to include a fourth step referred to as 

metrics tool development. This added step was after scrutiny of existing metrics and 

it was discovered a lot of metrics may not be implemented by the software industry 

because they lack tool support. The inclusion of tool development will enforce metrics 

acceptability by the software engineering community.  

 

The extended structural complexity classification scheme (Muketha, 2011) which 

categorizes structural complexity into an intra-module attribute, inter-module attribute 

and hybrid attribute was further extended to include a new category known as an extra-

module attribute to cater for the structural properties of SCSS language. This 

classification aided in the identification of the attributes that affect SCSS structural 

complexity, which can then be used to predict the maintainability of SCSS code. 

 

Boehm model (Boehm et al., 1978) was used to identify the maintainability sub-

characteristics of understandability, modifiability, and testability. These 

characteristics were used in this research as dependent variables to predict the 

maintainability of SCSS software. 
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Weyuker’s axioms were used to determine the mathematical soundness of the 

proposed SCSS metrics (Weyuker, 1988). The theoretical validation of the metrics 

assures the construct validity of experiments. The nine properties of Weyuker were 

redefined to fit in the context of SCSS syntax. 

 

The Kaner’s framework (Kaner, 2004) was adopted and used to gauge the practicality 

of the defined metrics. This framework forms part of theoretical validation and 

enhances the construct validity of experiments. 

 

2.11 Conceptual Framework 

Conceptual framework consists of related concepts or views which can explain or 

make one understand the research problem under investigation. The relationship 

between the concepts is established, and in a research report, they are referred to as 

independent and independent variables. These concepts are identified in literature 

through theoretical and empirical findings (Imenda, 2014; Liehr and Smith 1999). 

 

Several studies show that structural complexity metrics such as module complexity, 

coupling, nesting, and inheritance are useful in establishing the maintainability of 

software. These studies show that when complexity increases the understandability, 

modifiability and testability of code reduces (Lu et al.,2016; Kumar, Naik, & Rath; 

2015; Muketha, 2011). 

 

In this study the researcher investigated how the structural complexity attributes of 

SCSS (independent variables) such as block complexity, nesting, inheritance, and 

coupling, which are computed by the proposed metrics can be used to predict the 
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maintainability of SCSS code through its sub-attributes namely; understandability, 

modifiability and testability (dependent variables). The moderating variables 

identified that could potentially affect the studied relationships between independent 

variables and dependent variables were programmer experience and programmer level 

of education. These variables and their relationships are shown in Figure 2.15. The 

conceptual framework was used to design the controlled laboratory experiment 

presented in chapter seven. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15: Conceptual Framework 

 
 
 
2.12 Chapter Summary 

In this chapter, existing attributes classification systems and software metrics were 

identified and examined.  

 

There were very few comprehensive structural complexity classification schemes 

found and they cannot be used to identify all the attributes of SCSS code. The literature 
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also showed that there are so many metrics defined in the object-oriented domain, 

however, there are few metrics proposed in the web-domain and there are even fewer 

in stylesheets field. The only existing stylesheets metrics are for CSS which their 

mathematical soundness has not been proved and have not been empirically validated. 

In addition, there is no metric defined for CSS pre-processors. It was also found that 

many metrics don’t show evidence of metric tool support.  The findings in the 

literature are worrying because the complexity of the code is principally measured 

through metrics and for them to be useful, they must be theoretically and empirically 

validated. Moreover, for the metrics to be adopted by the software industry there is a 

need for the development of a static metrics tool.  

 

This formed the motivation to develop an SCSS structural complexity framework, 

define metrics for SCSS language, theoretically and empirically validate the new 

metrics and develop a metrics tool.  

  



68 
 

CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter describes the methodological approach for the study. It presents the 

research philosophy, research design, research process describing the steps taken to 

achieve research objectives, research strategy, population, sampling, data collection, 

data analysis, and ethical issues. 

 
3.2 Research Philosophy 

Research philosophy also referred to as a research paradigm is a set of beliefs that 

guides action in research (Creswell, 2014). There are four main research philosophies 

widely discussed in the literature: positivism, realism, interpretivism, and pragmatism 

(Saunders, Lewis, & Thornhill., 2012). Positivism describes an approach to the study 

where in order to understand a phenomenon, it must be measured and evidence 

provided (Hammersley,2013). Experiments establish the relationship between 

independent and dependent variables (Cohen, Manion, & Morrison, 2011), they 

provide formal propositions, test hypothesis and causal inferences are described from 

the data collected (Myers & Avison, 2002). Therefore, to achieve the objectives of this 

research positivism philosophy was chosen. 

 

3.3 Research Design 

A research design consists of the conceptual structure or the blueprint for collecting 

and analyzing data (Kothari, 2004). Research design can either be exploratory or 

explanatory research. This study implemented explanatory research design which 

seeks to test theories. A research design shows the overall direction of the research 
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and is dependent on research objectives, time for research, costs to be involved and 

the researcher’s skill (Remenyi, 2005). 

 

3.3.1 Research Process   

This research process shows the steps that were followed to achieve the objectives of 

this study. In this research four main steps were involved. The first step, addressed 

objective one, where the researcher identified all the possible structural complexity 

attributes that indicate the complexity of SCSS. The second step addressed the second 

objective, where new metrics were defined guided by the EAM model, the metrics 

were theoretically validated using Weyuker’s properties and Kaner’s framework to 

ensure that they are constructively valid. Thirdly, to address the third objective, a 

metrics tool was designed to promote the acceptability of the proposed metrics and to 

ease the process of gathering and computing the metric values and lastly to achieve 

the fourth objectives metrics were empirically validated to affirm that the metrics are 

good predictors of SCSS code maintainability. A summary of these steps was 

described in Figure 3.1. 
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Figure 3.1: Research Process 

 

3.3.1.1 Development of an Attribute Classification Framework 

This research focused on the development of an SCSS attribute classification 

framework with the aim of identifying the structural complexity causing attributes for 

SCSS language. The framework identified four categories of attributes namely, intra-

module attribute, inter-module attribute, hybrid attribute, and extra-module attribute. 

 

In the intra-module attribute, two aspects of complexity were identified, size and 

control-flow complexity, the inter-module attribute category identified inheritance and 

nesting complexity, under hybrid attribute an association complexity was identified 

and finally in the extra-module attribute information flow complexity was identified. 

Development and validation of an SCSS attribute classification framework 

Development and validation of a metrics tool  

Experimental studies to analyze the metrics suitability as predictors of the SCSS 
maintainability sub-attributes i.e understandability, modifiability and testability 

 

Definition of SCSS Complexity metrics  
 a) Identify SCSS 

measurement 
attributes based on 
the proposed 
attribute 
classification 
framework 

b) Define SCSS 
metrics to 
measure the 
identified 
attributes 

c) Validate metrics 
with Weyuker’s 
properties and 
Kaner’s 
framework 
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These various types of complexities were used to identify the needed attributes as 

shown below: 

1. Inter-module attributes 

i. Nesting complexity - Nesting factor for SCSS 

ii. Inheritance complexity- Selector use inheritance level 

2. Hybrid attribute 

i. Association complexity – Average block cognitive complexity for SCSS 

3. Extra-module attribute 

i. Information flow complexity- Coupling level for SCSS 

4. Intra-module attribute 

This category assisted in identifying several base metrics including: 

i. Number of attributes 

ii. Number of operators 

iii. Number of rule-blocks 

iv. Weighted Control directives 

 

The framework classified nesting complexity and inheritance complexity as inter-

module attributes. The nesting complexity attribute targeted the nesting feature of the 

SCSS code. This attribute allows the SCSS designers to understand the extent to which 

nesting has been implemented. The inheritance complexity attribute targeted the 

inheritance of selectors in SCSS. This attribute returns the inheritance level of SCSS 

code. 

 

The association complexity attribute was categorized under the hybrid level of SCSS 

structural complexity framework. This attribute identified all the complexity causing 



72 
 

attributes in a rule block. The motivation was to understand the cognitive complexity 

of SCSS blocks. 

 

The information flow complexity attribute was placed under the new derived category 

known as extra-module. This attribute helps SCSS designers understand the extent to 

which the various SCSS block are connected to each other, that is, how the information 

flows from one rule block to another rule block. This attribute does not consider the 

inheritance aspect. 

 

The final categories of complexity attributes are the size and control-flow complexity 

which are classified as intra-module attributes. The size of SCSS code, is contributed 

to by the number of declarations, and number of operators which were implemented 

as base metrics to compute Average Block Cognitive Complexity for SCSS, while the 

number of rule blocks was implemented as base metrics to compute Nesting factor for 

SCSS, Selector use inheritance level and Coupling level for SCSS. The control 

directives contribute to the control-flow complexity of SCSS code and was 

implemented as base metric in the computation of Average Block Cognitive 

Complexity for SCSS. 

 

The validation of the framework was conducted to check whether its relevant and 

comprehensive in identification of all possible SCSS structural complexity attributes. 

To achieve this an expert opinion survey was carried out (see Appendix 1). 
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3.3.1.2 Definition of SCSS metrics 

The definition of SCSS metrics followed the EAM model. These metrics are Average 

block cognitive complexity for SCSS (ABCCSCSS), Nesting factor for SCSS (NFSCSS), 

Selector use inheritance level (SUIL) and Coupling level for SCSS (CLSCSS ). 

 

The ABCCSCSS metric is a hybrid metric and was motivated by the existing Number 

of attributes defined per rule block (NADRB) metric. The NFSCSS metric falls under 

the inter-module level and considers the nesting depth and nesting breadth of SCSS 

code, while SUIL modified the class inheritance factor while at the same time 

considering the uniqueness of inheritance in SCSS. Finally, CLSCSS which falls under 

extra-module category was defined to represent the unique way of information flow 

while excluding inheritance. 

 

3.3.1.3 Theoretical Validation of SCSS metrics 

Theoretical validation was performed on the four metrics with Weyuker’s properties 

(Weyuker, 1988) with the aim of finding out if they were mathematically sound. 

Validation with Kaner framework was also done to check the metrics’ practicality.  

 

Weyuker’s properties are a popular technique for metrics validation. The four defined 

SCSS metrics were validated using Weyuker’s properties. Further validation was 

carried out using Kaner framework to prove the practicality of each of the metric. 

 

3.3.1.4 Development of a Metrics Tool for SCSS 

The development of a static analyzer metrics tool is necessary for the new metrics to 

be appreciated by the software industry. Therefore, a static analyzer metrics tool was 
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designed and developed to recognize the SCSS syntax, gather and compute metrics. 

The metrics tool was developed using Microsoft Visual C# 2017 programming 

language. 

 

The tool was tested to ensure its working properly and validation through experiments 

was carried out to confirm the tools effectiveness, efficiency, usability, and 

functionality. 

 

3.3.2 Research Strategy 

This study employed survey and experimental research strategies. An online expert 

opinion survey was used to validate the SCSS complexity attributes classification 

framework. Expert opinion technique is used to identify problems, clarify some 

technical issues and evaluate products (Whitfield, Ruddock & Bullman, 2008). The 

data collected through expert opinion is reliable because the respondent’s technical 

knowledge and competence is high (Libakova & Sertakova, 2015). The experimental 

design was used because it’s very effective in supporting hypotheses about cause and 

effect relationships (Bhattacharjee, 2012). The metrics tool was validated using 

between subject design, where the researcher assigned SCSS files randomly to the 

subjects. The proposed metrics were validated using between-subject design and an 

experiment consisting of both subjective and objective parts was performed. The 

between-subject design has the advantage of reducing error variance associated with 

individual differences.  

 

To conduct validation of new metrics, several SCSS files were provided to subjects.  
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a)  The subjective part of the experiment followed the stipulated procedure 

below; 

i. The subjects studied each of the file provided for a given time period.  

ii. The subjects were required to rate each of the file provided in terms of 

understandability, modifiability, and testability using a Likert scale. 

 

b) The objective part of the experiment followed this stipulated procedure; 

i. The subjects were given a number of activities to perform based on the 

programs;  

ii. The first set of activities required subjects to indicate starting time to 

ending time in terms of understandability of each of the files provided. 

iii. The second set of activities required subjects to indicate starting time 

and ending time on the modifiability of the different files.  

iv. The third set of activities required subjects to indicate starting time and 

ending time on the testability of each of the files provided. 

 

3.4 Population 

The target population is the entire set of units for which the study data are to be used 

to make inferences and it defines those units for which the findings of the study are to 

be generalized (Dempsey, 2003). To validate the SCSS attributes classification 

framework the target population selected for this study was industry based SCSS 

programmers.  

 

The use of students as subjects in software engineering experiments is a valid 

simplification of reality required in laboratory contexts (Falessi et al., 2018). 
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Moreover, according to Salman, Misirli & Juristo (2015), there are no major 

differences observed in results for experts and students. Therefore, the target 

population for validating metrics tool and carrying out experiments were Murang’a 

University of Technology fourth-year students pursuing Bachelor of Science in 

Information Technology, Bachelor of Science in Software Engineering and Bachelor 

of Business Information Technology. In addition, the third-year students pursuing 

Bachelor of Science in Software Engineering students were involved in this study. 

Only the students who were trained on SCSS language in the mentioned groups formed 

the target population 

 

3.5 Sampling Strategy and Sample Size 

Sampling process forms the basis for selecting a sample to estimate the outcome on a 

bigger group (Kumar, 2011). According to Kothari (2004), a sample size should be 

determined by a researcher and must consider whether the nature of the universe is 

homogenous or heterogeneous. In the case of the homogenous universe, small sample 

size can serve the purpose, but if there are many class groups to be formed, then a 

large sample is a requirement. Secondly, the researcher should consider if the items 

are to be intensively and continuously studied, and if so, the sample should be small. 

The sampling technique determines the size of the sample, standard of accuracy and 

acceptable confidence level. 

 

This research employed snowball sampling as a method to get a sample size for 

validation of SCSS structural complexity attributes classification framework. 

Snowball technique is used to identify persons who are requested to identify other 

people who can potentially form part of the sample. This process continues until the 
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required or reasonable sample size is achieved. The sample size required is subjective 

meaning that it’s determined by the researcher (Kumar, 2011). This is a helpful 

sampling method in the case where potential subjects are quite hard to find and you 

require referrals by other persons. Therefore, this study employed snowballing 

sampling method because, the SCSS language experts are few, and few experts were 

known to the researcher.  

 

Convenience sampling was used to select subjects for experiments. According to 

Kumar (2011) in convenience sampling is based on the researchers ability to access 

the subjects. In this research, a number of subjects who had been trained on SCSS 

language volunteered themselves to participate in the experiments. A total of 21 

subjects were involved in metrics tool validation while 30 subjects were involved for 

both subjective and objective experiments for validation of SCSS metrics. These 

numbers of subjects is acceptable as found in other similar research (Manso, Cruz-

Lemus, Genero, & Piattini, 2008; Serrano, Calero, Trujillo, Luján-Mora, & Piattini, 

2004; Genero, Manso, Visaggio, Canfora, & Piattini, 2007; Muketha et al., 2011; 

Bagheri & Gasevic, 2011). 

 

3.6 Pilot Study 

The questionnaire for the expert opinion survey was pretested by involving 3 SCSS 

experts. In this study only the persons with industrial experience of atleast two years 

and had moderate level of knowledge for SCSS were considered as experts. Pretesting 

was carried out before the actual study to ensure validity and reliability of the 

instrument i.e. to ensure that the items tested what they were intended to and that they 

consistently measured the variables under study. 
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The pilot study for both subjective and objective experiment was carried out. The 

subjective part of the experiment was meant to determine whether there was any 

correlation between the metrics and subjects rating of understandability, modifiability, 

and testability. While the objective part of the experiment was carried to determine 

whether there was any correlation between the metrics and time to understand, time to 

modify and time to test. A small number of 10 students who were trained on SCSS 

language was involved in the pilot study. The subjects involved in pilot study were not 

involved in the final experimental study. 

 

3.7 Data Collection Instruments  

The data collection tool used in this study was a structured questionnaire for the expert 

opinion survey. The structured questionnaire was closed properly formatted with 

questions adopting a five-point Likert scale with a view to uniformed information (see 

Appendix 1). A questionnaire is a form used in survey design that participants in a 

study complete without intervention of the researchers collecting the data and return 

to the researcher (Wolf, 2009; Creswell, 2014; Babbie & Rubin, 2008).  

 

In the case of validating metrics tool, a questionnaire was provided (see Appendix 7 ), 

and the subjects were required to indicate their observation on manual and automated 

computation of metrics. To validate the new metrics a questionnaire was provided, and 

subjects were required to fill it based on their observations. The subjects rated the 

provided SCSS files using a Likert scale in terms of their understandability, 

modifiability, and testability (see Appendix 2). In addition, the subjects recorded time 
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taken on working on the tasks under each section of understandability, modifiability, 

and testability.  

 

 

3.8 Validity and Reliability 

Validity and reliability of instruments used determines the credibility of the research 

results. Therefore, measures were taken to ensure that the data obtained is trustworthy. 

 

3.8.1 Validity of the Research Instruments 

The validity of research is the extent to which scientific research method requirements 

are followed. To ensure validity, the questionnaires were first scrutinized by the 

supervisors who gave their input and confirmed that the instruments met the criterion. 

In addition, to ensure validity, after the subjective part of experiment  was conducted 

which is dependent on subjects opinion, an objective part of experiment was 

performed because its results are more reliable.  

 

3.8.2 Reliability of the Research Instruments 

Reliability is defined as the consistency of a test, survey, observation, or other 

measuring device and describes the extent to which instruments produce consistent 

results in similar conditions over time (Mohajan, 2017). To ensure the reliability of 

the instrument developed pretesting was carried out. The pretesting was done using 

Cronbach’s alpha which is used as a measure of reliability. Cronbach’s alpha (α) is the 

most common internal consistency measure and is normally interpreted as the mean 

of all possible split-half coefficients. It is a function of the average inter-correlations 

of items, and the number of items in the scale (Mohajan , 2017). 
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Table 3.1 shows the reliability statistics of subjective data questionnaire which had a 

Cronbach’s alpha values of 0.976, while objective data questionnaire attained a value 

of 0.952. The Cronbach’s alpha values were way above the recommended threshold 

value of 0.70 (Nunnally, 2008). The data collection instrument was therefore deemed 

to be reliable. 

 

Table 3.1 Metrics Validation Reliability Statistics 

Scale  Cronbach’s Alpha 

Subjective data questionnaire 0.976 

Objective data questionnaire 0.952 

 

3.9 Experimental Materials 

The experimental materials that were used to facilitate data collection are metrics tool, 

and a set of SCSS files. The Metrics tool was used to compute metrics values for SCSS 

code. Installation of the tool was done in the computers in a laboratory for the subjects 

to use it and consequently answer a set of questions for validation of the tool. The 

metrics tool was installed in the researchers laptop to compute metrics values for SCSS 

files provided to the subjects. These SCSS files were obtained from existing real 

projects (websites) via the following link, 

http://dmazinanian.me/publications/SANER'16/scss-websites.7z.  These SCSS files 

had first been gathered through a google search and put together in zipped folder which 

was downloaded in the link shown. This folder had 50 SCSS files and only 30 files 

which were randomly selected were used for experimental purposes. The metrics 

values collected in the SCSS files were then correlated with subjects rating of 
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understandability, modifiability, and testability and subjects understanding time, 

modifying time and testing time. 

 
3.10 Data Analysis 

The Statistical Package for Social Sciences (SPSS) version 19 was used for analysis 

of expert opinion survey results, metrics tool validation results, correlation of SCSS 

metrics with understandability, modifiability and testability and finally for ANOVA 

analysis. The  R statistical tool version 3.6.0 for Windows was used for principle 

component analysis of the SCSS metrics.   

 

3.10.1 Data Analysis Methods for the Expert Opinion Survey 

The quantitative data collected was analyzed using descriptive statistics which 

included frequency, mean and standard deviation. The validation of SCSS attributes 

structural complexity classification complexity was done using descriptive statistics.  

 

3.10.2 Data Analysis Methods for Tool Validation 

The developed tool was validated using descriptive statistics, the mean time taken to 

compute metric values for each SCSS file both manually and using the tool was 

recorded. Then the means and standard deviation on data collected on a Likert scale 

of 1- 5 based on suitability, accuracy, and operability of the tool was calculated.  

 

3.10.3 Data Analysis Methods for the Controlled Laboratory Experiment 

In this research, descriptive statistics were presented in terms of frequency and 

percentages for the number of programming language students have taken, the 

software engineering courses pursued, and the level of SCSS knowledge. Correlation 

analysis was used to determine association of metrics values (independent variables) 
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and subjects rating of understandability, modifiability, and testability and the mean of 

time taken to understand, mean of time taken to modify the programs and mean of 

time taken to test the SCSS files (dependent variables). ANOVA tests were also 

conducted to establish whether the proposed metrics can actually determine 

understandability, modifiability and testability of SCSS code. 

 

Multivariate analysis using principle component analysis (PCA) was used to model 

the contribution of SCSS metrics (independent variables) on dependent variables 

(understandability, modifiability and testability). When there are several metrics 

available in the software industry to measure software, a need arises to find the most 

significant metrics for better use and control of metrics (Saini, Sharma, & Singh, 

2015). In this research the independent variables namely: Average Block Cognitive 

Complexity (ABCCSCSS), Nesting Factor (NFSCSS), Selector Use Inheritance Level 

(SUIL) and Coupling Level (CLSCSS) were used to model their influence on the 

dependent variables namely: understandability, modifiability, and testability. The 

principle component is represented as follows: 

 

Y1 = Φ¹¹X¹ + Φ²¹X² + Φ³¹X³ + .... +Φn¹Xn 

Where: 

 Y is the first principal component. 

 Φ¹, Φ²… Φn¹ are the loading vectors of principal component. In the first 

principle component the loadings or weights are constrained to a sum of square 

equals to 1.  

 X¹…Xn are normalized predictors. 
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Y=  Φ11*ABCCSCSS + Φ21*NFSCSS  + Φ31
* SUIL+ Φ41

* *CLSCSS  

 

The Second principal component is also a linear combination of predictors which 

captures the remaining variance in the data set and is uncorrelated with the first 

component. The subsequent principle components capture the remaining variation 

without being correlated with the previous components. 

 

There exists several rule of thumbs that determine the suitable cutoff. One of the most 

popular rule of thumb that has been agreed on by several researchers is that we can 

retain factors that account to about 70-80% of the variance (Rea  & Rea, 2016; Rietveld 

& Van Hout, 2011). Therefore, this research selected components that cumulatively 

accounted for 80% of the model variation. 

 

3.11 Ethical Issues 

To ensure ethical principles in this research are followed, the researcher sought for an 

introductory letter from Masinde Muliro University of Science and Technology, Board 

of Postgraduate Studies (see Appendix 8), then consent from National Council of 

Science and Technology (NACOSTI) was received (see Appendix 10). A letter of 

permission was obtained from Murang’a University of Technology where the data 

collection took place (see Appendix 11). The researcher trained the subjects on SCSS 

language, who later participated in experiments as subjects. The participation in 

training and involvement in experiments was conducted on a voluntary basis. The 

researcher assured the subjects that the information obtained from them was to be 

treated as confidential.   
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3.12 Chapter Summary 

This chapter described the research process, philosophy, design, strategy, sampling 

technique, research instruments, data analysis techniques, and research ethics. The 

research process described a four-step process that was followed to achieve the 

objectives of this study, research philosophy for this study was positivist in nature, the 

research design was explanatory, while research strategy used was surveys and 

experiments. The sampling technique that was used for objective one was the snowball 

method and for objective three and four, convenience sampling method was employed. 

The research instrument used for attributes classification framework, metrics tool 

validation and SCSS metrics validation were questionnaires (see Appendix 1, 

Appendix 2 and Appendix 7 ) which were found to be reliable and valid. In addition, 

the metrics tool and a set of SCSS files were identified as the experimental materials. 

The analysis of data was achieved through descriptive and inferential statistics. 

Finally, the research complied with all necessary research ethics and all relevant 

authorities and institutions were notified of the research prior to conducting expert 

opinion survey and experimental work. 
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CHAPTER FOUR 

DEVELOPMENT OF STRUCTURAL COMPLEXITY ATTRIBUTE 
CLASSIFICATION FRAMEWORK FOR SASSY CASCADING STYLE 

SHEETS (SCACF-SCSS) 

4.1 Introduction 

This chapter presents the structural complexity attributes classification framework for 

SCSS, to aid in the determination of SCSS structural complexity measurement 

attributes. The requirements for the development of the framework, architecture of the 

framework, application of the framework and expert opinion validation results have 

been presented. 

 

4.2 Requirements of the SCACF-SCSS Framework 

The requirements of the framework are as follows: 

 The framework should identify all the structural complexity causing attributes 

 The framework should categorize all the identified attributes 

 The users should be able to identify SCSS features and use the framework to 

place it in the right category.  

 

4.3 Architecture of the Proposed Framework 

A detailed explanation on the various branches of SCSS structural complexity 

framework, which are intra-module, inter-module, hybrid and the extra-module 

attribute is provided. The highlighted areas in Figure 4.7 indicate the extension to 

Muketha’s Framework. 

 

 

 



86 
 

4.3.1 Intra-Module Attribute 

The intra-module attributes focus on attributes that can be derived from a rule-block; 

these attributes don’t interact with other rule blocks. A rule- block is equivalent to a 

module In SCSS two categories of attributes were identified, size and control-flow 

complexity.  

 

When the size of a code increase, its complexity increases (Muketha et al., 2010b; 

Adewumi et al., 2012; Misra and Cafer, 2012; Khan et al., 2016). In addition, use of 

operators increases the size of code thus complexity increases (Misra & Cafer, 2012) 

The size of SCSS is contributed to by the number of declarations, number of operators 

and number of rule blocks. SCSS declarations refer to all the statements terminated 

with a semicolon, the operators are the mathematical symbols such as plus, minus, 

division, multiplication and equal sign, while the rule blocks refer to a block of code 

with an opening brace “{“ and a closing brace “}”.  

 

In SCSS every statement terminating with a semicolon is counted as a declaration or 

attribute. Rule-block a has 4 declarations and rule-block b has 2 declarations, meaning 

that the total number of declarations or attributes as shown in Figure 4.1 are 6. On the 

other hand, the total number of rule-blocks in the figure are 2, namely rule-block a and 

b. 

 

 

 

 

  



87 
 

 

 

 

 

 

  

 

 

 

Figure 4.1: SCSS Size  

 

Control flow of any software artifact increases the complexity of the code. The 

different control-flows are assigned weights, for example, for statement is assigned 

higher weight than if statement, meaning that a for statement contributes to a higher 

cognitive complexity as compared to if statement (McCABE, 1976; Cardoso, 2006; 

Muketha et al., 2010b; Misra & Cafer, 2012). SCSS code implements control 

directives such as @for, @if, and @each, meaning that the control flow complexity of 

SCSS code should be determined. 

 

An illustration of the control flow complexity is shown in Figure 4.2, for SCSS code 

and it has 2 if directives and 1 for directive. 

 

 

 

 

a{ 

         -------------; 

-------------; 

-------------; 

-------------; 

} 

b{ 

         -------------; 

-------------; 

} 
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a)Branch                              b)Loop 

Figure 4.2: Control-flows in SCSS 

 

4.3.2 Inter-Module Attribute 

The Inter-module attribute of SCSS focuses on the interaction of the various rule-

blocks. In the proposed framework, inter-module has been divided into inheritance 

complexity and nesting complexity categories. 

 

Inheritance feature in software’s has been widely studied and proved to contribute to 

the complexity of software products (Chawla & Nath, 2013; Misra et al., 2011). 

Inheritance complexity in SCSS is evidenced when the styles or values are shared by 

using extend directive and is known as selector inheritance. Figure 4.3 illustrates 

inheritance complexity, where the b selector inherits from a selector by use of @extend 

a statement. 

 

 

 

 

if  {  

-----------; 

       if  { 

          -----------; 

          -----------; 

        } 

    } 

 

 

for $x from 1 through n {  

       a{ 

          -----------; 

        } 

{ 

          -----------; 

} 

       } 
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Figure 4.3: Inheritance in SCSS 

 

Nesting feature contributes to software complexity (Li, 1987; Chhillar & Bhasin, 

2011; Frain, 2013). SCSS language implements nesting of rules. where the rules are 

placed inside other rules. Therefore, nesting complexity is presented in the framework. 

SCSS permits nesting of rules, for instance, In Figure 4.4 the b selector is placed inside 

a  selector and c is placed inside b selector. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Nesting in SCSS 

a{ 
        ---------------; 
        ---------------; 
        ---------------; 
    } 
 
b{ 
 
@extend a; 
 
} 

 

a { 

    ----------------; 

    ----------------; 

    ----------------; 

    b { 

----------------; 

            ----------------; 

        c { 

             ----------------; 

 ----------------;             

} 

        } 

} 
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4.3.3 Hybrid Attribute 

The hybrid attribute combines features of at least two categories of structural 

complexity, for example, intra-module and inter-module (Muketha, 2011). In SCSS 

the hybrid attribute has one category falling under it referred to as association 

complexity. This kind of complexity is brought about by the different features which 

are found in different categories of SCSS structural complexity being implemented in 

a single rule block. For example, the cognitive block complexity is as a result of mixin 

calls which are found in extra-module attribute category, extend directives which are 

in the inter-module category, number of declarations, number of operators, number of 

rule blocks and control directives which fall under intra-module attribute category. 

The convergence of the intra-module, inter-module, and extra-module attributes led to 

the hybrid attribute category. 

 

SCSS association of different attributes category is illustrated in Figure 4.5. The a rule 

block makes use of global variables and mixins (include directive) which fall in extra-

module category attribute. An extend directive is also used in rule block a and falls 

under the inter-module category. This implies there is a convergence of extra-module 

and inter-module category. 

 

 

 

 

 

 

Figure 4.5: Association in SCSS 

  Variable 1; 

  Mixin 1; 

a{ 

Use of global variables 

Use of Include directive 

Use of extend directive 

} 
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4.3.4 Extra-Module Attribute 

A newly added attribute called Extra-module focuses on the interaction of rule-blocks 

via an external module, meaning that the rule-blocks are coupled to each other 

indirectly. In SCSS the Extra-module attribute focuses on rule-blocks interacting with 

mixins and/or global variables. These mixins and global variables are defined outside 

of SCSS rule blocks. When there are several rule blocks sharing the same mixin and 

global variable, then the rule blocks are deemed to be coupled with each other. This 

implies that a change in the values of a mixin and a variable will affect all the rule 

blocks that are sharing the mixin and global variable.  

 

SCSS allows information to flow from one rule block to another as illustrated in Figure 

4.6. The information flow occurs when rule blocks share styles and values from 

variables and mixins. The rule blocks a and b are sharing from the same set of variables 

and mixins. 

 

 

 

 

 

 

 

 

 

Figure 4.6: Information Flow in SCSS 

 

Variables and Mixins 

 

a { 

--------------; 

--------------; 

--------------; 

} 

b { 

--------------; 

--------------; 

--------------; 

} 
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Figure 4.7:  Structural Complexity Attribute Classification Framework for SCSS (SCACF-SCSS) 
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4.4 Application of the Framework 

The aim of this section is to provide an interpretation of the proposed framework through 

real-life scenarios. 

 

4.4.1 Intra-Module Attribute  

The intra-module attribute is the first category of the SCSS structural complexity, and it 

considers complexity in terms of size and control flow complexity. The size of the SCSS 

file can be determined based on the number of attributes, number of operators or number 

of rule blocks.  

 

To determine the size of the SCSS code in Figure 4.8 in terms of  number of declarations 

count all the statements ending with a semicolon (;), to count size from the perspective of 

rule blocks, count all the rule blocks, where each rule block is recognized by an opening 

brace “{“ and a closing brace “}” and finally to count size in terms of operators, count all 

the operators i.e plus “+”, minus “-“, multiplication “*”, division “/” and equal “=” signs. 

 

The returned results are:  number of declarations is 5, i.e. (font-size, color, display, border-

bottom and another font-size declaration), the number of operators is only 1, i.e the Plus 

symbol (+), and the number of rule blocks is equal to 2 i.e ( p{ } and li{ }). 
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Figure 4.8: Size Complexity Scenario 

 

The control flow complexity of SCSS code is determined by the control directives 

implemented in the code.  In the SCSS code provided in Figure 4.9, the  @if directive has 

been implemented, meaning that the measurement for the control flow complexity can be 

determined. 

 

 

 

 

 

 

 

 

Figure 4.9: Control Flow Complexity Scenario 

$colortest: 1; 

p { 

font-size: 5px + (6px * 2); 

color:#ff0000; 

@if $colortest >1 {  

text-color: blue; 

       @if $colortest == 1 { 

          text-color: white;  }    } 

} 

p{ 

         font-size: 5px; 

color:#ff0000; 

    } 

     li { 

            display: block; 

            border-bottom: 1px solid;  

            font-size: 1.6rem + 2; 

} 
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4.4.2 Inter-Module Attribute  

The inter-module attribute category describes the inheritance and nesting complexity. 

Inheritance complexity in SCSS is introduced by the use of @extend directive. In Figure 

4.10, the extend directive has been used in the h2 element selector to inherit p element 

selector.  

 

 

 

 

 

 

 

Figure 4.10: Inheritance Complexity Scenario 

 

One of the unique feature of SCSS is nesting, where a rule block is placed inside another 

rule block. For instance, the ul selector is placed inside js-offcanvas class selector and li 

is place inside ul selector as shown in Figure 4.11. 

  

p{ 
        font-size: 5px; 
        color:#ff0000; 
    } 
 
h2{ 
 
      @extend p; 
      font-color:$color1; 
} 
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Figure 4.11 Nesting complexity Scenario 

 

4.4.3 Hybrid Attribute  

In the hybrid attribute category, a form of complexity known as association complexity is 

identified. In the SCSS code provided in Figure 4.12. The h1 rule block makes use of a 

global variable. $color1 and include statement to make use of mixin block Raleway-

SemiBold (they fall under extra-module attribute). An extend statement is also used in h1 

rule block and it falls under the inter-module category. 

 

.  

 

 

.js-offcanvas { 

    color: $color1; 

    background: $color2; 

    ul { 

        padding-left: 0; 

        margin-bottom: 0; 

        li { 

            display: block; 

            border-bottom: 1px solid;  

            font-size: 1.6rem; 

} 

        } 

} 
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Figure 4.12: Association complexity Scenario 

 

4.4.4 Extra-Module Attribute  

The final category known as the extra-module category is illustrated. The information 

flow complexity which is a result of coupling is demonstrated in the SCSS code provided 

in Figure 4.13. The SCSS code has one defined variable $color1 and one defined mixin 

Raleway-Medium. The variable and mixin are shared by p and span rule blocks. This 

sharing of the same variables and mixin brings about coupling. 

 

 

. $color1: #04f5f7; 

@mixin Raleway-SemiBold { 

    font-family: 'Raleway-SemiBold'; 

} 

 

p{ 

         font-size: 5px; 

color:#ff0000; 

    } 

 

h1 {  

font-color:$color1; 

@include Raleway-SemiBold; 

@extend p; 

 

} 
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Figure 4.13: Information Flow Complexity Scenario 

 

4.5 Expert Opinion Validation Survey  

This section presents the evaluation results obtained from an expert opinion survey. An 

expert opinion survey technique is used to identify problems, give clarity to issues under 

study and evaluate products (Whitfield, 2008). 

 

 

$color1: #04f5f7; 

 

@mixin Raleway-Medium { 

    font-family: 'Raleway-Medium’; 

} 

 

p { 

font-size: 5px + (6px * 2); 

font-color: $color1; 

@include Raleway-Medium; 

} 

span{ 

    width: 60px; 

    height: 45px; 

    color: $color1; 

    position: absolute; 

    @include Raleway-Medium; 

 } 
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4.5.1 Goal of the Study 

The goal of the study was to evaluate the relevance and comprehensiveness of the 

framework from the point of view of SCSS experts. 

 

4.5.2 Context Definition 

SCSS experts who have an online presence were invited to participate in the survey. The 

SurveyMonkey platform was used to host the study questionnaires. A total of 13 experts 

participated in the survey and were identified through snowball sampling technique. The 

researcher stopped at 13 experts and was considered as sufficient because SCSS experts 

are hard to find. Therefore, the researcher believed that this forms a good saturation point 

(Naderifar, Goli & Ghaljaie, 2017; Kumar, 2011). 

 

4.5.3 Survey Operation 

The respondents were provided with the SCSS attributes classification framework, a 

write-up explaining how to interpret the framework and a survey questionnaire. 

 

4.5.4 Reliability of the Research Instrument 

Reliability of the questionnaire was conducted on the relevance and comprehensiveness 

of the framework to ensure consistent results are achievable with different persons using 

the same instrument. As shown in Table 4.1, relevance achieved a Cronbach alpha of 

0.894 while comprehensiveness achieved a Cronbach alpha of 0.854. Therefore, the 

instrument can be considered reliable since its reliability values exceeded the prescribed 

threshold of 0.7 (Nunnally, 2008). 
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Table 4.1. Framework Reliability Statistics 

Scale  Cronbach’s Alpha 

Relevance of the Framework 0.894 

Comprehensiveness of the 
Framework 

0.854 

 
4.5.5 Results 

Feedback from the respondents was received and thereafter checked for completeness. 

All questionnaires were found to be completed satisfactorily, and therefore were accepted 

for data analysis. 

 

4.5.5.1 Respondents Demographics 

The researchers first sought to establish the characteristics of the respondents, and so 

characteristics such as the level of education, years of industrial experience, level of 

knowledge for software engineering processes and level of knowledge of SCSS was 

considered from all respondents. 

 
4.5.5.2 Level of Education for Respondents 

Respondents were asked to state their education background. Results indicate that 11 

(84.6%) of the respondents are bachelor’s degree holders while the remaining 2 (15.4%) 

respondents have master’s degree qualifications. These results imply that all the SCSS 

experts involved in this study have attained at least the bachelor’s degree, implying that 

they have the capability to study the framework and respond accordingly. These findings 

are shown in Table 4.2. 
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Table 4.2: Level of Education for Respondents 

 
 
 
 
 
 

 
4.5.5.3 Years of Industrial Experience 

This research sought to find the number of years the respondents have worked in the 

industry. It was observed that 2 of the respondents had an experience of between 2-3 

amounting to 15.4% while the rest of the respondents had 4 years of experience or higher. 

This implies that the respondents in this study are highly experienced in the software 

engineering field and can be considered as experts. 

 

Table 4.3. Years of Industrial Experience 

 
 
 
 
 
 
 
 
 
 
 

 

4.5.5.4 Level of Knowledge in Software Engineering Processes 

An analysis of the respondent’s level of knowledge was also conducted as indicated in 

Table 4.4. Findings indicate that 12 respondents representing 92.3% had a high level of 

knowledge while 1 respondent representing 7.7% had a very high knowledge of software 

Level of Education Frequency Percent (%) 

Bachelors 11 84.6 

Masters 2 15.4 

Years of Industrial Experience Frequency Percent (%) 

2-3 Years 2 15.4 

4-5 Years 6 46.2 

6-7 Years 2 15.4 

Above 7 Years 3 23.1 
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engineering processes. These findings imply that all participants can be trusted for 

analysis and opinions on the state of artifacts that are intended for use in the software 

engineering process. 

 

Table 4.4: Level of Knowledge for Software Engineering Processes 

Level of Knowledge for 
Software Engineering 

Processes  

Frequency Percent (%) 

High 12 92.3 

Very High 1 7.7 

 

4.5.5.5 Level of Knowledge for SCSS 

Since the proposed framework focuses only on the structural complexity of code 

developed using the SCSS language, all respondents are expected to be knowledgeable 

SCSS programmers. Findings indicate that 8 respondents had a high level of knowledge 

and this corresponding to 61.5%, 3 respondents corresponding to 23.1% had a moderate 

level of knowledge, and 2 respondents corresponding to 15.4% had a very High level of 

knowledge. This implies that the data collected from all the respondents can be deemed 

as valid. The respondents result with a moderate level of knowledge are also acceptable 

because they can be regarded as having a considerable level of SCSS knowledge in 

addition to their software engineering knowledge, which is acceptable for the purposes of 

this study. These findings are shown in Table 4.5. 
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Table 4.5: Level of Knowledge for SCSS 

 
 
 
 
 
 
 
 
 
 

 
4.5.5.6 Relevance of the Framework 

The researchers sought to know if the developed framework is relevant for the industry 

experts to identify the attributes that lead to SCSS complexity. Table 4.6. shows computed 

means from a Likert scale of 1 to 5 – Don’t Agree, Slightly Agree, Agree, Strongly Agree 

and Very Strongly Agree.  Findings show that the respondents agree that there is a great 

need for a classification framework with a mean of 3.46, which falls between agree and 

very strongly agree (i.e. between 3 and 4 in the Likert scale).  The respondents also agree 

that the framework is useful for the process of identification of SCSS attributes as 

indicated by the mean of 3.62, these findings are shown in Table 4.6. Standard deviation 

was interpreted as low if the value is less than or equal to 1, while values greater than 1 

are high.  When the value is low it implies that the respondents didn’t differ much in their 

opinion and high values indicate respondents considerably differed in their opinion. The 

standard deviation values shown in Table 4.6 indicates that the respondents didn’t vary 

considerably. 

  

Level of knowledge for 
SCSS 

Frequency Percent (%) 

Moderate 3 23.1 

High 8 61.5 

Very High 2 15.4 
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Table 4.6:  Relevance of the Framework 

 Need for the 
Framework 

Usefulness of the 
Framework 

Mean 3.46 3.62 

Standard Deviation 0.776 0.870 

  

4.5.5.7 Comprehensiveness of the Framework 

In a Likert scale, respondents were asked of their opinions on whether the proposed 

framework is comprehensive or not. Findings showed that global variables and 

declarations least contribute to SCSS complexity with a mean of 2.54 and 2.85 

respectively. These values fall within the range of slightly agree and agree (i.e. between 

2 and 3 in the Likert scale).  This implies that SCSS programmers somehow agree that 

the two features cause complexity in SCSS and should not be overlooked. Findings also 

show that all other remaining features fall in the range of agree and strongly agree (i.e. 

between 3 and 4 in the Likert scale). These mean values imply that the respondents agree 

that the concerned features contribute to SCSS complexity. The standard deviation values 

are high, but this is a result of the small sample size. Sullivan (2015) argued that the 

standard deviation of the means decreases as the sample size increases. Therefore, the 

high standard deviation can be explained and doesn’t make the results unreliable. These 

results are shown in Table 4.7. 
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Table 4.7: Comprehensiveness of the Framework 

SCSS features Mean Standard Deviation 

Global Variables 2.54 1.127 

Declaration 2.85 1.214 

Operator 3.00 1.000 

Control Directives 3.31 1.032 

Function  3.54 1.050 

Mixins 3.38 1.193 

Extends 3.15 1.519 

Nesting 3.46 1.561 

 
Finally, respondents were asked whether they agree that the SCSS features identified in 

Table 4.7. wholly represents all the possible features that need to be considered when 

analyzing the complexity of code written in SCSS language. Findings show that 12 

respondents agree corresponding to 92.3% while 1 respondent corresponding to 7.7% 

disagree. The findings, shown in Table 4.8, imply that the proposed framework is 

adequate as an indicator of features that cause structural complexity in SCSS code. 

 
Table 4.8: Adequacy of SCSS Complexity Features 

Adequate Features Frequency Percent (%) 

Yes 12 92.3 

No 1 7.7 

 

4.6 Chapter Summary 

In this chapter, a new SCSS structural complexity attribute classification framework was 

proposed. The framework extended Muketha’s classification framework as it was found 
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to be the most closely related framework to this study. A high-level category of attribute 

referred to as extra-module attribute was added and more lower levels were identified and 

added in all high level categories of SCSS attributes.  

 

The proposed framework was validated through an expert’s opinion survey. The experts 

agreed overwhelmingly that the framework is relevant and comprehensive. This means 

that the framework can be relied on as a formal approach of identifying all SCSS structural 

complexity attributes that can then be used as the basis of defining SCSS metrics. 
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CHAPTER FIVE 

STRUCTURAL COMPLEXITY METRICS FOR SASSY CASCADING STYLE 
SHEETS 

5.1 Introduction  

This chapter proposes a set of metrics to measure SCSS code complexity. The chapter 

was intended to solve the second research objective as described in the first chapter, that 

is, defining a suite of theoretically sound metrics for measuring the structural properties 

of SCSS.  

 

5.2 Determination of  Attributes to be Measured  

SCSS structural complexity attributes framework was employed to identify measurable 

attributes for SCSS language. Four types of attributes were identified including, intra-and 

inter-module, hybrid, and extra-module attribute. The intra-module attribute identified 

base metrics which were then used to derive other metrics found in other types of 

attributes. For example number of rule blocks was implemented in all the derived metrics 

of Nesting Factor for SCSS, Selector use Inheritance Level, Average Block Cognitive 

complexity for SCSS and Coupling Level for SCSS. 

 

The identified measurement attributes were classified as follows:  

a) Inter-module attribute 

 Nesting Factor for SCSS (NFSCSS) 

 Selector use Inheritance Level (SUIL) 

b) Hybrid attributes 

 Average Block Cognitive complexity for SCSS (ABCCSCSS) 
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c) Extra-module attributes 

 Coupling Level for SCSS (CLSCSS) 

 

5.3 Metrics Definition 

The proposed metrics are derived from existing CSS metrics and other software metrics 

through the process of modification. This study followed the Entity-Attribute-Metric 

model in the definition of metrics for SCSS (Fenton and Pfleeger, 1997), where the entity 

is SCSS code, attributes identified to be measured from SCSS code were cognitive 

complexity of SCSS blocks, nesting level for SCSS code, selector inheritance level for 

SCSS code and coupling level of SCSS code.  

 

The EAM model was extended to EAMT meaning Entity Attribute Metrics Tool model, 

this was after review of literature and many researchers over the years agree that metrics 

tool development is a necessary step for metrics to be acceptable by the software industry 

(Littlefair, 2001; Spinellis, 2005; Linos et. al, 2007; Lincke et al., 2008; Muketha, 2011; 

Adewumi et al, 2015; Misra et al.,2018). Figure 5.1 illustrates the newly extended EAMT 

model. 

 

The introduction of the new EAMT model will enforce the development of metrics tool 

and mainstream tooling as a requirement in the process of definition of metrics. 
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Figure 5.1: EAMT Model 

 

The SCSS blocks are the fundamental building units for SCSS code. The formal definition 

of a SCSS block SCSSB is   SCSSB =   <A, D>   

 

An SCSS block (SCSSB) is a 2-tuple <A, D>, where A is the set of attributes, and D is 

the set of directives such as mixin directives, control directive, function directive, and 

media directives. 

 

A suite of four metrics were defined namely; ABCCSCSS, NFSCSS, SUIL and NFSCSS.  To 

prove the intuitionality of the metrics, metric values were computed using code snippets 

and three real world projects. The code snippets were written by the researcher while the 

code for projects was obtained by using google advanced search feature and files with 

.scss extension were identified and downloaded from www.happy-shala.com, 

www.greatjewishmusic.com and www.mce.ie. 
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5.3.1 Average Block Cognitive Complexity for SCSS (ABCCSCSS) 

The metric ABCCSCSS extends Number of Attributes Defined per Rule Block (NADRB) 

and is used to compute the complexity of a rule block in regular CSS. NADRB metric 

calculates complexity by determining the average number of attributes defined in the rule 

blocks. The proposed ABCCSCSS metric will consider other factors beyond the number of 

attributes, such as @rule and directives, operators, function calls, and variables. 

 

Researchers have in the past identified several factors that they claim contribute to 

complexity. Those factors that relate to SCSS were considered in this research and they 

are as discussed in the subsequent paragraphs. 

 

The number of regular attributes (NRA) was considered in the stylesheets field, as a factor 

that contributes to CSS complexity. According to Adewumi, et al., (2012), the more the 

number of attributes in a rule block the more complex the rule block becomes. 

  

The number of operators (NO) has been recognized by several researchers as a factor that 

contributes to the complexity of code. For example, Misra & Cafer (2012), in their 

definition of JavaScript Cognitive Complexity Metric (JCCM) included the number of 

operators in this metric. In addition; Halstead (1977) in the development of Halstead 

science theory, posited that the complexity of software is due to operators and operands. 

 

The consideration of control flows in terms of their contribution to the complexity of code 

cannot be ignored, this is supported by several studies (Muketha, et al., 2010; Misra and 
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Cafer, 2012; McCABE, 1976). In rule blocks, the use of control directives is assigned 

weights as shown in Table 5.1. The weights allocates a value of 1.3 for a branch and 1.5 

for a loop (Törn et al.,1999). In SCSS the control flows have been categorized into two, 

that is, branch statements and loop statements. The number of branch statements (NB) 

and the number of looping statements (NL) are counted, while at the same time 

considering their weights. 

 

The consideration of function calls as an aspect that contributes to code complexity is 

supported by several studies (Misra and Cafer, 2012; Shao and Wang, 2003). SCSS allows 

the definition of functions and in effect, function calls are introduced. This research 

introduced number of function calls (NFC) metric as an SCSS complexity contributing 

factor. Function calls are similar to branches and therefore a weight of 1.3 was allocated 

to them. This conformarms with the way Misra and Cafer (2012) assigned selection or 

branch statements and function calls with the same weight. 

 

Mixins are blocks of codes that are defined and can be included in various parts of SCSS 

code by use of the @include statement. The number of mixin calls (NMC), just like 

function calls increases complexity because the control of the program is dependent on 

the mixin calls. These mixins are called from different places in the code. The @include 

directive rule is weighted at 1.3 same as the function calls. 

 

The number of extend directives (NE) are considered as one of the contributors to rule-

block complexity. This rule directive inherits a selector, meaning that code complexity 
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increases when it’s implemented. @extend directive rule is weighted at 1.3, just like 

function calls because some code in a different place is being referred. 

 

Table 5.1: Weights for Basic Control Structures  

Type of directive         Statements Cognitive weight 

Branch  @if , @else if , if ( ) 
and function calls,mixin 
calls, use of extends 

          1.3 

Loop @for, @while and 
@each 

          1.5 

 

To calculate ABCCSCSS, the complexity of each SCSS block is computed herein referred 

to as Block Cognitive Complexity (BCC). The sum of complexity of all SCSS blocks is 

computed and is represented by the Total Block Cognitive Complexity metric (TBCC). 

TBCC is then divided by the number of all SCSS blocks (NOBL). NOBL is a simple size 

metric that counts all the blocks used in SCSS. 

 

TBCC=∑ 𝑩𝑪𝑪𝒊
𝒏
𝒊 𝟏  ………………….(i) 
 

Where n is the total number of SCSS blocks and  

BCC = NRA + NO + (NB*1.3) + (NL * 1.5) + (NFC * 1.3) + (NMC * 1.3) + 

(NE *1.3) 

ABCCSCSS = TBCC / NOBL …………..(ii)   
 

The demonstration of the computation of ABCCSCSS metric is done using the example in 

Figure 5.2. The number of regular attributes is 9, number of operators is 1, number of 

branch statements is 0, number of loop statements is 1,number of function calls is 0, 
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number of mixin calls is 1 and number of extend directives is 0. The total number of SCSS 

blocks is 4. Therefore; 

TBCC =9+1+0+1*1.5+0+1*1.3+0 

=12.8 

NOBL=4 

ABCCSCSS = 12.8 / 4 

       =3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: ABCCSCSS Metric Example 

 

$color1: #f4f4f4; 

$color2: #000; 

@mixin fonts { 

    font-color: #ff21a3; 

    font-family: sans-serif; 

    font-size: 12px; } 

p { 

@include fonts; 

font-weight: bold; } 

span{ 

    width: 60px; 

    height: 45px; 

    position: absolute; } 

@for $i from 1 through 4 { 

.p#{$i} { padding-left : $i * 10px; } 

} 
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The ABCCSCSS metric values obtained from the websites are 2.58 for happy-shala.com, 

2.17 for greatjewishmusic.com and 2.9 for mce.ie. 

 

5.3.2 Nesting Factor for SCSS (NFSCSS) 

Nesting refers to the use of constructs such as if, while, for and each are found within 

other constructs and it increases program complexity (Li, 1987). SCSS allows nesting of 

CSS rules inside each other instead of repeating selectors in a separate declaration 

(Cederholm, 2013). According to Frain (2013), the nesting of rules should be kept as 

shallow as possible otherwise, it reduces the maintainability of the code. This means the 

higher the nesting level the more complex a program. 

 

Regular CSS doesn’t have nesting feature, therefore nesting concept in SCSS is borrowed 

from structured programming languages and object-oriented programming (OOP) 

languages. However, nesting in SCSS has an extra component as compared to other 

languages. In the regular programming languages when defining metrics only nesting 

depth is normally considered, while in SCSS we should consider nesting depth and nesting 

breadth. Figure 5.3 demonstrates nesting depth where we have countries-list rule block 

inside header rule block and li rule block inside countries-list rule block.  
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Figure 5.3: Nesting Depth 

 

Nesting breadth occurs when there are independent rule blocks inside a single rule block. 

Meaning that we consider the rule blocks which are independent of each other but 

dependent on a single rule block also known as parent block. For example, in Figure 5.4 

the countries-list rule block and the li rule block are two independent rule blocks inside 

header rule block. The two blocks countries-list and li rule blocks have no any 

relationship with each other, only that they share the features of the header rule block. 

However, the nesting breadth is not considered with the control directives of SCSS, since 

all the nested blocks have a relationship with each other. 

 

 

 

header{ 

width: 90%; 

position: absolute; 

height: 97px; 

.countries-list{ 

position: absolute; 

top: 100px; 

li{ 

display: block; 

margin-bottom: 5px; 

} 

} 

} 
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Figure 5.4: Nesting Breadth 

 

In the computation of the nesting depth, a metric value of 1 is assigned to the first level, 

a value of 2 to the second level, a value of 3 to the third level and so on (Chhilar and 

Bhasin, 2011). A nesting depth of 3 means we have three levels of nesting, meaning the 

depth cognitive complexity (DCC) value is 3+2+1=6 and if it’s a nesting depth of 5 then 

DCC value will be 5+4+3+2+1=15. The calculation of nesting breadth simply counts the 

number of SCSS blocks inside a single SCSS block. Therefore, if there are two 

independent rule blocks in a single block, then the complexity is assigned as 2. 

 

The proposed metric NFSCSS computes the nesting level by considering the total depth 

nesting level (TDNL) and the total breadth nesting level (TBNL) of all SCSS blocks.  

 

 

header{ 

width: 90%; 

position: absolute; 

height: 97px; 

.countries-list{ 

position: absolute; 

top: 100px; 

} 

li{ 

display: block; 

margin-bottom: 5px; 

} 

} 
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TDNL=∑ 𝑫𝑪𝑪𝒌𝒏
𝒌 𝟏   ……….(iii) 
 

Where n = number of SCSS blocks  

DCC =∑ (𝑚 − 𝑖) 

Where m is the nesting depth 

 

TBNL = number of independent blocks in different single rule blocks  ………..(iv) 
 

NFSCSS = TDNL * TBNL …….(v) 
 

The demonstration of the computation of NFSCSS metric was done using the example in 

Figure 5.5. The SCSS code provided has a header rule block with countries-list rule block 

placed inside it and the li rule block is placed inside countries-list. The p rule block was 

not considered in calculating nesting depth because it’s in the same level as countries-list 

rule block. This means that the nesting depth is 2. Therefore, TDNL =2+1=3. 

 

The SCSS code provided in Figure 5.5 has p rule block which is independent of countries-

list rule block and li rule block, but is dependent on the header rule block, because its 

placed inside header rule block. The countries-list rule block is dependent on header rule 

block and is in the same level as p rule block. Therefore, the countries-list rule block and 

the p rule block form part of nesting breadth, meaning that TBNL = 2. 

 

The derived metric NFSCSS is computed 

NFSCSS = 2 * 2 = 4 
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Figure 5.5: NFSCSS Metric Example 

 

The metric values computed for NFSCSS metric obtained a value of 6960 for happy-

shala.com, 8019 for greatjewishmusic.com and 3034 for mce.ie websites.  

 

5.3.3 Selector Use Inheritance Level (SUIL)  

This metric measure complexity brought about by inheriting selectors in SCSS. Though 

there is form of inheritance in the regular CSS, it doesn’t allow inheritance of selectors. 

header{ 

width: 90%; 

position: absolute; 

height: 97px; 

.countries-list{ 

position: absolute; 

top: 100px; 

li{ 

display: block; 

margin-bottom: 5px; 

} 

} 

 

p { 

@include fonts; 

font-weight: bold; 

 

} 

} 
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The inheritance concept in SCSS is borrowed from the object-oriented software. 

Therefore, the class inheritance factor (CIF) metric (Vinobha, Velan & Babu, 2014) in 

OOP domain motivated the definition of SUIL metric for SCSS. 

 

The proposed SUIL modifies the CIF metric and is calculated by taking the sum of all 

inherited selectors which is divided by the total number of all selectors. 

SUIL = ∑ 𝐍𝐒𝐈𝒏
𝒊 𝟏  / ∑ 𝑵𝑺𝒏

𝒊 𝟏  …………….(vi) 

 

Where NSI is the Number of all selector inheritance instances and NS is the 

Number of all selectors in the program and n is the number of SCSS blocks 

The demonstration of the computation of SUIL metric was done using the example in 

Figure 5.6. The number of selector inheritance instances is the number of @extend 

directives in the rule blocks while the number of selectors is the total number of SCSS 

blocks excluding the mixin blocks and control-flow blocks, media and function blocks.  

 

 

 

 

 

 

Figure 5.6: SUIL Metric Example 

$color1 

p { 

font-type:italic; 

text-transform: uppercase; } 

h1 {  

@extend p; } 

h2{ 

@extend p; 

font-color: $color1; } 
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As shown in Figure 5.6, the selector inheritances are in h1 and h2 rule blocks and are 2 in 

number. The total number of selectors is 3. Therefore, SUIL=2 / 3 = 0.67. 

 

The metric values obtained for SUIL metric from the websites were 0 for happy-

shala.com, 0 for greatjewishmusic.com and 0.03 for mce.ie. 

 

5.3.4 Coupling Level for SCSS (CLSCSS) metric 

Coupling is the measure of the strength of association established by a connection from 

one class to another (Stevens et al., 1974; Chidamber and Kemerer, 1994). In OOP, 

coupling occurs when methods of one class use methods or variables of another class. In 

SCSS, coupling occurs when rule blocks share mixins and variables. The more the rule 

blocks sharing the same mixin or variable, the higher the coupling level.  

 

A need for a new metric for measuring coupling level in SCSS arises. The CLSCSS metric 

is proposed and it’s computed by summing the number of all declared mixins (NDM) with 

the number of all declared variables (NDV) which is then divided by the summation of 

all the number of mixin calls (NMC) and total number of all variable instances (NVI) in 

the program.  

CLSCSS = (NDM+NDV) / ( ∑ 𝑵𝑴𝑪𝒏
𝒊 𝟏    +∑ 𝑵𝑽𝑰𝒏

𝒊 𝟏 )   …………(vii) 
 

where, n is the number of SCSS blocks in the program 

In the SCSS code example in Figure 5.7, there is only 1 mixin declared (@mixin fonts) 

and 1 declared variable ($color1). The total number of mixin calls are 3. i.e where we 

have all @include statements, and the total number of variable instances are 2. Therefore,  
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CLSCSS  =(1 + 1)/ (3 + 2) 

  = 2 / 5      = 0.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: CL Metric Example 

 

$color1: #f4f4f4; 

@mixin fonts { 

    font-color: #ff21a3; 

    font-family: sans-serif; 

    font-size: 12px; 

} 

p { 

font-type:italic; 

@include fonts; 

} 

h1 {  

font-color: $color1; 

} 

h2{ 

@include fonts; 

text-transform: uppercase; 

} 

h3{ 

@include fonts; 

} 

h4{ 

background: $color1; 

} 
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The CLSCSS metrics results obtained after analysis of the three websites were 0.31 for 

happy-shala.com, 0.27 for greatjewishmusic.com and 2.33 for mce.ie. 

 

5.4 Theoretical Validation Results for the Proposed Metrics 

Two methods were used, namely, Weyuker’s properties to establish the theoretical 

soundness of the metrics and the Kaner framework to prove the practical value of the 

metrics. 

 

The software community fully accepts software metrics when they have sound theoretical 

and mathematical foundation. Therefore, the proposed metrics have been validated using 

Weyukers properties and Kaner framework. Weyuker’s properties have been used by 

several researchers to evaluate their proposed software metrics and they agree to the fact 

that it’s a necessary framework and that for a measure to be valid it must satisfy most of 

its properties (Cherniavsky and Smith,1991; Abreu and Carapuca,1994; Chidamber and 

Kemerer,1994; Gursaran,2001; Sharma et al., 2006; Muketha et al., 2010a; Basci and 

Misra, 2011b). The Kaner framework has been used by a number of researchers 

(Adewumi et al., 2012; Basci and Misra, 2011b), and has been applied in this research for 

practical evaluation of the proposed metrics. 

 
5.4.1 Validation with Weyuker’s Properties 

Property 1: (∃P) (∃Q) (|P| ≠ |Q|) where P and Q are two different SCSS blocks.  

This property is satisfied when there exist SCSS blocks P and Q such that |P| is not equal 

to |Q|. Therefore, if we can’t find two SCSS blocks of different complexity, then all SCSS 

blocks have the same complexity value. All the metrics proposed ABCCSCSS , NFSCSS , 
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SUIL and CLSCSS, return different complexity value for any two SCSS blocks that are not 

identical and therefore they satisfied this property. 

 

Property 2: Let c be a non-negative number.  

Then there are finitely many SCSS blocks of complexity c. This property asserts that if 

an SCSS block changes then its complexity changes. When the number of attributes is 

changed, complexity values change for the ABCCSCSS. In addition, when the number of 

extend rule directives changes then SUIL value change, and when the number of include 

statements and variables change then CLSCSS metric value changes. In addition, NFSCSS 

metric value changes when you reduce or increase nested SCSS blocks, meaning it also 

satisfies this property. 

 

Property 3: There can exist distinct SCSS blocks P and Q  where |P| = |Q|.  

This property affirms that two different SCSS blocks can have same metric value, this is 

to say that two SCSS blocks have the same level of complexity. This property was 

satisfied by all the proposed metrics. 

 

Property 4: (∃P) (∃Q)(P ≡ Q &|P| ≠ |Q|) 

There can be two SCSS blocks P and Q  whose external features look the same, however, 

due to different internal structure |P| is not equal to |Q|.  This property asserts that two 

SCSS blocks with the same number of attributes and directives could return different 

metric values. This property is satisfied by ABCCSCSS, SUIL and CLSCSS. The NFSCSS 
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metric values could change even in the circumstances where the number of nested rules 

is the same. Therefore, NFSCSS satisfies this property. 

 

Property 5: (∃P) (∃Q) (|P| ≤ |P; Q| & (|Q| ≤ |P; Q|) 

This property asserts that if we concatenate two SCSS blocks P and Q, the new metric 

value must be greater than or equal to the individual rule block. All the analyzed metrics 

returned numeric values meaning that they satisfy this property. 

 

Property 6: (∃P) (∃Q) (∃R) (|P| =|Q| and  |P; R| ≠ |Q; R|) 

This property implies that if two SCSS blocks have same metric value (P and Q), it doesn’t 

necessarily mean that when each of the SCSS blocks is concatenated with similar SCSS 

block R, the resulting metric values are the same. All the proposed metrics have physical 

components meaning that they return fixed values. Therefore they don’t satisfy this 

property. 

 

Property 7: If you have two SCSS blocks P and Q which have the same number of 

attributes in a permuted order, then |P| is not equal to |Q|. 

This property implies that the order of similar attributes affects their complexity. 

Therefore, if two rule blocks have the same number of attributes but differ in the ordering, 

it’s not necessary that they have the same complexity level. In the case where the SCSS 

blocks length is constant and you only change the permutation of the order of statements 

then all the proposed metrics will retain the same level of complexity. Therefore all the 

metrics defined didn’t meet the property requirements. 
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Property 8: if P is a renaming of Q, then |P| = |Q| 

Where you have two SCSS blocks P and Q differing in the naming of selector names, it 

means |P| is equal to |Q|. The metric values for all the proposed metrics are either size 

measures, complexity measures or coupling measures and they all return numeric values. 

Therefore, all proposed metrics satisfied this property. 

 

Property 9: (∃P) (∃Q) (|P| +|Q| < ( |P; Q|) 

This property asserts that there exist two SCSS blocks P and Q, where the complexity 

metric value of the two SCSS blocks when summed up is less than when the rule blocks 

are interacting. The interaction between rule blocks and the growth of rule blocks over 

time adds to the complexity of rule blocks. The growth of blocks complexity happens 

when new attributes are added or even when a new SCSS block is added to the existing 

SCSS block, meaning that the new metric value is equal to or greater than the sum of the 

two original rule blocks. All the  metrics ABCCSCSS , NFSCSS , SUIL and CLSCSS satisfied 

this property.  

 

Findings in Table 5.2 show that all the metrics didn’t satisfy property 6 and 7, this is 

because SCSS interactions don’t add any extra external complexity, meaning that the 

attributes and rule directives are assigned fixed weights. In addition, the permutation of 

statements don’t add any complexity 
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Table 5.2: Validation Results of SCSS metrics with Weyuker’s Axioms 

Property ABCCSCSS NFSCSS SUIL CLSCSS 

1     

2     

3     

4     

5     

6     

7     

8     

9     

     

Key:    represents satisfied property 

           represents property not satisfied 

 

5.4.2 Validation with Kaner’s Framework 

The aim of implementing Kaner framework is to find out if the metrics defined make any 

sense and to enable the designers to see how the metrics can be used for experimental 

purposes, thus proving their practicality (Misra et al., 2018). According to Kaner (2004), 

the following eleven questions should be addressed for purposes of evaluation of software 

metrics. 
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i. What is the purpose of this measure? 

The purpose of the measure must be clear so as consider it as a valid measure. Therefore, 

the purpose of this measure is to evaluate the complexity of sassy cascading style sheets 

(SCSS). 

ii. What is the scope of this measure? 

The measure used should have a specific area it acts on. The proposed metrics will be 

used by front web developers in web-based projects, particularly those who style the web-

documents. 

iii. What attribute are we trying to measure? 

The attribute to measure will be maintainability through its sub-attributes; 

understandability, modifiability, and testability. 

iv. What is the natural scale of the attribute we are trying to measure? 

The proposed metrics will measure understandability, modifiability, and testability and 

they can all be measured on an ordinal scale 

v. What is the natural variability of the attribute? 

The quality attributes are subjective in nature, meaning that different SCSS developers 

can rate the understandability, modifiability and testability of same code differently. 

vi. Metrics definition 

The metrics must be clearly defined and in this study, the metrics have been defined in 

section 5.3. 

vii. What is the metric and what measuring instrument do we use to perform the 

measurement? 
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There are four proposed metrics; ABCCSCSS , NFSCSS , SUIL and CLSCSS and they have 

been computed manually. In addition, a static metrics tool was developed to measure the 

metrics. 

viii. What is the natural scale for this metric? 

The natural scale for all the metrics defined fall in the ratio scale 

ix. What is the natural variability of readings from this instrument? 

When we manually compute the metrics there is no subjectivity to it, meaning that there 

is no variability. For the metrics tool, the software was tested to ensure no bugs that would 

lead to erroneous metric values. 

x. What is the relationship of the attribute to the metric value? 

The maintainability of SCSS is directly related to the proposed complexity metrics. This 

means we can tell the understandability, modifiability, and testability of SCSS by using 

the proposed metrics. 

xi. What are the natural and foreseeable side effects of using this instrument? 

Since the static metrics tool was thoroughly tested and validated, then there will be no 

negative effects after the implementation of the tool. 

The validation results of metrics using Kaner framework show that all the four metrics 

satisfied its requirements. 

 

5.5 Chapter Summary 

This chapter proposed four metrics for measuring the complexity of SCSS code. Code 

snippets and three Real world projects were used to demonstrate the computation of each 

of the metric and the metrics proved to be intuitional as shown by the different metrics 
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values obtained. The metrics were validated using Weyukers properties and the results 

showed that all the metrics satisfied most of its properties, meaning they are 

mathematically sound. The study further used Kaner framework to prove the practicality 

of the metrics and they all proved practical, meaning they can be used for experimental 

purposes. 
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CHAPTER SIX 

IMPLEMENTATION OF A STRUCTURAL COMPLEXITY METRICS TOOL 
FOR SASSY CASCADING STYLE SHEETS (SCMT-SCSS) 

6.1 Introduction 

This chapter presents the Structural Complexity Metrics Tool for Sassy Cascading Style 

Sheets (SCMT-SCSS) tool which is a prototype metrics tool meant to automate the 

collection and computing of SCSS complexity metrics values. The chapters intention was 

to meet the third research objective as stated in the first chapter, which was to develop a 

functional and usable static metrics analysis tool.  

 

6.2 Requirements of the SCMT-SCSS 

The metrics tool was developed to enable the process of collecting, computation and 

presenting the metrics values. The static analysis metrics tool was developed using 

Microsoft C# programming language. To ensure the acceptability of the four SCSS 

metrics, the developed SCMT-SCSS tool was validated by involving 21 subjects who 

were randomly provided with SCSS files to manually compute metric values and to also 

compute metrics values with aid of SCMT-SCSS tool. 

 

The tool requirements were identified  as: 

 The metrics tool accepts all files with .scss extension and the users should be 

able to locate .scss source files and open them to the tool’s user interface. 

 The tool operators should compute the metrics and view the computed results. 

These results are displayed via the tools’ textboxes. 
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 The operators should be able to save the metrics results for future retrieval of 

results 

 The operators of the tool should clear or delete the unnecessary results 

 The operators should print the acquired metrics results 

 The operators should make use of help functionality to get assistance in the use 

of the tool. 

 
6.3 Metrics Implementation  

The metrics were computed in two levels, i.e. base metrics and derived metrics. The base 

metrics collects and computes all the metrics directly from the .scss source file. The base 

metrics were number of regular attributes, number of operators, number of decision nodes, 

number of function calls, number of mixins defined, number of mixin calls, number of 

extend directives, number of selectors, number of rule blocks, number of variables defined 

and number of variables instances. The derived metrics were, Average Block Cognitive 

Complexity for SCSS (ABCCSCSS), Nesting Factor for SCSS (NFSCSS), Selector Use 

Inheritance Level (SUIL) and Coupling level for SCSS (CLSCSS), and they make use of 

the base metrics to compute the final metrics required to measure the complexity of SCSS 

files. 

 
6.4 Input File Format  

The SCSS files serves as the input files. An SCSS file has several features, such as, use 

of variables, use of mixins, rule-blocks which consists of a selector, opening brace, 

attributes or declarations, and a closing brace. SCSS file also implements rule nesting, use 
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of control flows, use of functions and inheritance feature via extend directive. Figure 6.1 

illustrates the typical structure of an SCSS file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: The Structure of an SCSS file 

 

Variable declarations; 

Mixin declarations{ 

 Attributes/declarations; 

} 

Selector1{ 

Attributes/declarations; 

Attribute/declaration with variable use; 

Implementation of Mixin; 

Selector2{ 

Attributes/declarations; 

} 

 

} 

Selector3{ 

Attributes/declarations; 

Extend Selector1; 

} 

Implement control flows{ 

Attributes/declarations; 

} 

Implement function{ 

 Attributes/declarations; 

} 
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6.5 SCMT-SCSS Tool Architectural Design 

The software system architecture describes the various components of software and how 

they relate with each other. The SCMT-SCSS tool comprises of three major 

components, that is, input, analyzer, and output. 

 

6.5.1 Input Component 

This purpose of this component is to read and load an SCSS code into the memory. This 

is achieved by the user clicking on a button named “Open”, or  toolbar open icon or via 

Menu option (File -> Open). Only files with .scss extension are recognized by this 

component. Once the file is loaded the source code is visible in the textbox which is in 

the landing tab of the user interface. 

 
6.5.2 Analyzer Component 

This role of this component is divided into two phases i.e lexical analysis and parsing. 

In lexical analysis phase, the .scss source code is broken into tokens and in the parsing 

phase, the parser accepts input in the form of a sequence of tokens and increments the 

token flag when it’s recognized. The parser is invoked by clicking on analyze button and 

SCSS metrics are computed. 

 
6.5.3 Output Component 

This component enables the user of SCMT-SCSS tool to view the metrics values and 

save the values in a database (text file format). The user views report as presented via 

textboxes and can print preview before printing the report. Figure 6.2. Displays the 

SCMT-SCSS tool architecture.
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Figure 6.2: SCMT-SCSS Tool Architecture 
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The representation of the design of a software system is through different types of 

diagrams such as, data flow diagrams, entity relationship diagrams, Unified Modelling 

Language diagrams etc. The choice of the diagram to use depends on the programming 

paradigm. The SCMT-SCSS tool has several modules that interact with each other and 

some parameters are passed between the modules. Therefore, the structure chart was 

selected because it well represents the module structure of the software design. 

 

Figure 6.3: SCMT-SCSS Structure Chart Diagram 

 
6.6 User Interface Design 

The Use Case diagram was used to represent the user’s interaction with the SCMT-

SCSS tool. The use cases include viewing the source code, analyzing the SCSS code, 

displaying SCSS metrics, save metrics, and print the metrics. 
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Figure 6.4: SCMT-SCSS Use Case Diagram 

 
The form layout design as shown in Figure 6.5 displays the interface of the tool. The 

design has a menu bar which has File, View and Help options at top level. The file menu 

option is used to access the Open, Save, Print and Exit options. The View option 

determines whether to view tool bar and status bar, while the Help option guides the user 

on the operation of the system.The interface also shows the tool bar with open, save and 

print options. The Landing tab allows the user of the tool to open an SCSS file and analyze 

Display SCSS Metrics

View Source Code

Analyze Source Code

Save Metrics

Print SCSS Metric Values

User
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the file for the purpose of computing the metrics values. The Base Metrics tab displays 

the metris collected directly from the file while the derived metrics tab displays the final 

computed metric. 

 

 

Figure 6.5: Form Layout Design 

 

6.7 Algorithm Design  

Algorithms show the steps to be followed to solve a problem and therefore this section 

identifies the steps for calculating the metric values for Average Block Cognitive 

Complexity for SCSS (ABCCSCSS), Nesting Factor for SCSS (NFSCSS), Selector Use 

Inheritance Level (SUIL) and Coupling Level for SCSS (CLSCSS). 
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6.7.1 ABCCSCSS Algorithm 

 
To calculate metric value for ABCCSCSS the following steps were followed:  

i. Count the number of regular attributes (NRA),  

ii. Count the number of operators (NO) 

iii. Count the number of branch statements (NB) 

iv. Count the number of looping statements (NL) 

v. Count the number of function calls (NFC) 

vi. Count the number of mixin calls (NMC) 

vii. Count the number of extend directives (NE) 

viii. Count the number of SCSS blocks (NOBL) 

To count NRA: 

i. Lexical analyzer flag is raised to indicate if a regular attribute exists at the 

beginning of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NRA count is incremented, if not, no change. 

To count NO: 

i. Lexical analyzer flag is raised to indicate if a flag in the lexical analyzer that 

records whether an operator exists at the beginning of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NO count is incremented, if not, no change 

To count NB: 

i. Lexical analyzer flag is raised to indicate if a branch statement exists at the 

beginning of the line.  
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ii. A true value is set if the flag exists, otherwise its false. 

iii. NB count is incremented, if not, no change. 

iv. Final NB count is multiplied by 1.3 as the assigned weight of a branch 

To count NL: 

i. Lexical analyzer flag is raised to indicate if a looping statement exists at the 

beginning of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NL count is incremented, if not, no change. 

iv. Final NL count is multiplied by 1.5 as the assigned weight of a loop. 

To count NFC: 

i. Lexical analyzer flag is raised to indicate if a function call exists at the beginning 

of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NFC count is incremented, if not, no change. 

iv. Final NFC count is multiplied by 1.3 as the assigned weight of a function call. 

To count NMC: 

i. Lexical analyzer flag is raised to indicate if a mixin call exists at the beginning of 

the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NMC count is incremented, if not, no change. 

iv. Final NMC count is multiplied by 1.3 as the assigned weight of a mixin call. 
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To count NE: 

i. Lexical analyzer flag is raised to indicate if a extend directive exists at the 

beginning of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NE count is incremented, if not, no change. 

iv. Final NE count is multiplied by 1.3 as the assigned weight of a extend directive. 

To count NOBL: 

i. Lexical analyzer flag is raised to indicate if a block exists at the beginning of the 

line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NOBL count is incremented, if not, no change. 

To measure ABCCSCSS : 

i. Locate the variables holding current values of NRA, NO, NB, NL, NFC, NMC, 

NE and NOBL 

ii. Add the values of NRA, NO, NB, NL, NFC, NMC, and NE 

iii. Divide the total with NOBL 

 

6.7.2 NFSCSS Algorithm 

To calculate metric value for NFSCSS the following steps will be followed:  

i. Count total depth nesting level (TDNL) 

ii. Count total breadth nesting level (TBNL) 

To count total depth nesting level 
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i. Raise a flag in the lexical analyzer to indicate if depth of SCSS rules has 

been seen since the start of code 

ii. A true value is set if the flag exists, otherwise its false. 

iii. The depth of nesting value is incremented for each of the nested rule blocks, 

if not, no change. 

iv. The final count if its 5, then the total depth nesting level is (5+4+3+2+1) = 

15 

v. Locate next block with nested blocks and repeat step 4 

vi. Total depth nesting level is incremented until end of code. 

To count total breadth nesting level 

i. Raise a flag in the lexical analyzer to indicate if breadth of SCSS rules has 

been seen at the beginning of the line. 

ii. A true value is set if the flag exists, otherwise its false. 

iii. The total breadth nesting value is incremented, if not, no change. 

 

To measure NFSCSS: 

i. Find the TDNL and TBNL values  

ii. Get the product of  TDNL and TBNL.  

 

6.7.3 SUIL Algorithm 

To calculate metric value for SUIL the following steps will be followed:  

i. Count the number of selector instances (NSI) 
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ii. Count the number of selectors (NS) 

To count the number of selector instances 

i. Lexical analyzer flag is raised to indicate if an extend directive exists at the 

beginning of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NSI count is incremented, if not, no change. 

To count the number of selectors 

i. Lexical analyzer flag is raised to indicate if a selector exists at the beginning 

of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NS count is incremented, if not, no change. 

To measure SUIL: 

i. Locate the variables that hold current values of NSI and NS 

ii. Divide total NSI with total NS, i.e.  SUIL = NSI / NS 

6.7.4 CLSCSS Algorithm 

This metric is computed following these major steps 

i. Count the number of declared mixins (NDM) 

ii. Count the number of declared variables (NDV) 

iii. Count the number of mixin calls (NMC) 

iv. Count the number of variable instances (NVI) 
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To count the number of declared mixins 

i. Lexical analyzer flag is raised to indicate if a mixin exists at the beginning of 

the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NDM count is incremented, if not, no change. 

To count the number of declared variables 

i. Lexical analyzer flag is raised to indicate if a variable exists at the beginning 

of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NDV count is incremented, if not, no change. 

To count the number of mixin calls 

i. Lexical analyzer flag is raised to indicate if a mixin call exists at the 

beginning of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NMC count is incremented, if not, no change. 

To count the number of variable instances 

i. Lexical analyzer flag is raised to indicate if a variable instance exists at the 

begining of the line.  

ii. A true value is set if the flag exists, otherwise its false. 

iii. NVI count is incremented, if not, no change. 
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6.8 Execution of the SCMT-SCSS Tool 

The SCMT-SCSS tool functions as described: 

1. The user begins by opening an SCSS source file. This is achieved by clicking 

Open button in the landing page, or through the menu option (File -> Open) or 

tool bar open icon   

2. To calculate the SCSS metrics the user clicks on the analyze button  

3. The user can view the metric results as presented in the textboxes. 

4. The metrics results can be saved via menu option File -> Save or via tool bar 

icon. The metrics results are saved as text file. 

5. The user can print the metrics results via menu option File -> Print or via tool 

bar icon   

6. The user can use help function if required to do so. 

 

The  base metrics are gathered directly from the SCSS file and the computed metric values 

are displayed as illustrated in Figure 6.6. 
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Figure 6.6: SCSS Base Metrics Values  

 
Derived metrics are computed based on the base metrics. The metrics values are displayed 

in the tool as illustrated in Figure 6.7. 
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Figure 6.7: SCSS Derived Metrics Values  

 
The saved metric values in a text file are as shown in Figure 6.8. The values are as a result 

of running the tool and computing the metric values of the loaded file. These results can 

be retrieved for future purposes. 
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Figure 6.8: SCSS Metrics Values in a Text File 

 

6.9 Experimental Validation of the SCMT-SCSS Tool 

6.9.1 Goal of the Study 

The goal of this study was to evaluate the tool in terms of its effectiveness, efficiency, 

accuracy, suitability and operability. 

 

6.9.2 Context Definition 

The subjects involved in this study were students in the School of Computing and 

Information Technology from Murang’a University of Technology, Kenya. The students 

selected were fourth years pursuing Bachelor of Science in Information Technology, 

Bachelor of Science in Software Engineering, Bachelor of Business Information 
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Technology. Third year students pursuing Bachelor of Science in Software Engineering 

were also involved. A convenient sample of 21 subjects was selected. 

 

6.9.3 Threats to Validity 

6.9.3.1 Internal Validity 

The threat involved was that the subjects rated some aspects of the tool such as suitability, 

accuracy, and operability subjectively. However, the subjects were trained on the usage 

of the tool before performing the tasks provided. 

 

6.9.3.2 External Validity 

The threat involved was that the subjects are not industry-based persons, however, the 

threat was significantly reduced by offering intensive training to the subjects on SCSS 

language, how to compute metrics manually and the use of the tool. Meaning that the 

subjects were well able to gather metrics from an SCSS file and implement the tool to 

automate metrics computation.  

 

6.9.4 Experimental Design 

The experimental materials used were 4 SCSS files, and were randomly distributed to 21 

subjects. The subjects were guided on how to carry out the experiment. All the subjects 

did the experiments in a computer laboratory and were given enough time to complete the 

tasks. The subjects first task was to calculate the metric values for the file provided 

manually i.e without the tool and the second task was to calculate metric values for the 

same file using the tool. When performing both tasks, the subjects recorded the time taken 
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in terms of Minutes and seconds. Finally, the subjects were required to rate the suitability, 

accuracy, and operability of the SCMT-SCSS tool using a Likert scale of 1-5.  

 

6.10 Results 

6.10.1 Time to Complete Tasks 

The feedback from the subjects was collected and checked for completeness. All the 

required responses were completed by all the subjects. Therefore, all data from the 21 

subjects was analysed. 

 

This experiment was carried out to test the tool effectiveness and efficiency. This was 

performed by calculating the metrics values for the provided file both manually and by 

use of the tool. The mean of metrics computation was calculated and provided the basis 

for conclusion on tool effectiveness and efficiency. 

 

The mean time for calculating the metric values without a tool for SCSS File number 1 

was 18 Minutes 3 seconds, while calculation of the metric values with the tool for the 

same file took an average of 42 Seconds. These results are presented in Table 6.1, and they 

imply that the use of the tool was far much better and saved a lot of time for the metrics values 

computation of SCSS File1. 
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Table 6.1: Time to Complete Tasks for SCSS File 1 

Subject Metrics Values Calculation time 
without Tool (MM:SS) 

Metrics Values Calculation 
time with Tool (MM:SS) 

1 24.52 0.27 
2 10.07 1.00 
3 30.24 0.28 
4 11.19 0.36 
5 11.19 0.24 
6 18.54 0.38 

Mean 18.03 0.42 
 
The computed metrics for SCSS File number 2 are shown in Table 6.2. There were five 

subjects involved and the mean of calculating the metric values without tool was 26 

Minutes 28 seconds while calculation of the metric values with the tool took an average 

of 47 Seconds. This proves that the tool achieves results with far much less time in 

comparison to manual calculation. 

 

Table 6.2: Time to Complete Tasks for SCSS File 2 

Subject Metrics Values Calculation time 
without Tool (MM:SS)  

Metrics Values Calculation 
time with Tool (MM:SS)  

1 25.31 0.28 
2 27.33 0.26 
3 25.5 1.2 
4 23.07 0.25 
5 28.22 0.37 

Mean 26.28 0.47 
 
The SCSS File number 3 was assessed by 5 subjects and as shown in Table 6.3 the mean 

of calculating the metric values without a tool is 15 Minutes 34 seconds while calculation 

of the metric values with tool took an average of 27 Seconds. This shows that the 
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automation of metrics calculation achieves results in a shorter time as compared to manual 

calculation metrics values for the same SCSS file. 

 

Table 6.3: Time to Complete Tasks for SCSS File 3 

Subject Metrics Values Calculation time 
without Tool (MM:SS) 

Metrics Values Calculation 
time with Tool (MM:SS) 

1 20 0.21 
2 15.55 0.29 
3 9.35 0.36 
4 11.42 0.23 
5 18.38 0.27 

Mean 15.34 0.27 
 
The computed metrics for SCSS File number 4 are shown in Table 6.4. There were five 

subjects involved to compute metrics values for the file both manually and with the use 

of a tool. The mean of calculating the metric values without tool was 16 Minutes 25 

seconds while calculation of the metric values with the tool took an average of 29 

Seconds. This proves that the tool achieves results with far much less time in comparison 

to manual calculation. 

 

Table 6.4: Time to Complete Tasks for SCSS File 4 

Subject Metrics Values Calculation time 
without Tool (MM:SS) 

Metrics Values Calculation 
time with Tool (MM:SS) 

1 15.56 0.26 
2 13.13 0.27 
3 21.06 0.44 
4 21.38 0.32 
5 8.13 0.16 

Mean 16.25 0.29 
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6.10.2 Suitability, Accuracy and Operability Rating 

The subjects were asked questions concerning the suitability, accuracy, and operability of 

the SCMT-SCSS Metrics tool. The subjects were required to give a rating using a Likert 

scale of 1 to 5(see Appendix 7). The subjects’ ratings were averaged, and they all acquired 

a mean greater than 4. The standard deviation for all the responses were less than 1.0, 

meaning that the subjects’ responses did not differ too much. 

 

Suitability is the capability of the tool to provide an adequate set of functions for the tasks 

to be carried out, while accuracy is the capability of the tool to provide correct results and 

operability is defined as the capability of the tool to allow the user to operate it (ISO, 

2001).  

 

The subjects were asked the question, how do you rate the suitability of SCMT-SCSS 

Metrics tool? The average of the responses is 4.52 as shown in Table 6.5 and is a high 

rating on the suitability of the tool. This means that the subjects were able to use the menu 

bar, toolbar and buttons provided to load an SCSS file and compute SCSS metrics values. 

Therefore, the researcher concluded that the SCMT-SCSS tool provides a set of functions 

which enable SCSS metrics values computation. 

 

Table 6.5: Average Rating on Suitability 

 Mean Std. Deviation 

Subject Rating on Tool Suitability 4.52 0.60 
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The subjects were asked the question, how do you rate the accuracy of SCMT-SCSS 

Metrics tool? The average of the responses is 4.43 as shown in Table 6.6 and is a high 

rating on the accuracy of the tool. This implies that the subjects were able to obtain results 

which were accurate. Therefore, the research concluded that the SCMT-SCSS tool can be 

used to provide correct SCSS metrics values for any SCSS file. 

 

Table 6.6: Average Rating on Accuracy 

 Mean Std. Deviation 

Subject Rating on Tool Accuracy 4.43 0.60 

 
The subjects were asked the question, how do you rate the operability of the SCMT-SCSS 

Metrics tool? The average of the responses is 4.76 as shown in Table 6.7 and is a high 

rating on the operability of the tool. This implies that the subjects were able to easily 

operate or use the tool to perform the task assigned. Therefore, the researcher concluded 

that the SCMT-SCSS tool is operable. 

 

Table 6.7: Average Rating on Operability 

 
Mean Std. Deviation 

Subject Rating on Tool Operability 4.76 0.44 

 
6.11 Chapter Summary 

The development of a metrics tool is a basic requirement for the defined software metrics 

to be acceptable in the software industry. There are several metrics proposed over the 

years without tool support and this trend cannot be tolerated. Therefore, a metrics tool to 
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automate the collection and analyze the defined SCSS metrics was developed and is 

herein referred to as SCMT-SCSS Metrics Tool. The tool was validated by using 4 SCSS 

files with a convenient sample of 21 students who were trained in SCSS language and on 

the usage of the SCMT-SCSS metrics tool. The results indicated that the tool computes 

metrics in much less time than manual computation. The subjects rated the tool as suitable 

for the tasks assigned, and in comparison, of the metrics values results obtained from the 

tool and without the tool, the subjects rated the tool as accurate. In addition, the subjects 

rated the tool as easy to operate. 

 

This study proposed an SCMT-SCSS metrics tool and was validated using an experiment. 

The tool was found to be very effective and efficient because as observed it took far less 

time to complete a similar task. The manual computation of metrics is an inefficient 

process in terms of time taken and the software industry may not appreciate the metrics 

in the absence of a tool. The results from the subjects rating suggested strongly that the 

tool provided a required set of functions to compute SCSS metrics values and therefore 

it’s suitable for the tasks. In addition, the subjects strongly agreed that the tool provides 

accurate results. The results by different subjects differed in terms of metrics values 

obtained manually, but the tool provided consistent and accurate results. Lastly, the 

SCMT-SCSS tool proved operable and users were able to easily navigate through the tool 

to execute the tasks provided. 
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CHAPTER SEVEN 

AN EXPERIMENTAL VALIDATION OF STRUCTURAL COMPLEXITY 
METRICS FOR SASSY CASCADING STYLE SHEETS  

7.1 Introduction 

The two phases of the experiment are described in this chapter. In the first phase 

subjective experiment was carried out and second phase objective experiment was 

conducted. The purpose of the experiment was to check if the proposed metrics can 

predict the maintainability of  SCSS code.  Pilot study was carried out to identify any 

important omissions, clarifications and corrections.  

 

7.2 Context Definition 

Thirty SCSS files were availed for the experiment to 30 students from Murang’a 

University of Technology in the School of Computing and Information Technology. The 

students involved were fourth year students pursuing Bachelor of Science in Software 

Engineering, Bachelor of Information Technology and Bachelor of Business Information 

Technology because the researchers believed they were more knowledgeable in software 

engineering processes in comparison with other students. In addition, third year students 

pursuing Bachelor of Science in Software Engineering were also involved because when 

they studied the web development unit, they were introduced to CSS pre-processors 

specifically SASS using .scss syntax. Therefore, the researcher believed they were well 

placed to participate in this study. All the subjects who participated in the experiment 

were trained on SCSS language intensively for 27 hours. 
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7.3 Strategy for Conducting the Experiment 

The experiment was conducted in two phases, where in the first phase it involved subjects 

ranking maintainability sub-characteristics, while in the second phase, involved subjects 

indicating the understanding time, modification time and testing time of each SCSS file. 

A between subject design was used where ten groups were involved and each group 

worked on same files. The subjects worked individually for a period of two hours. The 

total experimental objects provided for the experiment was 30 SCSS files which were 

assumed to have correct syntax. Each subject was provided with three SCSS files. The 

files had different complexity values as evidenced by the metrics values gathered (see 

Appendix 3). The SCMT-SCSS tool was included as a material to automate gathering and 

calculation of metrics. The subjects did not use the metrics tool, and so only the researcher 

used the tool to collect metric values of the files provided to the subjects. 

 

Before the experiment was conducted a pilot study was carried out. Through the pilot 

study, lessons were learned and were used to inform the process of carrying out the final 

experiment. 

 

7.4 Pilot Study 

A pilot study was carried out using a between-subject experimental design. The design 

was chosen because SCSS files are normally long files and this ensured that the subjects 

don’t take a lot of time working on the files which could lead to boredom. Therefore, each 

subject only worked on three SCSS files of the 10 files available. The study aimed at 

finding if the proposed SCSS metrics correlate with the subjects rating of 
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understandability, modifiability and testability. The study was also conducted to find if 

the proposed SCSS metrics are valid measures of SCSS maintainability. Finally, the pilot 

study was performed to test and validate the questionnaire. The questionnaire used for 

both subjective and objective phases is shown in Appendix 2. 

 

A convenient sample of 10 subjects were involved in pilot study. They were required to 

rate the SCSS files provided in Likert scale of 1-5 i.e. Very Difficult to Very Easy. The 

rating for each file was in terms of understandability, modifiability and testability. The 

metrics values collected with SCMT-SCSS tool were correlated with the mean of subject 

ratings for each file. A number of questions were availed to the subjects  on 

understandability, modifiability and testability aspects of maintainability. While the 

subjects responded to the questions provided, the time to understand, time to modify and 

time to test each of the SCSS file was recorded and their means were computed for each 

file. The metrics values for each SCSS file was computed using the SCMT-SCSS tool and 

correlation of the means for understanding time, modification time and testability time 

was done. 

 

In the pilot study it was learnt that the subjects took a lot of time on each file and so they 

were unable to finish the tasks within the expected two hours. As a result of much time 

taken to perform all tasks, the subjects became too exhausted and hurriedly finished the 

last SCSS file provided, thus affecting the results. Therefore, the questions were reduced 

from three to two for each of the understandability, modifiability and testability sections. 
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It was also learnt that a clear guideline should be provided before performing an 

experiment so that the experiment is carried out smoothly. 

 

7.5 Subjects’ Background 

The information about subjects’ knowledge on programming languages, software 

engineering, and SCSS features was established to ascertain the subjects readiness to 

perform the experimental tasks. 

 

The subjects were asked about the programming languages they have knowledge in. This 

was to establish their grounding in various programming concepts such as inheritance, 

declaring variables, nesting, control structures e.t.c. Fifteen subjects which account for 

50% said they had taken between five to six programming languages, and other fifteen 

subjects, which is 50% of the total responses said they had taken above 6 programming 

languages, as indicated in Table 7.1. 

 

Table 7.1: Programming languages taken 

Programming Languages 

pursued 

Number of Subjects Percent (%) 

5-6 15 50 

Above 6 courses 15 50 

 

The subjects were asked about the number of software engineering courses they had taken. 

This was to establish their knowledge of the software engineering processes and software 
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engineering concepts such as quality of software. The responses were as shown in Table 

7.2, where eight subjects, which is 26.7% of the responses had taken one to four software 

engineering courses while a majority of twenty-two of them (73.3 %), had taken more 

than four software engineering courses.  

 

Table 7.2: Software Engineering courses pursued 

Software Engineering Courses 
pursued 

Number of 
Subjects 

Percent (%) 

1-4 8 26.7 

>4 22 73.3 

 
The subjects were asked about the number of SCSS features they can comfortably 

implement in an SCSS code. This was to establish the level of SCSS knowledge. As 

shown in Table 7.3, fifteen subjects indicated they could comfortably use four to six 

features of the eight main features of SCSS, while fifteen subjects said they could 

comfortably implement more than six features of SCSS language. These results imply that 

all the subjects had at least moderate level knowledge of SCSS. 

 

Table 7.3: Knowledge of SCSS 

SCSS features Number of Subjects Percent (%) 

4-6 15 50 

>6 15 50 
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7.6 Subjective Data 

The subjective part of the experiment was intended to investigate the existence of a 

relationship between SCSS metrics and the rating of SCSS files by subjects in terms of 

understandability, modifiability and testability of SCSS files. To achieve this, the SCSS 

metrics values and subjects’ rating values were captured and analysis was performed on 

the data. 

 

7.6.1 Experimental Planning 

The materials to be used in the experiment were distributed to the subjects in the computer 

laboratory, that is, the SCSS files and a questionnaire.  

 

7.6.1.1 Effect of SCSS Metrics on Subjects Rating of Understandability 

The independent variables in this study refer to the collected SCSS metrics values while 

the dependent variable is the subjects rating on the understandability of the SCSS files. 

 

The hypotheses under investigation in the experiment were for the purpose of 

establishing if the SCSS metrics correlate with the subjects rating of understandability 

of SCSS files. The hypotheses were as follows: 

 Null Hypothesis (H0-u): There exists no significant correlation between the 

SCSS metrics and subjects rating of understandability of SCSS files. 

 Alternative Hypothesis (H1-u): There exists significant correlation between the 

SCSS metrics and subjects rating of understandability of SCSS files. 
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7.6.1.2 Effect of SCSS Metrics on Subjects Rating of Modifiability 

The subjective phase of the experiment intention was to investigate whether the 

proposed SCSS metrics correlate with modifiability of SCSS files. The independent 

variables in this study refers to the collected SCSS metrics values and dependent 

variable is the modifiability of the SCSS files based on subjects rating. 

 

The hypotheses under investigation in the experiment were to establish if the SCSS 

metrics correlate with the subjects rating of modifiability of SCSS files. The hypotheses 

were as follows: 

 Null Hypothesis (H0-m): There exists no significant correlation between the 

SCSS metrics and subjects rating of modifiability of SCSS files. 

 Alternative Hypothesis (H1-m): There exists significant correlation between the 

SCSS metrics and subjects rating of modifiability of SCSS files. 

 

7.6.1.3 Effect of SCSS Metrics on Subjects Rating of Testability 

The subjective phase of the experiment intention was to investigate whether the proposed 

SCSS metrics correlate with the subjects rating of SCSS files testability. The independent 

variables in this study refer to the collected SCSS metrics values and dependent variable 

is the subjects rating on testability.  

 

The hypotheses under investigation in the experiment were to establish if the SCSS 

metrics correlate with the subjects rating of testability of SCSS files. The hypotheses were 

as follows: 
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 Null Hypothesis (H0-t): There exists no significant correlation between the SCSS 

metrics and subjects rating of testability of SCSS files. 

 Alternative Hypothesis (H1-t): There exists significant correlation between the 

SCSS metrics and subjects rating of testability of SCSS files. 

 

7.6.2 Threats to validity 

7.6.2.1 Internal validity 

This type of validity ensures that we can trust the cause and effect relationship and is 

achieved by controlling the factors that can affect the dependent variable. The subjects 

provided the rating on understandability, modifiability and testability level of SCSS files 

based on their perceptions. The subjectivity of the experiment was a threat and therefore 

to lessen it, an intensive training to the subjects on SCSS language was carried out. This 

training reduced the skills gap in SCSS, thus improving on the subject’s validity ratings. 

In addition, the subjects can be considered as having moderate level experience based on 

Table 7.4 results. The Subjects mean on the number of programming languages they have 

done in their course of study is 3.50 on a Likert scale of 1-4. This means that the subjects 

are knowledgeable in programming concepts. The subjects mean of the number of 

software engineering courses they have pursued is 2.73 in a Likert scale of 1-3, this means 

that the subjects have taken at least four courses. The subjects mean of the number of 

SCSS features they can comfortably implement is 2.5 in a Likert scale of 1-3. This tends 

to mean of 3, meaning that the subjects have moderate experience in SCSS.  

To further ensure internal validity the independent variables were measured via SCSS 

metrics which were theoretically validated. 
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Table 7.4: Subjects Background Knowledge  

Scale Mean Std. Deviation 
#Programming Languages 3.50 0.508 

#Software Engineering Courses 2.73 0.449 

#SCSS Features 2.50 0.508 

 
7.6.2.2 External Validity 

External validity implies that the results from the study can be generalized. Though the 

subjects in the study were students, the researchers selected fourth year students and third 

year students because they had accrued knowledge in area of programming and software 

engineering as supported by results in Table 7.4. In addition, all the subjects had been 

involved in the development of a web-based project, implying that they had an exposure 

to real world projects. The threat to external validity was significantly reduced by the 

moderate experience of subjects in software development. 

 

7.7 Objective Data 

The objective phase of the experiment was intended to establish if any relationship exists 

between the SCSS metrics and time to understand, time to modify and time to test SCSS 

files. To achieve this, the SCSS metrics values and time taken to perform the tasks 

provided were captured and analysis was performed on the data. Further analysis were 

conducted with principle component analysis (PCA) to establish which variables 

significantly contribute to the understandability, modifiability and testability models at 

80% variance 

. 
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A Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests were conducted before performing 

PCA to indicate the proportion of variance in the variables that may be caused by 

underlying factors. The tests establish the suitability of data for structure detection. It was 

established that the KMO measure was 0.725, as shown in Table 7.5 which is greater than 

the recommended value of  >0.5, meaning that the Barlett’s Test of Sphericity is 

significant 

 

Table 7.5: KMO and Bartlett's Test 

KOM and Bartlett’s Tests Coefficients 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .725 

Bartlett's Test of Sphericity Approx. Chi-Square 46.841 

Df 6 

Sig. .000 

 

7.7.1 Experimental Planning 

The SCSS files to be used in the experiment were the same as distributed during subjective 

experiment.to the subjects. 

 

7.7.1.1 Effect of SCSS Metrics on Subjects Understanding time 

The objective phase of the experiment intention was to investigate if any correlation exists 

between the SCSS metrics and time to understand SCSS files. This kind of experiment is 

done to reduce the shortcomings of results obtained due to the subjective nature of data. 
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The hypotheses under investigation in the experiment were for the purpose of checking 

if  SCSS metrics correlate with understanding time of SCSS files. The hypotheses were 

as follows: 

 Null Hypothesis (H0-ut): There exists no significant correlation between the 

SCSS metrics and understanding time of SCSS files. 

 Alternative Hypothesis (H1-ut): There exists significant correlation between the 

SCSS metrics and understanding time of SCSS files. 

 

7.7.1.2 Effect of SCSS Metrics on Subjects Modifying Time 

The objective phase of the experiment intention was to investigate if the proposed SCSS 

metrics correlate with modifying time of SCSS files. This kind of experiment is done to 

reduce the shortcomings of results obtained due to the subjective nature of data. 

 

The hypotheses under investigation in the experiment were for checking if SCSS 

metrics correlate with the modifying time of SCSS files. The hypotheses were as 

follows: 

 Null Hypothesis (H0-mt): There exists no significant correlation between the 

SCSS metrics and modifying time of SCSS files. 

 Alternative Hypothesis (H1-mt): There exists significant correlation between the 

SCSS metrics and modifying time of SCSS files. 
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7.7.1.3 Effect of SCSS Metrics on Subjects Testing Time 

The objective phase of the experiment intention was to investigate if the proposed  exists 

SCSS metrics correlate with the testing time of SCSS files. This kind of experiment is 

done to reduce the shortcomings of results obtained due to the subjective nature of data. 

 

The hypotheses under investigation in the experiment were for the purpose of 

establishing if the proposed SCSS metrics correlate with the testing time of SCSS files. 

The hypotheses were as follows: 

 Null Hypothesis (H0-tt): There exists no significant correlation between the 

SCSS metrics and testing time of SCSS files. 

 Alternative Hypothesis (H1-tt): There exists significant correlation between the 

SCSS metrics and testing time of SCSS files. 

 

7.7.2 Threats to Validity 

7.7.2.1 Internal Validity 

The metric values acquired via the dependent variables were objective, that is, the time to 

understand, modify and test the SCSS files was recorded. This means that the values 

obtained for the dependent variable are valid. The choice of between subject design over 

the within subject design ensured that the subjects’ fatigue is reduced significantly. In 

addition, the subjects volunteered to participate in the experiment, meaning that they had 

high self-drive. 
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7.7.2.2 External Validity 

The use of students as subjects in the experiment introduced external threat, but the 

students selected were fourth year students and third year students. This means that they 

have advanced knowledge in programming and software engineering as shown in Table 

7.10. These students had participated in a web-based project and during the SCSS training 

every subject developed a simple SCSS based project. 

 

7.8 Results 

The completeness of questionnaire was checked and a threshold of 70% was set for 

inclusion of questionnaire in the analysis stage. All subjects attained the threshold; 

however, three questionnaires were not filled completely and so they were rejected for 

inclusion in data analysis. 

 

The Spearman Rank Order Correlation coefficient (rs) is a non-parametric measure of the 

strength and direction of association that exists between two variables on a scale that is at 

least ordinal. This method of correlation was chosen after Shapiro-Wilk test was 

performed and the results showed that the data was non-normal.  

 

7.8.1 Subjective Results  

The first data set was for metrics values and was collected via SCMT-SCSS tool and they 

represent the independent variables while the subject’s ratings of understandability, 

modifiability and testability represents the dependent variables.  

 



168 
 

7.8.1.1 Relationship between Metrics and Understandability 

The correlation of SCSS metrics values with understandability is shown in Table 7.6. All 

the metrics are significantly correlated to the subjects rating of the SCSS code 

understandability. The ABCCSCSS  metric is correlated with understandability as shown 

by the correlation coefficient value of 0.383 at 95% confidence level. The NFSCSS has a 

correlation coefficient of -0.684, SUIL is -0.560, and CLSCSS is -0.550 and are all at 99% 

confidence level. 

 
Table 7.6: Correlation with Understandability 

SCSS Metrics Correlation Coefficient Sig. (2-tailed) 

ABCCSCSS 0.383* 0.049 

NFSCSS -0.684** 0.000 

SUIL -0.560** 0.002 

CLSCSS -0.550** 0.003 

**=99% confidence, *=95% confidence 

 

The Analysis of Variance (ANOVA) test resulted to a P-value (“Sig” for significance) of 

0.006 as shown in Table 7.7. This value is below the prescribed P<0.05, meaning its 

statistically significant, and that SCSS metrics means are not equal, therefore, there is a 

strong evidence against null hypothesis. This study concludes that the proposed metrics 

are good indicators of understandability of SCSS code. 
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Table 7.7: Understandability Significance with ANOVA 

Model Sum of Squares df Mean Square F Sig. 

 Regression 6.415 4 1.604 4.877 .006a 

Residual 7.234 22 .329   

Total 13.649 26    

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity, 

Selector Use inheritance Level, Nesting Factor 

b. Dependent Variable: Understandability 

 

7.8.1.2 Relationship between Metrics and Modifiability 

The correlation of SCSS metrics values with modifiability is shown in Table 7.8. All the 

metrics are significantly correlated to the subjects rating of the SCSS code modifiability. 

The ABCCSCSS metric is correlated with modifiability as shown by the correlation 

coefficient value of 0.409 at 95% confidence level. The NFSCSS has a correlation 

coefficient of -0.686, SUIL is -0.644, and CLSCSS is -0.574 and are all at 99% confidence 

level. 

Table 7.8: Correlation with Modifiability 

SCSS Metrics Correlation Coefficient Sig. (2-tailed) 

ABCCSCSS 0.409* 0.034 

NFSCSS -0.686** 0.000 

SUIL -0.644** 0.000 

CLSCSS -0.574** 0.002 

**=99% confidence, *=95% confidence 
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The ANOVA results for modifiability resulted to a P-value (“Sig” for significance) of 

0.005 as shown in Table 7.9. This value is below the prescribed P<0.05, and this is a 

strong indication against the null hypothesis, in addition, it shows that the SCSS metrics 

means are not equal, therefore, the study concludes that the proposed metrics are good 

indicators of modifiability of SCSS code.  

 

Table 7.9: Modifiability Significance with ANOVA 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 7.758 4 1.940 4.960 .005a 

Residual 8.602 22 .391 
  

Total 16.360 26 
   

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity, 

Selector Use inheritance Level, Nesting Factor 

b. Dependent Variable: Modifiability 

 
7.8.1.3 Relationship between Metrics and Testability 

The correlation of SCSS metrics values with testability is shown in Table 7.10. All the 

metrics are significantly correlated to the subjects rating of the SCSS code testability. The 

ABCCSCSS metric is correlated with testability as shown by the correlation coefficient 

value of 0.385 at 95% confidence level. The NFSCSS has a correlation coefficient of -0.703, 

SUIL is -0.572, and CLSCSS is -0.734 and are all at 99% confidence level. 
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Table 7.10: Correlation with Testability 

SCSS Metrics Correlation Coefficient Sig. (2-tailed) 

ABCCSCSS 0.385* 0.048 

NFSCSS -0.703** 0.000 

SUIL -0.572** 0.002 

CLSCSS -0.734** 0.000 

**=99% confidence, *=95% confidence 

 

The ANOVA results for testability showed that the P-value (“Sig” for significance) was 

0.003 as shown in Table 7.11. This value is below the prescribed P<0.05, meaning the 

SCSS metrics means are not equal and its statistically significant. The null hypothesis is 

therefore ruled out and the study concludes that the proposed metrics are good indicators 

of testability of SCSS code.  

 

Table 7.11: Testability Significance with ANOVA 

Model 
Sum of 
Squares Df Mean Square F Sig. 

1 Regression 7.737 4 1.934 5.517 .003a 

Residual 7.712 22 .351 
  

Total 15.449 26 
   

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity, 

Selector Use inheritance Level, Nesting Factor 

b. Dependent Variable: Testability 
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The correlation analysis results showed that ABCCSCSS metric is positively correlated with 

understandability, modifiability and testability which is contrary to the results of NFSCSS, 

SUIL and CLSCSS which are negatively correlated with subjects rating of 

understandability, modifiability and testability.  

 

7.8.2 Objective Results 

This objective part of the experiment was performed by the subjects responding to the 

questions on understandability, modifiability and testability sections. The subjects were 

required to indicate the starting time and ending time i.e. indicate time before tackling 

questions on each section and ending time after completing the tasks on each section. 

 

The understanding time, modifying time and testing time for each SCSS file was recorded. 

Three data sets were generated by computing the means for understanding time (see 

Appendix 4), modifying time (see Appendix 5) and testing time (see Appendix 6) for each 

SCSS file. These data sets represented the dependent variable, while the independent 

variable i.e metrics values was acquired through SCMT-SCSS tool. 

 

7.8.2.1 Relationship between Metrics and Time to Understand 

The correlation of SCSS metrics values with time taken to understand SCSS files is shown 

in Table 7.12. All the metrics are significantly correlated to the subjects understanding 

time of the SCSS code. The ABCCSCSS metric is negatively correlated with 

understandability as shown by the correlation coefficient value of -0.611, while NFSCSS 

has a correlation coefficient value of 0.687 and SUIL has a correlation coefficient value 
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of 0.611 at 99% confidence level. The CLSCSS has a correlation coefficient of 0.386 at 

95% confidence level. 

Table 7.12: Correlation Results with Time to Understand 

SCSS Metrics Correlation Coefficient Sig. (2-tailed) 

ABCCSCSS -0.611** 0.001 

NFSCSS 0.687** 0.000 

SUIL 0.611** 0.001 

CLSCSS 0.386* 0.047 

**=99% confidence, *=95% confidence 

 

The ANOVA results as shown in Table 7.13 indicate that the P-value (“Sig” for 

significance) is 0.000. This value is below the prescribed P<0.05, meaning its statistically 

significant and the SCSS metrics means are not equal. Therefore, this is a strong indication 

against the null hypothesis and the study concludes that in overall the model can predict 

the understandability of the SCSS code.  

Table 7.13: Understanding time significance with ANOVA 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression 3756261.696 4 939065.424 23.684 .000a 

Residual 872277.353 22 39648.971   

Total 4628539.049 26    

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity, 

Selector Use Inheritance Level, Nesting Factor 

b. Dependent Variable: Understandability with Time 
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The importance of components is shown in Table 7.14 , Component 1 comprises 70.6% 

of the proportion data variance while component 2 comprises 13.7% of the proportionate 

variance and cumulatively component 1 and 2 account for 84.3% of variance.  Component 

3 comprises 8.6% of the proportionate variance and cumulatively component 1,2 and 3 

account for 92.9% of model variance.  Component 4 comprises 5.1% of the proportionate 

variance and cumulatively component 1,2,3 and 4 account for 98.0% of variance.  

Component 5 comprises 2.0% of the proportionate variance and cumulatively component 

1,2,3,4 and 5 account for 100% of the model variance.  The selected level of model 

variation for acceptance of factors contributing to the model was 80%. The first and 

second component which achieved 84.3%, were chosen for understandability model 

variance. 

 

Table 7.14: PCA for Understandability 

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Proportion  of Variance 0.7059 0.1367 0.0864 0.0510 0.0198 

Cumulative Proportion 0.7059 0.8426 0.9291 0.9801 1 

 

The researcher conducted PCA for understandability to determine which of the variables 

would be reduced or dropped in the model while retaining as much of the information in 

the model as possible. However, from the PCA extraction generated in component 1 and 

component 2, as shown in Table 7.15, none of the variables had value of zero. This implies 

that all the variables namely, ABCCSCSS, NFSCSS, SUIL and CLSCSS are significant 

understandability model predictors. 
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The weights or loading of the various variables are shown in Table 7.15. Each of the 

weights are attributed to each of the component. Therefore, the principle component value 

for understandability was computed as follows: 

PC1=-0.371(ABCC) + 0.502 (NF)+0.418 (SUIL)+0.438 (CL) 

 

PC2=-0.827 (ABCC) + 0.203(NF)-0.406 (SUIL) -0.374 (CL) 

 

Table 7.15: PCA Loadings for Understandability 

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 
ABCC -0.371 -0.827 0.415 

  

NF 0.502 0.203 0.373 -0.752 
 

SUIL 0.418 -0.406 -0.756 -0.294 
 

CL 0.438 -0.374 0.615 -0.482 0.241 

 

7.8.2.2 Relationship between Metrics and Time to Modify 

The correlation of SCSS metrics values with time taken to modify SCSS files is shown in 

Table 7.16. All the metrics are significantly correlated to the subjects modifying time of 

the SCSS files. The ABCCSCSS metric is negatively correlated with modifiability as shown 

by the correlation coefficient value of -0.415 at 95% confidence level, NFSCSS has a 

correlation value of 0.633 at 99% confidence level, SUIL has a correlation coefficient 

value of 0.472 at 95% confidence level and  CLSCSS has a correlation coefficient of 0.385 

at 95% confidence level. 
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Table 7.16: Correlation Results with Time to Modify 

SCSS Metrics Correlation 

Coefficient 

Sig. (2-tailed) 

ABCCSCSS -0.415* 0.032 

NFSCSS 0.633** 0.000 

SUIL 0.472* 0.013 

CLSCSS 0.385* 0.047 

**=99% confidence, *=95% confidence 

 

The ANOVA results are shown in  Table 7.17, where P-value (“Sig” for significance) is 

0.000. This value is below the prescribed P<0.05, meaning its statistically significant and 

is a strong indication against null hypothesis.This study therefore concludes that in overall 

the model can predict the modifiability of the SCSS code. 

 

Table 7.17: Modifying Time Significance with ANOVA 

Model 
Sum of 
Squares Df 

Mean 
Square F Sig. 

1 Regression 1365953.575 4 341488.394 10.141 .000a 

Residual 740837.406 22 33674.428   

Total 2106790.981 26 
   

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity, 

Selector Use Inheritance Level, Nesting Factor 

b. Dependent Variable: Modifiability with Time 
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The importance of components is shown in Table 7.18, Component 1 comprises 66.7% 

of the proportion data variance while component 2 comprises 13.8% of the proportionate 

variance and cumulatively component 1 and 2 account for 80.4% of variance.  Component 

3 comprises 9.1% of the proportionate variance and cumulatively component 1,2 and 3 

account for 89.5% of model variance.  Component 4 comprises 8.2% of the proportionate 

variance and cumulatively component 1,2,3 and 4 account for 97.7% of variance.  

Component 5 comprises 2.3% of the proportionate variance and cumulatively component 

1,2,3,4 and 5 account for 100% of the model variance.  Based on the selected level of 

model variation which is 80%, the first and second component were chosen for 

modifability model. 

 
Table 7.18: PCA for Modifiability 

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Proportion of Variance 0.6665 0.1379 0.0905 0.0818 0.0231 

Cumulative Proportion 0.6665 0.8044 0.8949 0.9768 1 
 

The researcher conducted PCA for modifiability to determine which of the variables 

would be reduced or dropped in the model while retaining as much of the information in 

the model as possible. However, from the PCA extraction generated in component 1  and 

component 2, as shown in Table 7.19 none of the variables had zero result. This implies 

that all the variables namely, ABCCSCSS, NFSCSS, SUIL and CLSCSS are significant 

modifiability model predictors. 
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The weights or loading of the various variables attributed to each of the component  are 

shown in Table 7.19. Therefore, the principle component value for modifiability was 

computed as follows: 

PC1=- -0.377(ABCC) + 0.518 (NF)+0.428 (SUIL)+0.443 (CL) 

 

PC2= -0.79 (ABCC) + 0.244(NF)-0.413 (SUIL) -0.412 (CL) 

 

Table 7.19: PCA Loadings for Modifiability 

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

ABCC -0.377 -0.79 0.254 0.397 -0.106 

NF 0.518 0.244 -0.814   

SUIL 0.428 -0.413 0.43 -0.677  

CL 0.443 -0.412 -0.667 0.136 0.412 
 

7.8.2.3 Relationship between Metrics and Time to Test 

The correlation of SCSS metrics values with time taken to test SCSS files is shown in 

Table 7.20. All the metrics are significantly correlated to the subjects testing time of the 

SCSS files. The ABCCSCSS metric is negatively correlated with testability as shown by 

the correlation coefficient value of -0.584, NFSCSS has a correlation value of 0.789 at 99% 

confidence level, SUIL has a correlation coefficient value of 0.494, CLSCSS has a 

correlation coefficient of 0.688. All the metrics were found to be correlating at 99% 

confidence level.  
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Table 7.20: Correlation Results with Time to Test 

SCSS Metrics Correlation Coefficient Sig. (2-tailed) 

ABCCSCSS -0.584** 0.001 

NFSCSS 0.789** 0.000 

SUIL 0.494** 0.009 

CLSCSS 0.688** 0.000 

**=99% confidence 

The ANOVA results for testability of SCSS code indicates that the P-value (“Sig” for 

significance) was 0.000 as shown in Table 7.21. This value is below the prescribed 

P<0.05, meaning that the defined metrics have no equal means, therefore forming a strong 

evidence against the null hypothesis. This study concludes that the metrics can predict the 

testability of the SCSS code.  

 

Table 7.21: Testing Time Significance with ANOVA 

Model 
Sum of 
squares Df Mean Square F Sig. 

1 Regression 1375713.471 4 343928.368 14.146 .000a 

Residual 534887.009 22 24313.046   

Total 1910600.480 26    

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity, 

Selector Use Inheritance Level, Nesting Factor 

b. Dependent Variable: Testability with Time 
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The importance of components is shown in Table 7.22, Component 1 comprises 69.5% 

of the proportion data variance while component 2 comprises 14.0% of the proportionate 

variance and cumulatively component 1 and 2 account for 83.5% of variance.  Component 

3 comprises 6.8% of the proportionate variance and cumulatively component 1,2 and 3 

account for 92.3% of model variance.  Component 4 comprises 4.2% of the proportionate 

variance and cumulatively component 1,2,3 and 4 account for 96.5% of variance.  

Component 5 comprises 3.5% of the proportionate variance and cumulatively component 

1,2,3,4 and 5 account for 100% of the model variance.  Based on the selected level of 

model variation of 80%, the first and second component were chosen for testability model 

variance. 

 

Table 7.22: PCA for Testability 

 Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Proportion of variance 0.6950 0.1397 0.0884 0.0422 0.0346 

Cumulative proportion 0.6950 0.8347 0.9231 0.9653 1 
 

The researcher conducted PCA for testability to determine which of the variables would 

be reduced or dropped in the model while retaining as much of the information in the 

model as possible. However, from the PCA extraction generated in component 1  and 

component 2, as shown in Table 7.23 none of the variables had zero result. This implies 

that all the variables namely, ABCCSCSS, NFSCSS, SUIL and CLSCSS are significant 

testability model predictors. 
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The weights or loading of the various variables attributed to each of the component are 

shown in Table 7.23. Therefore, the principle component value for modifiability can be 

computed as follows: 

PC1=- -0.382(ABCC) + 0.498 (NF)+0.41 (SUIL)+0.451 (CL) 

 

PC2= -0.787 (ABCC) + 0.143(NF) -0.459 (SUIL) -0.361 (CL) 

 

Table 7.23: PCA Loadings for Testability 

 Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

ABCC -0.382 -0.787 0.227 0.405 -0.137 

NF 0.498 0.143 -0.851   

SUIL 0.41 -0.459 -0.773 0.152  

CL 0.451 -0.361 0.547 -0.445 0.411 
 

7.9 Discussion 

The researcher investigated the relationship between SCSS metrics and the ratings by 

subjects for understandability, modifiability and testability. The researcher further 

investigated the relationship between the SCSS metrics and the subjects time to 

understand, time to modify, and time to test. The results indicated a strong correlation 

between the independent variables and dependent variables in the experiment. This 

implies that all the four proposed metrics can be regarded as good predictors of SCSS 

code maintainability. 
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The researcher found out that when ABCCSCSS metric value increases, the subjects rating 

of understandability, modifiability, testability, and subjects understanding time, 

modification time and testing time decreases. On the contrary, for the other three metrics 

namely NFSCSS, SUIL and CLSCSS when their values increase, the subjects rating of 

understandability, modifiability, testability, and subjects understanding time, 

modification time and testing time increases. This means that when ABCCSCSS metric 

value increases, the complexity of the code decreases, implying that the time required to  

understand, modify and test SCSS code reduces, while when the NFSCSS, SUIL and CLSCSS 

metric value increases the complexity of the SCSS code increase, thus increase in time 

required to understand, modify and test SCSS code.. 

 

The uniqueness of the ABCCSCSS metric means that its high value is desirable, hence 

making the SCSS code more understandable, modifiable and testable. However higher 

values of NFSCSS, SUIL and CLSCSS are undesirable, because the make SCSS code more 

difficult to understand, modify and test. 

 

7.9.1 Implications of Understandability Results 

This section discusses the results based on subjects rating of understandability of SCSS 

code and subjects understanding time of SCSS code. 

7.9.1.1 Relationship between Metrics and Understandability 

Results showed strong correlation between the proposed metrics and subjects rating of 

understandability. Therefore, the metrics can be used as indicators of the 

understandability of SCSS code. The null hypothesis that there is no significant 
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correlation between the two variables was rejected and the alternative hypothesis that 

there is significant correlation between the metrics and subjects rating of 

understandability of SCSS code was accepted.  

 

The ANOVA results based on the subjects rating of understandability of SCSS files 

confirmed that all the proposed metrics can be used to predict the understandability of 

SCSS code, meaning that all the proposed metrics didn’t happen by chance.  

 

7.9.1.2 Relationship between Metrics and Time to Understand  

Results indicated a strong correlation between the metrics and time to understand. This 

experiment confirmed the results of the first experiment which had natural weakness 

introduced due to its subjectivity. The null hypothesis that there is no significant 

correlation between the two variables was rejected and the alternative hypothesis that 

there is significant correlation between the metrics and understanding time of SCSS code 

was accepted. 

 

The ANOVA results based on the subjects understanding time of SCSS files further 

confirmed that all the proposed metrics can be used to predict the understandability of 

SCSS code, meaning that the metrics actually influence understandability as 

hypothesized. In addition, the principle component analysis results strongly indicated that 

all the proposed metrics are required to fully measure the understandability of SCSS code.  
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7.9.2 Implications of Modifiability Results 

This section discusses the results based on subjects rating of modifiability of SCSS code 

and subjects modifying time of SCSS code. 

 

7.9.2.1 Relationship between Metrics and Modifiability 

 The relationship between the SCSS metrics and modifiability was investigated. Results 

showed that all the metrics can serve as SCSS code modifiability predictors. The 

correlation coefficients showed that there is strong correlation between the metrics and 

modifiability. The null hypothesis that there is no significant correlation between the two 

variables was rejected and the alternative hypothesis accepted. 

 

The ANOVA results based on the subjects rating of modifiability of SCSS files confirmed 

that all the proposed metrics can be used to predict the modifiability of SCSS code, 

meaning that all the proposed metrics didn’t happen by accident. 

 

7.9.2.2 Relationship between Metrics and Time to Modify 

Results showed a strong correlation between the metrics and time to modify. This 

experiment confirmed the results of subjective data. The null hypothesis that there is no 

significant correlation between the two variables was rejected and the alternative 

hypothesis accepted. 

 

The ANOVA results based on the subjects modifying time of SCSS files further 

confirmed that all the proposed metrics can be used to predict the modifiability of SCSS 
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code, meaning that the metrics actually influence the modifiability of SCSS code as 

hypothesized. Finally, the principle component analysis results indicate that the SCSS 

metrics ABCCSCSS ,NFSCSS, SUIL and CLSCSS are necessary to fully measure or predict 

SCSS code modifiability. 

 

7.9.3 Implications of Testability Results 

This section discusses the results based on subjects rating of testability of SCSS code and 

subjects testing time of SCSS code. 

 

7.9.3.1 Relationship between Metrics and Testability 

The relationship between the SCSS metrics and testability was tested and results showed 

that the metrics can strongly predict the testability of SCSS code. The correlation 

coefficients showed that there is strong correlation between the metrics and testability. 

The null hypothesis that there is no significant correlation between the two variables was 

rejected and the alternative hypothesis accepted. 

 

The ANOVA results based on the subjects testing time of SCSS files further confirmed 

that all the proposed metrics can be used to predict the testability of SCSS code, meaning 

that the metrics didn’t happen by chance. 

 

7.9.3.2 Relationship between Metrics and Time to Test 

Results indicated a strong correlation between the metrics and time to test. This 

corroborated with the subjective rating of testability. The null hypothesis that there is no 
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significant correlation between the two variables was rejected and the alternative 

hypothesis accepted. 

 

The ANOVA results based on the subjects testing time of SCSS files further confirmed 

that all the proposed metrics can be used to predict the testability of SCSS code, meaning 

that the metrics actually influence testability of SCSS code as hypothesized. In addition, 

the principle component analysis results indicate that all the proposed SCSS metrics 

ABCCSCSS ,NFSCSS, SUIL and CLSCSS are key requirements to predict SCSS testability. 

 

7.10 Effect of Moderating Variables on the Complexity-Maintainability 

Relationship 

This study identified two moderating variables which are, number of years of experience 

and level of education. These variables were controlled, because all the subjects were 

undergraduate students in their fourth year and third year students. This means that all the 

subjects have relatively same level of experience in programming and software 

engineering field and have similar level of education. Therefore, no further analysis was 

done based on these variables. 

 

7.11 Chapter Summary 

This chapter presented an experiment that was carried out to investigate the relationship 

between the metrics and understandability, modifiability and testability (subjective data), 

and the relationship between the metrics and time to understand, modify and test 

(objective data). In the subjective part of the experiment, subjects were required to rate 
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the understandability, modifiability and testability of the provided SCSS file. The three 

data sets on understandability, modifiability and testability were generated and checked 

for correlation with the metrics values collected via metrics tool. Results for subjective 

experiment showed a strong correlation at 99% confidence level for NFSCSS, SUIL and 

CLSCSS metrics and 95% confidence level for ABCCSCSS metric. The objective experiment 

also showed a strong correlation of ABCCSCSS metric, NFSCSS, SUIL metrics with 

understanding time at 99% confidence level and CLSCSS metric at 95% confidence level. 

There was a strong correlation of ABCCSCSS metric and NFSCSS with modifying time at 

99% confidence level and SUIL and CLSCSS metrics at 95% confidence level. Results 

showed a strong correlation relationship between the metrics and testing time at 99% 

confidence level. This implies that the proposed metrics are strong SCSS code 

maintainability predictors. The ANOVA tests were carriried out for both subjective and 

objective data. The results showed that the objective data is more reliable to predict the 

understandability, modiability and testability of SCSS code in comparison to the 

subjective data. The PCA results strongly indicated that all the proposed metrics are 

required to predict the maintainability of SCSS code at 80% model variance.  
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CHAPTER EIGHT 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

8.1 Summary 

This research aimed at defining SCSS structural complexity metrics that can be used to 

analyze the maintainability of SCSS code. Maintainability is an important characteristic 

of software and it determines the extent to which a software artifact can be understood, 

modified and tested. The maintainability of a code becomes difficult as software 

complexity increases. Therefore, to control SCSS complexity, four SCSS metrics were 

defined. These metrics are Average Block Cognitive Complexity for SCSS (ABCCSCSS), 

Nesting Factor for SCSS (NFSCSS), Selector Use Inheritance Level (SUIL) and Coupling 

Level for SCSS (CLSCSS). The metrics were derived from SCSS attributes identified 

through the SCSS Structural Complexity Attributes Classification Framework.  The SCSS 

metrics were theoretically and empirically validated. The results showed that there is a 

strong relationship between the metrics and subjective rating of SCSS code 

understandability, understandability with time, subjective rating of SCSS code 

modifiability, modifiability with time, subjective rating of SCSS code testability and 

testability with time. This implies that the four SCSS metrics are good predictors of 

maintainability of SCSS code. 

 

8.2 Conclusion 

This research aimed at defining valid SCSS structural complexity metrics that can then 

be useful in determining the maintainability of SCSS code. In order to achieve this, the 

research identified four specific objectives.  



189 
 

The first specific objective was to determine the attributes of SCSS code that affect its 

structural complexity. A literature review study was conducted and based on the gap 

identified which is lack of comprehensive framework to identify SCSS structural 

attributes, an SCSS structural complexity attributes framework was developed. The 

proposed framework was an extension of Muketha’s structural complexity framework, 

which identified three types of attributes namely, intra-module attribute, inter-module 

attribute and hybrid attribute. The new framework identified a new category of attribute 

known as extra-module attribute. In addition, the framework extended every attribute 

category. The intra-module attribute was divided into size and control-flow complexity, 

the intra-module attribute was categorized into nesting and inheritance complexity, hybrid 

complexity identified one category known as association complexity, while the extra-

module attribute has one category under it referred to as information flow complexity. 

This framework was presented to several SCSS experts to study it and provide feedback. 

The results proved that the proposed framework is relevant to SCSS complexity and that 

its able to identify all the SCSS structural complexity attributes  

 

The second specific objective was to define metrics for measuring the structural 

complexity of SCSS code. It was found out that there are no existing metrics in literature 

that are suitable for SCSS complexity measurement. Therefore, four SCSS metrics were 

defined following the SCSS attributes identified in the proposed framework. These four 

metrics were, ABCCSCSS, NFSCSS, SUIL and CLSCSS. The ABCCSCSS metric measures the 

average cognitive complexity of all SCSS rule blocks in an SCSS file. NFSCSS measures 

the extent to which rule nesting has been implemented in the SCSS code. SUIL metric 
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measures the extent to which inheritance has been used in an SCSS code. Lastly, the 

CLSCSS metric measures the extent to which rule blocks are coupled with each other. These 

metrics were theoretically validated with Weyuker’s properties, and satisfied 7 out of 9 

properties. Though not all properties were satisfied, it has been argued that for software 

metrics to be regarded as valid, they just need to satisfy most of the Weyuker’s properties 

and not necessarily all. This imply that the proposed SCSS metrics are mathematically 

sound. The researcher further used Kaner framework to confirm the practicality of the 

metrics. This framework requires a response to its 11 questions, and all the questions were 

responded to positively and is a proof that the metrics can be applied to a real-life scenario. 

 

The specific objective three was to develop a functional and usable metrics analysis tool 

for SCSS metrics computation. In the literature it was found that the development of a 

metrics tool is necessary to make the metrics to be appreciated by the software industry. 

When there are metrics without tool support, they end up forgotten and not useful for the 

software community. Therefore, a metrics tool referred to as SCMT-SCSS was developed 

and validated through an experiment. The results indicate that the tool is efficient, that is, 

it computes metrics values in much shorter time as compared to manual computation. This 

implies that the software designers and programmers will attain metrics values results in 

a shorter time and enable them make decisions regarding maintainability of code almost 

instantly. The results also indicate that the tool is effective and accurate, meaning the 

computed metric values are correct and can be relied on to make conclusions regarding 

the complexity of SCSS code. Further results showed that the tool was suitable for the 

tasks provided, meaning that the functions provided were good enough to aid in the 
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calculation of SCSS metrics values. Lastly, the results indicated that the tool is operable, 

meaning that the tool can be easily operated on to execute the tasks provided. This implies 

that the users of the tool can comfortably use it to compute metrics values.  

  

The fourth and final specific objective in this study was to validate the structural 

complexity metrics for SCSS. A controlled laboratory experiment was carried out using 

between subjects design. The experiment was carried out in two phases to validate the 

SCSS metrics namely subjective phase and objective phase. From the experiment 

conducted, the results indicate that all the SCSS metrics highly correlate with 

maintainability sub-attributes of understandability, modifiability and testability. This 

means that all the SCSS metrics can be used to analyze SCSS maintainability. The 

ANOVA results in both subjective and objective parts of the experiment strongly indicate 

that the SCSS metrics (independent variables) influence the understandability, 

modifiability and testability (dependent variables) in the ANOVA analysis. The results 

obtained in both the objective and subjective ratings imply that the metrics can be taken 

to be good maintainability predictors for SCSS code. Therefore, the SCSS designers and 

programmers can use these metrics to measure and control SCSS complexity to achieve 

maintainable SCSS code.  

 

8.3 Recommendations for Future Work 

This study did not cover some aspects, though desirable because they didn’t form part of 

the objectives of this research., this means that more research is required in future. 
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8.3.1 Define Metrics for other CSS Pre-Processors 

In this research, four metrics were defined, and they are limited to SCSS language which 

is one of the SASS preprocessor syntaxes. This study didn’t cover the .sass syntax, in 

addition there are many other preprocessors being used in the software industry such as 

less and stylus and there are no complexity metrics defined to measure them. Therefore, 

this research proposes that more new metrics to be defined to measure the structural 

complexity of CSS and its extensions. This field remains largely unexplored, as the 

literature showed that only few CSS metrics exist, and they have not been validated via 

theoretical framework to prove their compliance to principles of measurement theory. In 

addition, prior to this work there was no single metric proposed for CSS preprocessors. 

 

8.3.2 Extending Structural Complexity Framework 

This study proposes an extension of the SCACF-SCSS framework to accommodate the 

structural features of .sass syntax of SASS pre-processors and other CSS pre-processors 

languages. 

 

8.3.3 Metrics Tool Extension to Recognize Multiple Languages 

The researchers propose that the SCMT-SCSS tool to be upgraded to recognize the two 

syntaxes of SASS preprocessor i.e. .sass and .scss. This improvement of the tool will make 

it useful to all SASS programmers. Further improvements of the metrics tool could also 

accommodate CSS syntax and all its preprocessors. 

 

 



193 
 

8.3.4 Further Metrics Experimentation 

This study proved that the proposed SCSS metrics are good for determination of SCSS 

maintainability. However, more experimental work will be required to be conducted with 

software industry experts. This will enhance the acceptability of the metrics by the SCSS 

experts and enable the establishment of credible threshold for maintainability of SCSS 

code. 
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APPENDIX 1: EXPERT OPINION QUESTIONNAIRE FOR VALIDATING THE 

STRUCTURAL COMPLEXITY ATTRIBUTES FRAMEWORK 

 
 
JOHN GICHUKI NDIA 
P.O. BOX 75-10200 
MURANG’A, KENYA. 
Email: ndiajg@gmail.com 

 
 
RE: LETTER OF INTRODUCTION 
 
I am a PhD (Information Technology) student at Masinde Muliro University of Science 
and Technology Kenya carrying out a study on Structural Complexity Attributes for 
Sassy Cascading Style Sheets.  
 
The aim of this questionnaire is to seek for your opinion as an expert concerning the 
Relevance and Comprehensiveness of the attached SASSY CSS COMPLEXITY 
ATTRIBUTE CLASSIFICATION FRAMEWORK. The attributes classification scheme 
is informed by the internal structure of Sassy CSS code (i.e. the elements within a rule-
block and how they are related to each other).  
 
NB: The data collected in this exercise is for research purposes only and will therefore be 
treated with strict confidentiality. 
 
Kindly follow the link below to provide your responses.  
 
Your participation in this study as a respondent is highly appreciated. 
 
John Gichuki Ndia 
Student Registration Number: 
SIT/LH/004/2015 
 
Survey Link 
 
 
  



209 
 

A. Personal Information  

i) Please state your highest academic qualification. 

a) Bachelor’s Degree               b) Master’s Degree               c) PhD        

d) Other 

ii) Kindly indicate your years of industry experience. 

 

iii) How do you rank your knowledge of Software Engineering processes? Please tick 

appropriately. 

 
iv) How do you rank your knowledge of Sassy cascading style sheets (SCSS)? Please 

tick appropriately. 

 
B. Relevance of the Classification Framework 

i) It has been argued that SCSS code is more complex (i.e. it requires more 

time to understand and implement it) as compared to CSS because it has 

more features. This necessitates development of an attribute classification 

framework that will enable researchers to measure and control SCSS code 

complexity. Please indicate your level of agreement by ticking () in the 

appropriate boxes 

0 – 1 2 – 3 4- 5 6 – 7 Above 7 
     

Very Low Low Moderate High Very high 

     

Very low  Low  Moderate  High  Very high 
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ii) The framework attached has been developed for the purpose of identifying 

the factors that contribute to Sassy CSS complexity. Please rate the extent 

to which you agree the framework is useful in identifying these factors. 

 

C. Comprehensiveness of the Classification Framework  

i) It has been argued that the following eight (8) SCSS features as presented in the 

table below and in the attached framework could increase SCSS code complexity 

(difficult to understand and modify) if overly and improperly used. Please indicate 

your level of agreement by ticking () in the appropriate boxes. 

 

Don’t agree Slightly agree Agree Strongly 
agree 

Very Strongly 
agree 

     

Don’t agree Slightly agree Agree Strongly 
agree 

Very Strongly 
agree 

     

 SCSS features Don’t 
agree 

Slightly 
agree 

Agree Strongly 
agree 

Very 
Strongly 
agree 

1. Global 
variables 

     

2. Declarations 
/Attributes  

     

3. Operators      

4. Control 
directives 

     

5. Functions       
6. Mixins        
7. Extend 

directives 
     

8. Nesting      
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ii) In your opinion, do you think the eight features captured in the table above have 

sufficiently covered all the possible complexity-causing factors in Sassy CSS? 

a) Yes   b)  No   

iii) If no, list any other features that in your opinion has not been covered. 

_________________________________________________________________

_________________________________________________________________

_________________________________________________________________

_____________________ 

 

NB: The SCSS Structural Complexity Attributes Classification Framework was attached 

with the guideline on interpretation of the framework 

 

Thank you for your time and responses 
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APPENDIX 2: METRICS VALIDATION EXPERIMENT QUESTIONNAIRE 
 
 
Purpose:  
The purpose of this exercise is to investigate the relationship between your rating of 
complexity of each of the SCSS file provided and the SCSS metrics values. In addition 
the relationship between the understanding time, modification time and testing time of the 
files provided and the SCSS metrics values will be investigated.  
 
 
Please answer ALL questions. There is no right or wrong answers. If you are unsure of 
some question, simply indicate your best from the provided options. You are required to 
tick () the appropriate box where applicable. You will also be required to record certain 
measurements in the spaces provided. 
 
Please read all questions carefully before answering. You are given two hours to complete 
your task. Please return the completed forms to me when you are through. 
 
Note: The data collected in this exercise is for research purposes only, and will therefore 
be treated with strict confidentiality. The returned dully completed forms will be 
destroyed upon completion of the research project. 
 
Thank you very much for participating in this study. 
 
John Gichuki Ndia 
PhD student 
Department of Information Technology 
Masinde Muliro University of Science and Technology 
 
 
 
Please fill up the information below: 
 
Name: ................................................................................................................................... 
 
Programme of study: ............................................................................................................ 
 
Year of study: ....................................................................................................................... 
 
Cell Phone No: ..................................................................................................................... 
 
Email Address: ..................................................................................................................... 
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Background knowledge on Sassy Cascading Style Sheet Evaluation 
 
 
Please complete this section by ticking () as appropriate.  
 
 

1. How many programming languages have you covered in your course of study? 
 

    0 – 2   3 – 4  5 – 6 years      Above 7 
 

2. How many software engineering courses have you taken? 
 
 None               1-4 courses          More than 4 courses 
 

 
3. Which features of Sassy Cascading Style Sheets (SCSS) can you comfortably use.  

 
        Global variables Mixins                          Nesting 
 

 
         Extends/Inheritance Functions                    Control directives 
 
 
 

Operators                        Use of Declarations/attributes 
 

Opinion on the understandability of each of the SCSS file provided 
 
Write the time before you start to observe the SCSS Code File (starting time) in hh:mm:ss, 
and the time after you rate the SCSS Code File (ending time) in hh:mm:ss.  

 
1. You are required to enter the name of the SCSS file attached to this question and 

then rate its understandability by ticking () as appropriate. 
 
Definition: Understandability is how easy it is to comprehend an SCSS code.  
 

SCSS File No. Very  
difficult 

(1) 

Difficult  
(2) 

Moderately 
difficult (3) 

Easy 
(4) 

Very easy 
(5) 

      

 
Opinion on the modifiability of each of the SCSS file provided 
 

2. You are required to enter the name of the SCSS file attached to this question 
and then rate its modifiability by ticking () as appropriate. 
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Definition: Modifiability is how easy it is to incorporate changes to an SCSS code.  
 

SCSS File No. Very  
difficult 

(1) 

Difficult  
(2) 

Moderately 
difficult (3) 

Easy 
(4) 

Very easy 
(5) 

      

 
 

Opinion on the testability of each of the SCSS file provided 
 

3. You are required to enter the name of the SCSS file attached to this question 
and then rate its testability by ticking () as appropriate. 

 
Definition: Testability is how easy it is to identify errors or faults in an SCSS code.  
 

SCSS File No. Very  
difficult 

(1) 

Difficult  
(2) 

Moderately 
difficult (3) 

Easy 
(4) 

Very easy 
(5) 

      

 
 
Understandability questions 
 
Definition: Understandability is how easy it is to comprehend an SCSS code.  
 

1. Write the time before you start to observe the SCSS Code File (starting time) 
in hh:mm:ss, and the time after you answer the questions (ending time ) in 
hh:mm:ss.  

 
Starting time (hh:mm:ss) ________ 

 
 
Answer the following questions in the space provided 

i. Identify one of the mixins defined and indicate how many times it has been 
used in the SCSS file?------------------------------- 

ii. In which element(s) and/or selectors has inheritance been implemented?------
----------------------- 

 
 

Ending time (hh:mm:ss) ________ 
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Modifiability questions 
Definition: Modifiability is how easy it is to incorporate changes to an SCSS code.  
 

2. Write the time before you start to observe the SCSS Code File (starting time) 
in hh:mm:ss, and the time after you answer the questions (ending time ) in 
hh:mm:ss.  

 
Starting time (hh:mm:ss) ________ 

 
Make the necessary changes to the SCSS file provided based on the following 
requirements. 
You should write the SCSS codes in the space provided 

i. You are required to ensure all the links change to color green and are 
underlined when you hover on them. 

ii. You are required to define a mixin named Common that has three 
declarations/attributes i.e padding:2px, margin-left:5px and position:relative  
The mixin should be included in all the existing body, heading 4, table, form 
and list element selectors in the SCSS file. 
 

Ending time (hh:mm:ss) ________ 
Testability questions 
 
Definition: Testability is how easy it is to identify errors or faults in an SCSS code.  
 
 
 

3. Write the time before you start to observe the SCSS Code File (starting time) 
in hh:mm:ss, and the time after you answer the questions (ending time ) in 
hh:mm:ss.  

 
Starting time (hh:mm:ss) ________ 

 
Indicate the errors identified in the SCSS file. 
 
You should write the SCSS codes in the space provided 

i. Identify the errors in the SCSS file based on the first global variable declared. 
ii. In the nesting of selectors, some situations require one to select parent 

selectors. The selection uses ampersand symbol (&). Identify in the SCSS file 
where the parent selector has not been well implemented. 

 
Ending time (hh:mm:ss) ________ 
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APPENDIX 3: SCSS Complexity Metrics Values 
 

SCSS File No. ABCCSCSS NFSCSS SUIL CLSCSS 
1 3.01 1794 0.01 0.44 
2 3.3 702 0 0 
3 3.26 6466 0.04 0.29 
4 2.17 15125 0 0.05 
5 4.48 56 0.05 0.17 
6 3.38 9890 0.09 0.12 
7 2.04 33600 0.05 1.4 
8 3.69 152 0 0.13 
9 2.49 14097 0.06 0.22 

10 3.18 2535 0.03 0.26 
11 2.76 323 0 0 
12 2.29 6958 0.06 0.2 
13 2.33 36411 0.1 1.5 
14 3.05 930 0 0.16 
15 2.89 2511 0.03 0.07 
16 1.89 44384 0.13 1.75 
17 2.99 984 0 0.83 
18 2.86 6348 0 0.16 
19 2.36 11152 0.03 0.53 
20 4.19 126 0 0 
21 3.1 2482 0.06 1.33 
22 2.46 7200 0.04 0.36 
23 2.47 2050 0 0 
24 2.69 5624 0.06 0.15 
25 2.28 64 0.07 0.06 
26 3.27 702 0 0 
27 2.27 6958 0.06 0.2 
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APPENDIX 4: TIME TO UNDERSTAND SCSS FILE 
 
 

SCSS File No. Time to Understand SCSS File (Seconds) 
1 417 
2 474.5 
3 955 
4 1238 
5 232.5 
6 621 
7 1306.5 
8 416.67 
9 1069.5 

10 662.33 
11 539.67 
12 641 
13 1504 
14 365.67 
15 832.67 
16 1925 
17 377 
18 536.33 
19 482 
20 126 
21 710.67 
22 366 
23 417 
24 775 
25 713 
26 130 
27 650 
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APPENDIX 5: TIME TO MODIFY SCSS FILE 
 
 

SCSS File No. Time to Modify SCSS File(Seconds) 
1 567 
2 636.5 
3 967 
4 1302.5 
5 613 
6 636.5 
7 1024.5 
8 658.67 
9 903.33 

10 813 
11 539.67 
12 903.33 
13 1289 
14 640 
15 385.33 
16 1410 
17 354.67 
18 567 
19 567 
20 232.5 
21 640 
22 715 
23 420 
24 760 
25 620 
26 823 
27 758 
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APPENDIX 6: TIME TO TEST SCSS FILE 
 
 

SCSS File No. Time to Test SCSS File (Seconds) 
1 571 
2 670 
3 953 
4 1141.5 
5 468.33 
6 648.5 
7 1197 
8 689.67 
9 955 

10 775 
11 485.33 
12 775 
13 1302.5 
14 658.67 
15 670 
16 1306.5 
17 847 
18 518 
19 934 
20 222 
21 867 
22 866.33 
23 420 
24 760 
25 613 
26 583.33 
27 1069.33 
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APPENDIX 7: EXPERIMENT QUESTIONNAIRE FOR VALIDATING THE 
METRICS TOOL 
 
Purpose:  
The purpose of this exercise is to investigate the efficiency, accuracy, functionality and 
usability of the Structural Complexity Metrics Tool (SCMT) for SCSS. 
 
Please answer ALL questions. There is no right or wrong answers. If you are unsure of 
some question, simply indicate your best from the provided options. You are required to 
tick () the appropriate box where applicable. You will also be required to record time 
taken to compute metrics values for SCSS files in the spaces provided. 
 
Please read all questions carefully before answering. You are given one hour to complete 
your task. Please return the completed forms to me when you are through. 
 
Note: The data collected in this exercise is for research purposes only, and will therefore 
be treated with strict confidentiality. The returned dully completed forms will be 
destroyed upon completion of the research project. 
 
Thank you very much for participating in this study. 
 
John Gichuki Ndia 
PhD student 
Department of Information Technology 
Masinde Muliro University of Science and Technology 
 
 
 
Please fill up the information below: 
 
Name: ................................................................................................................................... 
 
Programme of study: ............................................................................................................ 
 
Year of study: ....................................................................................................................... 
 
Cell Phone No: ..................................................................................................................... 
 
Email Address: ..................................................................................................................... 
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A. Manual Collection of SCSS metrics in the SCSS file provided 
 

 Write the time before you start to count the metrics in SCSS File (starting time) 
n mm:ss, and the time after you count the metrics in the SCSS File (ending 
time) in mm:ss.  

 
Starting time (mm:ss) ________ 
 

 Fill in the metrics value in the table based on the manual count of the metrics 
 

FILE NO: 

Base Metrics 

S.No. Metrics Metrics 
Value 

1 Number of Regular Attributes  

2 Number of Operators  

3 Number of Decision Nodes  

4 Number of function calls  

5 Number of Mixins Defined  

6 Number of Mixin calls  

7 Number of extend directives  

8 Number of selectors  

9 Number of SCSS Blocks  

10 Number of Variables Defined  

11 Number of Variables Instances  

Derived Metrics 

1 Average Block Cognitive Complexity  

2 Nesting Factor  

3 Selector Use Inheritance Level  

4 Coupling Level  

 
Ending time (mm:ss) ________ 
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B. Automated Collection of SCSS metrics in the SCSS file provided 
 

 Write the time before you start to count the metrics in SCSS File (starting time) 
n mm:ss, and the time after you count the metrics in the SCSS File (ending 
time) in mm:ss.  
 

Starting time (mm:ss) ________ 
 

 Fill in the metrics value in the table based on the automated count of the 
metrics 

FILE NO: 

Base Metrics 

S.No. Metrics Metrics 
Value 

1 Number of Regular Attributes  

2 Number of Operators  

3 Number of Decision Nodes  

4 Number of function calls  

5 Number of Mixins Defined  

6 Number of Mixin calls  

7 Number of extend directives  

8 Number of selectors  

9 Number of SCSS Blocks  

10 Number of Variables Defined  

11 Number of Variables Instances  

Derived Metrics 

1 Average Block Cognitive Complexity  

2 Nesting Factor  

3 Selector Use Inheritance Level  

4 Coupling Level  

 
Ending time (mm:ss) ________ 
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OPINION ON SUITABILITY, ACCURACY AND OPERABILITY OF THE 
SCSS METRICS TOOL 

 
a) How do you rate the Suitability of the SCSS-Metrics Tool? 

Definition: Suitability is the capability of the tool to provide adequate set of 
functions for the tasks to be carried out. 

 
 

 
 

b) How do you rate the Accuracy of the SCSS Metrics Tool? 
Definition: Accuracy is the capability of the tool to provide correct results 

  
 
 

 
 

c)  How do you rate the Operability of the SCSS Metrics Tool? 
 Definition: The capability of the tool to allow the user to operate it 

 
  

Not Suitable 
 
 

(1) 

Slightly 
Suitable 

 
(2) 

Moderately 
Suitable 

 
(3) 

Suitable 
 
 

(4) 

Very Suitable 
 
 

(5) 
     

Not Accurate 
 
 

(1) 

Slightly 
Accurate 

 
 

(2) 

Moderately 
Accurate 

 
 

(3) 

Accurate 
 
 
 

(4) 

Very Accurate 
 
 

(5) 

     

Not Operable 
 
 

(1) 

Slightly 
Operable 

 
 

(2) 

Moderately 
Operable 

 
 

(3) 

Operable 
 
 
 

(4) 

Very Operable 
 
 

(5) 
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APPENDIX 8: MMUST RESEARCH AUTHORIZATION LETTER 
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APPENDIX 9: NACOSTI RESEARCH LICENSE 
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APPENDIX 10: NACOSTI RESEARCH AUTHORIZATION LETTER 
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APPENDIX 11: MUT DATA COLLECTION RESEARCH PERMIT 
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