
STRUCTURAL COMPLEXITY FRAMEWORK AND METRICS FOR
ANALYZING THE MAINTAINABILITY OF SASSY CASCADING STYLE

SHEETS

John Gichuki Ndia

A thesis submitted in partial fulfillment of the requirements for the award of the

Degree of Doctor of Philosophy in Information Technology of Masinde Muliro

University of Science and Technology

2019

ii

PLAGIARISM STATEMENT

STUDENT DECLARATION

1. I hereby declare that I know that the incorporation of material from other

works or a paraphrase of such material without acknowledgement will be

treated as plagiarism according to the Rules and Regulations of Masinde

Muliro University of Science and Technology.

2. I understand that this thesis must be my own work.

3. I know that plagiarism is academic dishonesty and wrong, and that if I

commit any act of plagiarism, my thesis can be assigned a fail grade (“F”)

4. I further understand I may be suspended or expelled from the university for

academic dishonesty

Name……………………………………Signature………………………………..

Reg. No………………………………….Date…………………………………….

SUPERVISOR(S) DECLARATION
I/We hereby approve the examination of this thesis. The thesis has been subjected to

plagiarism test and its similarity index is not above 20%.

1. Name………………………………….Signature…………………Date………….

2. Name………………………………….Signature……………...…..Date………….

iii

DECLARATION

This thesis is my own original work prepared with no other than the indicated sources

and support and has not been presented elsewhere for a degree or any other award.

_____________________________ ________________________
John Gichuki Ndia DATE

SIT/LH/004/2015

Certification

The undersigned certify that they have read and hereby recommend for acceptance of

Masinde Muliro University of Science and Technology a thesis entitled “Structural

Complexity Framework and Metrics for Analyzing the Maintainability of Sassy

Cascading Style Sheets.”

______________________________ ________________________
Prof. Geoffrey Muchiri Muketha DATE

Department of Computer Science

School of Computing and Information Technology

Murang’a University of Technology

______________________________ _________________________
Dr. Kelvin Kabeti Omieno DATE

Department of Information Technology and Informatics

School of Computing and Information Technology

Kaimosi Friends University College (A Constituent College of Masinde Muliro

University of Science and Technology).

iv

DEDICATION

This work is dedicated to my lovely wife Velma Auma Gichuki and my parents
Danson Ndia and Esther Ndia.

v

ACKNOWLEDGMENTS

I take this first opportunity to thank God for his enabling grace and renewal of strength

throughout this long and demanding PhD journey. The words in Psalms 116:12

remains a great challenge to me “What shall I render unto the Lord for all His benefits

toward me?

My special gratitude goes to my supervisors Prof. Geoffrey Muchiri Muketha and Dr.

Kelvin Kabeti Omieno for their tireless effort in guiding me and exposing me to

research writing. I also wish to thank the faculty at the the School of Computing and

Informatics, Masinde Muliro University of Science and Technology for the valuable

research insights they provided to me in the course of my study.

I also thank my dear wife for her moral support and her prayers and encouragement

which made me gain new energy in every stage of this Ph.D. study. Special thanks

also go to my loving and supportive parents who always wanted to know how far I

have proceeded with my study.

I honor my spiritual authority Rev. Daniel Muraya for his spiritual support and

understanding in times when I couldn’t attend to church duties during the time of

writing this thesis. I can’t forget Deacon Danson Mutheka who could oftenly offer

words of encouragement. I also thank the entire CORMs chapel family for their moral

and spiritual support.

vi

ABSTRACT

One of the most popular languages in the web domain is Cascading Style Sheet (CSS).
The language has evolved over time with the latest development being the introduction
of CSS preprocessors which has made it possible to write CSS codes in a faster and
efficient way. Therefore, the migration from CSS to CSS preprocessors by the front-
end developers has been tremendous. There are several CSS preprocessors available
in the industry with the Syntactically Awesome Style Sheets (SASS) becoming one of
the most preferred preprocessors. This elevation of SASS is as a result of influence by
its new syntax SCSS (Sassy Cascading Style Sheets) which is closer to CSS syntax.
Although SCSS is very promising, it has inherent complexity which keeps increasing
with time as a result of maintenance practices. The Entity-Attribute-Metric (EAM)
model was used to describe the process followed to identify SCSS metrics while the
Boehm model was used to identify the maintainability sub-characteristics. In addition,
the Muketha’s structural attributes classification framework was extended so as to
develop the SCSS structural attributes classification framework. The measurement of
software complexity via software metrics for different software’s and software
paradigms has continued to gain grounds over the years. There exists several structural
CSS metrics but they cannot be directly applied to SCSS because SCSS has richer
features than CSS. In addition, there is no existing framework that can be used to guide
the definition of SCSS structural complexity metrics. To close the gaps identified, the
researcher developed an SCSS complexity attributes classification framework which
was validated through an expert opinion survey. This study proposed a suite of SCSS
structural complexity metrics which were theoretically validated via Weyuker’s
properties and Kaner framework. In addition, a tool was developed to automate the
collection and computation of metric values. The data collected was analyzed through
descriptive statistics (frequencies, mean and standard deviation) and inferential
statistics (Spearman’s rho, ANOVA tests, and principle component analysis).
Empirical studies by way of experimentation were conducted and all the proposed
metrics strongly correlated with the three aspects of maintainability, namely,
understandability, modifiability, and testability. Additionally, the metrics were found
to be important for the measurement of SCSS complexity. The findings of this study
show that all the proposed metrics can serve as maintainability predictors for SCSS.

vii

TABLE OF CONTENTS

PLAGIARISM STATEMENT .. ii

DECLARATION ...iii

DEDICATION ... iv

ACKNOWLEDGMENTS ... v

ABSTRACT ... vi

LIST OF FIGURES .. xvi

LIST OF TABLES ..xviii

ACRONYMS AND ABBREVIATIONS .. xx

DEFINITION OF OPERATIONAL TERMS .. xxi

CHAPTER ONE: INTRODUCTION .. 1

1.1 Overview .. 1

1.2 Background to the Study .. 1

1.3 Statement of the Problem ... 3

1.4 Objectives ... 5

1.4.1 General Objective .. 5

1.4.2 Specific Objectives .. 5

1.5 Research Questions .. 5

1.6 Research Hypotheses ... 6

1.7 Significance of the Study ... 7

1.8 Scope of the Study ... 8

1.9 Limitations of the Study ... 9

1.10 Contributions of the Thesis .. 9

1.11 Thesis Organization ... 9

viii

CHAPTER TWO: LITERATURE REVIEW ... 12

2.1 Introduction .. 12

2.2 Background Information on Cascading Style Sheets (CSS) 12

2.3 SASS Pre-Processor ... 14

2.4 Software Complexity ... 19

2.4.1 Software Complexity Measurement .. 19

2.4.2 Software Complexity Attributes Classification .. 20

2.4.3 Structural Complexity ... 25

2.4.3.1 Structural Complexity Properties for Traditional Software 25

2.4.3.2 Structural Properties for SCSS ... 28

2.5 Existing Software Complexity Metrics .. 31

2.5.1 Complexity Metrics for Traditional Software ... 32

2.5.1.1 Lines of Code (LOC) ... 32

2.5.1.2 Function Point (FP) .. 33

2.5.1.3 Halstead’s Metrics .. 34

2.5.1.4 McCabe Cyclomatic Complexity ... 37

2.5.2 Complexity Metrics for Object-Oriented Languages 38

2.5.2.1 Chidamber and Kemerer Metrics ... 38

2.5.2.2 Mishra Inheritance Metrics .. 39

2.5.2.3 Abreu and Carapuca Metrics .. 39

2.5.2.4 Lorenz and Kidd Metrics Suite .. 40

2.5.2.5 Li Metrics ... 40

2.5.2.6 MOOD Metrics Suite ... 41

2.5.2.7 Misra, Adewumi, Fernandez-Sanz and Damasevicius Metrics 42

2.5.3 Web-Based Metrics ... 42

ix

2.5.3.1 Misra and Cafer Metrics... 43

2.5.3.2 Basci and Misra Metrics... 43

2.5.3.3 Thaw and Misra Metrics .. 45

2.5.3.4 Tamayo, Granell and Huerta Metrics ... 45

2.5.4 Adewumi, Misra and Ikhu-Omoregbe Metrics ... 46

2.6 Metrics Validation .. 49

2.6.1 Theoretical validation.. 49

2.6.1.1 Weyuker’s Properties ... 49

2.6.1.2 Briand’s Property-based Framework ... 51

2.6.1.3 Kaner’s Framework .. 54

2.6.2 Empirical Validation ... 54

2.6.2.1 Experiments.. 54

2.6.2.2 Case Studies ... 55

2.6.2.3 Surveys ... 55

2.7 Metrics Tools ... 56

2.8 Software Maintainability .. 59

2.9 Gaps Identified in Literature .. 63

2.10 Theoretical Framework .. 64

2.11 Conceptual Framework .. 65

2.12 Chapter Summary... 66

CHAPTER THREE: RESEARCH METHODOLOGY 68

3.1 Introduction .. 68

3.2 Research Philosophy .. 68

3.3 Research Design ... 68

3.3.1 Research Process ... 69

x

3.3.1.1 Development of an Attribute Classification Framework 70

3.3.1.2 Definition of SCSS metrics .. 73

3.3.1.3 Theoretical Validation of SCSS metrics .. 73

3.3.1.4 Development of a Metrics Tool for SCSS ... 73

3.3.2 Research Strategy .. 74

3.4 Population .. 75

3.5 Sampling Strategy and Sample Size .. 76

3.6 Pilot Study .. 77

3.7 Data Collection Instruments ... 78

3.8 Validity and Reliability .. 79

3.8.1 Validity of the Research Instruments .. 79

3.8.2 Reliability of the Research Instruments .. 79

3.9 Experimental Materials .. 80

3.10 Data Analysis ... 81

3.10.1 Data Analysis Methods for the Expert Opinion Survey.............................. 81

3.10.2 Data Analysis Methods for Tool Validation ... 81

3.10.3 Data Analysis Methods for the Controlled Laboratory Experiment 81

3.11 Ethical Issues .. 83

3.12 Chapter Summary... 84

CHAPTER FOUR: DEVELOPMENT OF STRUCTURAL COMPLEXITY

ATTRIBUTE CLASSIFICATION FRAMEWORK FOR SASSY CASCADING

STYLE SHEETS (SCACF-SCSS) .. 85

4.1 Introduction .. 85

4.2 Requirements of the SCACF-SCSS Framework ... 85

4.3 Architecture of the Proposed Framework .. 85

xi

4.3.1 Intra-Module Attribute .. 86

4.3.2 Inter-Module Attribute .. 88

4.3.3 Hybrid Attribute .. 90

4.3.4 Extra-Module Attribute ... 91

4.4 Application of the Framework ... 93

4.4.1 Intra-Module Attribute .. 93

4.4.2 Inter-Module Attribute .. 95

4.4.3 Hybrid Attribute .. 96

4.4.4 Extra-Module Attribute ... 97

4.5 Expert Opinion Validation Survey ... 98

4.5.1 Goal of the Study .. 99

4.5.2 Context Definition ... 99

4.5.3 Survey Operation .. 99

4.5.4 Reliability of the Research Instrument .. 99

4.5.5 Results ... 100

4.5.5.1 Respondents Demographics ... 100

4.5.5.2 Level of Education for Respondents .. 100

4.5.5.3 Years of Industrial Experience ... 101

4.5.5.4 Level of Knowledge in Software Engineering Processes 101

4.5.5.5 Level of Knowledge for SCSS ... 102

4.5.5.6 Relevance of the Framework ... 103

4.5.5.7 Comprehensiveness of the Framework .. 104

4.6 Chapter Summary... 105

CHAPTER FIVE: STRUCTURAL COMPLEXITY METRICS FOR SASSY

CASCADING STYLE SHEETS ... 107

xii

5.1 Introduction .. 107

5.2 Determination of Attributes to be Measured ... 107

5.3 Metrics Definition .. 108

5.3.1 Average Block Cognitive Complexity for SCSS (ABCCSCSS) 110

5.3.2 Nesting Factor for SCSS (NFSCSS) .. 114

5.3.3 Selector Use Inheritance Level (SUIL) ... 118

5.3.4 Coupling Level for SCSS (CLSCSS) metric ... 120

5.4 Theoretical Validation Results for the Proposed Metrics 122

5.4.1 Validation with Weyuker’s Properties .. 122

5.4.2 Validation with Kaner’s Framework ... 126

5.5 Chapter Summary... 128

CHAPTER SIX: IMPLEMENTATION OF A STRUCTURAL

COMPLEXITY METRICS TOOL FOR SASSY CASCADING STYLE

SHEETS (SCMT-SCSS) .. 130

6.1 Introduction .. 130

6.2 Requirements of the SCMT-SCSS ... 130

6.3 Metrics Implementation ... 131

6.4 Input File Format ... 131

6.5 SCMT-SCSS Tool Architectural Design ... 133

6.5.1 Input Component ... 133

6.5.2 Analyzer Component .. 133

6.5.3 Output Component .. 133

6.6 User Interface Design ... 135

6.7 Algorithm Design ... 137

6.7.1 ABCCSCSS Algorithm .. 138

xiii

6.7.2 NFSCSS Algorithm .. 140

6.7.3 SUIL Algorithm .. 141

6.7.4 CLSCSS Algorithm .. 142

6.8 Execution of the SCMT-SCSS Tool .. 144

6.9 Experimental Validation of the SCMT-SCSS Tool ... 147

6.9.1 Goal of the Study .. 147

6.9.2 Context Definition ... 147

6.9.3 Threats to Validity... 148

6.9.3.1 Internal Validity ... 148

6.9.3.2 External Validity .. 148

6.9.4 Experimental Design ... 148

6.10 Results .. 149

6.10.1 Time to Complete Tasks ... 149

6.10.2 Suitability, Accuracy and Operability Rating ... 152

6.11 Chapter Summary... 153

CHAPTER SEVEN: AN EXPERIMENTAL VALIDATION OF

STRUCTURAL COMPLEXITY METRICS FOR SASSY CASCADING

STYLE SHEETS .. 155

7.1 Introduction .. 155

7.2 Context Definition .. 155

7.3 Strategy for Conducting the Experiments .. 156

7.4 Pilot Study .. 156

7.5 Subjects’ Background .. 158

7.6 Subjective Data .. 160

7.6.1 Experimental Planning .. 160

xiv

7.6.1.1 Effect of SCSS Metrics on Subjects Rating of Understandability 160

7.6.1.2 Effect of SCSS Metrics on Subjects Rating of Modifiability 161

7.6.1.3 Effect of SCSS Metrics on Subjects Rating of Testability 161

7.6.2 Threats to validity ... 162

7.6.2.1 Internal validity .. 162

7.6.2.2 External Validity .. 163

7.7 Objective Data .. 163

7.7.1 Experimental Planning .. 164

7.7.1.1 Effect of SCSS Metrics on Subjects Understanding time 164

7.7.1.2 Effect of SCSS Metrics on Subjects Modifying Time 165

7.7.1.3 Effect of SCSS Metrics on Subjects Testing Time 166

7.7.2 Threats to Validity... 166

7.7.2.1 Internal Validity ... 166

7.7.2.2 External Validity .. 167

7.8 Results .. 167

7.8.1 Subjective Results ... 167

7.8.1.1 Relationship between Metrics and Understandability 168

7.8.1.2 Relationship between Metrics and Modifiability 169

7.8.1.3 Relationship between Metrics and Testability 170

7.8.2 Objective Results .. 172

7.8.2.1 Relationship between Metrics and Time to Understand 172

7.8.2.2 Relationship between Metrics and Time to Modify 175

7.8.2.3 Relationship between Metrics and Time to Test 178

7.9 Discussion .. 181

7.9.1 Implications of Understandability Results .. 182

xv

7.9.1.1 Relationship between Metrics and Understandability 182

7.9.1.2 Relationship between Metrics and Time to Understand 183

7.9.2 Implications of Modifiability Results ... 184

7.9.2.1 Relationship between Metrics and Modifiability 184

7.9.2.2 Relationship between Metrics and Time to Modify 184

7.9.3 Implications of Testability Results ... 185

7.9.3.1 Relationship between Metrics and Testability 185

7.9.3.2 Relationship between Metrics and Time to Test 185

7.10 Effect of Moderating Variables on the Complexity-Maintainability

Relationship ... 186

7.11 Chapter Summary... 186

CHAPTER EIGHT: SUMMARY, CONCLUSION AND

RECOMMENDATIONS ... 188

8.1 Summary .. 188

8.2 Conclusion ... 188

8.3 Recommendations for Future Work ... 191

8.3.1 Define Metrics for other CSS Pre-Processors ... 192

8.3.2 Extending Structural Complexity Framework .. 192

8.3.3 Metrics Tool Extension to Recognize Multiple Languages 192

8.3.4 Further Metrics Experimentation .. 193

REFERENCES ... 194

APPENDICES .. 207

xvi

LIST OF FIGURES

Figure 2.1: SASS Pre-processor Syntaxes ... 15

Figure 2.2: An Alert Rule Block .. 17

Figure 2.3: SCSS Code with Multiple Blocks ... 18

Figure 2.4: Software Metrics Definition Process ... 20

Figure 2. 5: Software Complexity Classification ... 23

Figure 2.6: Extended Structural Complexity Classification 24

Figure 2.7: Coupling in OOP ... 27

Figure 2.8: Coupling in SCSS .. 27

Figure 2.9: Selector Inheritance ... 30

Figure 2.10: Nesting of Rules .. 30

Figure 2.11: McCall Maintainability Sub-characteristics .. 60

Figure 2.12: Boehm’s Maintainability Sub-characteristics .. 60

Figure 2.13: ISO-9126 Maintainability Sub-characteristics 61

Figure 2.14: ISO-25010 Maintainability Sub-characteristics 62

Figure 2.15: Conceptual Framework.. 66

Figure 3.1: Research Process ... 70

Figure 4.1: SCSS Size .. 87

Figure 4.2: Control-flows in SCSS .. 88

Figure 4.3: Inheritance in SCSS ... 89

Figure 4.4: Nesting in SCSS .. 89

Figure 4.5: Association in SCSS .. 90

Figure 4.6: Information Flow in SCSS .. 91

Figure 4.7: Structural Complexity Attribute Classification Framework

for SCSS (SCACF-SCSS) .. 92

xvii

Figure 4.8: Size Complexity Scenario ... 94

Figure 4.9: Control Flow Complexity Scenario ... 94

Figure 4.10: Inheritance Complexity Scenario .. 95

Figure 4.11 Nesting complexity Scenario .. 96

Figure 4.12: Association complexity Scenario .. 97

Figure 4.13: Information Flow Complexity Scenario .. 98

Figure 5.1: EAMT Model .. 109

Figure 5.2: ABCCSCSS Metric Example ... 113

Figure 5.3: Nesting Depth .. 115

Figure 5.4: Nesting Breadth ... 116

Figure 5.5: NFSCSS Metric Example ... 118

Figure 5.6: SUIL Metric Example ... 119

Figure 5.7: CL Metric Example ... 121

Figure 6.1: The Structure of an SCSS file ... 132

Figure 6.2: SCMT-SCSS Tool Architecture .. 134

Figure 6.3: SCMT-SCSS Structure Chart Diagram ... 135

Figure 6.4: SCMT-SCSS Use Case Diagram ... 136

Figure 6.5: Form Layout Design .. 137

Figure 6.6: SCSS Base Metrics Values .. 145

Figure 6.7: SCSS Derived Metrics Values ... 146

Figure 6.8: SCSS Metrics Values in a Text File .. 147

xviii

LIST OF TABLES

Table 2.1: Comparison between Traditional and SCSS Software 16

Table 2.2: Identified Gaps .. 63

Table 3.1 Metrics Validation Reliability Statistics .. 80

Table 4.1. Framework Reliability Statistics ... 100

Table 4.2: Level of Education for Respondents ... 101

Table 4.3. Years of Industrial Experience .. 101

Table 4.4: Level of Knowledge for Software Engineering Processes 102

Table 4.5: Level of Knowledge for SCSS .. 103

Table 4.6: Relevance of the Framework ... 104

Table 4.7: Comprehensiveness of the Framework ... 105

Table 4.8: Adequacy of SCSS Complexity Features ... 105

Table 5.1: Weights for Basic Control Structures ... 112

Table 5.2: Validation Results of SCSS metrics with Weyuker’s Axioms 126

Table 6.1: Time to Complete Tasks for SCSS File 1 ... 150

Table 6.2: Time to Complete Tasks for SCSS File 2 ... 150

Table 6.3: Time to Complete Tasks for SCSS File 3 ... 151

Table 6.4: Time to Complete Tasks for SCSS File 4 ... 151

Table 6.5: Average Rating on Suitability ... 152

Table 6.6: Average Rating on Accuracy .. 153

Table 6.7: Average Rating on Operability ... 153

Table 7.1: Programming languages taken .. 158

Table 7.2: Software Engineering courses pursued ... 159

Table 7.3: Knowledge of SCSS ... 159

Table 7.4: Subjects Background Knowledge ... 163

xix

Table 7.5: KMO and Bartlett's Test ... 164

Table 7.6: Correlation with Understandability... 168

Table 7.7: Understandability Significance with ANOVA 169

Table 7.8: Correlation with Modifiability .. 169

Table 7.9: Modifiability Significance with ANOVA ... 170

Table 7.10: Correlation with Testability .. 171

Table 7.11: Testability Significance with ANOVA ... 171

Table 7.12: Correlation Results with Time to Understand 173

Table 7.13: Understanding time significance with ANOVA 173

Table 7.14: PCA for Understandability ... 174

Table 7.15: PCA Loadings for Understandability.. 175

Table 7.16: Correlation Results with Time to Modify ... 176

Table 7.17: Modifying Time Significance with ANOVA 176

Table 7.18: PCA for Modifiability ... 177

Table 7.19: PCA Loadings for Modifiability ... 178

Table 7.20: Correlation Results with Time to Test .. 179

Table 7.21: Testing Time Significance with ANOVA ... 179

Table 7.22: PCA for Testability ... 180

Table 7.23: PCA Loadings for Testability ... 181

xx

ACRONYMS AND ABBREVIATIONS

ABCCSCSS Average Block Cognitive Complexity for SCSS

BSC Balanced Scorecard

CLSCSS Coupling Level for SCSS

CSS Cascading Style Sheet

DTD Document Type Definition

EAM Entity Attribute Metric Model

EAMT Entity Attribute Metric Tool Model

FP Function point

GQM Goal Question Metric

HTML Hyper Text Markup Language

IEEE Institute of Electrical and Electronics Engineers

LOC Lines of code

NFSCSS Nesting Factor for SCSS

PCA Principle Component Analysis

SASS Syntactically Awesome Stylesheets

SCACF Structural Complexity Attributes Classification Framework

SCMT Structural Complexity Metrics Tool

SCSS Sassy Cascading Style Sheets

SPSS Statistical Package for Social Sciences

SUIL Selector Use Inheritance Level

XHTML Extensible Hyper Text Markup Language

XML Extensible Markup Language

xxi

DEFINITION OF OPERATIONAL TERMS

Empirical Validation: This is the involvement of experiments and surveys to gain

knowledge on a particular subject.

Maintainability: The ease with which software codes can be understood, modified,

and tested.

Modifiability: This is how easy it is to incorporate changes to an SCSS code.

Regular CSS: This refers to Cascading Style Sheets (CSS).

Software Attribute: This is the structural feature or property of a software artifact.

Software Complexity: This refers to how difficult it is to understand, modify and

test a program.

Software Metric: This is a quantitative measure of a degree to which a software

artifact possesses some property.

Testability: This is how easy it is to identify errors or faults in an SCSS code.

Theoretical Validation: This is a formal and practical approach for proving the

soundness of metrics.

Understandability: This is how easy it is to comprehend an SCSS code.

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter gives fundamental information concerning the complexity of Sassy

Cascading Style Sheets code (SCSS) and how it contributes to the difficulty in

maintaining the code and the need to measure and control software complexity. The

objectives to achieve for this study, research questions which are directly mapped with

objectives, significance of the study, scope of the study, limitations, and contributions

of this study are also presented in this chapter.

1.2 Background to the Study

Web-based applications are developed for personal use, and for private and public

institutions. These applications use different languages and one of the integral parts in

their development is Cascading Style Sheets (CSS) language (Adewumi, Misra

&Ikhu- Omoregbe, 2012). CSS is the standard language for styling structured

documents, such as HTML and XHTML. HTML (Hyper Text Markup Language) is

used to create content while CSS is concerned with the presentation of the web

documents written in HTML, XHTML (Extensible HTML) and it can also be applied

in any XML (Extensible Markup Language) document to bring about aesthetically

pleasing and user-friendly interfaces. Basically, the motivation for the use of CSS is

to separate content from presentation (Adewumi et al., 2012).

Web systems have over the years evolved from simple hypertext markup language

(HTML)-based applications to complex cascading style sheets (CSS)-based

applications (Adewumi et al., 2012). Further developments have seen the

2

incorporation of traditional programming language concepts into the regular CSS

language resulting in CSS preprocessors. The invention of CSS preprocessors has

made the writing of CSS codes faster, efficient, and more maintainable. Therefore,

CSS preprocessors have gained popularity with front-end developers and 54 % of them

use it in their development tasks in the recent past. A CSS preprocessor is a program

that converts the written codes into CSS codes which can be rendered by the web

browser. There exist several CSS Preprocessors such as Sass, Less, Stylus, CSS-crush,

Myth, and Rework. (Mazinanian & Tsantalis, 2016).

SASS (Syntactically Awesome Style sheets) preprocessor is one of the most popular

CSS Preprocessor and governments such as the United States Federal Government

advises its front-end developers to use SASS preprocessor to develop style sheets and

this has made it very popular in the industry globally (Mazinanian & Tsantalis, 2016).

Sass preprocessor has two syntaxes, .sass, which is the older syntax and .scss which is

the new and improved standard (Cederholm, 2013). The new syntax SCSS (Sassy

Cascading Stylesheets) is closer to CSS syntax, and it introduces the concepts of SASS

preprocessor thus making it popular between the two SASS syntaxes (Cederholm,

2013; Catlin & Catlin, 2011). Therefore, the focus of this study was on Sassy

cascading style sheets.

SASS preprocessors add extra functionality such as the use of variables, nesting rules,

mixins functions, operators, control directives (@for, @if, @else, @each, @while and

if() and selector inheritance. The introduction of these new features makes the

language have inherent complexity in comparison to regular CSS which has a simple

syntax. This kind of complexity increases with time each and every time new rule

3

blocks are added to the existing stylesheet code (Mazinanian & Tsantalis, 2016).

Software complexity refers to how code is difficult to understand,modify and test, thus

its high levels lead to software that is unreliable and difficult to maintain (Ogheneovo,

2014; Mesbah & Mirshokraie, 2012; Shao & Wang, 2003). This raises the need to

investigate the complexity of SCSS files which can lead to codes that have errors, are

difficult to understand, modify and test.

This risk of having complex SCSS code implies that there is a need to control its level

of complexity. Software metrics are central in measurement and control of software

complexity (Misra, Adewumi, Fernandez-Sanz, & Damasevicius, 2018; Muketha,

Ghani, Selamat & Atan, 2010a). This is achieved by the metrics providing feedback

to the software designers concerning complexity thus influencing the decisions made.

When there is a lack of this feedback, decisions are made in an ad-hoc manner (Misra

& Cafer, 2012).

There are efforts made to define software metrics in the web domain such as CSS

complexity metrics (Adewumi et al., 2012), software metrics for XML schema (Basci

& Misra, 2011a), web services (Basci & Misra, 2009; Basci & Misra, 2011b) and

Document Type Definition (DTDs) (Basci & Misra, 2008). This implies that metrics

should be defined to achieve desirable complexity levels for SCSS.

1.3 Statement of the Problem

Front-end web developers are increasingly adopting the use of SCSS because it allows

ease of development and maintainability of Web applications (Mazinanian &

Tsantalis, 2016). However, SCSS codes have inherent complexity that increase due to

4

maintenance activities. In addition, a substantial number of web developers and

several of them still use regular CSS, because they perceive that it still has simpler

syntax than SCSS (Mazinanian & Tsantalis, 2016; Lie & Bos, 2005).

Researchers agree that high levels of software complexity lead to software that is

difficult to maintain (Misra, 2018; Ogheneovo, 2014; Adewumi et al.,2012; Ghosheh,

Black, & Qaddour, 2008). Therefore, a comprehensive and relevant set of measurable

attributes should be identified, then metrics which are based on the attributes should

be defined to measure complexity with the aim of controlling it. Although there are

several structural CSS metrics proposed in the literature, they cannot be directly

applied to SCSS because they do not capture the unique structural properties of SCSS.

Furthermore, although the development of metrics tool has been recognized by various

studies as a necessary step for making the metrics acceptable in the software industry,

most of the reviewed CSS metrics either lack tool support or the tools are not efficient

(Adewumi, Emebo, Misra & Fernandez, 2015;.Basci & Misra, 2011; Misra & Cafer,

2012; Thaw & Misra, 2013; Misra et al., 2018).

Another aspect of the problem is that there is no existing comprehensive framework

that can be used as a guide to define SCSS metrics. The existing frameworks consider

attributes in procedural languages, object oriented programming (OOP) domain,

business process models but not SCSS language.This lack of a comprehensive

framework means that definition of SCSS metrics can only be defined in an adhoc

manner, which is not good for the software industry.

5

1.4 Objectives

The following section stipulates the general and specific objectives achieved by this

study.

1.4.1 General Objective

The main objective of this study was to define relevant and comprehensive SCSS

measurable attributes and to determine a valid suite of structural complexity metrics

that can be used as maintainability predictors of SCSS code.

1.4.2 Specific Objectives

The specific objectives of this study are:

i. To determine a set of SCSS attributes that affect its structural complexity.

ii. To define structural complexity metrics for SCSS code.

iii. To develop a functional and usable metrics analysis tool for SCSS metrics

computation.

iv. To validate the structural complexity metrics for SCSS using a controlled

laboratory experiment.

1.5 Research Questions

i. Which attributes can determine the structural complexity of SCSS code?

ii. Which metrics can evaluate the structural complexity of SCSS code?

iii. How can you automate calculation of SCSS metrics?

iv. Which metrics are effective in predicting the maintainability of SCSS code?

6

1.6 Research Hypotheses

A set of six pairs of hypotheses were formulated to answer research question four.

Each pair represents the null and alternative hypotheses of each of the dependent

variables to be tested, namely, understandability, modifiability, testability,

understanding time, modifying time, and testing time.

a. Understandability hypotheses

i. Null Hypothesis (H0-u): There exists no significant correlation between

the SCSS metrics and subjects rating of understandability of SCSS files.

ii. Alternative Hypothesis (H1-u): There exists significant correlation

between the SCSS metrics and subjects rating of understandability of

SCSS files.

b. Modifiability hypotheses

i. Null Hypothesis (H0-m): There exists no significant correlation between

the SCSS metrics and subjects rating of modifiability of SCSS files.

ii. Alternative Hypothesis (H1-m): There exists significant correlation

between the SCSS metrics and subjects rating of modifiability of SCSS

files.

c. Testability hypotheses

i. Null Hypothesis (H0-t): There exists no significant correlation between

the SCSS metrics and subjects rating of testability of SCSS files.

ii. Alternative Hypothesis (H1-t): There exists significant correlation

between the SCSS metrics and subjects rating of testability of SCSS files.

7

d. Understanding time hypotheses

i. Null Hypothesis (H0-ut): There exists no significant correlation between

the SCSS metrics and understanding time of SCSS files.

ii. Alternative Hypothesis (H1-ut): There exists significant correlation

between the SCSS metrics and understanding time of SCSS files.

e. Modifying time hypotheses

i. Null Hypothesis (H0-mt): There exists no significant correlation between

the SCSS metrics and modifying time of SCSS files.

ii. Alternative Hypothesis (H1-mt): There exists significant correlation

between the SCSS metrics and modifying time of SCSS files.

f. Testing time hypotheses

i. Null Hypothesis (H0-tt): There exists no significant correlation between

the SCSS metrics and testing time of SCSS files.

ii. Alternative Hypothesis (H1-tt): There exists significant correlation

between the SCSS metrics and testing time of SCSS files.

1.7 Significance of the Study

This study aimed at proposing complexity metrics for SCSS. To achieve this, the study

began by developing an SCSS attribute classification framework which assisted in

identifying all the possible factors that would contribute to the complexity of SCSS.

Complexity metrics were defined, theoretically and empirically validated, and the

findings indicated that the metrics are useful for predicting SCSS Maintainability.

Therefore, researchers in software metrics can use the developed framework to aid in

identifying structural complexity attributes or extend it depending on the uniqueness

of various software artifacts. The SCSS designers and programmers can use the

8

metrics to predict SCSS maintainability. A metrics tool was developed for the purpose

of automating the collection and computation of SCSS metrics, this means that the

users of the tool will quickly receive response which are accurate and make

conclusions based on the results acquired. For instance, metrics values can assist SCSS

programmers in making certain decisions such as restructuring of SCSS code with

high coupling level.

This study provided the background on which other researchers can refer to define

metrics in stylesheets field especially with CSS preprocessors.

1.8 Scope of the Study

This study focused on SCSS syntax (.scss) of SASS preprocessor, it didn’t look at the

alternative SASS syntax known as SASS syntax (.sass). Therefore, all the SASS files

not conforming to .scss syntax were not considered in this study.

The proposed metrics were static metrics and so dynamic aspects were not considered

in this study. In addition, the metrics focused on structural aspects of SCSS code,

meaning other forms of software complexity were not considered.

Finally, this study focused on maintainability aspect of software quality, and other

software quality factors such as portability, reliability, usability, efficiency and

functionality did not form part of this study.

9

1.9 Limitations of the Study

A limitation of the study refers to the aspects that the researcher knows may affect the

validity of the study conclusion and results generalizability, however, the researcher

has no control over (Kumar, 2011; Mugenda & Mugenda, 2008). The identification of

SCSS industry experts was a challenge. To overcome this challenge, snowballing

technique was used.

1.10 Contributions of the Thesis

This thesis made the following contributions:

i. An SCSS structural complexity attributes framework was developed and

validated through an expert’s opinion survey.

ii. A set of four SCSS metrics were defined for measuring the structural

complexity of SCSS code.

iii. A metrics tool called Structural Complexity Metrics Tool (SCMT) for

SCSS was developed for metrics computation. This tool was validated

through experiments and proved to be functional and usable

iv. The proposed SCSS metrics were proved to be theoretically sound via

Weyuker’s properties and Kaner’s framework

v. The empirical validation of the proposed SCSS metrics proved that they

can predict the maintainability of SCSS code.

1.11 Thesis Organization

This thesis is divided into eight chapters as described below:

10

The first chapter presents an introduction of the thesis. It includes a detailed

description of the background to the study, research problem, objectives, the

significance of the study, scope of research, limitations, and contributions of this

study.

The second chapter presents a review of related literature. It includes literature on

structural properties of SCSS, software complexity attributes classification, existing

software complexity metrics, metrics validation methods, metrics tools, and software

maintainability. The gaps in literature were also identified.

The third chapter is the research methodology and it describes the research philosophy,

research design, a summary of the research process, research strategy, sampling

strategy, research instruments, validation and reliability of research instruments, how

to analyze data, and ethical considerations of this research.

The fourth chapter presents the structural complexity attributes complexity framework

for SCSS, and it covers the architecture of the proposed framework which at high level

has four categories, intra-module attribute, inter-module attribute, hybrid attribute, and

extra-module attribute. The chapter describes how the framework can be applied in a

real-life scenario and finally the framework descriptive validation results are presented

in terms of SCSS experts background knowledge, relevance, and comprehensiveness

of the framework.

The fifth chapter is the structural complexity metrics for SCSS. It defines the metrics,

Average Block Cognitive Complexity, Nesting Factor, Selector Use Inheritance Level,

11

and Coupling Level. The metrics were validated theoretically via Weyuker’s

properties and Kaner framework. Finally, each metric was demonstrated through a

real-life scenario to prove that they are intuitional.

The sixth chapter presents the structural complexity metrics tool for SCSS. It describes

the requirements for tool development, tool architecture and design such as user

interface design, form layout design, and algorithm design. The chapter also presents

the metrics tool validation results.

The seventh chapter is the experimental validation of structural complexity metrics for

SCSS. The experiment which consists of subjective and objective phases is described.

This chapter presents the validation results in terms of correlation, ANOVA and

principle component analysis (PCA).

The eighth and final chapter presents summary, conclusion and future work of the

study. This includes a general conclusion of the study findings as well as future

research directions.

12

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter presents a detailed analysis of literature in the area of CSS, SCSS,

software attributes or indicators, software complexity metrics, metrics tools, validation

of metrics and software maintainability models. Research gaps are also identified thus

forming a theoretical basis upon which this research work was established.

2.2 Background Information on Cascading Style Sheets (CSS)

The CSS language is composed of a sequence of style rules, where each rule has a

selector that selects the elements needed to style in the HTML or XML document

(Hissom, 2011). This language is used by the web developers to define the look and

feel of structured documents such as HTML and XML. The web developers have over

the years increasingly used CSS in their everyday development tasks of web-based

software (Mazinanian & Tsantalis, 2016).

CSS has evolved over the years from CSS1 to CSS3. More recent extensions of CSS

have also been proposed such as CSS preprocessors. CSS1 was a simple version with

about 50 properties and is mostly used for screen-based presentations. CSS2 includes

all CSS1 properties plus an additional around 70 properties of its own. The additional

properties have for instance enabled CSS2 to describe aural presentations and page

breaks that couldn’t be done earlier. An enhanced CSS 2.1 was also released that added

more features such as the ability to describe the parts that are supported by two or

more browsers (Lie & Bos, 2005). Finally, CSS3 is split into modules such as

selectors, box model, backgrounds and borders, text effects, image values and replaced

13

content, 2D/3D transformations, animations, multiple column layouts, and user

interface (Hissom, 2011). The purpose of modularization is to have multiple

specifications, where each specification has its own progression path (Hissom, 2011).

Post CSS3, developments have taken the direction of CSS preprocessors. Several CSS

preprocessors have so far been proposed such as Syntactically Awesome Style Sheets

(SASS), Less, Stylus, CSS-Crush, Myth and Rework with each of them having unique

syntaxes (Mazinanian & Tsantalis, 2016; Charpentier et al., 2016). CSS preprocessors

add extra features to those found in regular CSS such as the use of variables, nesting

of rules, use of mixins, use of function calls, inheritance, use of control flow statements

and use of operators (Mazinanian & Tsantalis, 2016).

Variables are defined to store one or more style values and represent data, such as

numeric values and characters (Mazinanian & Tsantalis, 2016). A variable enables

reuse of the style values stored in the stylesheets. In stylesheets, variables can be used

to set up colors and fonts (Henley, 2015). In some instances, variable values are

manipulated using arithmetic operators and by passing them to preprocessor built-in

function (Mazinanian & Tsantalis, 2016).

Rule nesting is like class nesting in object-oriented programming. According to

Mazinanian and Tsantalis (2016), CSS Preprocessors permit a rule to be placed inside

another rule as a way of combining multiple CSS rules within one another.

Some other powerful features introduced by CSS preprocessors include mixins and

user-defined functions. While mixins store multiple values, functions are invoked to

14

allow the use of parameters (Mazinanian & Tsantalis, 2016; Henley, 2015). Mixins

and functions are beneficial in that they help to avoid writing repetitive codes

(Mazinanian & Tsantalis, 2016).

Other new features include inheritance, control directives, and operators. In the SASS

preprocessor, for instance, inheritance uses the @extend directive to share or extend

the behavior of an existing selector (Mazinanian & Tsantalis, 2016). Control directives

are the equivalent of the control-flow statement in object-oriented programming.

These directives include @if, @for, @each, and @while statements (Henley, 2015)

and are used for applying a style many times with variations (Catlin & Catlin, 2011).

Finally, CSS preprocessors have introduced operators which include addition,

subtraction, division, multiplication, relational operators and equality operators

(Henley, 2015).

2.3 SASS Pre-Processor

Though there are many available CSS pre-processors for use in the software industry,

the SASS pre-processor is one of the most popular (Mazinanian & Tsantalis, 2016).

SASS pre-processor supports two syntaxes, Sassy CSS (SCSS) which uses the .scss

extension and indented syntax which uses the .sass extension. SCSS is the newer of

the two syntaxes and the most popular among front web developers because it is a

superset of CSS making migration to SCSS a lot easier, it is easy to use the existing

stylesheets and incorporate SASS features, and it is also more expressive meaning its

more logically grouped, for example, one can compress several lines of codes in SASS

into just fewer lines in SCSS (Cederholm, 2013). Fig. 1 shows a family tree of SASS

pre-processor.

15

 Figure 2.1: SASS Pre-processor Syntaxes

The basic building component of an SCSS is a rule block. A rule block is made up of

a selector and one or more attributes (Adewumi et al., 2012). The selector points to

the HTML element to be styled while attributes specify the style on the element. An

attribute is also known as property name and can have one or more values. SCSS has

other blocks such as mixin blocks (comprising of a @mixin directive with opening

and closing braces), function blocks (comprising of @function directive with opening

and closing braces), control directives block (comprising of control directive i.e. @if,

@each, @for, @elseif with opening and closing braces), and media blocks (it

comprises of @media with opening and closing braces). An SCSS block is defined as

any block that consists of a selector or @rule directive, opening brace, set of attributes

and/or directives and a closing brace.

Sassy CSS is a style sheet language whose aim is to determine how the web pages are

presented. In contrast, the aim of conventional programming languages such as Java,

C++, etc. is to automate processes. Basically, SCSS is used to describe data while

regular programming languages modify data. There are several differences between

SASS PRE-PROCESSOR

SASS SCSS

16

SCSS and regular programming languages. Table 2.1 presents the differences between

SCSS and other structured and object-oriented software.

Table 2.1: Comparison between Traditional and SCSS Software

Criteria Traditional software SCSS software

Modularized by Modules/classes SCSS block e.g. rule block,
function directive block, mixin
block, etc.

Parent module Coordination of rest of the
program is via main function,
module, class, or method.

None

Program
statement

Simple statements e.g.
assignment.

Attributes and rule directives.

Control-flow
structure

Sequence, branch, loop, and
calls

Branch, loops, and calls

Data types Variables/constants Variables

Data definition Data types are language-
specific

SCSS relies on SASS Pre-processor
data types

Programming
scope

Programs for performing
calculations e.g. computing the
product of two numbers

Programs for formatting the
presentation of web pages. e.g.
assigning font size 12 to a
paragraph

A simple alert rule block is shown in Figure 2.2 with three regular attributes, i.e.

padding, font-size, and text-align. Padding has been used to generate a space of 15px

around the element’s content while font-size sets the size of text as 1.2em. Finally,

text-align centers the content of the element where the alert class is implemented.

17

. alert {

padding: 15px;

font-size: 1.2em;

text-align: center;

 }

Selector and opening brace

Three attributes each ending
with a semicolon

Closing brace

Figure 2.2: An Alert Rule Block

An illustration of multiple blocks is shown in Figure 2.3. The figure has one mixin

block which can be called in various places of the code. It also has five rule blocks

where the three of them are nested. The figure also demonstrates the use of variables

and selector inheritance.

18

 Figure 2.3: SCSS Code with Multiple Blocks

$color-accent: #9c3;

.alertA {

padding: 15px;

font-size: 1.2em;

text-align: center;

background: $color-accent;

@include infobox;

}

.alertB{

@extend .alertA;

background: #6b9;

}

@mixin infobox {

width: 200px;

border: 1px solid red;

color: red;

}

header{

width: 90%;

position: absolute;

height: 97px;

.countries-list{

left: -55px;

top: 100px;

@include infobox;

li{

display: block;

margin-bottom: 5px;

}

}

}

Mixin block declaration

Use of variable in the attribute

Variable declaration

Use of mixin in alertA rule block

Inheritance of alertA selector

Nesting of SCSS rule blocks

19

2.4 Software Complexity

Software complexity is how hard it is for a program to be understood, modified and

tested (Harrison, , Magel, Kluczny, & Dekok, 1982; Boehm et al., 1978; Curtis et al.,

1979). IEEE (1998) defines software complexity as an estimate of effort that is

required to develop, maintain and execute the code. Software complexity is divided

into various categories, such as computational complexity, representational

complexity, functional complexity, organizational complexity and structural

complexity (Mens, 2016; Henderson-Sellers, 1996). This categorization is an effort

towards measuring the different dimensions of software.

2.4.1 Software Complexity Measurement

Measurement is the process of assigning numbers or symbols to various features of

objects (Fenton & Bieman, 2014). In software engineering, measurement of software

products is a process which involves defining, collecting and analyzing data, and it

makes the designers understand and control their complexity (Fenton & Bieman, 2014;

McGarry et al., 2002).

Measurement is based on formal models such as the Goal Question Metric (GQM)

(Basili, 1992), Balanced Scorecard (BSC) (Martinsons, Davison & Tse, 1999), and the

Entity-Attribute-Metrics model (EAM) (Fenton and Pfleeger, 1997). The GQM

focuses on the organizational goals and has a wider scope which is at the project level

(Basili, 1992) while the BSC which has its origin from strategic management, focuses

on aspects of finance, clients, internal, and learning and development (Martinsons,

Davison & Tse, 1999). The EAM model focuses directly on an object or entity such

20

as an SCSS code and is one of the most popular models for defining metrics(Muketha

et al., 2011).

The proponents of EAM model Fenton and Pfleeger (1997), in effort to create an

industry standard for determining the process of defining metrics identified three

major stages, which include identification of entity to measure (e.g. project, product

and process), identification of the entity’s attributes that need to be measured, and then

deriving metrics for each of the attributes. These three steps are described in Figure

2.4.

Figure 2.4: Software Metrics Definition Process

2.4.2 Software Complexity Attributes Classification

The various defined metrics in literature, target a particular type of software and are

derived from a specific software attribute. For example, the popular McCabe’s

Cyclomatic Complexity metric is based on the control flow attribute of software

(McCABE, 1976), while Chidamber and Kemerer metrics such as the Depth of

Inheritance Tree (DIT) and Number of Children (NOC) are based on inheritance

attribute (Chidamber & Kemerer, 1994).

Software Entity

Identify software
artifact or entity to
measure e.g. SCSS

code

Software Attribute

Identify software
attributes e.g.
inheritance

Software
Metrics

Define
inheritance

metric e.g. level
of selector
inheritance

21

The identification of the right attributes for a given software can help in the evaluation

and improvement of a software product (Morasca & Briand, 1997; Muketha, 2011).

Software attribute is defined as the feature or property of a product (Bukhari et al.,

2015) and these features of a product determine the type of measurement for it.

Several researchers have proposed classification schemes for software attributes in an

effort to aid metrics definition (Fenton and Bieman, 2014; Fenton, and Pfleeger, 1997;

Morasca, 2015, Daud and Kadir, 2014, Muketha, 2011; Falah & Magel,2015; Mens,

2016; Henderson-Sellers, 1996). Some of these existing software attributes

classification schemes provide a general treatment of complexity (Fenton & Bieman,

2014; Fenton & Pfleeger, 1997; Morasca, 2015), while others focus on a specific kind

of complexity (Daud and Kadir, 2014; Henderson-Sellers, 1996; Muketha, 2011).

Fenton and Bieman (2014), proposed three categories for deriving the attributes to

measure namely; process, product, and resources. The product category which is the

focus of this study further classified attributes as internal or external attributes. Internal

attributes are those that can be measured directly such as the size of code while

external attributes are measured indirectly, such as reliability and maintainability. The

limitation of this classification is that the modularity of the attributes such as control

flow, data flow, cohesion, and coupling is not known.

In another study, Falah and Magel (2015) identified four ways of categorizing software

attributes into product, process, people, and value to the customer. In this classification

scheme, structural complexity falls under the product category. Structural complexity

is further divided into control flow complexity, data complexity, and size attributes.

The limitation of this classifications scheme is like the Fenton and Bieman

22

classification, in that, the level of modularity of the attributes is not provided, meaning

we can’t tell whether all the possible attributes of software are captured.

Daud and Kadir (2014) have classified software structural attributes into static and

dynamic attributes. These authors identified three structural attributes, coupling,

cohesion and complexity which fall under both static and dynamic. These attributes

are the most popular in measuring service-oriented architecture (SOA). The limitation

of this classification is that it identified the attributes from the literature and not from

the structural properties of SOA. Meaning that the attributes identified may not fully

represent SOA structural complexity.

Mens (2016) identified four major dimensions of software complexity, including

theoretical complexity, the complexity of use, organizational complexity and

structural complexity. Theoretical complexity was further divided into computational

and algorithmic complexity, the complexity of use was divided into functional and

usability, while structural complexity was divided into module level and system level.

This classification scheme does not show what attributes can be derived from module

level and system level hence it’s not comprehensive.

Henderson-Sellers (1996) categorized software complexity into computational

complexity, psychological complexity, and representational complexity. The author

further divided psychological complexity into structural complexity, programmer

characteristics and problem complexity. Structural complexity was further divided

into intra and inter-module categories. The intra-module category is further divided

into size, control flow, and cohesion attributes while the inter-module category is

23

specialized into the coupling attribute. This classification scheme is one of the most

popular in terms of structural complexity classification (Muketha, 2011). However, its

limitation is that it overlooks some new dimensions of structural complexity found in

SCSS software and how they are implemented. The SCSS structural dimensions or

features are discussed in depth in section 2.4.3.2. The Henderson-Sellers classification

is illustrated in Figure 2.5.

Figure 2. 5: Software Complexity Classification

(Source: Henderson-Sellers, 1996)

The part of structural complexity in the Henderson-Sellers classification scheme has

been extended by introducing the hybrid category to the existing inter and intra-

Is-a-kind-of relationship

COMPLEXITY

Representational
Complexity

Psychological
Complexity

Computational
Complexity

Is-a-kind-of relationship

Problem/Functional
Complexity

Programmer
Characteristics

Structural/Product/
Document

Complexity

Measured-by
relationship

Intra-module Inter-Module

e.g coupling metrics e.g size metrics, control-flow
complexity

24

module categories (Muketha, 2011). The hybrid attribute category blends intra-

module and inter-module attributes. Muketha’s framework is the more recent and

comprehensive in the context of structural complexity. However, just like the

Henderson-Sellers scheme, it is limited in that it overlooks some new dimension of

structural complexity introduced in SCSS software. The uniqueness of SCSS

dimensions are discussed in section 2.4.3.2. Figure 2.6 illustrates the classification

framework. Intra-module attributes focused on an individual process which is

equivalent to a module while inter-module attributes focused on the interaction of two

modules. Finally, hybrid attributes blends intra- and inter-module attributes.

 Figure 2.6: Extended Structural Complexity Classification

 (Source: Muketha, 2011)

SCSS is an extension of Cascading Style Sheets (CSS) and it combines CSS features

and traditional software features such as the use of variables, mixins, functions and

control flows (Mazinanian and Tsantalis, 2016). This uniqueness of SCSS software

means that the existing classification schemes cannot be used to sufficiently identify

the structural attributes for SCSS.

Structural complexity

Intra-module attributes Inter-module attributes Hybrid attributes

25

2.4.3 Structural Complexity

Structural complexity is defined as the way in which the program elements are

organized and interact within the software system (Ramasubbu and Kemerer, 2012;

Darcy, Slaughter & Kemerer, 2005). It focuses on the design and structure of software

(Laird and Brennan, 2006) and is concerned with the measurement of internal

attributes which are assessed by the difficulty of performance of tasks such as the

writing of codes, modifying and testing of software (Mens, 2016; Riguzzi, 1996).

2.4.3.1 Structural Complexity Properties for Traditional Software

Many authors consider size, length, coupling, and cohesion as part of structural

complexity (Muketha, 2011; Henderson-Sellers,1996; Khan, Mahmood, Amralla, &

Mirza, 2016). For instance, the lines of code (LOC) metric, also called the physical

lines of code, has been used as a size measure, and to some extent, as a complexity

measure. The related logical lines of code (LLOC) metric, has been found to have

higher accuracy when compared to LOC because it eliminates comment lines, auto-

generated code lines, header files, ineffective code lines, compiler directives, labels,

and empty case statements (Khan et al., 2016). For example, Adewumi et al. (2012)

proposed size in terms of lines of rules for cascading style sheets while Misra & Cafer

(2012) considered size in terms of lines of JavaScript code on condition that the only

lines to be factored were those that consisted of variable or operators.

The concept of inheritance has been recognized as one of the most important features

for software reuse. In object-oriented languages, inheritance supports class hierarchy

design and captures the is-a relationship between a class and sub-class (Chung, & Lee,

1992). Inheritance has been studied in object-oriented languages extensively (Chung,

26

& Lee, 1992;, Chawla & Nath,2013; Gill & S. Sikka,2011;Misra et al., 2011). Though

inheritance supports reuse, it can increase complexity if not used in the proper range

(Chawla & Nath,2013). Style sheets provide a unique way of supporting inheritance

because there are no classes and sub-classes as provided for in the object-oriented

domain.

Nesting complexity has also been studied as an important property. Nesting reflects

the level of nesting within constructs or control structures (Li, 1987). Constructs are

such as if, case, for, while, and do-until can be nested. A statement that is at the

innermost level is harder to understand, meaning that it contributes more to complexity

than other statements (Chhillar & Bhasin, 2011). In SCSS, nesting occurs with

selectors, and the more the selectors are deeply nested the more complex an SCSS

code becomes (Frain, 2013).

Coupling has been defined as the measure of the strength of association established by

a connection from one module to another (Stevens, Myers, & Constantine, 1974). It

has been argued that the stronger the coupling between modules, the more difficult

these modules are to understand, change and correct, resulting in more complex

software. Coupling has been studied in the domain of procedural programming

(Stevens et al., 1974) and object-oriented programming (Chidamber & Kemerer,1994;

Li & Henry,1993; Abreu and Melo, 1996). While coupling as a complexity measure

has been studied in procedural and object-oriented languages it has not been addressed

in the stylesheets’ domain. The SCSS language implements coupling in a unique way.

The modules also known as rule blocks are coupled to each other through an external

module, unlike in OOP where modules are directly coupled to each other.

27

Coupling in OOP is demonstrated in Figure 2.7, where Class B methods and variables

can be accessed by both Class A and Class C. When a change is introduced in Class

B methods and attributes, it affects Class A and Class C.

 Figure 2.7: Coupling in OOP

Coupling in SCSS is demonstrated in Figure 2.8, where there are three rule blocks or

modules namely, rule block A, rule block B and rule block C. These rule blocks are

not connected to each other directly but share global data in form of mixins and

variables. When a change is made to any of the mixin or variable, the effects are

replicated in all the rule blocks.

 Figure 2.8: Coupling in SCSS

The aspect of cohesion is discussed extensively in the procedural and object-oriented

domain. Cohesion is defined as the single-mindedness or relatedness of a module

component (Bieman and Ott, 1994). When a module is highly cohesive, it means, all

Class A {
 attributes;
 methods;
}

Class B {
 attributes;
 methods;
}

Class C {
 attributes;
 methods;
}

Rule Block A{
 attributes;
 directives;
}

Mixins and
Variables

Rule Block B {
 attributes;
 directives;
}

Rule Block C {
 attributes;
 directives;
}

28

the defined elements in a module perform a single task. Therefore, it’s the goal of

software designers to make a program as cohesive as possible.

The complexity of code can be expressed through control structures, and therefore, a

program which implements control structures is regarded as more complex in

comparison to the program without control structures (Chhillar and Bhasin, 2011). The

complexity of a program is directly proportional to the cognitive weights of Basic

Control Structures (Misra and Cafer, 2012). For example, iterative control structures

like for loop, while, and do…while contribute more complexity than decision making

control structures such as if…then…else.

2.4.3.2 Structural Properties for SCSS

SCSS combines the characteristics of CSS, such as the use of selectors, rule blocks,

and declarations with those of traditional software such as inheritance, nesting, and

coupling (Mazinanian and Tsantalis, 2016). The combination of these features makes

the front web developers create more efficient and maintainable code.

Arbitrary and meaningful variables are one of the causes of complexity and if a

variable’s name is arbitrary given, then the comprehensibility of that code will be

lower (Kushwaha & Misra, 2006). In essence, variable names should be meaningful

in programming and if variable names are taken arbitrarily they may increase the

difficulty in understanding four times more than the meaningful names (Kushwaha &

Misra, 2006). SCSS introduced variables to enable developers to easily maintain

stylesheets and they are prefixed with a dollar sign ($). These variables can be global

or scoped. Global variables are variables that are defined on its own line, and they

29

apply to the whole sheet, while scoped variables appear within a selector and will only

appear to that selector and its children (Catlin & Catlin, 2011).

A rule block basically consists of properties and values which together form a

declaration or an attribute. The more the number of attributes defined in a regular CSS

rule block, the more complex it is (Adewumi et al., 2012). SCSS has more factors that

contribute to its rule block complexity, for example, use of operators, use of variables,

use of function calls, implementation of rule blocks within another rule block and use

of control directives such as @if, @for, @each, @while, @else if, and if () function.

SCSS provides a unique way of supporting inheritance by use of selector inheritance

(Netherland, Eppstein, Weizenbaum & Mathis 2013). The selectors are extended in

an SCSS rule block by use of @extend directive (Cederholm, 2013). This means that

all the attributes of the inherited selector are implemented in the rule block that the

selector has been extended. Figure 2.9 has code that illustrates the use of selector

inheritance. The code has two rule block which has a selector named .alarm and is

inherited by .alarm-positive selector. This means that the .alarm-positive selector will

have five attributes or declarations i.e. padding, font size, text align, color and

background.

30

Figure 2.9: Selector Inheritance

SCSS allows nesting of rules inside each other instead of repeating selectors in a

separate declaration (Cederholm, 2013). Figure 2.10 illustrates nesting by placing the

message rule block inside infobox rule block.

Figure 2.10: Nesting of Rules

SCSS consists of rule blocks, a rule block consists of properties and values which

together form a declaration or an attribute. The more the number of components

defined in a CSS rule block, the more complex it is (Adewumi et al., 2012). SCSS has

. alarm{

padding: 15px;

font-size: 1.2em;

text-align center;

color: $color-accent;

}

. alarm-positive {

@extend .alarm;

background: #9c3;

}

Alarm selector

Alarm positive selector

Alarm selector inheritance

.infocon {

height: 300px;

.messicon {

border: 1px solid red;

}

}

.infocon {

height: 300px;

}

.infocon .messicon {

border: 1px solid red;

}

Non-nested rules Nested rules

31

several components which contribute to rule block complexity, for example, attributes

or declarations, operators, variables, function calls, control directives, include

directive and extend directive.

In SCSS, coupling is manifested when the declared properties such as mixins and

variables are used in several places of the code, meaning that the properties can be

changed without realizing you are affecting multiple objects at once or not noticing

which elements are being affected by the changes. In stylesheets, cohesion is viewed

as the rule blocks having a single attribute (Adewumi et al., 2012).

SCSS implements a number of control directives which provide flow and logic to the

CSS code. These control directives are; if(), @if, @else, @for loop, @while, and

@each (Cederholm, 2013). In the Stylesheets field the use of control structures has

not been considered by researchers in relation to software complexity.

2.5 Existing Software Complexity Metrics

The practice of defining software metrics has been continuing over the years for

different kinds of software domains such as procedural, object-oriented, and web-

based domains. Software metrics assess software from diverse perspectives to reflect

the software internal quality such as maintainability (Arar & Ayan, 2016). The use of

software complexity metrics has been recognized in software engineering as a way of

controlling software complexity. Software metrics play a great role in measuring the

level of success and failure of software, and this informs the software issues that

require the attention of designers (Misra et al., 2018; Muketha et al., 2010b;

Parthasarathy & Anbazhagan, 2006; Verner & Tate, 1992).

32

The following sub-sections present existing complexity metrics in the various domains

of traditional programming languages, object-oriented languages, web-based

languages including scripting web languages such as CSS.

2.5.1 Complexity Metrics for Traditional Software

Metrics such as Lines of Code (LOC), Function point (FP), McCabe cyclomatic

complexity metric and Halstead’s software science metrics are well known and

frequently used to measure software complexity. These metrics targeted procedural

languages which have major differences with SCSS syntax as shown in Table 2.1,

meaning the metrics cannot be directly applied to SCSS.

2.5.1.1 Lines of Code (LOC)

The line of code is the oldest, simplest and most widely used metrics for calculation

of program size (Debbarma, M., Debbarma, S., Debbarma, N., Chakma & Jamatia,

2013; Kandpal & Kandpal, 2012). LOC counts the number of instructions of a program

in terms of SLOC (source lines of code) and excludes comments and blank lines. LOC

is criticized for its lack of accountability, lack of cohesion with functionality,

programmer and language dependent and lack of counting standards (Kandpal &

Kandpal, 2012). There are alternatives to SLOC such as KLOC (thousands or Kilo of

lines of code), KDSI (thousands of delivered source instructions), NCLOC (non-

commented lines of code), and the number of characters or number of bytes (Kandpal

& Kandpal, 2012). However, both LOC and its variants portray similar limitations.

33

2.5.1.2 Function Point (FP)

The Function Point metric was initially proposed by Albrecht and his contemporaries

at IBM in the mid-1970 (Albrecht, 1979). The FP metric is used for systems

measurement from a functional perspective regardless of the technology implemented.

The metric basically breaks down a system into smaller components to enhance the

understandability and analysis of the system (Praveen, Agarwal & Srivastava, 2018).

Function points are weighted sum of inputs, outputs, queries, internal and external

files, and are used to indirectly measure a project or application functionality (Kaur &

Maini, 2016).

The ultimate measure of software productivity is the number of functions a

development team can produce given a certain amount of resource, regardless of the

size of the software in lines of code. FP metric addresses some of the problems

associated with LOC and productivity measures, especially the difference in LOC

counts that result because different levels of languages are used.

The FP technique depends on the counts of distinct types in the following five

categories of external inputs, number of external outputs, number of logical internal

files, number of external interface files, and number of external inquiries (Borade &

Khalkar, 2013). External inputs refer to each user input that adds or changes data in

an internal file, for-example input of data via input screen to add to the student’s

information. The external outputs are outputs by each user that provides application-

oriented information, such as a report that contains the number of students pursuing a

certain course. The logical internal files are the logical groups of data that are within

the application’s boundary and form part of the database. For example, group of

34

information related to the student such as registration number, student name, course,

year of study, etc. The external interface files are all machine-readable interfaces such

as data files which reside outside the application and are used for reference purpose

only. For example, information concerning students’ fees can be used by an academic

application, but all the information on students’ fees is maintained by the student’s

fees application. Finally, the external inquiries are the user inquiries, where an online

input results in an immediate response in form of an online output, this input data

doesn’t update the internal logical files For- example a student can query on his results

for a certain academic year (Borade & Khalkar, 2013).

The formula for computing the function points (FP) is:

FP = Count Total * [0.65 + 0.01 ∑ (Fi)]

Where Count Total is the sum of all function points entries and Fi is the sum of degree

of influence of each of the systems characteristics in consideration.

This approach is very difficult to implement practically because function points are

computed manually, and an experienced person is required to use this technique

(Praveen, Agarwal & Srivastava, 2018).

2.5.1.3 Halstead’s Metrics

Halstead’s metrics known as Halstead software science was introduced to build a

theory that describes measurable software attributes. This metric assumes that a

program consists of only operators and operands The attributes program length,

volume, vocabulary, level, and programming effort were deemed as sufficient

measurement attributes (Halstead, 1977). Scientific methods were introduced to

35

analyze software features and structure using Halstead’s software science (Awode et

al., 2017).

The Halstead metric is defined based on the following four numbers (Halstead, 1977):

ɳ1: Number of non-repetitive (distinct) operators

ɳ2: Number of non-repetitive (distinct) operands

N1: Number of all operators

N2: Number of all operands

The various measures derived from the four numbers are:

i. The measure for program length, which is the total number of operators

and operands

N = N1 + N2

ii. The measure for the vocabulary of the program is the sum of the number

of distinct operands and operators

n = ɳ1 + ɳ2

iii. The measure for volume (V) is the count of the functional points in the

program

Halstead defined the volume, V, of a program to be

V= (N1 + N2) log2 (ɳ 1 + ɳ 2)

 = N log2 (n)

36

iv. The measure for program difficulty (D) is proportional to the total number

of unique operators and total usage of operands

D = (n1 * N2) / (2 *n2)

v. The measure of effort (E) required to implement a program or

understanding the program is directly proportional to difficulty and volume

E = D * V

vi. The measure of number of bugs (B) expected in the program is proportional

to effort

B = E * (0.667 / 3000)

vii. The measure of time (T) taken to write the program is proportional to effort

T = E / S

 Where S = 18 seconds.

Halstead metrics addressed LOC weakness where computer algorithm has been

defined as a collection of tokens (Halstead, 1977). However, they have been criticized

as being difficult to compute and depends on a code that is complete (Dhawan & Kiran,

2012). In addition, Halstead metrics are criticized as being confused and inadequate,

though they are reasonable from a measurement theory perspective (Fenton, 1994).

Though SCSS language makes use of operators and operands the Halstead metric

doesn’t capture the SCSS structural attributes, meaning it cannot be relied on to

provide SCSS complexity measure.

37

2.5.1.4 McCabe Cyclomatic Complexity

McCabe’s metrics are one of the most popularly used metrics that focus on the control

flow structure of a program (McCabe, 1976). Cyclomatic complexity directly

measures the number of linearly independent paths through a program source code

(Madi, Zein, & Kadry, 2013; Khan et al., 2016).

The metric can be defined in two ways: The first approach is the basic formula for a

single program and is computed as the number of decision statements in a program

plus one. There are four basic rules for calculating Cyclomatic Complexity (Madi,

Zein, & Kadry, 2013):

i. Count the number of all if statements

ii. Count the number of all cases in a switch statement, except the default and else

case.

iii. Count all the loops in the program i.e. do, while and for loop statements

iv. Count all the try/catch statements

Finally, compute the total of all numbers from step 1 to step 4, then add 1

CC = Number of Decisions + 1

The second approach is used for large systems with several interconnected

components. The graph is drawn and then the cyclomatic complexity is computed with

the following formula:

V (G) = e – n + 2p

Where G represents the graph, n vertices are the number of nodes of the graph, e is the

number of edges of the graph, and p is the number of connected components in a graph

38

The cyclomatic complexity measurement was designed to indicate the testability and

understandability of a program. This metric is restricted because it simply counts

decision nodes, and it assigns equal weights for both branch and loop statements

(Cardoso, 2006; Debbarma et al., 2013). Loops are more complex than branches are

more complex than sequences. In addition, the cyclomatic complexity doesn’t

consider the nesting level of control structures (Debbarma et al., 2013).

2.5.2 Complexity Metrics for Object-Oriented Languages

Over the years, researchers have proposed numerous object-oriented metrics that could

be used to measure software complexity. These metrics targeted object-oriented

languages and since SCSS language is not an OOP language it means that the metrics

cannot be directly applied to SCSS. SCSS programs have major differences with OOP

as described in Table 2.1. The subsequent sections present an analysis of these metrics.

2.5.2.1 Chidamber and Kemerer Metrics

There are several metrics defined for the object-oriented domain; one of the most

popular is Chidamber and Kemerer (1994) metrics. The C&K metrics (1994) are;

Weighted Methods per Class (WMC), Depth of Inheritance Tree (DIT) which

measures the maximum length from the node to the root of the tree, where deeper trees

constitute greater design complexity, Number of Children (NOC) which shows the

number of immediate subclasses subordinated to a class in the class hierarchy,

Coupling between object classes (CBO) which is the count of the number of other

classes to which it is coupled, Response for a Class (RFC) which refers to a set of

methods that can potentially be executed in response to a message received by an

39

object of that class and Lack of Cohesion in Methods (LCOM) which refers to the

degree of similarity of methods. The larger the number of similar methods, the more

cohesive a class is. These metrics have been empirically validated by several

researchers (Denaro, Lavazza, & Pezze,2003; El-Emam, Melo & Machado, 2001;

Basili, Briand & Melo,1996; Abreu, Melo & Abreu, F., 1996), however they have

been found to be deficient theoretically (Koh, Selamat, Ghani & Abdullah, 2008; Li,

1998).

2.5.2.2 Mishra Inheritance Metrics

Mishra (2012) proposed two inheritance metrics namely; class level CCI (Class

Complexity due to Inheritance) and program level ACI (Average Complexity of a

program due to Inheritance). They metrics are promising in that they have been proven

to be mathematically sound using Weyuker’s properties. However, these metrics

require empirical validation to ascertain whether they are can be useful indicators of

external quality of software.

 2.5.2.3 Abreu and Carapuca Metrics

Abreu and Carapuca (1994) defined five metrics that can be used to measure

inheritance in object-oriented software. These include Total Children Count (TCC),

Total Progeny Count (TPC), Total Parent Count (TPAC), Total Ascendancy Count

(TAC) and Total length of inheritance chain (TLI).

The TCC is the number of classes that inherit directly, TPC is the number of classes

that inherit directly or indirectly from a class, TPAC is the number of super classes

from which a class inherits directly, TAC was defined and represents the number of

40

super classes from which a class inherits directly or indirectly, finally TLI is the total

number of edges in the inheritance hierarchy graph. These metrics focused only on the

inheritance aspect of object-oriented software and ignores other structural aspects of

the software.

2.5.2.4 Lorenz and Kidd Metrics Suite

Lorenz and Kidd (1994) derived three metrics namely; Number of Methods (NMI),

Number of Methods Overridden (NMO) and Number of New Methods (NNA). The

NMI measure counts the total number of methods inherited by a subclass, while NMO

counts the total number of methods overridden by a subclass and a superclass, and

NNA counts the number of new methods in a subclass (Mishra, 2012) These metrics

have been criticized as simplistic and just counts class properties, meaning they cannot

be relied on to evaluate software quality (Baroni & Abreu, 2003; Harrison, Counsell

& Nithi, 1997).

2.5.2.5 Li Metrics

Li (1998) proposed a set of six metrics to remedy the shortcomings of Chidamber and

Kemerer metrics. The metrics are, Number of Ancestor Classes (NAC), Number of

Local Methods (NLM), Class Method Complexity (CMC), Number of Descendants

Classes (NDC), Coupling Through Abstract Data Type (CTA), and Coupling Through

Message Passing (CTM).

The NAC metric measures the total number of ancestor classes from which a class

inherits. The NLM metric counts the number of local methods in a class and are

accessible outside the class. The CMC metric sums the internal structure complexity

41

of all local methods. NDC metric returns the total number of subclasses of a class. The

CTA counts the total number of classes that are used as abstract data types. Lastly, the

CTM metric returns the number of different messages sent out from a class to other

classes, without considering the inheritance feature (Gupta, 2015). Though LI metrics

addressed limitations in Chidamber and Kemerer metrics, they require modifications

to strongly predict maintainability (Gupta, 2015).

2.5.2.6 MOOD Metrics Suite

The MOOD metrics are structural complexity metrics of the Object-oriented domain.

These metrics were proposed in 1994 (eAbreau & Carapuça, 1994) they include;

Method Hiding Factor (MHF), Attribute Hiding Factor (AHF), Method Inheritance

Factor (MIF), Attribute Inheritance Factor (AIF), Polymorphism Factor (PF) and

Coupling Factor (CF).

The MHF and AHF are proposed as measures of encapsulation. The MHF metric is

the ratio of the sum of the invisibilities of all methods defined in all classes to the total

number of attributes defined while AHF is the ratio of the sum of the invisibilities of

all attributes defined in all classes to the total number of attributes. The MIF and AIF

are inheritance-based metrics. The MIF metric is the ratio of the sum of the inherited

methods in all classes to the total number of available methods while the AIF metric

is the ratio of the sum of inherited attributes in all classes to the total number of

available attributes in all classes. The PF Metric is the ratio of the actual number of

the possible polymorphic situation for a given class to the maximum number of

possible distinct polymorphic situations for the same class in consideration. Then the

CF metric is the ratio of the maximum possible number of couplings not related to

42

inheritance (Neelamegam & Punithavalli, 2009). These metrics have been criticized

for not being able to predict errors in classes (Shaik, Reddy & Damodaram, 2012).

2.5.2.7 Misra, Adewumi, Fernandez-Sanz and Damasevicius Metrics

Misra et al. (2018) proposed a suite of objected oriented complexity metrics. These

metrics are Method Complexity (MC), Coupling Weight for a Class (CWC), Attribute

Complexity (AC), Class Complexity (CLC) and Code Complexity (CC). The MC

metric is computed by summing up all the assigned weights of methods in a class. The

CWC metric sums the weights of calls and weights of called methods. AC metric

computes the total number of attributes in a class. The CLC metric computes class

complexity by summing up AC with MC and finally, the CC metric considers the

complexity of classes brought by their interactions. The metrics emphasize on the

inheritance aspect of code, where all classes in the same level are assigned same

weight and subclasses weights are multiplied. These metrics have been proved to be

theoretically sound, however, they need to be applied to industry projects to establish

their usefulness.

2.5.3 Web-Based Metrics

Several researchers have defined metrics in the web domain. This section describes

the different metrics based on the existing web-based languages. Since this study

focuses on web-based metrics the availability of tool support is considered while

discussing each metric.

43

2.5.3.1 Misra and Cafer Metrics

Misra and Cafer (2012) proposed JavaScript Cognitive Complexity Measure (JCCM),

for measuring the design quality of scripts. The motivation for JCCM is to calculate

the structural and cognitive complexity of JavaScript. This metric considered five

factors that contribute to JavaScript complexity, the number of lines of codes, the

number of meaningfully named variables (MNV), the number of arbitrary named

distinct variables (ANDV), the cognitive weight of basic control structures (BCS’s)

and the number of operators (NO). The JCCM metric has been proven to conform to

measurement theory, in addition, the metric has been empirically validated for

understandability aspect of maintainability. However, there is no indication of tool

support, meaning its difficult for the industry and researchers to adopt it. Furthermore,

this metric targets JavaScript language, which means it cannot be used to measure

programs written in the SCSS language due to the syntactical difference between

JavaScript and SCSS.

2.5.3.2 Basci and Misra Metrics

Basci and Misra (2011) defined an entropy measure for the assessment of structural

complexity of XML. The schema entropy metric measures the schema documents

complexity due to elements structure diversity. This metric has been validated

empirically although there is no evidence of theoretical validation and tool support.

Basci and Misra (2011) defined two document type definition (DTD) complexity

metrics, Entropy metric: E(DTD) and Distinct Structured Element Repetition Scale

metric: DSERS(DTD) so as to measure the structural complexity of schemas in DTD

language. E(DTD) metric value is computed by considering equivalence classes in a

44

schema document. An equivalence class is the one that its elements have the same

value of fan-in and fan-out and number of attributes. DSERS(DTD) metric measures

the interface complexity of the schema document. The lower the E metric value and

the higher the DSERS value the lesser the effort to understand the element structure.

These metrics have been validated both theoretically and empirically, although no

support for the automated tool has been seen so far.

Basci and Misra (2009) have also defined a design complexity metric for XML

Schema documents(XSD) written in W3X XML Schema language. The metric

C(XSD) measures the complexity of XSD based on the internal architecture of XSD

components and recursion. It captures all the major factors responsible for XSD

complexity. These factors are complexity based on elements and attributes definitions,

elements and attributes group definitions, user-defined or built-in simple type and

complex type definitions, elements definitions with no recursion and components that

are included from external schema files. The proposed metric has been validated both

through an experiment and theoretically through the Kaner and Briand’s framework.

Tool support for this metric has however not been seen although desirable.

Basci and Misra (2011b), described four XML web service metrics namely data weight

of a web service description language (DW -WSDL) which is computed by defining

the sum of the data complexities of each input and output messages, distinct message

ratio (DMR) metric which counts the number of distinct structured messages, message

entropy (ME) metric which measures the complexity of similar-structured messages

and message repetition scale (MRS) metric analyses the varieties in structures of web

service description language. These four metrics have been theoretically validated

45

using Kaner Framework and Weyuker’s properties. They have also been validated

empirically although there is no automated tool support.

The Basci and Misra metrics targeted DTD and XML software artifacts which have

difference with SCSS in terms of syntax, therefore, they cannot be used to measure

SCSS complexity.

2.5.3.3 Thaw and Misra Metrics

Thaw and Misra (2013) have defined an Entropy Measure of Complexity (EMC) for

XML documents. The metric measures the reusable quality of XML schema

documents. A high EMC value implies that the document is more reusable and that it

contains inheritance features, elements, and attributes. Theoretical validation based

on Kaner framework and Weyuker’s properties were done on the metrics. The metrics

were also validated empirically. As is the case with most metrics in this domain, no

tool support has been seen for the EMC metric. In addition, the metric targeted XML

documents which has major synatactical differences with SCSS, thus cannot measure

SCSS complexity.

2.5.3.4 Tamayo, Granell and Huerta Metrics

Tamayo et al. (2011) defined three XML complexity metrics in geospatial web

services, Data Polymorphism Rate (DPR), Data Polymorphism Factor (DPF), and

Schemas Reachability Rate (SRR). DPR measures schema polymorphism, DPF

measures the influence of polymorphic elements in the overall schema complexity,

and SRR measures the fraction of imported hidden schema components by the

subtyping mechanisms. These metrics have been empirically validated using a case

46

study and were found to be useful in detecting potential design problems for-example

a component with too many information items. However, these metrics have not been

theoretically validated, there is no evidence of tool support and they targeted XML

software only, meaning that the metrics cannot measure SCSS complexity.

2.5.4 Adewumi, Misra and Ikhu-Omoregbe Metrics

Adewumi et al. (2012) proposed the first set of metrics in the stylesheet field. The

metrics focused on CSS and they include, Rule Length (RL), Number of Rule Blocks

(NORB), Entropy Metric (E), Number of Extended Rule Blocks (NERB), Number of

Attributes defined per Rule Block (NADRB), and Number of Cohesive Rule Blocks

(NCRB).

The Rule Length metric measures the number of lines of rules (or code) in a CSS file,

and it’s intended to measure the size of code. It is adapted from the popular line of

code (LOC) metric. The formula for calculating rule length is

RL = ∑ rule statements

Where RL is the rule length, and rule statements are the number of executable

statements in a CSS file.

The limitation with the RL metric is that it does not consider the non-executable parts

of CSS code such as white spaces or comment lines.

The Number of Rule Blocks metric counts the number of rule blocks in CSS code. The

formula for calculating the Number of Rule Blocks is:

NORB=∑ rule blocks in a CSS file

47

Where NORB is the Number of Rule Blocks in CSS file, and a rule block

consists of a selector and its declarations.

The NORB metric is similar to the RL metric because it’s intended to measure the size

of the code, meaning it achieves the same goal as RL.

The Entropy Metric puts the elements with the same structural complexity in the same

category, this category is referred to as equivalence class(C). The entropy of a CSS

document is based on n distinct class of elements and is calculated using the relative

frequencies as unbiased estimates of their probabilities. P (Ci), i=1, 2…. n. The

formula for calculating the entropy of CSS file is:

E=∑P(Ct)log2P(Ct) where t=1…n

 =∑(1/n) log2(1/n)

Where E represents the Entropy metric value, P represents the probability of

occurrence of distinct class elements (C).

The Entropy metric groups similar rule blocks and so when the entropy metric value

is low the higher the structural similarity of rule blocks meaning the complexity of the

CSS code is low.

The Number of Extended Rule Blocks metric counts the number of rule blocks that are

extended in a CSS file. The formula for calculating the Number of Extended Rule

Blocks of CSS file is:

NERB=∑ extended rule block(i)

where NERB represents the Number of Extended Rule Block and i = 1…. N

48

The Number of Attributes defined per Rule Block metric determines the average

number of attributes defined in the rule blocks of a CSS file. The formula for

calculating the Number of Attributes defined per Rule Block of CSS file is:

NADRB = (Total number of attributes in all rule blocks / Total number of rule

blocks)

Where NADRB represents The Number of Attributes defined per Rule Block

A higher NADRB metric value leads to higher complexity of the CSS code.

The Number of Cohesive Rule Block metric counts all rule blocks possessing a single

attribute. The formula for calculating the Number of Cohesive Rule Block of CSS file

is:

NCRB=∑ rule block (i) possessing only one attribute

Where NCRB represents the Number of Cohesive Rule Blocks and i = 1 …. N

The higher the NCRB metric value the lower the complexity of CSS code.

These metrics are specifically for the CSS and the first of its kind in Stylesheets

domain; and though they have been found to be practically valid, they have not been

empirically validated and we cannot tell their mathematical soundness. The usefulness

of the metrics in predicting the external quality of maintainability for CSS cannot,

therefore, be assured.

49

2.6 Metrics Validation

There are two main stages required to validate software metrics, these are; theoretical

validation, and empirical validation (Muketha et al., 2010b; Srinivisan and Devi,

2014).

2.6.1 Theoretical validation

The purpose of theoretical validation is to establish whether the proposed metrics are

mathematically sound. Popular theoretical validation frameworks that are frequently

cited in software metrics literature include Weyuker’s properties (Weyuker, 1988),

Briand’s framework (Briand et al., 1996) and Kaner framework (Kaner, 2004). These

three frameworks have been used extensively by metrics researchers to validate their

metrics (Adewumi et al., 2012; Misra et al., 2018; Pichler et al., 2010; Geneves, 2012).

2.6.1.1 Weyuker’s Properties

Weyuker proposed nine properties for validating software complexity metrics

(Weyuker, 1988). Researchers have argued that it’s not necessary for all the properties

to be satisfied for a measure to be valid, but it must at least satisfy the majority of the

properties (Basci & Misra,2011b; Misra et al., 2018). These properties were adopted

to suit SCSS syntax.

 Property 1 (Noncoarseness): (∃P) (∃Q) (|P| ≠ |Q|) where P and Q are two

different modules. This property is satisfied when there exist two different

modules P and Q such that |P| is not equal to |Q|, meaning they don’t return

similar metric results.

50

 Property 2 (Granularity): Let c be a non-negative number. Then there are

finitely many modules of complexity c. This property asserts that if a module

changes then its complexity changes.

 Property 3 (Nonuniqueness): There can exist distinct modules P and Q where

|P| = |Q|. This property affirms that two different modules can have the same

metric value, this is to say that two modules have the same level of complexity.

 Property 4 (Design details are important): (∃P) (∃Q)(P ≡ Q &|P| ≠ |Q|). There

can be two modules P and Q whose external features look the same, however,

due to different internal structure |P| is not equal to |Q|. This property asserts

that two modules with the same number of attributes and directives could

return different metric values.

 Property 5 (Monotonicity): (∃P) (∃Q) (|P| ≤ |P; Q| & (|Q| ≤ |P; Q|). This

property asserts that if we concatenate two modules P and Q, the new metric

value must be greater than or equal to the individual module.

 Property 6 (Nonequivalence of interaction): (∃P) (∃Q) (∃R) (|P| =|Q| and |P;

R| ≠ |Q; R|) This property implies that if two modules have same metric value

(P and Q), it doesn’t necessarily mean that when each of the module is

concatenated with similar module R, the resulting metric values are the same.

 Property 7 (Permutation): If you have two modules P and Q which have the

same number of attributes in a permuted order, then |P| is not equal to |Q|.

 Property 8 (Renaming property): if P is assigned as Q, then |P| = |Q|. Where

you have two modules P and Q differing only in their selector names, then |P|

is equal to |Q|.

 Property 9 (Interaction increases complexity): (∃P) (∃Q) (|P| +|Q| < (|P; Q|).

This property asserts that there exist two modules P and Q, where the

51

complexity metric value of the two modules when summed up is less than

when the modules are interacting.

2.6.1.2 Briand’s Property-based Framework

A property-based approach for software measurement has been proposed to formalize

software attributes into size, length, complexity, cohesion, and coupling (Briand et al.,

1996). Each of the five attributes contains a set of properties that should be met by the

metrics being evaluated.

Size: The size of the code C is a function size(C) characterized by the following three

properties namely; non-negativity, null value and module additivity which should be

satisfied by the size metrics.

 Property 1 (Non-negativity): the size of code must never be negative i.e., size

(C) ≥ 0.

 Property 2 (Null values): the size of the code is null if there is no module i.e.

size (C) =0.

 Property 3 (Module additivity): the code size is the summation of two modules

(B1 and B2) i.e. Size (C) = size (B1) + size (B2).

Length: The length of the code C is a function length (C) characterized by the

following five properties namely; Non-negativity, null value, disjoint modules, non-

increasing monotonicity, and non-decreasing monotonicity.

 Property 1 (Non-negativity): The length of the code cannot be negative.

 Property 2 (Null value): The length of the code is null if the code has no

modules.

52

 Property 3 (Disjoint modules): The length of a code that has two separate

modules is equal to the lengths of the two modules.

 Property 4 (Non-increasing monotonicity): Adding relation between elements

of a module does not increase the length of the code.

 Property 5 (Non- decreasing monotonicity): Adding relation from two modules

does not decrease the length of code.

Complexity: The complexity of code C is a function complexity (C) that is

characterized by the following five properties namely; Non-negativity, null value,

disjoint module additivity, symmetry and module monotonicity.

 Property 1 (Non-negativity): The complexity of the code cannot be negative.

 Property 2 (Null value): The complexity of the code is null if the module is

empty.

 Property 3 (Disjoint module additivity): The complexity of the code that has

two modules is the summation of the complexities of the two modules.

 Property 4 (Symmetry): The complexity of a code is not dependent on how

you choose to represent code elements relationships.

 Property 5 (Module monotonicity): The complexity of a code is no less than

the sum of the complexities of any two of its modules with no relationships in

common.

Cohesion: The cohesion of the code C is a function cohesion (C) characterized by the

following four properties namely; Non-negativity and normalization, null value,

monotonicity, and cohesive modules.

53

 Property 1 (Non-negativity and normalization): The cohesion of the code

cannot be negative, and the measure should be independent of the size of the

module.

 Property 2 (Null value): The cohesion of the code is null if the module is empty.

 Property 3 (Monotonicity): The relationship between modules cannot decrease

cohesion.

 Property 4 (Cohesive modules): The relationship between modules cannot

decrease cohesion when two modules showing no relationship are

encapsulated.

Coupling: The coupling of code C is a function coupling (C) that is characterized by

the following five properties namely; Non-negativity, null value, disjoint module

additivity, merging of modules and monotonicity.

 Property 1 (Non-negativity): The coupling of code cannot be negative.

 Property 2 (Null value): The coupling of the code is null if there is no internal

relation between the modules.

 Property 3 (Disjoint module additivity): The coupling of the code increases

when more modules are added that share global data.

 Property 4 (Merging of modules): The coupling of the code decreases when

two modules are merged.

 Property 5 (Monotonicity): The coupling of the code increases when the

relationship between modules increases.

54

2.6.1.3 Kaner’s Framework

Kane’s framework is claimed to be more practical than the formal approach of

Weyuker’s properties and Briand’s framework (Pichler et al., 2010). The Kaner

framework evaluates software metrics to establish the purpose of the defined measure,

scope of the measure, the attributes to measure, natural scale of the attributes to

measure, natural variability of the attribute, metrics defined, measuring instrument,

natural scale for the metric, natural variability of readings, relationship of attribute to

the metric value and the natural and foreseeable side effects based on use of the

instrument (Kaner, 2004).

2.6.2 Empirical Validation

Metrics researchers frequently employ experiments, case studies, or surveys in their

effort to validate their new metrics (Muketha et al., 2010b; Srinivasan & Devi, 2014).

Empirical validation is conducted to establish the usefulness of new metrics by the

industry (Muketha et al., 2010b).

2.6.2.1 Experiments

Out of the three empirical strategies, experimentation is the more frequently used due

to its formal, rigorous and repeatable characteristics (Muketha et al., 2010b, Wohlin

et al., 2000). Experimental subjects are randomly assigned different treatments for the

purpose of keeping one or more variables constant while other variables are

manipulated. The effects of variable manipulation are observed, measured and

interpreted (Muketha et al., 2010b).

55

Several software engineering experiments involve human subjects to investigate the

cause-effect relationship (Easterbrook, Singer, Storey, & Damian, 2008). A family of

experiments is encouraged such as conducting both subjective and objective

experiments, to accumulate knowledge on a certain subject (Canfora, García, Piattini,

Ruiz & Visaggio, 2005). Researches select different kinds of experimental designs.

For-example within-subject design and between subject designs are some of the most

popular designs (Muketha et al., 2011; Ko, Latoza & Burnett, 2015).

2.6.2.2 Case Studies

Case studies involve closer and deeper study on an attribute or relationship between

several attributes. The context in which the attributes under study are being observed

is an important factor in case studies (Wohlin et al., 2000). The limitation of this

approach is that the data collection and analysis is open to researcher’s bias, therefore,

the selection of cases should follow a defined procedure (Easterbrook et al., 2008).

2.6.2.3 Surveys

A survey is a technique for collecting information from a sample of individuals in a

certain population (Easterbrook et al., 2008). The results generated from the sample

are analyzed and can be generalized to the population (Wohlin et al., 2000). This

method is considered as a retrospective study where you study a situation and unlike

experiments and case studies the variables cannot be manipulated (Fenton & Pfleeger,

1997). In a lot of situations, questionnaires are used to collect data, however other

instruments such as structured interviews and data logging can be employed

(Easterbrook et al., 2008).

56

2.7 Metrics Tools

A metrics tool is a static analyzer software which collects, computes and displays

metrics values (Lincke, Lundberg, & Löwe, 2008). These tools enable programmers

to analyze the source code of a programming language (Linos, Lucas, Myers, & Maier,

2007) and provide insight concerning the quality of the source code (Adewumi et al.,

2015). The metrics tool has become a requirement for acceptability of any metrics

proposed in the software industry (Adewumi et al, 2015). Therefore, it’s imperative to

develop a tool for the defined metrics.

.

Several metrics tools have been proposed such as Code Counter tool for C and C++

(CCCC) (Littlefair, 2001), OOMeter (Alghamdi, 2005), Prest (Kocaguneli, Tosun,

Bener, Turhan, & Caglayan., 2009), a Multi-language metrics tool (Linos et. al, 2007),

Business Process Metrics Tool (BPMT) (Muketha, 2011) and CSS Analyzer

(Adewumi et al., 2015). In the absence of the tool, computation becomes a slow and

tedious process, thus reducing the acceptability of the metrics in the software industry

(Adewumi et al., 2015).

Several researchers have proposed metric tools to automate metrics computation.

CCCC metrics tool by Littlefair, (2001) analyses C++ and Java files, by calculating

the lines of code, cyclomatic complexity, lines of comments, information flow

measures by Henry and Kafura (1984) and Chidamber and Kemerer object-oriented

metrics suite (1994). OOMeter was developed to compute metrics for Java, C# source

code and Unified Modelling Language models (UML) in eXtensible Mark-up

Language (XML) format. The tool collects metrics for size, coupling, cohesion and

complexity (Alghamdi et al., 2005). A Multi-language metrics tool (Linos et al., 2007)

57

has the capability to compute metrics for software developed with many languages

under Microsoft Visual Studio .NET. Prest is an intelligent tool that extracts common

static code metrics from C, C++, Java, JSP, and PL/SQL languages, this tool is capable

of analyzing and predicting errors by applying machine learning concepts (Kocaguneli

et al., 2009). Business Process Metrics Tool (BPMT) (Muketha, 2011) recognizes

BPEL source code, collects and compute BPEL process metrics of size, information

flow, and complexity. CSS Analyzer was developed to automate the computation of

size metrics, cohesion, and complexity for cascading style sheets (Adewumi et al.,

2015).

The metrics tool makes the work of computing metrics easier and therefore writing

programs for the static analysis tool is desirable (Adewumi et al., 2015). The

development of this tool is made easy, especially with the object-oriented paradigm

languages such as Java which have String tokenizer to enable the splitting of a string

into tokens and Parser classes which analyze string to find tokens this results to a

reduction in coding. Programming languages in the .NET family provide the

functionality to tokenize strings, meaning that they can be used to develop the metrics

tools. These languages incorporate LINQ (language integrated query) features, that

enable manipulation of data using a little amount of code which is expressive. These

capabilities of .NET languages make it easy to build softwares that recognize

particular programming language syntax such as software metrics tools (Muketha,

2011).

The efforts towards defining new software metrics have been going on over the years.

However, the practice of developing a tool for the metrics is slowly being overlooked

58

and this is not acceptable (Spinellis, 2005; Adewumi et al., 2015). In literature, there

is evidence of many proposed metrics which are validated but otherwise lack tool

support.

Misra et al. (2018), defined a suite of object-oriented cognitive complexity metrics;

Attribute Complexity, Method Complexity, Class Complexity, Message Complexity,

and Code Complexity. This metrics suite was theoretically and empirically validated;

however, no tool support was provided for these metrics.

Cognitive Weighted Inherited Class Complexity Metric (Maheswaran and Aloysius,

2018a), measures the inheritance complexity of a class and though it was found to be

a better measure than Weighted Class Complexity (WCC) and Attribute Weighted

Class Complexity (AWCC) its use in the industry could be undermined by the lack of

tool.

The interface-based cognitive weighted class complexity metric (ICWCC) is a

promising metric for measuring class complexity based on defined interfaces

(Maheswaran and Aloysius,2018b). However, there is no evidence of tool support.

Mishra (2012), proposed two metrics, Class complexity due to Inheritance and

Average complexity of a program due to inheritance, these metrics have been

theoretically validated, however, they don’t have tool support.

In the web domain, there are several metrics that are theoretically and empirically

validated; however, they lack tool support. For example, Thaw and Misra (2013)

defined an Entropy Measure of Complexity metric for the measurement of reusability

59

of XML schema documents. Basci and Misra (2011) defined an entropy metric and

distinct structured element repetition scale metric for the measurement of structural

complexity of document type definition schemas. To measure JavaScript complexity

Misra and Cafer (2012) defined JavaScript Cognitive Complexity Measure (JCCM).

2.8 Software Maintainability

There are several software quality models which recognize maintainability as an

important aspect of quality. A software quality model is defined by ISO/IEC IS 9126-

1 as a set of characteristics that forms the basis for quality requirements specification

and evaluation of software products. Maintainability is defined as the ease with which

a software product can be understood, modified and tested (Boehm, 1978; IEEE, 1993;

Bandi et al., 2003). The most popular quality models are, McCall Model (McCall,

Richards, & Walters, 1977), Boehm Model (Boehm et al., 1978), Dromey Model

(Dromey, 1995), ISO 9126 Model (ISO, 2001) and ISO 25010 Model (ISO/ IEC CD

25010, 2008).

The McCall model (McCall, Richards, & Walters, 1977), views product quality in

terms of product review, product operation and product transition. This model was

able to link the software quality characteristics with metrics; however, its limitation is

that it lacks accuracy in measurement quality (Dubey, & Ghosh & Rana, 2012; Miguel,

Mauricio & Rodríguez, 2014). Maintainability software quality is classified under

product review and has three sub-attributes, simplicity, conciseness and self-

descriptiveness (Miguel, Mauricio & Rodríguez, 2014) as described in Figure 2.11.

60

Figure 2.11: McCall Maintainability Sub-characteristics

Source: McCall, Richards, & Walters, 1977.

Boehm model software quality model was an improvement on McCall model. The

maintainability aspect was recognized as an important aspect of software quality.

Three sub-characteristics of maintainability were defined as; understandability,

modifiability and testability. According to Boehm (1978) understandability is defined

as the easiness with which the software can be comprehended or understood,

modifiability is the easiness to which the software can be changed to fit in new

requirements and testability is the easiness with which you can identify errors in

software and correct them. Figure 2.12 visualizes the Boehm maintainability model.

Figure 2.12: Boehm’s Maintainability Sub-characteristics

Source: Boehm et al., 1978.

Dromey (1995) proposed a software quality model to aid in the evaluation of software

in terms of requirements, design, and implementation This model recognizes

Maintainability Conciseness

Simplicity

Self-descriptiveness

Maintainability Understandability

Testability

Modifiability

61

maintainability as a software quality attribute, amongst other qualities such as

functionality, reliability, efficiency, portability and reusability. However, the

drawback of this model is that it doesn’t specify the sub-attributes that define

maintainability (Tomar & Thakare, 2011).

ISO 9126 Model is a standard for evaluation of software and is majorly divided into

four parts, quality model, external metrics, internal metrics and quality in use metrics.

It identifies maintainability as a high-level software quality characteristic, among

functionality, reliability, usability, efficiency, and portability. The maintainability sub-

characteristics are defined as analyzability, changeability, stability, testability, and

maintainability compliance as shown in Figure 2.13.

Figure 2.13: ISO-9126 Maintainability Sub-characteristics

Source: ISO, 2001

The ISO 25010 Model (ISO/ IEC CD 25010, 2008) extended the ISO-9126 model.

The maintainability quality has eight sub-characteristics, modularity, reusability,

Maintainability

Analyzability

Changeability

Stability

Testability

Maintainability
Compliance

62

analyzability, changeability, modification, stability, testability and compliance. Figure

2.14 illustrates the maintainability model.

Figure 2.14: ISO-25010 Maintainability Sub-characteristics

Source: ISO/ IEC CD 25010, 2008

The Boehm maintainability model was selected for this study because it’s more

meaningful from the designer and programmer perspective (Al-Badareen, Selamat,

Jabar, Din & Turaev, 2011). The ISO-9126 and ISO-25010 though more recent

software quality models than Boehm model, have a focus on user perspective, and

therefore were not considered in this study. Moreover, several researchers have sought

to understand the maintainability of various software and they focused on one or all of

these aspects of maintainability, that is, understandability, modifiability and testability

(Muketha, 2011; Rizvi & Khan, 2010; Kiewkanya, Jindasawat, & Muenchaisri., 2004;

Maintainability

Modularity

Reusability

Analyzability

Changeability

Compliance

Testability

Stability

Modification

63

Genero et al., 2003). Therefore, the researcher believes that by studying the three sub-

attributes of maintainability fully represents software maintainability.

The measurement of external software quality such as maintainability is not possible

directly, therefore, researchers identify and measure internal attributes such as

complexity i.e inheritance, coupling, cohesion and nesting to predict the external

quality of maintainability (Lu et al.,2016; ; Almugrin, Albattah, & Melton, 2016;

Kumar, Naik, & Rath; 2015; Muketha, 2011; Mishra and Sharma, 2015).

2.9 Gaps Identified in Literature

A detailed literature survey was done after which several gaps were identified. The

gaps are summarized in Table 2.2.

Table 2.2: Identified Gaps

Type of Gap Description of the Gap

Existing

classification

frameworks

Existing classification frameworks do not fully identify

the SCSS complexity attributes because of the unique

unique features found in SCSS when compared to other

software

Existing metrics A number of metrics exists for procedural, object-

oriented, web-based domains and style sheets field.

However, they cannot be be applied to SCSS language

due to its unique structural features.

Existing metrics

tools

There are several existing static metrics tool, however,

they cannot compute SCSS complexity metrics.

64

2.10 Theoretical Framework

This research was based on the following theoretical foundations, the EAM model

(Fenton and Pfleeger, 1997), extended structural complexity classification scheme

(Muketha, 2011), Boehm Model (Boehm et al., 1978), Weyuker’s properties

(Weyuker, 1988) and Kaner framework (Kaner, 2004).

The EAM model was used to guide in the definition of new metrics and it consists of

three steps, entity identification, attributes identification and metrics definition based

on the attributes. This model was extended to include a fourth step referred to as

metrics tool development. This added step was after scrutiny of existing metrics and

it was discovered a lot of metrics may not be implemented by the software industry

because they lack tool support. The inclusion of tool development will enforce metrics

acceptability by the software engineering community.

The extended structural complexity classification scheme (Muketha, 2011) which

categorizes structural complexity into an intra-module attribute, inter-module attribute

and hybrid attribute was further extended to include a new category known as an extra-

module attribute to cater for the structural properties of SCSS language. This

classification aided in the identification of the attributes that affect SCSS structural

complexity, which can then be used to predict the maintainability of SCSS code.

Boehm model (Boehm et al., 1978) was used to identify the maintainability sub-

characteristics of understandability, modifiability, and testability. These

characteristics were used in this research as dependent variables to predict the

maintainability of SCSS software.

65

Weyuker’s axioms were used to determine the mathematical soundness of the

proposed SCSS metrics (Weyuker, 1988). The theoretical validation of the metrics

assures the construct validity of experiments. The nine properties of Weyuker were

redefined to fit in the context of SCSS syntax.

The Kaner’s framework (Kaner, 2004) was adopted and used to gauge the practicality

of the defined metrics. This framework forms part of theoretical validation and

enhances the construct validity of experiments.

2.11 Conceptual Framework

Conceptual framework consists of related concepts or views which can explain or

make one understand the research problem under investigation. The relationship

between the concepts is established, and in a research report, they are referred to as

independent and independent variables. These concepts are identified in literature

through theoretical and empirical findings (Imenda, 2014; Liehr and Smith 1999).

Several studies show that structural complexity metrics such as module complexity,

coupling, nesting, and inheritance are useful in establishing the maintainability of

software. These studies show that when complexity increases the understandability,

modifiability and testability of code reduces (Lu et al.,2016; Kumar, Naik, & Rath;

2015; Muketha, 2011).

In this study the researcher investigated how the structural complexity attributes of

SCSS (independent variables) such as block complexity, nesting, inheritance, and

coupling, which are computed by the proposed metrics can be used to predict the

66

maintainability of SCSS code through its sub-attributes namely; understandability,

modifiability and testability (dependent variables). The moderating variables

identified that could potentially affect the studied relationships between independent

variables and dependent variables were programmer experience and programmer level

of education. These variables and their relationships are shown in Figure 2.15. The

conceptual framework was used to design the controlled laboratory experiment

presented in chapter seven.

Figure 2.15: Conceptual Framework

2.12 Chapter Summary

In this chapter, existing attributes classification systems and software metrics were

identified and examined.

There were very few comprehensive structural complexity classification schemes

found and they cannot be used to identify all the attributes of SCSS code. The literature

Moderating Variables

Independent Variables

-Rule Block Complexity

-Nesting

-Inheritance

-Coupling

Maintainability sub-
attributes:
- Understandability
- Modifiability
- Testability

Dependent Variables

Affect

-Programmer Experience
-Programmer level of education

67

also showed that there are so many metrics defined in the object-oriented domain,

however, there are few metrics proposed in the web-domain and there are even fewer

in stylesheets field. The only existing stylesheets metrics are for CSS which their

mathematical soundness has not been proved and have not been empirically validated.

In addition, there is no metric defined for CSS pre-processors. It was also found that

many metrics don’t show evidence of metric tool support. The findings in the

literature are worrying because the complexity of the code is principally measured

through metrics and for them to be useful, they must be theoretically and empirically

validated. Moreover, for the metrics to be adopted by the software industry there is a

need for the development of a static metrics tool.

This formed the motivation to develop an SCSS structural complexity framework,

define metrics for SCSS language, theoretically and empirically validate the new

metrics and develop a metrics tool.

68

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter describes the methodological approach for the study. It presents the

research philosophy, research design, research process describing the steps taken to

achieve research objectives, research strategy, population, sampling, data collection,

data analysis, and ethical issues.

3.2 Research Philosophy

Research philosophy also referred to as a research paradigm is a set of beliefs that

guides action in research (Creswell, 2014). There are four main research philosophies

widely discussed in the literature: positivism, realism, interpretivism, and pragmatism

(Saunders, Lewis, & Thornhill., 2012). Positivism describes an approach to the study

where in order to understand a phenomenon, it must be measured and evidence

provided (Hammersley,2013). Experiments establish the relationship between

independent and dependent variables (Cohen, Manion, & Morrison, 2011), they

provide formal propositions, test hypothesis and causal inferences are described from

the data collected (Myers & Avison, 2002). Therefore, to achieve the objectives of this

research positivism philosophy was chosen.

3.3 Research Design

A research design consists of the conceptual structure or the blueprint for collecting

and analyzing data (Kothari, 2004). Research design can either be exploratory or

explanatory research. This study implemented explanatory research design which

seeks to test theories. A research design shows the overall direction of the research

69

and is dependent on research objectives, time for research, costs to be involved and

the researcher’s skill (Remenyi, 2005).

3.3.1 Research Process

This research process shows the steps that were followed to achieve the objectives of

this study. In this research four main steps were involved. The first step, addressed

objective one, where the researcher identified all the possible structural complexity

attributes that indicate the complexity of SCSS. The second step addressed the second

objective, where new metrics were defined guided by the EAM model, the metrics

were theoretically validated using Weyuker’s properties and Kaner’s framework to

ensure that they are constructively valid. Thirdly, to address the third objective, a

metrics tool was designed to promote the acceptability of the proposed metrics and to

ease the process of gathering and computing the metric values and lastly to achieve

the fourth objectives metrics were empirically validated to affirm that the metrics are

good predictors of SCSS code maintainability. A summary of these steps was

described in Figure 3.1.

70

Figure 3.1: Research Process

3.3.1.1 Development of an Attribute Classification Framework

This research focused on the development of an SCSS attribute classification

framework with the aim of identifying the structural complexity causing attributes for

SCSS language. The framework identified four categories of attributes namely, intra-

module attribute, inter-module attribute, hybrid attribute, and extra-module attribute.

In the intra-module attribute, two aspects of complexity were identified, size and

control-flow complexity, the inter-module attribute category identified inheritance and

nesting complexity, under hybrid attribute an association complexity was identified

and finally in the extra-module attribute information flow complexity was identified.

Development and validation of an SCSS attribute classification framework

Development and validation of a metrics tool

Experimental studies to analyze the metrics suitability as predictors of the SCSS
maintainability sub-attributes i.e understandability, modifiability and testability

Definition of SCSS Complexity metrics
 a) Identify SCSS

measurement
attributes based on
the proposed
attribute
classification
framework

b) Define SCSS
metrics to
measure the
identified
attributes

c) Validate metrics
with Weyuker’s
properties and
Kaner’s
framework

71

These various types of complexities were used to identify the needed attributes as

shown below:

1. Inter-module attributes

i. Nesting complexity - Nesting factor for SCSS

ii. Inheritance complexity- Selector use inheritance level

2. Hybrid attribute

i. Association complexity – Average block cognitive complexity for SCSS

3. Extra-module attribute

i. Information flow complexity- Coupling level for SCSS

4. Intra-module attribute

This category assisted in identifying several base metrics including:

i. Number of attributes

ii. Number of operators

iii. Number of rule-blocks

iv. Weighted Control directives

The framework classified nesting complexity and inheritance complexity as inter-

module attributes. The nesting complexity attribute targeted the nesting feature of the

SCSS code. This attribute allows the SCSS designers to understand the extent to which

nesting has been implemented. The inheritance complexity attribute targeted the

inheritance of selectors in SCSS. This attribute returns the inheritance level of SCSS

code.

The association complexity attribute was categorized under the hybrid level of SCSS

structural complexity framework. This attribute identified all the complexity causing

72

attributes in a rule block. The motivation was to understand the cognitive complexity

of SCSS blocks.

The information flow complexity attribute was placed under the new derived category

known as extra-module. This attribute helps SCSS designers understand the extent to

which the various SCSS block are connected to each other, that is, how the information

flows from one rule block to another rule block. This attribute does not consider the

inheritance aspect.

The final categories of complexity attributes are the size and control-flow complexity

which are classified as intra-module attributes. The size of SCSS code, is contributed

to by the number of declarations, and number of operators which were implemented

as base metrics to compute Average Block Cognitive Complexity for SCSS, while the

number of rule blocks was implemented as base metrics to compute Nesting factor for

SCSS, Selector use inheritance level and Coupling level for SCSS. The control

directives contribute to the control-flow complexity of SCSS code and was

implemented as base metric in the computation of Average Block Cognitive

Complexity for SCSS.

The validation of the framework was conducted to check whether its relevant and

comprehensive in identification of all possible SCSS structural complexity attributes.

To achieve this an expert opinion survey was carried out (see Appendix 1).

73

3.3.1.2 Definition of SCSS metrics

The definition of SCSS metrics followed the EAM model. These metrics are Average

block cognitive complexity for SCSS (ABCCSCSS), Nesting factor for SCSS (NFSCSS),

Selector use inheritance level (SUIL) and Coupling level for SCSS (CLSCSS).

The ABCCSCSS metric is a hybrid metric and was motivated by the existing Number

of attributes defined per rule block (NADRB) metric. The NFSCSS metric falls under

the inter-module level and considers the nesting depth and nesting breadth of SCSS

code, while SUIL modified the class inheritance factor while at the same time

considering the uniqueness of inheritance in SCSS. Finally, CLSCSS which falls under

extra-module category was defined to represent the unique way of information flow

while excluding inheritance.

3.3.1.3 Theoretical Validation of SCSS metrics

Theoretical validation was performed on the four metrics with Weyuker’s properties

(Weyuker, 1988) with the aim of finding out if they were mathematically sound.

Validation with Kaner framework was also done to check the metrics’ practicality.

Weyuker’s properties are a popular technique for metrics validation. The four defined

SCSS metrics were validated using Weyuker’s properties. Further validation was

carried out using Kaner framework to prove the practicality of each of the metric.

3.3.1.4 Development of a Metrics Tool for SCSS

The development of a static analyzer metrics tool is necessary for the new metrics to

be appreciated by the software industry. Therefore, a static analyzer metrics tool was

74

designed and developed to recognize the SCSS syntax, gather and compute metrics.

The metrics tool was developed using Microsoft Visual C# 2017 programming

language.

The tool was tested to ensure its working properly and validation through experiments

was carried out to confirm the tools effectiveness, efficiency, usability, and

functionality.

3.3.2 Research Strategy

This study employed survey and experimental research strategies. An online expert

opinion survey was used to validate the SCSS complexity attributes classification

framework. Expert opinion technique is used to identify problems, clarify some

technical issues and evaluate products (Whitfield, Ruddock & Bullman, 2008). The

data collected through expert opinion is reliable because the respondent’s technical

knowledge and competence is high (Libakova & Sertakova, 2015). The experimental

design was used because it’s very effective in supporting hypotheses about cause and

effect relationships (Bhattacharjee, 2012). The metrics tool was validated using

between subject design, where the researcher assigned SCSS files randomly to the

subjects. The proposed metrics were validated using between-subject design and an

experiment consisting of both subjective and objective parts was performed. The

between-subject design has the advantage of reducing error variance associated with

individual differences.

To conduct validation of new metrics, several SCSS files were provided to subjects.

75

a) The subjective part of the experiment followed the stipulated procedure

below;

i. The subjects studied each of the file provided for a given time period.

ii. The subjects were required to rate each of the file provided in terms of

understandability, modifiability, and testability using a Likert scale.

b) The objective part of the experiment followed this stipulated procedure;

i. The subjects were given a number of activities to perform based on the

programs;

ii. The first set of activities required subjects to indicate starting time to

ending time in terms of understandability of each of the files provided.

iii. The second set of activities required subjects to indicate starting time

and ending time on the modifiability of the different files.

iv. The third set of activities required subjects to indicate starting time and

ending time on the testability of each of the files provided.

3.4 Population

The target population is the entire set of units for which the study data are to be used

to make inferences and it defines those units for which the findings of the study are to

be generalized (Dempsey, 2003). To validate the SCSS attributes classification

framework the target population selected for this study was industry based SCSS

programmers.

The use of students as subjects in software engineering experiments is a valid

simplification of reality required in laboratory contexts (Falessi et al., 2018).

76

Moreover, according to Salman, Misirli & Juristo (2015), there are no major

differences observed in results for experts and students. Therefore, the target

population for validating metrics tool and carrying out experiments were Murang’a

University of Technology fourth-year students pursuing Bachelor of Science in

Information Technology, Bachelor of Science in Software Engineering and Bachelor

of Business Information Technology. In addition, the third-year students pursuing

Bachelor of Science in Software Engineering students were involved in this study.

Only the students who were trained on SCSS language in the mentioned groups formed

the target population

3.5 Sampling Strategy and Sample Size

Sampling process forms the basis for selecting a sample to estimate the outcome on a

bigger group (Kumar, 2011). According to Kothari (2004), a sample size should be

determined by a researcher and must consider whether the nature of the universe is

homogenous or heterogeneous. In the case of the homogenous universe, small sample

size can serve the purpose, but if there are many class groups to be formed, then a

large sample is a requirement. Secondly, the researcher should consider if the items

are to be intensively and continuously studied, and if so, the sample should be small.

The sampling technique determines the size of the sample, standard of accuracy and

acceptable confidence level.

This research employed snowball sampling as a method to get a sample size for

validation of SCSS structural complexity attributes classification framework.

Snowball technique is used to identify persons who are requested to identify other

people who can potentially form part of the sample. This process continues until the

77

required or reasonable sample size is achieved. The sample size required is subjective

meaning that it’s determined by the researcher (Kumar, 2011). This is a helpful

sampling method in the case where potential subjects are quite hard to find and you

require referrals by other persons. Therefore, this study employed snowballing

sampling method because, the SCSS language experts are few, and few experts were

known to the researcher.

Convenience sampling was used to select subjects for experiments. According to

Kumar (2011) in convenience sampling is based on the researchers ability to access

the subjects. In this research, a number of subjects who had been trained on SCSS

language volunteered themselves to participate in the experiments. A total of 21

subjects were involved in metrics tool validation while 30 subjects were involved for

both subjective and objective experiments for validation of SCSS metrics. These

numbers of subjects is acceptable as found in other similar research (Manso, Cruz-

Lemus, Genero, & Piattini, 2008; Serrano, Calero, Trujillo, Luján-Mora, & Piattini,

2004; Genero, Manso, Visaggio, Canfora, & Piattini, 2007; Muketha et al., 2011;

Bagheri & Gasevic, 2011).

3.6 Pilot Study

The questionnaire for the expert opinion survey was pretested by involving 3 SCSS

experts. In this study only the persons with industrial experience of atleast two years

and had moderate level of knowledge for SCSS were considered as experts. Pretesting

was carried out before the actual study to ensure validity and reliability of the

instrument i.e. to ensure that the items tested what they were intended to and that they

consistently measured the variables under study.

78

The pilot study for both subjective and objective experiment was carried out. The

subjective part of the experiment was meant to determine whether there was any

correlation between the metrics and subjects rating of understandability, modifiability,

and testability. While the objective part of the experiment was carried to determine

whether there was any correlation between the metrics and time to understand, time to

modify and time to test. A small number of 10 students who were trained on SCSS

language was involved in the pilot study. The subjects involved in pilot study were not

involved in the final experimental study.

3.7 Data Collection Instruments

The data collection tool used in this study was a structured questionnaire for the expert

opinion survey. The structured questionnaire was closed properly formatted with

questions adopting a five-point Likert scale with a view to uniformed information (see

Appendix 1). A questionnaire is a form used in survey design that participants in a

study complete without intervention of the researchers collecting the data and return

to the researcher (Wolf, 2009; Creswell, 2014; Babbie & Rubin, 2008).

In the case of validating metrics tool, a questionnaire was provided (see Appendix 7),

and the subjects were required to indicate their observation on manual and automated

computation of metrics. To validate the new metrics a questionnaire was provided, and

subjects were required to fill it based on their observations. The subjects rated the

provided SCSS files using a Likert scale in terms of their understandability,

modifiability, and testability (see Appendix 2). In addition, the subjects recorded time

79

taken on working on the tasks under each section of understandability, modifiability,

and testability.

3.8 Validity and Reliability

Validity and reliability of instruments used determines the credibility of the research

results. Therefore, measures were taken to ensure that the data obtained is trustworthy.

3.8.1 Validity of the Research Instruments

The validity of research is the extent to which scientific research method requirements

are followed. To ensure validity, the questionnaires were first scrutinized by the

supervisors who gave their input and confirmed that the instruments met the criterion.

In addition, to ensure validity, after the subjective part of experiment was conducted

which is dependent on subjects opinion, an objective part of experiment was

performed because its results are more reliable.

3.8.2 Reliability of the Research Instruments

Reliability is defined as the consistency of a test, survey, observation, or other

measuring device and describes the extent to which instruments produce consistent

results in similar conditions over time (Mohajan, 2017). To ensure the reliability of

the instrument developed pretesting was carried out. The pretesting was done using

Cronbach’s alpha which is used as a measure of reliability. Cronbach’s alpha (α) is the

most common internal consistency measure and is normally interpreted as the mean

of all possible split-half coefficients. It is a function of the average inter-correlations

of items, and the number of items in the scale (Mohajan , 2017).

80

Table 3.1 shows the reliability statistics of subjective data questionnaire which had a

Cronbach’s alpha values of 0.976, while objective data questionnaire attained a value

of 0.952. The Cronbach’s alpha values were way above the recommended threshold

value of 0.70 (Nunnally, 2008). The data collection instrument was therefore deemed

to be reliable.

Table 3.1 Metrics Validation Reliability Statistics

Scale Cronbach’s Alpha

Subjective data questionnaire 0.976

Objective data questionnaire 0.952

3.9 Experimental Materials

The experimental materials that were used to facilitate data collection are metrics tool,

and a set of SCSS files. The Metrics tool was used to compute metrics values for SCSS

code. Installation of the tool was done in the computers in a laboratory for the subjects

to use it and consequently answer a set of questions for validation of the tool. The

metrics tool was installed in the researchers laptop to compute metrics values for SCSS

files provided to the subjects. These SCSS files were obtained from existing real

projects (websites) via the following link,

http://dmazinanian.me/publications/SANER'16/scss-websites.7z. These SCSS files

had first been gathered through a google search and put together in zipped folder which

was downloaded in the link shown. This folder had 50 SCSS files and only 30 files

which were randomly selected were used for experimental purposes. The metrics

values collected in the SCSS files were then correlated with subjects rating of

81

understandability, modifiability, and testability and subjects understanding time,

modifying time and testing time.

3.10 Data Analysis

The Statistical Package for Social Sciences (SPSS) version 19 was used for analysis

of expert opinion survey results, metrics tool validation results, correlation of SCSS

metrics with understandability, modifiability and testability and finally for ANOVA

analysis. The R statistical tool version 3.6.0 for Windows was used for principle

component analysis of the SCSS metrics.

3.10.1 Data Analysis Methods for the Expert Opinion Survey

The quantitative data collected was analyzed using descriptive statistics which

included frequency, mean and standard deviation. The validation of SCSS attributes

structural complexity classification complexity was done using descriptive statistics.

3.10.2 Data Analysis Methods for Tool Validation

The developed tool was validated using descriptive statistics, the mean time taken to

compute metric values for each SCSS file both manually and using the tool was

recorded. Then the means and standard deviation on data collected on a Likert scale

of 1- 5 based on suitability, accuracy, and operability of the tool was calculated.

3.10.3 Data Analysis Methods for the Controlled Laboratory Experiment

In this research, descriptive statistics were presented in terms of frequency and

percentages for the number of programming language students have taken, the

software engineering courses pursued, and the level of SCSS knowledge. Correlation

analysis was used to determine association of metrics values (independent variables)

82

and subjects rating of understandability, modifiability, and testability and the mean of

time taken to understand, mean of time taken to modify the programs and mean of

time taken to test the SCSS files (dependent variables). ANOVA tests were also

conducted to establish whether the proposed metrics can actually determine

understandability, modifiability and testability of SCSS code.

Multivariate analysis using principle component analysis (PCA) was used to model

the contribution of SCSS metrics (independent variables) on dependent variables

(understandability, modifiability and testability). When there are several metrics

available in the software industry to measure software, a need arises to find the most

significant metrics for better use and control of metrics (Saini, Sharma, & Singh,

2015). In this research the independent variables namely: Average Block Cognitive

Complexity (ABCCSCSS), Nesting Factor (NFSCSS), Selector Use Inheritance Level

(SUIL) and Coupling Level (CLSCSS) were used to model their influence on the

dependent variables namely: understandability, modifiability, and testability. The

principle component is represented as follows:

Y1 = Φ¹¹X¹ + Φ²¹X² + Φ³¹X³ + +Φn¹Xn

Where:

 Y is the first principal component.

 Φ¹, Φ²… Φn¹ are the loading vectors of principal component. In the first

principle component the loadings or weights are constrained to a sum of square

equals to 1.

 X¹…Xn are normalized predictors.

83

Y= Φ11*ABCCSCSS + Φ21*NFSCSS + Φ31
* SUIL+ Φ41

* *CLSCSS

The Second principal component is also a linear combination of predictors which

captures the remaining variance in the data set and is uncorrelated with the first

component. The subsequent principle components capture the remaining variation

without being correlated with the previous components.

There exists several rule of thumbs that determine the suitable cutoff. One of the most

popular rule of thumb that has been agreed on by several researchers is that we can

retain factors that account to about 70-80% of the variance (Rea & Rea, 2016; Rietveld

& Van Hout, 2011). Therefore, this research selected components that cumulatively

accounted for 80% of the model variation.

3.11 Ethical Issues

To ensure ethical principles in this research are followed, the researcher sought for an

introductory letter from Masinde Muliro University of Science and Technology, Board

of Postgraduate Studies (see Appendix 8), then consent from National Council of

Science and Technology (NACOSTI) was received (see Appendix 10). A letter of

permission was obtained from Murang’a University of Technology where the data

collection took place (see Appendix 11). The researcher trained the subjects on SCSS

language, who later participated in experiments as subjects. The participation in

training and involvement in experiments was conducted on a voluntary basis. The

researcher assured the subjects that the information obtained from them was to be

treated as confidential.

84

3.12 Chapter Summary

This chapter described the research process, philosophy, design, strategy, sampling

technique, research instruments, data analysis techniques, and research ethics. The

research process described a four-step process that was followed to achieve the

objectives of this study, research philosophy for this study was positivist in nature, the

research design was explanatory, while research strategy used was surveys and

experiments. The sampling technique that was used for objective one was the snowball

method and for objective three and four, convenience sampling method was employed.

The research instrument used for attributes classification framework, metrics tool

validation and SCSS metrics validation were questionnaires (see Appendix 1,

Appendix 2 and Appendix 7) which were found to be reliable and valid. In addition,

the metrics tool and a set of SCSS files were identified as the experimental materials.

The analysis of data was achieved through descriptive and inferential statistics.

Finally, the research complied with all necessary research ethics and all relevant

authorities and institutions were notified of the research prior to conducting expert

opinion survey and experimental work.

85

CHAPTER FOUR

DEVELOPMENT OF STRUCTURAL COMPLEXITY ATTRIBUTE
CLASSIFICATION FRAMEWORK FOR SASSY CASCADING STYLE

SHEETS (SCACF-SCSS)

4.1 Introduction

This chapter presents the structural complexity attributes classification framework for

SCSS, to aid in the determination of SCSS structural complexity measurement

attributes. The requirements for the development of the framework, architecture of the

framework, application of the framework and expert opinion validation results have

been presented.

4.2 Requirements of the SCACF-SCSS Framework

The requirements of the framework are as follows:

 The framework should identify all the structural complexity causing attributes

 The framework should categorize all the identified attributes

 The users should be able to identify SCSS features and use the framework to

place it in the right category.

4.3 Architecture of the Proposed Framework

A detailed explanation on the various branches of SCSS structural complexity

framework, which are intra-module, inter-module, hybrid and the extra-module

attribute is provided. The highlighted areas in Figure 4.7 indicate the extension to

Muketha’s Framework.

86

4.3.1 Intra-Module Attribute

The intra-module attributes focus on attributes that can be derived from a rule-block;

these attributes don’t interact with other rule blocks. A rule- block is equivalent to a

module In SCSS two categories of attributes were identified, size and control-flow

complexity.

When the size of a code increase, its complexity increases (Muketha et al., 2010b;

Adewumi et al., 2012; Misra and Cafer, 2012; Khan et al., 2016). In addition, use of

operators increases the size of code thus complexity increases (Misra & Cafer, 2012)

The size of SCSS is contributed to by the number of declarations, number of operators

and number of rule blocks. SCSS declarations refer to all the statements terminated

with a semicolon, the operators are the mathematical symbols such as plus, minus,

division, multiplication and equal sign, while the rule blocks refer to a block of code

with an opening brace “{“ and a closing brace “}”.

In SCSS every statement terminating with a semicolon is counted as a declaration or

attribute. Rule-block a has 4 declarations and rule-block b has 2 declarations, meaning

that the total number of declarations or attributes as shown in Figure 4.1 are 6. On the

other hand, the total number of rule-blocks in the figure are 2, namely rule-block a and

b.

87

Figure 4.1: SCSS Size

Control flow of any software artifact increases the complexity of the code. The

different control-flows are assigned weights, for example, for statement is assigned

higher weight than if statement, meaning that a for statement contributes to a higher

cognitive complexity as compared to if statement (McCABE, 1976; Cardoso, 2006;

Muketha et al., 2010b; Misra & Cafer, 2012). SCSS code implements control

directives such as @for, @if, and @each, meaning that the control flow complexity of

SCSS code should be determined.

An illustration of the control flow complexity is shown in Figure 4.2, for SCSS code

and it has 2 if directives and 1 for directive.

a{

 -------------;

-------------;

-------------;

-------------;

}

b{

 -------------;

-------------;

}

88

a)Branch b)Loop

Figure 4.2: Control-flows in SCSS

4.3.2 Inter-Module Attribute

The Inter-module attribute of SCSS focuses on the interaction of the various rule-

blocks. In the proposed framework, inter-module has been divided into inheritance

complexity and nesting complexity categories.

Inheritance feature in software’s has been widely studied and proved to contribute to

the complexity of software products (Chawla & Nath, 2013; Misra et al., 2011).

Inheritance complexity in SCSS is evidenced when the styles or values are shared by

using extend directive and is known as selector inheritance. Figure 4.3 illustrates

inheritance complexity, where the b selector inherits from a selector by use of @extend

a statement.

if {

-----------;

 if {

 -----------;

 -----------;

 }

 }

for $x from 1 through n {

 a{

 -----------;

 }

{

 -----------;

}

 }

89

Figure 4.3: Inheritance in SCSS

Nesting feature contributes to software complexity (Li, 1987; Chhillar & Bhasin,

2011; Frain, 2013). SCSS language implements nesting of rules. where the rules are

placed inside other rules. Therefore, nesting complexity is presented in the framework.

SCSS permits nesting of rules, for instance, In Figure 4.4 the b selector is placed inside

a selector and c is placed inside b selector.

Figure 4.4: Nesting in SCSS

a{
 ---------------;
 ---------------;
 ---------------;
 }

b{

@extend a;

}

a {

 ----------------;

 ----------------;

 ----------------;

 b {

----------------;

 ----------------;

 c {

 ----------------;

 ----------------;

}

 }

}

90

4.3.3 Hybrid Attribute

The hybrid attribute combines features of at least two categories of structural

complexity, for example, intra-module and inter-module (Muketha, 2011). In SCSS

the hybrid attribute has one category falling under it referred to as association

complexity. This kind of complexity is brought about by the different features which

are found in different categories of SCSS structural complexity being implemented in

a single rule block. For example, the cognitive block complexity is as a result of mixin

calls which are found in extra-module attribute category, extend directives which are

in the inter-module category, number of declarations, number of operators, number of

rule blocks and control directives which fall under intra-module attribute category.

The convergence of the intra-module, inter-module, and extra-module attributes led to

the hybrid attribute category.

SCSS association of different attributes category is illustrated in Figure 4.5. The a rule

block makes use of global variables and mixins (include directive) which fall in extra-

module category attribute. An extend directive is also used in rule block a and falls

under the inter-module category. This implies there is a convergence of extra-module

and inter-module category.

Figure 4.5: Association in SCSS

 Variable 1;

 Mixin 1;

a{

Use of global variables

Use of Include directive

Use of extend directive

}

91

4.3.4 Extra-Module Attribute

A newly added attribute called Extra-module focuses on the interaction of rule-blocks

via an external module, meaning that the rule-blocks are coupled to each other

indirectly. In SCSS the Extra-module attribute focuses on rule-blocks interacting with

mixins and/or global variables. These mixins and global variables are defined outside

of SCSS rule blocks. When there are several rule blocks sharing the same mixin and

global variable, then the rule blocks are deemed to be coupled with each other. This

implies that a change in the values of a mixin and a variable will affect all the rule

blocks that are sharing the mixin and global variable.

SCSS allows information to flow from one rule block to another as illustrated in Figure

4.6. The information flow occurs when rule blocks share styles and values from

variables and mixins. The rule blocks a and b are sharing from the same set of variables

and mixins.

Figure 4.6: Information Flow in SCSS

Variables and Mixins

a {

--------------;

--------------;

--------------;

}

b {

--------------;

--------------;

--------------;

}

92

Figure 4.7: Structural Complexity Attribute Classification Framework for SCSS (SCACF-SCSS)

Control-flow
complexity

No. of
declarations
or attributes

No. of
operators

Control
directives

Size

Examples
use of @if,
@for, etc.

Examples
selector {
 ;
}

Examples
plus, minus,
multiply,
etc.

Examples
padding,
font-size,
color, etc.

Inheritance
Complexity

Nesting
Complexity

Selector
Inheritance

Nesting of
Rules

Examples
use of
@extend

Examples
.a{
 .b{
 .c{
 }
 .d{
 }
 }
}

Implementing
attributes, mixins,
function, variables,
inheritance. block

Association
Complexity

Examples
selector {
font-size: value;
padding: value;
@extend
selector_name;

Information flow
Complexity

Coupling via
Mixins and
global variables

Examples
Use of
@include and
: $variable
name

SCSS Structural
Complexity

Extra-Module Hybrid Inter-Module Intra-Module

No. of
rule-
blocks

93

4.4 Application of the Framework

The aim of this section is to provide an interpretation of the proposed framework through

real-life scenarios.

4.4.1 Intra-Module Attribute

The intra-module attribute is the first category of the SCSS structural complexity, and it

considers complexity in terms of size and control flow complexity. The size of the SCSS

file can be determined based on the number of attributes, number of operators or number

of rule blocks.

To determine the size of the SCSS code in Figure 4.8 in terms of number of declarations

count all the statements ending with a semicolon (;), to count size from the perspective of

rule blocks, count all the rule blocks, where each rule block is recognized by an opening

brace “{“ and a closing brace “}” and finally to count size in terms of operators, count all

the operators i.e plus “+”, minus “-“, multiplication “*”, division “/” and equal “=” signs.

The returned results are: number of declarations is 5, i.e. (font-size, color, display, border-

bottom and another font-size declaration), the number of operators is only 1, i.e the Plus

symbol (+), and the number of rule blocks is equal to 2 i.e (p{ } and li{ }).

94

Figure 4.8: Size Complexity Scenario

The control flow complexity of SCSS code is determined by the control directives

implemented in the code. In the SCSS code provided in Figure 4.9, the @if directive has

been implemented, meaning that the measurement for the control flow complexity can be

determined.

Figure 4.9: Control Flow Complexity Scenario

$colortest: 1;

p {

font-size: 5px + (6px * 2);

color:#ff0000;

@if $colortest >1 {

text-color: blue;

 @if $colortest == 1 {

 text-color: white; } }

}

p{

 font-size: 5px;

color:#ff0000;

 }

 li {

 display: block;

 border-bottom: 1px solid;

 font-size: 1.6rem + 2;

}

95

4.4.2 Inter-Module Attribute

The inter-module attribute category describes the inheritance and nesting complexity.

Inheritance complexity in SCSS is introduced by the use of @extend directive. In Figure

4.10, the extend directive has been used in the h2 element selector to inherit p element

selector.

Figure 4.10: Inheritance Complexity Scenario

One of the unique feature of SCSS is nesting, where a rule block is placed inside another

rule block. For instance, the ul selector is placed inside js-offcanvas class selector and li

is place inside ul selector as shown in Figure 4.11.

p{
 font-size: 5px;
 color:#ff0000;
 }

h2{

 @extend p;
 font-color:$color1;
}

96

Figure 4.11 Nesting complexity Scenario

4.4.3 Hybrid Attribute

In the hybrid attribute category, a form of complexity known as association complexity is

identified. In the SCSS code provided in Figure 4.12. The h1 rule block makes use of a

global variable. $color1 and include statement to make use of mixin block Raleway-

SemiBold (they fall under extra-module attribute). An extend statement is also used in h1

rule block and it falls under the inter-module category.

.

.js-offcanvas {

 color: $color1;

 background: $color2;

 ul {

 padding-left: 0;

 margin-bottom: 0;

 li {

 display: block;

 border-bottom: 1px solid;

 font-size: 1.6rem;

}

 }

}

97

Figure 4.12: Association complexity Scenario

4.4.4 Extra-Module Attribute

The final category known as the extra-module category is illustrated. The information

flow complexity which is a result of coupling is demonstrated in the SCSS code provided

in Figure 4.13. The SCSS code has one defined variable $color1 and one defined mixin

Raleway-Medium. The variable and mixin are shared by p and span rule blocks. This

sharing of the same variables and mixin brings about coupling.

. $color1: #04f5f7;

@mixin Raleway-SemiBold {

 font-family: 'Raleway-SemiBold';

}

p{

 font-size: 5px;

color:#ff0000;

 }

h1 {

font-color:$color1;

@include Raleway-SemiBold;

@extend p;

}

98

Figure 4.13: Information Flow Complexity Scenario

4.5 Expert Opinion Validation Survey

This section presents the evaluation results obtained from an expert opinion survey. An

expert opinion survey technique is used to identify problems, give clarity to issues under

study and evaluate products (Whitfield, 2008).

$color1: #04f5f7;

@mixin Raleway-Medium {

 font-family: 'Raleway-Medium’;

}

p {

font-size: 5px + (6px * 2);

font-color: $color1;

@include Raleway-Medium;

}

span{

 width: 60px;

 height: 45px;

 color: $color1;

 position: absolute;

 @include Raleway-Medium;

 }

99

4.5.1 Goal of the Study

The goal of the study was to evaluate the relevance and comprehensiveness of the

framework from the point of view of SCSS experts.

4.5.2 Context Definition

SCSS experts who have an online presence were invited to participate in the survey. The

SurveyMonkey platform was used to host the study questionnaires. A total of 13 experts

participated in the survey and were identified through snowball sampling technique. The

researcher stopped at 13 experts and was considered as sufficient because SCSS experts

are hard to find. Therefore, the researcher believed that this forms a good saturation point

(Naderifar, Goli & Ghaljaie, 2017; Kumar, 2011).

4.5.3 Survey Operation

The respondents were provided with the SCSS attributes classification framework, a

write-up explaining how to interpret the framework and a survey questionnaire.

4.5.4 Reliability of the Research Instrument

Reliability of the questionnaire was conducted on the relevance and comprehensiveness

of the framework to ensure consistent results are achievable with different persons using

the same instrument. As shown in Table 4.1, relevance achieved a Cronbach alpha of

0.894 while comprehensiveness achieved a Cronbach alpha of 0.854. Therefore, the

instrument can be considered reliable since its reliability values exceeded the prescribed

threshold of 0.7 (Nunnally, 2008).

100

Table 4.1. Framework Reliability Statistics

Scale Cronbach’s Alpha

Relevance of the Framework 0.894

Comprehensiveness of the
Framework

0.854

4.5.5 Results

Feedback from the respondents was received and thereafter checked for completeness.

All questionnaires were found to be completed satisfactorily, and therefore were accepted

for data analysis.

4.5.5.1 Respondents Demographics

The researchers first sought to establish the characteristics of the respondents, and so

characteristics such as the level of education, years of industrial experience, level of

knowledge for software engineering processes and level of knowledge of SCSS was

considered from all respondents.

4.5.5.2 Level of Education for Respondents

Respondents were asked to state their education background. Results indicate that 11

(84.6%) of the respondents are bachelor’s degree holders while the remaining 2 (15.4%)

respondents have master’s degree qualifications. These results imply that all the SCSS

experts involved in this study have attained at least the bachelor’s degree, implying that

they have the capability to study the framework and respond accordingly. These findings

are shown in Table 4.2.

101

Table 4.2: Level of Education for Respondents

4.5.5.3 Years of Industrial Experience

This research sought to find the number of years the respondents have worked in the

industry. It was observed that 2 of the respondents had an experience of between 2-3

amounting to 15.4% while the rest of the respondents had 4 years of experience or higher.

This implies that the respondents in this study are highly experienced in the software

engineering field and can be considered as experts.

Table 4.3. Years of Industrial Experience

4.5.5.4 Level of Knowledge in Software Engineering Processes

An analysis of the respondent’s level of knowledge was also conducted as indicated in

Table 4.4. Findings indicate that 12 respondents representing 92.3% had a high level of

knowledge while 1 respondent representing 7.7% had a very high knowledge of software

Level of Education Frequency Percent (%)

Bachelors 11 84.6

Masters 2 15.4

Years of Industrial Experience Frequency Percent (%)

2-3 Years 2 15.4

4-5 Years 6 46.2

6-7 Years 2 15.4

Above 7 Years 3 23.1

102

engineering processes. These findings imply that all participants can be trusted for

analysis and opinions on the state of artifacts that are intended for use in the software

engineering process.

Table 4.4: Level of Knowledge for Software Engineering Processes

Level of Knowledge for
Software Engineering

Processes

Frequency Percent (%)

High 12 92.3

Very High 1 7.7

4.5.5.5 Level of Knowledge for SCSS

Since the proposed framework focuses only on the structural complexity of code

developed using the SCSS language, all respondents are expected to be knowledgeable

SCSS programmers. Findings indicate that 8 respondents had a high level of knowledge

and this corresponding to 61.5%, 3 respondents corresponding to 23.1% had a moderate

level of knowledge, and 2 respondents corresponding to 15.4% had a very High level of

knowledge. This implies that the data collected from all the respondents can be deemed

as valid. The respondents result with a moderate level of knowledge are also acceptable

because they can be regarded as having a considerable level of SCSS knowledge in

addition to their software engineering knowledge, which is acceptable for the purposes of

this study. These findings are shown in Table 4.5.

103

Table 4.5: Level of Knowledge for SCSS

4.5.5.6 Relevance of the Framework

The researchers sought to know if the developed framework is relevant for the industry

experts to identify the attributes that lead to SCSS complexity. Table 4.6. shows computed

means from a Likert scale of 1 to 5 – Don’t Agree, Slightly Agree, Agree, Strongly Agree

and Very Strongly Agree. Findings show that the respondents agree that there is a great

need for a classification framework with a mean of 3.46, which falls between agree and

very strongly agree (i.e. between 3 and 4 in the Likert scale). The respondents also agree

that the framework is useful for the process of identification of SCSS attributes as

indicated by the mean of 3.62, these findings are shown in Table 4.6. Standard deviation

was interpreted as low if the value is less than or equal to 1, while values greater than 1

are high. When the value is low it implies that the respondents didn’t differ much in their

opinion and high values indicate respondents considerably differed in their opinion. The

standard deviation values shown in Table 4.6 indicates that the respondents didn’t vary

considerably.

Level of knowledge for
SCSS

Frequency Percent (%)

Moderate 3 23.1

High 8 61.5

Very High 2 15.4

104

Table 4.6: Relevance of the Framework

 Need for the
Framework

Usefulness of the
Framework

Mean 3.46 3.62

Standard Deviation 0.776 0.870

4.5.5.7 Comprehensiveness of the Framework

In a Likert scale, respondents were asked of their opinions on whether the proposed

framework is comprehensive or not. Findings showed that global variables and

declarations least contribute to SCSS complexity with a mean of 2.54 and 2.85

respectively. These values fall within the range of slightly agree and agree (i.e. between

2 and 3 in the Likert scale). This implies that SCSS programmers somehow agree that

the two features cause complexity in SCSS and should not be overlooked. Findings also

show that all other remaining features fall in the range of agree and strongly agree (i.e.

between 3 and 4 in the Likert scale). These mean values imply that the respondents agree

that the concerned features contribute to SCSS complexity. The standard deviation values

are high, but this is a result of the small sample size. Sullivan (2015) argued that the

standard deviation of the means decreases as the sample size increases. Therefore, the

high standard deviation can be explained and doesn’t make the results unreliable. These

results are shown in Table 4.7.

105

Table 4.7: Comprehensiveness of the Framework

SCSS features Mean Standard Deviation

Global Variables 2.54 1.127

Declaration 2.85 1.214

Operator 3.00 1.000

Control Directives 3.31 1.032

Function 3.54 1.050

Mixins 3.38 1.193

Extends 3.15 1.519

Nesting 3.46 1.561

Finally, respondents were asked whether they agree that the SCSS features identified in

Table 4.7. wholly represents all the possible features that need to be considered when

analyzing the complexity of code written in SCSS language. Findings show that 12

respondents agree corresponding to 92.3% while 1 respondent corresponding to 7.7%

disagree. The findings, shown in Table 4.8, imply that the proposed framework is

adequate as an indicator of features that cause structural complexity in SCSS code.

Table 4.8: Adequacy of SCSS Complexity Features

Adequate Features Frequency Percent (%)

Yes 12 92.3

No 1 7.7

4.6 Chapter Summary

In this chapter, a new SCSS structural complexity attribute classification framework was

proposed. The framework extended Muketha’s classification framework as it was found

106

to be the most closely related framework to this study. A high-level category of attribute

referred to as extra-module attribute was added and more lower levels were identified and

added in all high level categories of SCSS attributes.

The proposed framework was validated through an expert’s opinion survey. The experts

agreed overwhelmingly that the framework is relevant and comprehensive. This means

that the framework can be relied on as a formal approach of identifying all SCSS structural

complexity attributes that can then be used as the basis of defining SCSS metrics.

107

CHAPTER FIVE

STRUCTURAL COMPLEXITY METRICS FOR SASSY CASCADING STYLE
SHEETS

5.1 Introduction

This chapter proposes a set of metrics to measure SCSS code complexity. The chapter

was intended to solve the second research objective as described in the first chapter, that

is, defining a suite of theoretically sound metrics for measuring the structural properties

of SCSS.

5.2 Determination of Attributes to be Measured

SCSS structural complexity attributes framework was employed to identify measurable

attributes for SCSS language. Four types of attributes were identified including, intra-and

inter-module, hybrid, and extra-module attribute. The intra-module attribute identified

base metrics which were then used to derive other metrics found in other types of

attributes. For example number of rule blocks was implemented in all the derived metrics

of Nesting Factor for SCSS, Selector use Inheritance Level, Average Block Cognitive

complexity for SCSS and Coupling Level for SCSS.

The identified measurement attributes were classified as follows:

a) Inter-module attribute

 Nesting Factor for SCSS (NFSCSS)

 Selector use Inheritance Level (SUIL)

b) Hybrid attributes

 Average Block Cognitive complexity for SCSS (ABCCSCSS)

108

c) Extra-module attributes

 Coupling Level for SCSS (CLSCSS)

5.3 Metrics Definition

The proposed metrics are derived from existing CSS metrics and other software metrics

through the process of modification. This study followed the Entity-Attribute-Metric

model in the definition of metrics for SCSS (Fenton and Pfleeger, 1997), where the entity

is SCSS code, attributes identified to be measured from SCSS code were cognitive

complexity of SCSS blocks, nesting level for SCSS code, selector inheritance level for

SCSS code and coupling level of SCSS code.

The EAM model was extended to EAMT meaning Entity Attribute Metrics Tool model,

this was after review of literature and many researchers over the years agree that metrics

tool development is a necessary step for metrics to be acceptable by the software industry

(Littlefair, 2001; Spinellis, 2005; Linos et. al, 2007; Lincke et al., 2008; Muketha, 2011;

Adewumi et al, 2015; Misra et al.,2018). Figure 5.1 illustrates the newly extended EAMT

model.

The introduction of the new EAMT model will enforce the development of metrics tool

and mainstream tooling as a requirement in the process of definition of metrics.

109

Figure 5.1: EAMT Model

The SCSS blocks are the fundamental building units for SCSS code. The formal definition

of a SCSS block SCSSB is SCSSB = <A, D>

An SCSS block (SCSSB) is a 2-tuple <A, D>, where A is the set of attributes, and D is

the set of directives such as mixin directives, control directive, function directive, and

media directives.

A suite of four metrics were defined namely; ABCCSCSS, NFSCSS, SUIL and NFSCSS. To

prove the intuitionality of the metrics, metric values were computed using code snippets

and three real world projects. The code snippets were written by the researcher while the

code for projects was obtained by using google advanced search feature and files with

.scss extension were identified and downloaded from www.happy-shala.com,

www.greatjewishmusic.com and www.mce.ie.

Software
Entity

Identify
software

entity to be
measured e.g.

SCSS code

Software
Attribute

Identify
software

attributes e.g.
inheritance

Software
Metrics

Define
inheritance
metric e.g.
selector use
inheritance

level (SUIL)

Software
Metrics Tool

Develop an
automated

tool for SCSS
Metrics. e.g

SCMT-SCSS

110

5.3.1 Average Block Cognitive Complexity for SCSS (ABCCSCSS)

The metric ABCCSCSS extends Number of Attributes Defined per Rule Block (NADRB)

and is used to compute the complexity of a rule block in regular CSS. NADRB metric

calculates complexity by determining the average number of attributes defined in the rule

blocks. The proposed ABCCSCSS metric will consider other factors beyond the number of

attributes, such as @rule and directives, operators, function calls, and variables.

Researchers have in the past identified several factors that they claim contribute to

complexity. Those factors that relate to SCSS were considered in this research and they

are as discussed in the subsequent paragraphs.

The number of regular attributes (NRA) was considered in the stylesheets field, as a factor

that contributes to CSS complexity. According to Adewumi, et al., (2012), the more the

number of attributes in a rule block the more complex the rule block becomes.

The number of operators (NO) has been recognized by several researchers as a factor that

contributes to the complexity of code. For example, Misra & Cafer (2012), in their

definition of JavaScript Cognitive Complexity Metric (JCCM) included the number of

operators in this metric. In addition; Halstead (1977) in the development of Halstead

science theory, posited that the complexity of software is due to operators and operands.

The consideration of control flows in terms of their contribution to the complexity of code

cannot be ignored, this is supported by several studies (Muketha, et al., 2010; Misra and

111

Cafer, 2012; McCABE, 1976). In rule blocks, the use of control directives is assigned

weights as shown in Table 5.1. The weights allocates a value of 1.3 for a branch and 1.5

for a loop (Törn et al.,1999). In SCSS the control flows have been categorized into two,

that is, branch statements and loop statements. The number of branch statements (NB)

and the number of looping statements (NL) are counted, while at the same time

considering their weights.

The consideration of function calls as an aspect that contributes to code complexity is

supported by several studies (Misra and Cafer, 2012; Shao and Wang, 2003). SCSS allows

the definition of functions and in effect, function calls are introduced. This research

introduced number of function calls (NFC) metric as an SCSS complexity contributing

factor. Function calls are similar to branches and therefore a weight of 1.3 was allocated

to them. This conformarms with the way Misra and Cafer (2012) assigned selection or

branch statements and function calls with the same weight.

Mixins are blocks of codes that are defined and can be included in various parts of SCSS

code by use of the @include statement. The number of mixin calls (NMC), just like

function calls increases complexity because the control of the program is dependent on

the mixin calls. These mixins are called from different places in the code. The @include

directive rule is weighted at 1.3 same as the function calls.

The number of extend directives (NE) are considered as one of the contributors to rule-

block complexity. This rule directive inherits a selector, meaning that code complexity

112

increases when it’s implemented. @extend directive rule is weighted at 1.3, just like

function calls because some code in a different place is being referred.

Table 5.1: Weights for Basic Control Structures

Type of directive Statements Cognitive weight

Branch @if , @else if , if ()
and function calls,mixin
calls, use of extends

 1.3

Loop @for, @while and
@each

 1.5

To calculate ABCCSCSS, the complexity of each SCSS block is computed herein referred

to as Block Cognitive Complexity (BCC). The sum of complexity of all SCSS blocks is

computed and is represented by the Total Block Cognitive Complexity metric (TBCC).

TBCC is then divided by the number of all SCSS blocks (NOBL). NOBL is a simple size

metric that counts all the blocks used in SCSS.

TBCC=∑ 𝑩𝑪𝑪𝒊
𝒏
𝒊 𝟏 ………………….(i)

Where n is the total number of SCSS blocks and

BCC = NRA + NO + (NB*1.3) + (NL * 1.5) + (NFC * 1.3) + (NMC * 1.3) +

(NE *1.3)

ABCCSCSS = TBCC / NOBL …………..(ii)

The demonstration of the computation of ABCCSCSS metric is done using the example in

Figure 5.2. The number of regular attributes is 9, number of operators is 1, number of

branch statements is 0, number of loop statements is 1,number of function calls is 0,

113

number of mixin calls is 1 and number of extend directives is 0. The total number of SCSS

blocks is 4. Therefore;

TBCC =9+1+0+1*1.5+0+1*1.3+0

=12.8

NOBL=4

ABCCSCSS = 12.8 / 4

 =3.2

Figure 5.2: ABCCSCSS Metric Example

$color1: #f4f4f4;

$color2: #000;

@mixin fonts {

 font-color: #ff21a3;

 font-family: sans-serif;

 font-size: 12px; }

p {

@include fonts;

font-weight: bold; }

span{

 width: 60px;

 height: 45px;

 position: absolute; }

@for $i from 1 through 4 {

.p#{$i} { padding-left : $i * 10px; }

}

114

The ABCCSCSS metric values obtained from the websites are 2.58 for happy-shala.com,

2.17 for greatjewishmusic.com and 2.9 for mce.ie.

5.3.2 Nesting Factor for SCSS (NFSCSS)

Nesting refers to the use of constructs such as if, while, for and each are found within

other constructs and it increases program complexity (Li, 1987). SCSS allows nesting of

CSS rules inside each other instead of repeating selectors in a separate declaration

(Cederholm, 2013). According to Frain (2013), the nesting of rules should be kept as

shallow as possible otherwise, it reduces the maintainability of the code. This means the

higher the nesting level the more complex a program.

Regular CSS doesn’t have nesting feature, therefore nesting concept in SCSS is borrowed

from structured programming languages and object-oriented programming (OOP)

languages. However, nesting in SCSS has an extra component as compared to other

languages. In the regular programming languages when defining metrics only nesting

depth is normally considered, while in SCSS we should consider nesting depth and nesting

breadth. Figure 5.3 demonstrates nesting depth where we have countries-list rule block

inside header rule block and li rule block inside countries-list rule block.

115

Figure 5.3: Nesting Depth

Nesting breadth occurs when there are independent rule blocks inside a single rule block.

Meaning that we consider the rule blocks which are independent of each other but

dependent on a single rule block also known as parent block. For example, in Figure 5.4

the countries-list rule block and the li rule block are two independent rule blocks inside

header rule block. The two blocks countries-list and li rule blocks have no any

relationship with each other, only that they share the features of the header rule block.

However, the nesting breadth is not considered with the control directives of SCSS, since

all the nested blocks have a relationship with each other.

header{

width: 90%;

position: absolute;

height: 97px;

.countries-list{

position: absolute;

top: 100px;

li{

display: block;

margin-bottom: 5px;

}

}

}

116

Figure 5.4: Nesting Breadth

In the computation of the nesting depth, a metric value of 1 is assigned to the first level,

a value of 2 to the second level, a value of 3 to the third level and so on (Chhilar and

Bhasin, 2011). A nesting depth of 3 means we have three levels of nesting, meaning the

depth cognitive complexity (DCC) value is 3+2+1=6 and if it’s a nesting depth of 5 then

DCC value will be 5+4+3+2+1=15. The calculation of nesting breadth simply counts the

number of SCSS blocks inside a single SCSS block. Therefore, if there are two

independent rule blocks in a single block, then the complexity is assigned as 2.

The proposed metric NFSCSS computes the nesting level by considering the total depth

nesting level (TDNL) and the total breadth nesting level (TBNL) of all SCSS blocks.

header{

width: 90%;

position: absolute;

height: 97px;

.countries-list{

position: absolute;

top: 100px;

}

li{

display: block;

margin-bottom: 5px;

}

}

117

TDNL=∑ 𝑫𝑪𝑪𝒌𝒏
𝒌 𝟏 ……….(iii)

Where n = number of SCSS blocks

DCC =∑ (𝑚 − 𝑖)

Where m is the nesting depth

TBNL = number of independent blocks in different single rule blocks ………..(iv)

NFSCSS = TDNL * TBNL …….(v)

The demonstration of the computation of NFSCSS metric was done using the example in

Figure 5.5. The SCSS code provided has a header rule block with countries-list rule block

placed inside it and the li rule block is placed inside countries-list. The p rule block was

not considered in calculating nesting depth because it’s in the same level as countries-list

rule block. This means that the nesting depth is 2. Therefore, TDNL =2+1=3.

The SCSS code provided in Figure 5.5 has p rule block which is independent of countries-

list rule block and li rule block, but is dependent on the header rule block, because its

placed inside header rule block. The countries-list rule block is dependent on header rule

block and is in the same level as p rule block. Therefore, the countries-list rule block and

the p rule block form part of nesting breadth, meaning that TBNL = 2.

The derived metric NFSCSS is computed

NFSCSS = 2 * 2 = 4

118

Figure 5.5: NFSCSS Metric Example

The metric values computed for NFSCSS metric obtained a value of 6960 for happy-

shala.com, 8019 for greatjewishmusic.com and 3034 for mce.ie websites.

5.3.3 Selector Use Inheritance Level (SUIL)

This metric measure complexity brought about by inheriting selectors in SCSS. Though

there is form of inheritance in the regular CSS, it doesn’t allow inheritance of selectors.

header{

width: 90%;

position: absolute;

height: 97px;

.countries-list{

position: absolute;

top: 100px;

li{

display: block;

margin-bottom: 5px;

}

}

p {

@include fonts;

font-weight: bold;

}

}

119

The inheritance concept in SCSS is borrowed from the object-oriented software.

Therefore, the class inheritance factor (CIF) metric (Vinobha, Velan & Babu, 2014) in

OOP domain motivated the definition of SUIL metric for SCSS.

The proposed SUIL modifies the CIF metric and is calculated by taking the sum of all

inherited selectors which is divided by the total number of all selectors.

SUIL = ∑ 𝐍𝐒𝐈𝒏
𝒊 𝟏 / ∑ 𝑵𝑺𝒏

𝒊 𝟏 …………….(vi)

Where NSI is the Number of all selector inheritance instances and NS is the

Number of all selectors in the program and n is the number of SCSS blocks

The demonstration of the computation of SUIL metric was done using the example in

Figure 5.6. The number of selector inheritance instances is the number of @extend

directives in the rule blocks while the number of selectors is the total number of SCSS

blocks excluding the mixin blocks and control-flow blocks, media and function blocks.

Figure 5.6: SUIL Metric Example

$color1

p {

font-type:italic;

text-transform: uppercase; }

h1 {

@extend p; }

h2{

@extend p;

font-color: $color1; }

120

As shown in Figure 5.6, the selector inheritances are in h1 and h2 rule blocks and are 2 in

number. The total number of selectors is 3. Therefore, SUIL=2 / 3 = 0.67.

The metric values obtained for SUIL metric from the websites were 0 for happy-

shala.com, 0 for greatjewishmusic.com and 0.03 for mce.ie.

5.3.4 Coupling Level for SCSS (CLSCSS) metric

Coupling is the measure of the strength of association established by a connection from

one class to another (Stevens et al., 1974; Chidamber and Kemerer, 1994). In OOP,

coupling occurs when methods of one class use methods or variables of another class. In

SCSS, coupling occurs when rule blocks share mixins and variables. The more the rule

blocks sharing the same mixin or variable, the higher the coupling level.

A need for a new metric for measuring coupling level in SCSS arises. The CLSCSS metric

is proposed and it’s computed by summing the number of all declared mixins (NDM) with

the number of all declared variables (NDV) which is then divided by the summation of

all the number of mixin calls (NMC) and total number of all variable instances (NVI) in

the program.

CLSCSS = (NDM+NDV) / (∑ 𝑵𝑴𝑪𝒏
𝒊 𝟏 +∑ 𝑵𝑽𝑰𝒏

𝒊 𝟏) …………(vii)

where, n is the number of SCSS blocks in the program

In the SCSS code example in Figure 5.7, there is only 1 mixin declared (@mixin fonts)

and 1 declared variable ($color1). The total number of mixin calls are 3. i.e where we

have all @include statements, and the total number of variable instances are 2. Therefore,

121

CLSCSS =(1 + 1)/ (3 + 2)

 = 2 / 5 = 0.40

Figure 5.7: CL Metric Example

$color1: #f4f4f4;

@mixin fonts {

 font-color: #ff21a3;

 font-family: sans-serif;

 font-size: 12px;

}

p {

font-type:italic;

@include fonts;

}

h1 {

font-color: $color1;

}

h2{

@include fonts;

text-transform: uppercase;

}

h3{

@include fonts;

}

h4{

background: $color1;

}

122

The CLSCSS metrics results obtained after analysis of the three websites were 0.31 for

happy-shala.com, 0.27 for greatjewishmusic.com and 2.33 for mce.ie.

5.4 Theoretical Validation Results for the Proposed Metrics

Two methods were used, namely, Weyuker’s properties to establish the theoretical

soundness of the metrics and the Kaner framework to prove the practical value of the

metrics.

The software community fully accepts software metrics when they have sound theoretical

and mathematical foundation. Therefore, the proposed metrics have been validated using

Weyukers properties and Kaner framework. Weyuker’s properties have been used by

several researchers to evaluate their proposed software metrics and they agree to the fact

that it’s a necessary framework and that for a measure to be valid it must satisfy most of

its properties (Cherniavsky and Smith,1991; Abreu and Carapuca,1994; Chidamber and

Kemerer,1994; Gursaran,2001; Sharma et al., 2006; Muketha et al., 2010a; Basci and

Misra, 2011b). The Kaner framework has been used by a number of researchers

(Adewumi et al., 2012; Basci and Misra, 2011b), and has been applied in this research for

practical evaluation of the proposed metrics.

5.4.1 Validation with Weyuker’s Properties

Property 1: (∃P) (∃Q) (|P| ≠ |Q|) where P and Q are two different SCSS blocks.

This property is satisfied when there exist SCSS blocks P and Q such that |P| is not equal

to |Q|. Therefore, if we can’t find two SCSS blocks of different complexity, then all SCSS

blocks have the same complexity value. All the metrics proposed ABCCSCSS , NFSCSS ,

123

SUIL and CLSCSS, return different complexity value for any two SCSS blocks that are not

identical and therefore they satisfied this property.

Property 2: Let c be a non-negative number.

Then there are finitely many SCSS blocks of complexity c. This property asserts that if

an SCSS block changes then its complexity changes. When the number of attributes is

changed, complexity values change for the ABCCSCSS. In addition, when the number of

extend rule directives changes then SUIL value change, and when the number of include

statements and variables change then CLSCSS metric value changes. In addition, NFSCSS

metric value changes when you reduce or increase nested SCSS blocks, meaning it also

satisfies this property.

Property 3: There can exist distinct SCSS blocks P and Q where |P| = |Q|.

This property affirms that two different SCSS blocks can have same metric value, this is

to say that two SCSS blocks have the same level of complexity. This property was

satisfied by all the proposed metrics.

Property 4: (∃P) (∃Q)(P ≡ Q &|P| ≠ |Q|)

There can be two SCSS blocks P and Q whose external features look the same, however,

due to different internal structure |P| is not equal to |Q|. This property asserts that two

SCSS blocks with the same number of attributes and directives could return different

metric values. This property is satisfied by ABCCSCSS, SUIL and CLSCSS. The NFSCSS

124

metric values could change even in the circumstances where the number of nested rules

is the same. Therefore, NFSCSS satisfies this property.

Property 5: (∃P) (∃Q) (|P| ≤ |P; Q| & (|Q| ≤ |P; Q|)

This property asserts that if we concatenate two SCSS blocks P and Q, the new metric

value must be greater than or equal to the individual rule block. All the analyzed metrics

returned numeric values meaning that they satisfy this property.

Property 6: (∃P) (∃Q) (∃R) (|P| =|Q| and |P; R| ≠ |Q; R|)

This property implies that if two SCSS blocks have same metric value (P and Q), it doesn’t

necessarily mean that when each of the SCSS blocks is concatenated with similar SCSS

block R, the resulting metric values are the same. All the proposed metrics have physical

components meaning that they return fixed values. Therefore they don’t satisfy this

property.

Property 7: If you have two SCSS blocks P and Q which have the same number of

attributes in a permuted order, then |P| is not equal to |Q|.

This property implies that the order of similar attributes affects their complexity.

Therefore, if two rule blocks have the same number of attributes but differ in the ordering,

it’s not necessary that they have the same complexity level. In the case where the SCSS

blocks length is constant and you only change the permutation of the order of statements

then all the proposed metrics will retain the same level of complexity. Therefore all the

metrics defined didn’t meet the property requirements.

125

Property 8: if P is a renaming of Q, then |P| = |Q|

Where you have two SCSS blocks P and Q differing in the naming of selector names, it

means |P| is equal to |Q|. The metric values for all the proposed metrics are either size

measures, complexity measures or coupling measures and they all return numeric values.

Therefore, all proposed metrics satisfied this property.

Property 9: (∃P) (∃Q) (|P| +|Q| < (|P; Q|)

This property asserts that there exist two SCSS blocks P and Q, where the complexity

metric value of the two SCSS blocks when summed up is less than when the rule blocks

are interacting. The interaction between rule blocks and the growth of rule blocks over

time adds to the complexity of rule blocks. The growth of blocks complexity happens

when new attributes are added or even when a new SCSS block is added to the existing

SCSS block, meaning that the new metric value is equal to or greater than the sum of the

two original rule blocks. All the metrics ABCCSCSS , NFSCSS , SUIL and CLSCSS satisfied

this property.

Findings in Table 5.2 show that all the metrics didn’t satisfy property 6 and 7, this is

because SCSS interactions don’t add any extra external complexity, meaning that the

attributes and rule directives are assigned fixed weights. In addition, the permutation of

statements don’t add any complexity

126

Table 5.2: Validation Results of SCSS metrics with Weyuker’s Axioms

Property ABCCSCSS NFSCSS SUIL CLSCSS

1

2

3

4

5

6

7

8

9

Key: represents satisfied property

 represents property not satisfied

5.4.2 Validation with Kaner’s Framework

The aim of implementing Kaner framework is to find out if the metrics defined make any

sense and to enable the designers to see how the metrics can be used for experimental

purposes, thus proving their practicality (Misra et al., 2018). According to Kaner (2004),

the following eleven questions should be addressed for purposes of evaluation of software

metrics.

127

i. What is the purpose of this measure?

The purpose of the measure must be clear so as consider it as a valid measure. Therefore,

the purpose of this measure is to evaluate the complexity of sassy cascading style sheets

(SCSS).

ii. What is the scope of this measure?

The measure used should have a specific area it acts on. The proposed metrics will be

used by front web developers in web-based projects, particularly those who style the web-

documents.

iii. What attribute are we trying to measure?

The attribute to measure will be maintainability through its sub-attributes;

understandability, modifiability, and testability.

iv. What is the natural scale of the attribute we are trying to measure?

The proposed metrics will measure understandability, modifiability, and testability and

they can all be measured on an ordinal scale

v. What is the natural variability of the attribute?

The quality attributes are subjective in nature, meaning that different SCSS developers

can rate the understandability, modifiability and testability of same code differently.

vi. Metrics definition

The metrics must be clearly defined and in this study, the metrics have been defined in

section 5.3.

vii. What is the metric and what measuring instrument do we use to perform the

measurement?

128

There are four proposed metrics; ABCCSCSS , NFSCSS , SUIL and CLSCSS and they have

been computed manually. In addition, a static metrics tool was developed to measure the

metrics.

viii. What is the natural scale for this metric?

The natural scale for all the metrics defined fall in the ratio scale

ix. What is the natural variability of readings from this instrument?

When we manually compute the metrics there is no subjectivity to it, meaning that there

is no variability. For the metrics tool, the software was tested to ensure no bugs that would

lead to erroneous metric values.

x. What is the relationship of the attribute to the metric value?

The maintainability of SCSS is directly related to the proposed complexity metrics. This

means we can tell the understandability, modifiability, and testability of SCSS by using

the proposed metrics.

xi. What are the natural and foreseeable side effects of using this instrument?

Since the static metrics tool was thoroughly tested and validated, then there will be no

negative effects after the implementation of the tool.

The validation results of metrics using Kaner framework show that all the four metrics

satisfied its requirements.

5.5 Chapter Summary

This chapter proposed four metrics for measuring the complexity of SCSS code. Code

snippets and three Real world projects were used to demonstrate the computation of each

of the metric and the metrics proved to be intuitional as shown by the different metrics

129

values obtained. The metrics were validated using Weyukers properties and the results

showed that all the metrics satisfied most of its properties, meaning they are

mathematically sound. The study further used Kaner framework to prove the practicality

of the metrics and they all proved practical, meaning they can be used for experimental

purposes.

130

CHAPTER SIX

IMPLEMENTATION OF A STRUCTURAL COMPLEXITY METRICS TOOL
FOR SASSY CASCADING STYLE SHEETS (SCMT-SCSS)

6.1 Introduction

This chapter presents the Structural Complexity Metrics Tool for Sassy Cascading Style

Sheets (SCMT-SCSS) tool which is a prototype metrics tool meant to automate the

collection and computing of SCSS complexity metrics values. The chapters intention was

to meet the third research objective as stated in the first chapter, which was to develop a

functional and usable static metrics analysis tool.

6.2 Requirements of the SCMT-SCSS

The metrics tool was developed to enable the process of collecting, computation and

presenting the metrics values. The static analysis metrics tool was developed using

Microsoft C# programming language. To ensure the acceptability of the four SCSS

metrics, the developed SCMT-SCSS tool was validated by involving 21 subjects who

were randomly provided with SCSS files to manually compute metric values and to also

compute metrics values with aid of SCMT-SCSS tool.

The tool requirements were identified as:

 The metrics tool accepts all files with .scss extension and the users should be

able to locate .scss source files and open them to the tool’s user interface.

 The tool operators should compute the metrics and view the computed results.

These results are displayed via the tools’ textboxes.

131

 The operators should be able to save the metrics results for future retrieval of

results

 The operators of the tool should clear or delete the unnecessary results

 The operators should print the acquired metrics results

 The operators should make use of help functionality to get assistance in the use

of the tool.

6.3 Metrics Implementation

The metrics were computed in two levels, i.e. base metrics and derived metrics. The base

metrics collects and computes all the metrics directly from the .scss source file. The base

metrics were number of regular attributes, number of operators, number of decision nodes,

number of function calls, number of mixins defined, number of mixin calls, number of

extend directives, number of selectors, number of rule blocks, number of variables defined

and number of variables instances. The derived metrics were, Average Block Cognitive

Complexity for SCSS (ABCCSCSS), Nesting Factor for SCSS (NFSCSS), Selector Use

Inheritance Level (SUIL) and Coupling level for SCSS (CLSCSS), and they make use of

the base metrics to compute the final metrics required to measure the complexity of SCSS

files.

6.4 Input File Format

The SCSS files serves as the input files. An SCSS file has several features, such as, use

of variables, use of mixins, rule-blocks which consists of a selector, opening brace,

attributes or declarations, and a closing brace. SCSS file also implements rule nesting, use

132

of control flows, use of functions and inheritance feature via extend directive. Figure 6.1

illustrates the typical structure of an SCSS file.

Figure 6.1: The Structure of an SCSS file

Variable declarations;

Mixin declarations{

 Attributes/declarations;

}

Selector1{

Attributes/declarations;

Attribute/declaration with variable use;

Implementation of Mixin;

Selector2{

Attributes/declarations;

}

}

Selector3{

Attributes/declarations;

Extend Selector1;

}

Implement control flows{

Attributes/declarations;

}

Implement function{

 Attributes/declarations;

}

133

6.5 SCMT-SCSS Tool Architectural Design

The software system architecture describes the various components of software and how

they relate with each other. The SCMT-SCSS tool comprises of three major

components, that is, input, analyzer, and output.

6.5.1 Input Component

This purpose of this component is to read and load an SCSS code into the memory. This

is achieved by the user clicking on a button named “Open”, or toolbar open icon or via

Menu option (File -> Open). Only files with .scss extension are recognized by this

component. Once the file is loaded the source code is visible in the textbox which is in

the landing tab of the user interface.

6.5.2 Analyzer Component

This role of this component is divided into two phases i.e lexical analysis and parsing.

In lexical analysis phase, the .scss source code is broken into tokens and in the parsing

phase, the parser accepts input in the form of a sequence of tokens and increments the

token flag when it’s recognized. The parser is invoked by clicking on analyze button and

SCSS metrics are computed.

6.5.3 Output Component

This component enables the user of SCMT-SCSS tool to view the metrics values and

save the values in a database (text file format). The user views report as presented via

textboxes and can print preview before printing the report. Figure 6.2. Displays the

SCMT-SCSS tool architecture.

134

Figure 6.2: SCMT-SCSS Tool Architecture

Save

Output Component

SCSS Metrics

ABCC

NF

SUIL

CL

SCSS
Metrics

Analyzer Component

SCSS Source Code Analyzer

Split
string
into

tokens

SCSS
parser

Request

tokens

Read

file

Input Component

SCSS
source

 View

135

The representation of the design of a software system is through different types of

diagrams such as, data flow diagrams, entity relationship diagrams, Unified Modelling

Language diagrams etc. The choice of the diagram to use depends on the programming

paradigm. The SCMT-SCSS tool has several modules that interact with each other and

some parameters are passed between the modules. Therefore, the structure chart was

selected because it well represents the module structure of the software design.

Figure 6.3: SCMT-SCSS Structure Chart Diagram

6.6 User Interface Design

The Use Case diagram was used to represent the user’s interaction with the SCMT-

SCSS tool. The use cases include viewing the source code, analyzing the SCSS code,

displaying SCSS metrics, save metrics, and print the metrics.

136

Figure 6.4: SCMT-SCSS Use Case Diagram

The form layout design as shown in Figure 6.5 displays the interface of the tool. The

design has a menu bar which has File, View and Help options at top level. The file menu

option is used to access the Open, Save, Print and Exit options. The View option

determines whether to view tool bar and status bar, while the Help option guides the user

on the operation of the system.The interface also shows the tool bar with open, save and

print options. The Landing tab allows the user of the tool to open an SCSS file and analyze

Display SCSS Metrics

View Source Code

Analyze Source Code

Save Metrics

Print SCSS Metric Values

User

137

the file for the purpose of computing the metrics values. The Base Metrics tab displays

the metris collected directly from the file while the derived metrics tab displays the final

computed metric.

Figure 6.5: Form Layout Design

6.7 Algorithm Design

Algorithms show the steps to be followed to solve a problem and therefore this section

identifies the steps for calculating the metric values for Average Block Cognitive

Complexity for SCSS (ABCCSCSS), Nesting Factor for SCSS (NFSCSS), Selector Use

Inheritance Level (SUIL) and Coupling Level for SCSS (CLSCSS).

138

6.7.1 ABCCSCSS Algorithm

To calculate metric value for ABCCSCSS the following steps were followed:

i. Count the number of regular attributes (NRA),

ii. Count the number of operators (NO)

iii. Count the number of branch statements (NB)

iv. Count the number of looping statements (NL)

v. Count the number of function calls (NFC)

vi. Count the number of mixin calls (NMC)

vii. Count the number of extend directives (NE)

viii. Count the number of SCSS blocks (NOBL)

To count NRA:

i. Lexical analyzer flag is raised to indicate if a regular attribute exists at the

beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NRA count is incremented, if not, no change.

To count NO:

i. Lexical analyzer flag is raised to indicate if a flag in the lexical analyzer that

records whether an operator exists at the beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NO count is incremented, if not, no change

To count NB:

i. Lexical analyzer flag is raised to indicate if a branch statement exists at the

beginning of the line.

139

ii. A true value is set if the flag exists, otherwise its false.

iii. NB count is incremented, if not, no change.

iv. Final NB count is multiplied by 1.3 as the assigned weight of a branch

To count NL:

i. Lexical analyzer flag is raised to indicate if a looping statement exists at the

beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NL count is incremented, if not, no change.

iv. Final NL count is multiplied by 1.5 as the assigned weight of a loop.

To count NFC:

i. Lexical analyzer flag is raised to indicate if a function call exists at the beginning

of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NFC count is incremented, if not, no change.

iv. Final NFC count is multiplied by 1.3 as the assigned weight of a function call.

To count NMC:

i. Lexical analyzer flag is raised to indicate if a mixin call exists at the beginning of

the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NMC count is incremented, if not, no change.

iv. Final NMC count is multiplied by 1.3 as the assigned weight of a mixin call.

140

To count NE:

i. Lexical analyzer flag is raised to indicate if a extend directive exists at the

beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NE count is incremented, if not, no change.

iv. Final NE count is multiplied by 1.3 as the assigned weight of a extend directive.

To count NOBL:

i. Lexical analyzer flag is raised to indicate if a block exists at the beginning of the

line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NOBL count is incremented, if not, no change.

To measure ABCCSCSS :

i. Locate the variables holding current values of NRA, NO, NB, NL, NFC, NMC,

NE and NOBL

ii. Add the values of NRA, NO, NB, NL, NFC, NMC, and NE

iii. Divide the total with NOBL

6.7.2 NFSCSS Algorithm

To calculate metric value for NFSCSS the following steps will be followed:

i. Count total depth nesting level (TDNL)

ii. Count total breadth nesting level (TBNL)

To count total depth nesting level

141

i. Raise a flag in the lexical analyzer to indicate if depth of SCSS rules has

been seen since the start of code

ii. A true value is set if the flag exists, otherwise its false.

iii. The depth of nesting value is incremented for each of the nested rule blocks,

if not, no change.

iv. The final count if its 5, then the total depth nesting level is (5+4+3+2+1) =

15

v. Locate next block with nested blocks and repeat step 4

vi. Total depth nesting level is incremented until end of code.

To count total breadth nesting level

i. Raise a flag in the lexical analyzer to indicate if breadth of SCSS rules has

been seen at the beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. The total breadth nesting value is incremented, if not, no change.

To measure NFSCSS:

i. Find the TDNL and TBNL values

ii. Get the product of TDNL and TBNL.

6.7.3 SUIL Algorithm

To calculate metric value for SUIL the following steps will be followed:

i. Count the number of selector instances (NSI)

142

ii. Count the number of selectors (NS)

To count the number of selector instances

i. Lexical analyzer flag is raised to indicate if an extend directive exists at the

beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NSI count is incremented, if not, no change.

To count the number of selectors

i. Lexical analyzer flag is raised to indicate if a selector exists at the beginning

of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NS count is incremented, if not, no change.

To measure SUIL:

i. Locate the variables that hold current values of NSI and NS

ii. Divide total NSI with total NS, i.e. SUIL = NSI / NS

6.7.4 CLSCSS Algorithm

This metric is computed following these major steps

i. Count the number of declared mixins (NDM)

ii. Count the number of declared variables (NDV)

iii. Count the number of mixin calls (NMC)

iv. Count the number of variable instances (NVI)

143

To count the number of declared mixins

i. Lexical analyzer flag is raised to indicate if a mixin exists at the beginning of

the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NDM count is incremented, if not, no change.

To count the number of declared variables

i. Lexical analyzer flag is raised to indicate if a variable exists at the beginning

of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NDV count is incremented, if not, no change.

To count the number of mixin calls

i. Lexical analyzer flag is raised to indicate if a mixin call exists at the

beginning of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NMC count is incremented, if not, no change.

To count the number of variable instances

i. Lexical analyzer flag is raised to indicate if a variable instance exists at the

begining of the line.

ii. A true value is set if the flag exists, otherwise its false.

iii. NVI count is incremented, if not, no change.

144

6.8 Execution of the SCMT-SCSS Tool

The SCMT-SCSS tool functions as described:

1. The user begins by opening an SCSS source file. This is achieved by clicking

Open button in the landing page, or through the menu option (File -> Open) or

tool bar open icon

2. To calculate the SCSS metrics the user clicks on the analyze button

3. The user can view the metric results as presented in the textboxes.

4. The metrics results can be saved via menu option File -> Save or via tool bar

icon. The metrics results are saved as text file.

5. The user can print the metrics results via menu option File -> Print or via tool

bar icon

6. The user can use help function if required to do so.

The base metrics are gathered directly from the SCSS file and the computed metric values

are displayed as illustrated in Figure 6.6.

145

Figure 6.6: SCSS Base Metrics Values

Derived metrics are computed based on the base metrics. The metrics values are displayed

in the tool as illustrated in Figure 6.7.

146

Figure 6.7: SCSS Derived Metrics Values

The saved metric values in a text file are as shown in Figure 6.8. The values are as a result

of running the tool and computing the metric values of the loaded file. These results can

be retrieved for future purposes.

147

Figure 6.8: SCSS Metrics Values in a Text File

6.9 Experimental Validation of the SCMT-SCSS Tool

6.9.1 Goal of the Study

The goal of this study was to evaluate the tool in terms of its effectiveness, efficiency,

accuracy, suitability and operability.

6.9.2 Context Definition

The subjects involved in this study were students in the School of Computing and

Information Technology from Murang’a University of Technology, Kenya. The students

selected were fourth years pursuing Bachelor of Science in Information Technology,

Bachelor of Science in Software Engineering, Bachelor of Business Information

148

Technology. Third year students pursuing Bachelor of Science in Software Engineering

were also involved. A convenient sample of 21 subjects was selected.

6.9.3 Threats to Validity

6.9.3.1 Internal Validity

The threat involved was that the subjects rated some aspects of the tool such as suitability,

accuracy, and operability subjectively. However, the subjects were trained on the usage

of the tool before performing the tasks provided.

6.9.3.2 External Validity

The threat involved was that the subjects are not industry-based persons, however, the

threat was significantly reduced by offering intensive training to the subjects on SCSS

language, how to compute metrics manually and the use of the tool. Meaning that the

subjects were well able to gather metrics from an SCSS file and implement the tool to

automate metrics computation.

6.9.4 Experimental Design

The experimental materials used were 4 SCSS files, and were randomly distributed to 21

subjects. The subjects were guided on how to carry out the experiment. All the subjects

did the experiments in a computer laboratory and were given enough time to complete the

tasks. The subjects first task was to calculate the metric values for the file provided

manually i.e without the tool and the second task was to calculate metric values for the

same file using the tool. When performing both tasks, the subjects recorded the time taken

149

in terms of Minutes and seconds. Finally, the subjects were required to rate the suitability,

accuracy, and operability of the SCMT-SCSS tool using a Likert scale of 1-5.

6.10 Results

6.10.1 Time to Complete Tasks

The feedback from the subjects was collected and checked for completeness. All the

required responses were completed by all the subjects. Therefore, all data from the 21

subjects was analysed.

This experiment was carried out to test the tool effectiveness and efficiency. This was

performed by calculating the metrics values for the provided file both manually and by

use of the tool. The mean of metrics computation was calculated and provided the basis

for conclusion on tool effectiveness and efficiency.

The mean time for calculating the metric values without a tool for SCSS File number 1

was 18 Minutes 3 seconds, while calculation of the metric values with the tool for the

same file took an average of 42 Seconds. These results are presented in Table 6.1, and they

imply that the use of the tool was far much better and saved a lot of time for the metrics values

computation of SCSS File1.

150

Table 6.1: Time to Complete Tasks for SCSS File 1

Subject Metrics Values Calculation time
without Tool (MM:SS)

Metrics Values Calculation
time with Tool (MM:SS)

1 24.52 0.27
2 10.07 1.00
3 30.24 0.28
4 11.19 0.36
5 11.19 0.24
6 18.54 0.38

Mean 18.03 0.42

The computed metrics for SCSS File number 2 are shown in Table 6.2. There were five

subjects involved and the mean of calculating the metric values without tool was 26

Minutes 28 seconds while calculation of the metric values with the tool took an average

of 47 Seconds. This proves that the tool achieves results with far much less time in

comparison to manual calculation.

Table 6.2: Time to Complete Tasks for SCSS File 2

Subject Metrics Values Calculation time
without Tool (MM:SS)

Metrics Values Calculation
time with Tool (MM:SS)

1 25.31 0.28
2 27.33 0.26
3 25.5 1.2
4 23.07 0.25
5 28.22 0.37

Mean 26.28 0.47

The SCSS File number 3 was assessed by 5 subjects and as shown in Table 6.3 the mean

of calculating the metric values without a tool is 15 Minutes 34 seconds while calculation

of the metric values with tool took an average of 27 Seconds. This shows that the

151

automation of metrics calculation achieves results in a shorter time as compared to manual

calculation metrics values for the same SCSS file.

Table 6.3: Time to Complete Tasks for SCSS File 3

Subject Metrics Values Calculation time
without Tool (MM:SS)

Metrics Values Calculation
time with Tool (MM:SS)

1 20 0.21
2 15.55 0.29
3 9.35 0.36
4 11.42 0.23
5 18.38 0.27

Mean 15.34 0.27

The computed metrics for SCSS File number 4 are shown in Table 6.4. There were five

subjects involved to compute metrics values for the file both manually and with the use

of a tool. The mean of calculating the metric values without tool was 16 Minutes 25

seconds while calculation of the metric values with the tool took an average of 29

Seconds. This proves that the tool achieves results with far much less time in comparison

to manual calculation.

Table 6.4: Time to Complete Tasks for SCSS File 4

Subject Metrics Values Calculation time
without Tool (MM:SS)

Metrics Values Calculation
time with Tool (MM:SS)

1 15.56 0.26
2 13.13 0.27
3 21.06 0.44
4 21.38 0.32
5 8.13 0.16

Mean 16.25 0.29

152

6.10.2 Suitability, Accuracy and Operability Rating

The subjects were asked questions concerning the suitability, accuracy, and operability of

the SCMT-SCSS Metrics tool. The subjects were required to give a rating using a Likert

scale of 1 to 5(see Appendix 7). The subjects’ ratings were averaged, and they all acquired

a mean greater than 4. The standard deviation for all the responses were less than 1.0,

meaning that the subjects’ responses did not differ too much.

Suitability is the capability of the tool to provide an adequate set of functions for the tasks

to be carried out, while accuracy is the capability of the tool to provide correct results and

operability is defined as the capability of the tool to allow the user to operate it (ISO,

2001).

The subjects were asked the question, how do you rate the suitability of SCMT-SCSS

Metrics tool? The average of the responses is 4.52 as shown in Table 6.5 and is a high

rating on the suitability of the tool. This means that the subjects were able to use the menu

bar, toolbar and buttons provided to load an SCSS file and compute SCSS metrics values.

Therefore, the researcher concluded that the SCMT-SCSS tool provides a set of functions

which enable SCSS metrics values computation.

Table 6.5: Average Rating on Suitability

 Mean Std. Deviation

Subject Rating on Tool Suitability 4.52 0.60

153

The subjects were asked the question, how do you rate the accuracy of SCMT-SCSS

Metrics tool? The average of the responses is 4.43 as shown in Table 6.6 and is a high

rating on the accuracy of the tool. This implies that the subjects were able to obtain results

which were accurate. Therefore, the research concluded that the SCMT-SCSS tool can be

used to provide correct SCSS metrics values for any SCSS file.

Table 6.6: Average Rating on Accuracy

 Mean Std. Deviation

Subject Rating on Tool Accuracy 4.43 0.60

The subjects were asked the question, how do you rate the operability of the SCMT-SCSS

Metrics tool? The average of the responses is 4.76 as shown in Table 6.7 and is a high

rating on the operability of the tool. This implies that the subjects were able to easily

operate or use the tool to perform the task assigned. Therefore, the researcher concluded

that the SCMT-SCSS tool is operable.

Table 6.7: Average Rating on Operability

Mean Std. Deviation

Subject Rating on Tool Operability 4.76 0.44

6.11 Chapter Summary

The development of a metrics tool is a basic requirement for the defined software metrics

to be acceptable in the software industry. There are several metrics proposed over the

years without tool support and this trend cannot be tolerated. Therefore, a metrics tool to

154

automate the collection and analyze the defined SCSS metrics was developed and is

herein referred to as SCMT-SCSS Metrics Tool. The tool was validated by using 4 SCSS

files with a convenient sample of 21 students who were trained in SCSS language and on

the usage of the SCMT-SCSS metrics tool. The results indicated that the tool computes

metrics in much less time than manual computation. The subjects rated the tool as suitable

for the tasks assigned, and in comparison, of the metrics values results obtained from the

tool and without the tool, the subjects rated the tool as accurate. In addition, the subjects

rated the tool as easy to operate.

This study proposed an SCMT-SCSS metrics tool and was validated using an experiment.

The tool was found to be very effective and efficient because as observed it took far less

time to complete a similar task. The manual computation of metrics is an inefficient

process in terms of time taken and the software industry may not appreciate the metrics

in the absence of a tool. The results from the subjects rating suggested strongly that the

tool provided a required set of functions to compute SCSS metrics values and therefore

it’s suitable for the tasks. In addition, the subjects strongly agreed that the tool provides

accurate results. The results by different subjects differed in terms of metrics values

obtained manually, but the tool provided consistent and accurate results. Lastly, the

SCMT-SCSS tool proved operable and users were able to easily navigate through the tool

to execute the tasks provided.

155

CHAPTER SEVEN

AN EXPERIMENTAL VALIDATION OF STRUCTURAL COMPLEXITY
METRICS FOR SASSY CASCADING STYLE SHEETS

7.1 Introduction

The two phases of the experiment are described in this chapter. In the first phase

subjective experiment was carried out and second phase objective experiment was

conducted. The purpose of the experiment was to check if the proposed metrics can

predict the maintainability of SCSS code. Pilot study was carried out to identify any

important omissions, clarifications and corrections.

7.2 Context Definition

Thirty SCSS files were availed for the experiment to 30 students from Murang’a

University of Technology in the School of Computing and Information Technology. The

students involved were fourth year students pursuing Bachelor of Science in Software

Engineering, Bachelor of Information Technology and Bachelor of Business Information

Technology because the researchers believed they were more knowledgeable in software

engineering processes in comparison with other students. In addition, third year students

pursuing Bachelor of Science in Software Engineering were also involved because when

they studied the web development unit, they were introduced to CSS pre-processors

specifically SASS using .scss syntax. Therefore, the researcher believed they were well

placed to participate in this study. All the subjects who participated in the experiment

were trained on SCSS language intensively for 27 hours.

156

7.3 Strategy for Conducting the Experiment

The experiment was conducted in two phases, where in the first phase it involved subjects

ranking maintainability sub-characteristics, while in the second phase, involved subjects

indicating the understanding time, modification time and testing time of each SCSS file.

A between subject design was used where ten groups were involved and each group

worked on same files. The subjects worked individually for a period of two hours. The

total experimental objects provided for the experiment was 30 SCSS files which were

assumed to have correct syntax. Each subject was provided with three SCSS files. The

files had different complexity values as evidenced by the metrics values gathered (see

Appendix 3). The SCMT-SCSS tool was included as a material to automate gathering and

calculation of metrics. The subjects did not use the metrics tool, and so only the researcher

used the tool to collect metric values of the files provided to the subjects.

Before the experiment was conducted a pilot study was carried out. Through the pilot

study, lessons were learned and were used to inform the process of carrying out the final

experiment.

7.4 Pilot Study

A pilot study was carried out using a between-subject experimental design. The design

was chosen because SCSS files are normally long files and this ensured that the subjects

don’t take a lot of time working on the files which could lead to boredom. Therefore, each

subject only worked on three SCSS files of the 10 files available. The study aimed at

finding if the proposed SCSS metrics correlate with the subjects rating of

157

understandability, modifiability and testability. The study was also conducted to find if

the proposed SCSS metrics are valid measures of SCSS maintainability. Finally, the pilot

study was performed to test and validate the questionnaire. The questionnaire used for

both subjective and objective phases is shown in Appendix 2.

A convenient sample of 10 subjects were involved in pilot study. They were required to

rate the SCSS files provided in Likert scale of 1-5 i.e. Very Difficult to Very Easy. The

rating for each file was in terms of understandability, modifiability and testability. The

metrics values collected with SCMT-SCSS tool were correlated with the mean of subject

ratings for each file. A number of questions were availed to the subjects on

understandability, modifiability and testability aspects of maintainability. While the

subjects responded to the questions provided, the time to understand, time to modify and

time to test each of the SCSS file was recorded and their means were computed for each

file. The metrics values for each SCSS file was computed using the SCMT-SCSS tool and

correlation of the means for understanding time, modification time and testability time

was done.

In the pilot study it was learnt that the subjects took a lot of time on each file and so they

were unable to finish the tasks within the expected two hours. As a result of much time

taken to perform all tasks, the subjects became too exhausted and hurriedly finished the

last SCSS file provided, thus affecting the results. Therefore, the questions were reduced

from three to two for each of the understandability, modifiability and testability sections.

158

It was also learnt that a clear guideline should be provided before performing an

experiment so that the experiment is carried out smoothly.

7.5 Subjects’ Background

The information about subjects’ knowledge on programming languages, software

engineering, and SCSS features was established to ascertain the subjects readiness to

perform the experimental tasks.

The subjects were asked about the programming languages they have knowledge in. This

was to establish their grounding in various programming concepts such as inheritance,

declaring variables, nesting, control structures e.t.c. Fifteen subjects which account for

50% said they had taken between five to six programming languages, and other fifteen

subjects, which is 50% of the total responses said they had taken above 6 programming

languages, as indicated in Table 7.1.

Table 7.1: Programming languages taken

Programming Languages

pursued

Number of Subjects Percent (%)

5-6 15 50

Above 6 courses 15 50

The subjects were asked about the number of software engineering courses they had taken.

This was to establish their knowledge of the software engineering processes and software

159

engineering concepts such as quality of software. The responses were as shown in Table

7.2, where eight subjects, which is 26.7% of the responses had taken one to four software

engineering courses while a majority of twenty-two of them (73.3 %), had taken more

than four software engineering courses.

Table 7.2: Software Engineering courses pursued

Software Engineering Courses
pursued

Number of
Subjects

Percent (%)

1-4 8 26.7

>4 22 73.3

The subjects were asked about the number of SCSS features they can comfortably

implement in an SCSS code. This was to establish the level of SCSS knowledge. As

shown in Table 7.3, fifteen subjects indicated they could comfortably use four to six

features of the eight main features of SCSS, while fifteen subjects said they could

comfortably implement more than six features of SCSS language. These results imply that

all the subjects had at least moderate level knowledge of SCSS.

Table 7.3: Knowledge of SCSS

SCSS features Number of Subjects Percent (%)

4-6 15 50

>6 15 50

160

7.6 Subjective Data

The subjective part of the experiment was intended to investigate the existence of a

relationship between SCSS metrics and the rating of SCSS files by subjects in terms of

understandability, modifiability and testability of SCSS files. To achieve this, the SCSS

metrics values and subjects’ rating values were captured and analysis was performed on

the data.

7.6.1 Experimental Planning

The materials to be used in the experiment were distributed to the subjects in the computer

laboratory, that is, the SCSS files and a questionnaire.

7.6.1.1 Effect of SCSS Metrics on Subjects Rating of Understandability

The independent variables in this study refer to the collected SCSS metrics values while

the dependent variable is the subjects rating on the understandability of the SCSS files.

The hypotheses under investigation in the experiment were for the purpose of

establishing if the SCSS metrics correlate with the subjects rating of understandability

of SCSS files. The hypotheses were as follows:

 Null Hypothesis (H0-u): There exists no significant correlation between the

SCSS metrics and subjects rating of understandability of SCSS files.

 Alternative Hypothesis (H1-u): There exists significant correlation between the

SCSS metrics and subjects rating of understandability of SCSS files.

161

7.6.1.2 Effect of SCSS Metrics on Subjects Rating of Modifiability

The subjective phase of the experiment intention was to investigate whether the

proposed SCSS metrics correlate with modifiability of SCSS files. The independent

variables in this study refers to the collected SCSS metrics values and dependent

variable is the modifiability of the SCSS files based on subjects rating.

The hypotheses under investigation in the experiment were to establish if the SCSS

metrics correlate with the subjects rating of modifiability of SCSS files. The hypotheses

were as follows:

 Null Hypothesis (H0-m): There exists no significant correlation between the

SCSS metrics and subjects rating of modifiability of SCSS files.

 Alternative Hypothesis (H1-m): There exists significant correlation between the

SCSS metrics and subjects rating of modifiability of SCSS files.

7.6.1.3 Effect of SCSS Metrics on Subjects Rating of Testability

The subjective phase of the experiment intention was to investigate whether the proposed

SCSS metrics correlate with the subjects rating of SCSS files testability. The independent

variables in this study refer to the collected SCSS metrics values and dependent variable

is the subjects rating on testability.

The hypotheses under investigation in the experiment were to establish if the SCSS

metrics correlate with the subjects rating of testability of SCSS files. The hypotheses were

as follows:

162

 Null Hypothesis (H0-t): There exists no significant correlation between the SCSS

metrics and subjects rating of testability of SCSS files.

 Alternative Hypothesis (H1-t): There exists significant correlation between the

SCSS metrics and subjects rating of testability of SCSS files.

7.6.2 Threats to validity

7.6.2.1 Internal validity

This type of validity ensures that we can trust the cause and effect relationship and is

achieved by controlling the factors that can affect the dependent variable. The subjects

provided the rating on understandability, modifiability and testability level of SCSS files

based on their perceptions. The subjectivity of the experiment was a threat and therefore

to lessen it, an intensive training to the subjects on SCSS language was carried out. This

training reduced the skills gap in SCSS, thus improving on the subject’s validity ratings.

In addition, the subjects can be considered as having moderate level experience based on

Table 7.4 results. The Subjects mean on the number of programming languages they have

done in their course of study is 3.50 on a Likert scale of 1-4. This means that the subjects

are knowledgeable in programming concepts. The subjects mean of the number of

software engineering courses they have pursued is 2.73 in a Likert scale of 1-3, this means

that the subjects have taken at least four courses. The subjects mean of the number of

SCSS features they can comfortably implement is 2.5 in a Likert scale of 1-3. This tends

to mean of 3, meaning that the subjects have moderate experience in SCSS.

To further ensure internal validity the independent variables were measured via SCSS

metrics which were theoretically validated.

163

Table 7.4: Subjects Background Knowledge

Scale Mean Std. Deviation
#Programming Languages 3.50 0.508

#Software Engineering Courses 2.73 0.449

#SCSS Features 2.50 0.508

7.6.2.2 External Validity

External validity implies that the results from the study can be generalized. Though the

subjects in the study were students, the researchers selected fourth year students and third

year students because they had accrued knowledge in area of programming and software

engineering as supported by results in Table 7.4. In addition, all the subjects had been

involved in the development of a web-based project, implying that they had an exposure

to real world projects. The threat to external validity was significantly reduced by the

moderate experience of subjects in software development.

7.7 Objective Data

The objective phase of the experiment was intended to establish if any relationship exists

between the SCSS metrics and time to understand, time to modify and time to test SCSS

files. To achieve this, the SCSS metrics values and time taken to perform the tasks

provided were captured and analysis was performed on the data. Further analysis were

conducted with principle component analysis (PCA) to establish which variables

significantly contribute to the understandability, modifiability and testability models at

80% variance

.

164

A Kaiser-Meyer-Olkin (KMO) and Bartlett’s tests were conducted before performing

PCA to indicate the proportion of variance in the variables that may be caused by

underlying factors. The tests establish the suitability of data for structure detection. It was

established that the KMO measure was 0.725, as shown in Table 7.5 which is greater than

the recommended value of >0.5, meaning that the Barlett’s Test of Sphericity is

significant

Table 7.5: KMO and Bartlett's Test

KOM and Bartlett’s Tests Coefficients

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .725

Bartlett's Test of Sphericity Approx. Chi-Square 46.841

Df 6

Sig. .000

7.7.1 Experimental Planning

The SCSS files to be used in the experiment were the same as distributed during subjective

experiment.to the subjects.

7.7.1.1 Effect of SCSS Metrics on Subjects Understanding time

The objective phase of the experiment intention was to investigate if any correlation exists

between the SCSS metrics and time to understand SCSS files. This kind of experiment is

done to reduce the shortcomings of results obtained due to the subjective nature of data.

165

The hypotheses under investigation in the experiment were for the purpose of checking

if SCSS metrics correlate with understanding time of SCSS files. The hypotheses were

as follows:

 Null Hypothesis (H0-ut): There exists no significant correlation between the

SCSS metrics and understanding time of SCSS files.

 Alternative Hypothesis (H1-ut): There exists significant correlation between the

SCSS metrics and understanding time of SCSS files.

7.7.1.2 Effect of SCSS Metrics on Subjects Modifying Time

The objective phase of the experiment intention was to investigate if the proposed SCSS

metrics correlate with modifying time of SCSS files. This kind of experiment is done to

reduce the shortcomings of results obtained due to the subjective nature of data.

The hypotheses under investigation in the experiment were for checking if SCSS

metrics correlate with the modifying time of SCSS files. The hypotheses were as

follows:

 Null Hypothesis (H0-mt): There exists no significant correlation between the

SCSS metrics and modifying time of SCSS files.

 Alternative Hypothesis (H1-mt): There exists significant correlation between the

SCSS metrics and modifying time of SCSS files.

166

7.7.1.3 Effect of SCSS Metrics on Subjects Testing Time

The objective phase of the experiment intention was to investigate if the proposed exists

SCSS metrics correlate with the testing time of SCSS files. This kind of experiment is

done to reduce the shortcomings of results obtained due to the subjective nature of data.

The hypotheses under investigation in the experiment were for the purpose of

establishing if the proposed SCSS metrics correlate with the testing time of SCSS files.

The hypotheses were as follows:

 Null Hypothesis (H0-tt): There exists no significant correlation between the

SCSS metrics and testing time of SCSS files.

 Alternative Hypothesis (H1-tt): There exists significant correlation between the

SCSS metrics and testing time of SCSS files.

7.7.2 Threats to Validity

7.7.2.1 Internal Validity

The metric values acquired via the dependent variables were objective, that is, the time to

understand, modify and test the SCSS files was recorded. This means that the values

obtained for the dependent variable are valid. The choice of between subject design over

the within subject design ensured that the subjects’ fatigue is reduced significantly. In

addition, the subjects volunteered to participate in the experiment, meaning that they had

high self-drive.

167

7.7.2.2 External Validity

The use of students as subjects in the experiment introduced external threat, but the

students selected were fourth year students and third year students. This means that they

have advanced knowledge in programming and software engineering as shown in Table

7.10. These students had participated in a web-based project and during the SCSS training

every subject developed a simple SCSS based project.

7.8 Results

The completeness of questionnaire was checked and a threshold of 70% was set for

inclusion of questionnaire in the analysis stage. All subjects attained the threshold;

however, three questionnaires were not filled completely and so they were rejected for

inclusion in data analysis.

The Spearman Rank Order Correlation coefficient (rs) is a non-parametric measure of the

strength and direction of association that exists between two variables on a scale that is at

least ordinal. This method of correlation was chosen after Shapiro-Wilk test was

performed and the results showed that the data was non-normal.

7.8.1 Subjective Results

The first data set was for metrics values and was collected via SCMT-SCSS tool and they

represent the independent variables while the subject’s ratings of understandability,

modifiability and testability represents the dependent variables.

168

7.8.1.1 Relationship between Metrics and Understandability

The correlation of SCSS metrics values with understandability is shown in Table 7.6. All

the metrics are significantly correlated to the subjects rating of the SCSS code

understandability. The ABCCSCSS metric is correlated with understandability as shown

by the correlation coefficient value of 0.383 at 95% confidence level. The NFSCSS has a

correlation coefficient of -0.684, SUIL is -0.560, and CLSCSS is -0.550 and are all at 99%

confidence level.

Table 7.6: Correlation with Understandability

SCSS Metrics Correlation Coefficient Sig. (2-tailed)

ABCCSCSS 0.383* 0.049

NFSCSS -0.684** 0.000

SUIL -0.560** 0.002

CLSCSS -0.550** 0.003

**=99% confidence, *=95% confidence

The Analysis of Variance (ANOVA) test resulted to a P-value (“Sig” for significance) of

0.006 as shown in Table 7.7. This value is below the prescribed P<0.05, meaning its

statistically significant, and that SCSS metrics means are not equal, therefore, there is a

strong evidence against null hypothesis. This study concludes that the proposed metrics

are good indicators of understandability of SCSS code.

169

Table 7.7: Understandability Significance with ANOVA

Model Sum of Squares df Mean Square F Sig.

 Regression 6.415 4 1.604 4.877 .006a

Residual 7.234 22 .329

Total 13.649 26

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity,

Selector Use inheritance Level, Nesting Factor

b. Dependent Variable: Understandability

7.8.1.2 Relationship between Metrics and Modifiability

The correlation of SCSS metrics values with modifiability is shown in Table 7.8. All the

metrics are significantly correlated to the subjects rating of the SCSS code modifiability.

The ABCCSCSS metric is correlated with modifiability as shown by the correlation

coefficient value of 0.409 at 95% confidence level. The NFSCSS has a correlation

coefficient of -0.686, SUIL is -0.644, and CLSCSS is -0.574 and are all at 99% confidence

level.

Table 7.8: Correlation with Modifiability

SCSS Metrics Correlation Coefficient Sig. (2-tailed)

ABCCSCSS 0.409* 0.034

NFSCSS -0.686** 0.000

SUIL -0.644** 0.000

CLSCSS -0.574** 0.002

**=99% confidence, *=95% confidence

170

The ANOVA results for modifiability resulted to a P-value (“Sig” for significance) of

0.005 as shown in Table 7.9. This value is below the prescribed P<0.05, and this is a

strong indication against the null hypothesis, in addition, it shows that the SCSS metrics

means are not equal, therefore, the study concludes that the proposed metrics are good

indicators of modifiability of SCSS code.

Table 7.9: Modifiability Significance with ANOVA

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression 7.758 4 1.940 4.960 .005a

Residual 8.602 22 .391

Total 16.360 26

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity,

Selector Use inheritance Level, Nesting Factor

b. Dependent Variable: Modifiability

7.8.1.3 Relationship between Metrics and Testability

The correlation of SCSS metrics values with testability is shown in Table 7.10. All the

metrics are significantly correlated to the subjects rating of the SCSS code testability. The

ABCCSCSS metric is correlated with testability as shown by the correlation coefficient

value of 0.385 at 95% confidence level. The NFSCSS has a correlation coefficient of -0.703,

SUIL is -0.572, and CLSCSS is -0.734 and are all at 99% confidence level.

171

Table 7.10: Correlation with Testability

SCSS Metrics Correlation Coefficient Sig. (2-tailed)

ABCCSCSS 0.385* 0.048

NFSCSS -0.703** 0.000

SUIL -0.572** 0.002

CLSCSS -0.734** 0.000

**=99% confidence, *=95% confidence

The ANOVA results for testability showed that the P-value (“Sig” for significance) was

0.003 as shown in Table 7.11. This value is below the prescribed P<0.05, meaning the

SCSS metrics means are not equal and its statistically significant. The null hypothesis is

therefore ruled out and the study concludes that the proposed metrics are good indicators

of testability of SCSS code.

Table 7.11: Testability Significance with ANOVA

Model
Sum of
Squares Df Mean Square F Sig.

1 Regression 7.737 4 1.934 5.517 .003a

Residual 7.712 22 .351

Total 15.449 26

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity,

Selector Use inheritance Level, Nesting Factor

b. Dependent Variable: Testability

172

The correlation analysis results showed that ABCCSCSS metric is positively correlated with

understandability, modifiability and testability which is contrary to the results of NFSCSS,

SUIL and CLSCSS which are negatively correlated with subjects rating of

understandability, modifiability and testability.

7.8.2 Objective Results

This objective part of the experiment was performed by the subjects responding to the

questions on understandability, modifiability and testability sections. The subjects were

required to indicate the starting time and ending time i.e. indicate time before tackling

questions on each section and ending time after completing the tasks on each section.

The understanding time, modifying time and testing time for each SCSS file was recorded.

Three data sets were generated by computing the means for understanding time (see

Appendix 4), modifying time (see Appendix 5) and testing time (see Appendix 6) for each

SCSS file. These data sets represented the dependent variable, while the independent

variable i.e metrics values was acquired through SCMT-SCSS tool.

7.8.2.1 Relationship between Metrics and Time to Understand

The correlation of SCSS metrics values with time taken to understand SCSS files is shown

in Table 7.12. All the metrics are significantly correlated to the subjects understanding

time of the SCSS code. The ABCCSCSS metric is negatively correlated with

understandability as shown by the correlation coefficient value of -0.611, while NFSCSS

has a correlation coefficient value of 0.687 and SUIL has a correlation coefficient value

173

of 0.611 at 99% confidence level. The CLSCSS has a correlation coefficient of 0.386 at

95% confidence level.

Table 7.12: Correlation Results with Time to Understand

SCSS Metrics Correlation Coefficient Sig. (2-tailed)

ABCCSCSS -0.611** 0.001

NFSCSS 0.687** 0.000

SUIL 0.611** 0.001

CLSCSS 0.386* 0.047

**=99% confidence, *=95% confidence

The ANOVA results as shown in Table 7.13 indicate that the P-value (“Sig” for

significance) is 0.000. This value is below the prescribed P<0.05, meaning its statistically

significant and the SCSS metrics means are not equal. Therefore, this is a strong indication

against the null hypothesis and the study concludes that in overall the model can predict

the understandability of the SCSS code.

Table 7.13: Understanding time significance with ANOVA

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression 3756261.696 4 939065.424 23.684 .000a

Residual 872277.353 22 39648.971

Total 4628539.049 26

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity,

Selector Use Inheritance Level, Nesting Factor

b. Dependent Variable: Understandability with Time

174

The importance of components is shown in Table 7.14 , Component 1 comprises 70.6%

of the proportion data variance while component 2 comprises 13.7% of the proportionate

variance and cumulatively component 1 and 2 account for 84.3% of variance. Component

3 comprises 8.6% of the proportionate variance and cumulatively component 1,2 and 3

account for 92.9% of model variance. Component 4 comprises 5.1% of the proportionate

variance and cumulatively component 1,2,3 and 4 account for 98.0% of variance.

Component 5 comprises 2.0% of the proportionate variance and cumulatively component

1,2,3,4 and 5 account for 100% of the model variance. The selected level of model

variation for acceptance of factors contributing to the model was 80%. The first and

second component which achieved 84.3%, were chosen for understandability model

variance.

Table 7.14: PCA for Understandability

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Proportion of Variance 0.7059 0.1367 0.0864 0.0510 0.0198

Cumulative Proportion 0.7059 0.8426 0.9291 0.9801 1

The researcher conducted PCA for understandability to determine which of the variables

would be reduced or dropped in the model while retaining as much of the information in

the model as possible. However, from the PCA extraction generated in component 1 and

component 2, as shown in Table 7.15, none of the variables had value of zero. This implies

that all the variables namely, ABCCSCSS, NFSCSS, SUIL and CLSCSS are significant

understandability model predictors.

175

The weights or loading of the various variables are shown in Table 7.15. Each of the

weights are attributed to each of the component. Therefore, the principle component value

for understandability was computed as follows:

PC1=-0.371(ABCC) + 0.502 (NF)+0.418 (SUIL)+0.438 (CL)

PC2=-0.827 (ABCC) + 0.203(NF)-0.406 (SUIL) -0.374 (CL)

Table 7.15: PCA Loadings for Understandability

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
ABCC -0.371 -0.827 0.415

NF 0.502 0.203 0.373 -0.752

SUIL 0.418 -0.406 -0.756 -0.294

CL 0.438 -0.374 0.615 -0.482 0.241

7.8.2.2 Relationship between Metrics and Time to Modify

The correlation of SCSS metrics values with time taken to modify SCSS files is shown in

Table 7.16. All the metrics are significantly correlated to the subjects modifying time of

the SCSS files. The ABCCSCSS metric is negatively correlated with modifiability as shown

by the correlation coefficient value of -0.415 at 95% confidence level, NFSCSS has a

correlation value of 0.633 at 99% confidence level, SUIL has a correlation coefficient

value of 0.472 at 95% confidence level and CLSCSS has a correlation coefficient of 0.385

at 95% confidence level.

176

Table 7.16: Correlation Results with Time to Modify

SCSS Metrics Correlation

Coefficient

Sig. (2-tailed)

ABCCSCSS -0.415* 0.032

NFSCSS 0.633** 0.000

SUIL 0.472* 0.013

CLSCSS 0.385* 0.047

**=99% confidence, *=95% confidence

The ANOVA results are shown in Table 7.17, where P-value (“Sig” for significance) is

0.000. This value is below the prescribed P<0.05, meaning its statistically significant and

is a strong indication against null hypothesis.This study therefore concludes that in overall

the model can predict the modifiability of the SCSS code.

Table 7.17: Modifying Time Significance with ANOVA

Model
Sum of
Squares Df

Mean
Square F Sig.

1 Regression 1365953.575 4 341488.394 10.141 .000a

Residual 740837.406 22 33674.428

Total 2106790.981 26

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity,

Selector Use Inheritance Level, Nesting Factor

b. Dependent Variable: Modifiability with Time

177

The importance of components is shown in Table 7.18, Component 1 comprises 66.7%

of the proportion data variance while component 2 comprises 13.8% of the proportionate

variance and cumulatively component 1 and 2 account for 80.4% of variance. Component

3 comprises 9.1% of the proportionate variance and cumulatively component 1,2 and 3

account for 89.5% of model variance. Component 4 comprises 8.2% of the proportionate

variance and cumulatively component 1,2,3 and 4 account for 97.7% of variance.

Component 5 comprises 2.3% of the proportionate variance and cumulatively component

1,2,3,4 and 5 account for 100% of the model variance. Based on the selected level of

model variation which is 80%, the first and second component were chosen for

modifability model.

Table 7.18: PCA for Modifiability

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Proportion of Variance 0.6665 0.1379 0.0905 0.0818 0.0231

Cumulative Proportion 0.6665 0.8044 0.8949 0.9768 1

The researcher conducted PCA for modifiability to determine which of the variables

would be reduced or dropped in the model while retaining as much of the information in

the model as possible. However, from the PCA extraction generated in component 1 and

component 2, as shown in Table 7.19 none of the variables had zero result. This implies

that all the variables namely, ABCCSCSS, NFSCSS, SUIL and CLSCSS are significant

modifiability model predictors.

178

The weights or loading of the various variables attributed to each of the component are

shown in Table 7.19. Therefore, the principle component value for modifiability was

computed as follows:

PC1=- -0.377(ABCC) + 0.518 (NF)+0.428 (SUIL)+0.443 (CL)

PC2= -0.79 (ABCC) + 0.244(NF)-0.413 (SUIL) -0.412 (CL)

Table 7.19: PCA Loadings for Modifiability

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

ABCC -0.377 -0.79 0.254 0.397 -0.106

NF 0.518 0.244 -0.814

SUIL 0.428 -0.413 0.43 -0.677

CL 0.443 -0.412 -0.667 0.136 0.412

7.8.2.3 Relationship between Metrics and Time to Test

The correlation of SCSS metrics values with time taken to test SCSS files is shown in

Table 7.20. All the metrics are significantly correlated to the subjects testing time of the

SCSS files. The ABCCSCSS metric is negatively correlated with testability as shown by

the correlation coefficient value of -0.584, NFSCSS has a correlation value of 0.789 at 99%

confidence level, SUIL has a correlation coefficient value of 0.494, CLSCSS has a

correlation coefficient of 0.688. All the metrics were found to be correlating at 99%

confidence level.

179

Table 7.20: Correlation Results with Time to Test

SCSS Metrics Correlation Coefficient Sig. (2-tailed)

ABCCSCSS -0.584** 0.001

NFSCSS 0.789** 0.000

SUIL 0.494** 0.009

CLSCSS 0.688** 0.000

**=99% confidence

The ANOVA results for testability of SCSS code indicates that the P-value (“Sig” for

significance) was 0.000 as shown in Table 7.21. This value is below the prescribed

P<0.05, meaning that the defined metrics have no equal means, therefore forming a strong

evidence against the null hypothesis. This study concludes that the metrics can predict the

testability of the SCSS code.

Table 7.21: Testing Time Significance with ANOVA

Model
Sum of
squares Df Mean Square F Sig.

1 Regression 1375713.471 4 343928.368 14.146 .000a

Residual 534887.009 22 24313.046

Total 1910600.480 26

a. Predictors: (Constant), Coupling Level, Average Block Cognitive Complexity,

Selector Use Inheritance Level, Nesting Factor

b. Dependent Variable: Testability with Time

180

The importance of components is shown in Table 7.22, Component 1 comprises 69.5%

of the proportion data variance while component 2 comprises 14.0% of the proportionate

variance and cumulatively component 1 and 2 account for 83.5% of variance. Component

3 comprises 6.8% of the proportionate variance and cumulatively component 1,2 and 3

account for 92.3% of model variance. Component 4 comprises 4.2% of the proportionate

variance and cumulatively component 1,2,3 and 4 account for 96.5% of variance.

Component 5 comprises 3.5% of the proportionate variance and cumulatively component

1,2,3,4 and 5 account for 100% of the model variance. Based on the selected level of

model variation of 80%, the first and second component were chosen for testability model

variance.

Table 7.22: PCA for Testability

 Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Proportion of variance 0.6950 0.1397 0.0884 0.0422 0.0346

Cumulative proportion 0.6950 0.8347 0.9231 0.9653 1

The researcher conducted PCA for testability to determine which of the variables would

be reduced or dropped in the model while retaining as much of the information in the

model as possible. However, from the PCA extraction generated in component 1 and

component 2, as shown in Table 7.23 none of the variables had zero result. This implies

that all the variables namely, ABCCSCSS, NFSCSS, SUIL and CLSCSS are significant

testability model predictors.

181

The weights or loading of the various variables attributed to each of the component are

shown in Table 7.23. Therefore, the principle component value for modifiability can be

computed as follows:

PC1=- -0.382(ABCC) + 0.498 (NF)+0.41 (SUIL)+0.451 (CL)

PC2= -0.787 (ABCC) + 0.143(NF) -0.459 (SUIL) -0.361 (CL)

Table 7.23: PCA Loadings for Testability

 Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

ABCC -0.382 -0.787 0.227 0.405 -0.137

NF 0.498 0.143 -0.851

SUIL 0.41 -0.459 -0.773 0.152

CL 0.451 -0.361 0.547 -0.445 0.411

7.9 Discussion

The researcher investigated the relationship between SCSS metrics and the ratings by

subjects for understandability, modifiability and testability. The researcher further

investigated the relationship between the SCSS metrics and the subjects time to

understand, time to modify, and time to test. The results indicated a strong correlation

between the independent variables and dependent variables in the experiment. This

implies that all the four proposed metrics can be regarded as good predictors of SCSS

code maintainability.

182

The researcher found out that when ABCCSCSS metric value increases, the subjects rating

of understandability, modifiability, testability, and subjects understanding time,

modification time and testing time decreases. On the contrary, for the other three metrics

namely NFSCSS, SUIL and CLSCSS when their values increase, the subjects rating of

understandability, modifiability, testability, and subjects understanding time,

modification time and testing time increases. This means that when ABCCSCSS metric

value increases, the complexity of the code decreases, implying that the time required to

understand, modify and test SCSS code reduces, while when the NFSCSS, SUIL and CLSCSS

metric value increases the complexity of the SCSS code increase, thus increase in time

required to understand, modify and test SCSS code..

The uniqueness of the ABCCSCSS metric means that its high value is desirable, hence

making the SCSS code more understandable, modifiable and testable. However higher

values of NFSCSS, SUIL and CLSCSS are undesirable, because the make SCSS code more

difficult to understand, modify and test.

7.9.1 Implications of Understandability Results

This section discusses the results based on subjects rating of understandability of SCSS

code and subjects understanding time of SCSS code.

7.9.1.1 Relationship between Metrics and Understandability

Results showed strong correlation between the proposed metrics and subjects rating of

understandability. Therefore, the metrics can be used as indicators of the

understandability of SCSS code. The null hypothesis that there is no significant

183

correlation between the two variables was rejected and the alternative hypothesis that

there is significant correlation between the metrics and subjects rating of

understandability of SCSS code was accepted.

The ANOVA results based on the subjects rating of understandability of SCSS files

confirmed that all the proposed metrics can be used to predict the understandability of

SCSS code, meaning that all the proposed metrics didn’t happen by chance.

7.9.1.2 Relationship between Metrics and Time to Understand

Results indicated a strong correlation between the metrics and time to understand. This

experiment confirmed the results of the first experiment which had natural weakness

introduced due to its subjectivity. The null hypothesis that there is no significant

correlation between the two variables was rejected and the alternative hypothesis that

there is significant correlation between the metrics and understanding time of SCSS code

was accepted.

The ANOVA results based on the subjects understanding time of SCSS files further

confirmed that all the proposed metrics can be used to predict the understandability of

SCSS code, meaning that the metrics actually influence understandability as

hypothesized. In addition, the principle component analysis results strongly indicated that

all the proposed metrics are required to fully measure the understandability of SCSS code.

184

7.9.2 Implications of Modifiability Results

This section discusses the results based on subjects rating of modifiability of SCSS code

and subjects modifying time of SCSS code.

7.9.2.1 Relationship between Metrics and Modifiability

 The relationship between the SCSS metrics and modifiability was investigated. Results

showed that all the metrics can serve as SCSS code modifiability predictors. The

correlation coefficients showed that there is strong correlation between the metrics and

modifiability. The null hypothesis that there is no significant correlation between the two

variables was rejected and the alternative hypothesis accepted.

The ANOVA results based on the subjects rating of modifiability of SCSS files confirmed

that all the proposed metrics can be used to predict the modifiability of SCSS code,

meaning that all the proposed metrics didn’t happen by accident.

7.9.2.2 Relationship between Metrics and Time to Modify

Results showed a strong correlation between the metrics and time to modify. This

experiment confirmed the results of subjective data. The null hypothesis that there is no

significant correlation between the two variables was rejected and the alternative

hypothesis accepted.

The ANOVA results based on the subjects modifying time of SCSS files further

confirmed that all the proposed metrics can be used to predict the modifiability of SCSS

185

code, meaning that the metrics actually influence the modifiability of SCSS code as

hypothesized. Finally, the principle component analysis results indicate that the SCSS

metrics ABCCSCSS ,NFSCSS, SUIL and CLSCSS are necessary to fully measure or predict

SCSS code modifiability.

7.9.3 Implications of Testability Results

This section discusses the results based on subjects rating of testability of SCSS code and

subjects testing time of SCSS code.

7.9.3.1 Relationship between Metrics and Testability

The relationship between the SCSS metrics and testability was tested and results showed

that the metrics can strongly predict the testability of SCSS code. The correlation

coefficients showed that there is strong correlation between the metrics and testability.

The null hypothesis that there is no significant correlation between the two variables was

rejected and the alternative hypothesis accepted.

The ANOVA results based on the subjects testing time of SCSS files further confirmed

that all the proposed metrics can be used to predict the testability of SCSS code, meaning

that the metrics didn’t happen by chance.

7.9.3.2 Relationship between Metrics and Time to Test

Results indicated a strong correlation between the metrics and time to test. This

corroborated with the subjective rating of testability. The null hypothesis that there is no

186

significant correlation between the two variables was rejected and the alternative

hypothesis accepted.

The ANOVA results based on the subjects testing time of SCSS files further confirmed

that all the proposed metrics can be used to predict the testability of SCSS code, meaning

that the metrics actually influence testability of SCSS code as hypothesized. In addition,

the principle component analysis results indicate that all the proposed SCSS metrics

ABCCSCSS ,NFSCSS, SUIL and CLSCSS are key requirements to predict SCSS testability.

7.10 Effect of Moderating Variables on the Complexity-Maintainability

Relationship

This study identified two moderating variables which are, number of years of experience

and level of education. These variables were controlled, because all the subjects were

undergraduate students in their fourth year and third year students. This means that all the

subjects have relatively same level of experience in programming and software

engineering field and have similar level of education. Therefore, no further analysis was

done based on these variables.

7.11 Chapter Summary

This chapter presented an experiment that was carried out to investigate the relationship

between the metrics and understandability, modifiability and testability (subjective data),

and the relationship between the metrics and time to understand, modify and test

(objective data). In the subjective part of the experiment, subjects were required to rate

187

the understandability, modifiability and testability of the provided SCSS file. The three

data sets on understandability, modifiability and testability were generated and checked

for correlation with the metrics values collected via metrics tool. Results for subjective

experiment showed a strong correlation at 99% confidence level for NFSCSS, SUIL and

CLSCSS metrics and 95% confidence level for ABCCSCSS metric. The objective experiment

also showed a strong correlation of ABCCSCSS metric, NFSCSS, SUIL metrics with

understanding time at 99% confidence level and CLSCSS metric at 95% confidence level.

There was a strong correlation of ABCCSCSS metric and NFSCSS with modifying time at

99% confidence level and SUIL and CLSCSS metrics at 95% confidence level. Results

showed a strong correlation relationship between the metrics and testing time at 99%

confidence level. This implies that the proposed metrics are strong SCSS code

maintainability predictors. The ANOVA tests were carriried out for both subjective and

objective data. The results showed that the objective data is more reliable to predict the

understandability, modiability and testability of SCSS code in comparison to the

subjective data. The PCA results strongly indicated that all the proposed metrics are

required to predict the maintainability of SCSS code at 80% model variance.

188

CHAPTER EIGHT

SUMMARY, CONCLUSION AND RECOMMENDATIONS

8.1 Summary

This research aimed at defining SCSS structural complexity metrics that can be used to

analyze the maintainability of SCSS code. Maintainability is an important characteristic

of software and it determines the extent to which a software artifact can be understood,

modified and tested. The maintainability of a code becomes difficult as software

complexity increases. Therefore, to control SCSS complexity, four SCSS metrics were

defined. These metrics are Average Block Cognitive Complexity for SCSS (ABCCSCSS),

Nesting Factor for SCSS (NFSCSS), Selector Use Inheritance Level (SUIL) and Coupling

Level for SCSS (CLSCSS). The metrics were derived from SCSS attributes identified

through the SCSS Structural Complexity Attributes Classification Framework. The SCSS

metrics were theoretically and empirically validated. The results showed that there is a

strong relationship between the metrics and subjective rating of SCSS code

understandability, understandability with time, subjective rating of SCSS code

modifiability, modifiability with time, subjective rating of SCSS code testability and

testability with time. This implies that the four SCSS metrics are good predictors of

maintainability of SCSS code.

8.2 Conclusion

This research aimed at defining valid SCSS structural complexity metrics that can then

be useful in determining the maintainability of SCSS code. In order to achieve this, the

research identified four specific objectives.

189

The first specific objective was to determine the attributes of SCSS code that affect its

structural complexity. A literature review study was conducted and based on the gap

identified which is lack of comprehensive framework to identify SCSS structural

attributes, an SCSS structural complexity attributes framework was developed. The

proposed framework was an extension of Muketha’s structural complexity framework,

which identified three types of attributes namely, intra-module attribute, inter-module

attribute and hybrid attribute. The new framework identified a new category of attribute

known as extra-module attribute. In addition, the framework extended every attribute

category. The intra-module attribute was divided into size and control-flow complexity,

the intra-module attribute was categorized into nesting and inheritance complexity, hybrid

complexity identified one category known as association complexity, while the extra-

module attribute has one category under it referred to as information flow complexity.

This framework was presented to several SCSS experts to study it and provide feedback.

The results proved that the proposed framework is relevant to SCSS complexity and that

its able to identify all the SCSS structural complexity attributes

The second specific objective was to define metrics for measuring the structural

complexity of SCSS code. It was found out that there are no existing metrics in literature

that are suitable for SCSS complexity measurement. Therefore, four SCSS metrics were

defined following the SCSS attributes identified in the proposed framework. These four

metrics were, ABCCSCSS, NFSCSS, SUIL and CLSCSS. The ABCCSCSS metric measures the

average cognitive complexity of all SCSS rule blocks in an SCSS file. NFSCSS measures

the extent to which rule nesting has been implemented in the SCSS code. SUIL metric

190

measures the extent to which inheritance has been used in an SCSS code. Lastly, the

CLSCSS metric measures the extent to which rule blocks are coupled with each other. These

metrics were theoretically validated with Weyuker’s properties, and satisfied 7 out of 9

properties. Though not all properties were satisfied, it has been argued that for software

metrics to be regarded as valid, they just need to satisfy most of the Weyuker’s properties

and not necessarily all. This imply that the proposed SCSS metrics are mathematically

sound. The researcher further used Kaner framework to confirm the practicality of the

metrics. This framework requires a response to its 11 questions, and all the questions were

responded to positively and is a proof that the metrics can be applied to a real-life scenario.

The specific objective three was to develop a functional and usable metrics analysis tool

for SCSS metrics computation. In the literature it was found that the development of a

metrics tool is necessary to make the metrics to be appreciated by the software industry.

When there are metrics without tool support, they end up forgotten and not useful for the

software community. Therefore, a metrics tool referred to as SCMT-SCSS was developed

and validated through an experiment. The results indicate that the tool is efficient, that is,

it computes metrics values in much shorter time as compared to manual computation. This

implies that the software designers and programmers will attain metrics values results in

a shorter time and enable them make decisions regarding maintainability of code almost

instantly. The results also indicate that the tool is effective and accurate, meaning the

computed metric values are correct and can be relied on to make conclusions regarding

the complexity of SCSS code. Further results showed that the tool was suitable for the

tasks provided, meaning that the functions provided were good enough to aid in the

191

calculation of SCSS metrics values. Lastly, the results indicated that the tool is operable,

meaning that the tool can be easily operated on to execute the tasks provided. This implies

that the users of the tool can comfortably use it to compute metrics values.

The fourth and final specific objective in this study was to validate the structural

complexity metrics for SCSS. A controlled laboratory experiment was carried out using

between subjects design. The experiment was carried out in two phases to validate the

SCSS metrics namely subjective phase and objective phase. From the experiment

conducted, the results indicate that all the SCSS metrics highly correlate with

maintainability sub-attributes of understandability, modifiability and testability. This

means that all the SCSS metrics can be used to analyze SCSS maintainability. The

ANOVA results in both subjective and objective parts of the experiment strongly indicate

that the SCSS metrics (independent variables) influence the understandability,

modifiability and testability (dependent variables) in the ANOVA analysis. The results

obtained in both the objective and subjective ratings imply that the metrics can be taken

to be good maintainability predictors for SCSS code. Therefore, the SCSS designers and

programmers can use these metrics to measure and control SCSS complexity to achieve

maintainable SCSS code.

8.3 Recommendations for Future Work

This study did not cover some aspects, though desirable because they didn’t form part of

the objectives of this research., this means that more research is required in future.

192

8.3.1 Define Metrics for other CSS Pre-Processors

In this research, four metrics were defined, and they are limited to SCSS language which

is one of the SASS preprocessor syntaxes. This study didn’t cover the .sass syntax, in

addition there are many other preprocessors being used in the software industry such as

less and stylus and there are no complexity metrics defined to measure them. Therefore,

this research proposes that more new metrics to be defined to measure the structural

complexity of CSS and its extensions. This field remains largely unexplored, as the

literature showed that only few CSS metrics exist, and they have not been validated via

theoretical framework to prove their compliance to principles of measurement theory. In

addition, prior to this work there was no single metric proposed for CSS preprocessors.

8.3.2 Extending Structural Complexity Framework

This study proposes an extension of the SCACF-SCSS framework to accommodate the

structural features of .sass syntax of SASS pre-processors and other CSS pre-processors

languages.

8.3.3 Metrics Tool Extension to Recognize Multiple Languages

The researchers propose that the SCMT-SCSS tool to be upgraded to recognize the two

syntaxes of SASS preprocessor i.e. .sass and .scss. This improvement of the tool will make

it useful to all SASS programmers. Further improvements of the metrics tool could also

accommodate CSS syntax and all its preprocessors.

193

8.3.4 Further Metrics Experimentation

This study proved that the proposed SCSS metrics are good for determination of SCSS

maintainability. However, more experimental work will be required to be conducted with

software industry experts. This will enhance the acceptability of the metrics by the SCSS

experts and enable the establishment of credible threshold for maintainability of SCSS

code.

194

REFERENCES

Abreu, F., Goulo, M., & Esteves, R. (1995). Toward the design quality evaluation of
object-oriented software systems. Fifth International Conference on Software
Quality, (pp. 44-57). Austin, Texas, USA.

Abreu, F.B. and Carapuca, R. (1994). Candidate Metrics for Object-Oriented Software

within a Taxonomy Framework. Journal of System Software, Vol. 26, pp. 87–96.

Abreu, Melo, & Abreu, F. B. (1996). Evaluating the impact of Object-Oriented Design

on Software Quality. Proceedings of 3rd International Software Metrics Symp.
Berlin.

Adewumi, A., Emebo, O., Misra, S., & Fernandez, L. (2015). Tool Support for

Cascading Style sheets' Complexity Metrics. Communications in Computer and
Information Science, 551-560.

Adewumi, A., Misra, S., & Ikhu-Omoregbe, N. (2012). Complexity Metrics for

Cascading Style Sheets. In B. Murgante (Ed.), Lecture Notes in Computer
Science (Vol. 7336, pp. 248-257). Springer.

Albrecht, A. J. (1979). Measuring Application Development Productivity. Proccedings

of the Joint IBM/SHARE/GUIDE Application Development Symposium, (pp. 83-
92).

Alghamdi, J. S., Rufai, R. A., & Khan, S. M. (2005, March). OOMeter: A software

quality assurance tool. In Ninth European Conference on Software Maintenance
and Reengineering (pp. 190-191). IEEE.

Almugrin, S., Albattah, W., & Melton, A. (2016). Using indirect coupling metrics to

predict package maintainability and testability. Journal of systems and software,
121, 298-310.

Arar, Ö. F., & Ayan, K. (2016). Deriving thresholds of software metrics to predict faults

on open source software: Replicated case studies. Expert Systems with
Applications, 61, 106-121.

Awode, T. R., Olatinwo, D. D., Shoewu, O., Olatinwo, S. O., Omitola, O. O., &

Adedoyin, M. (2017). Halstead Complexity Analysis of Bubble and Insertion
Sorting Algorithms.

Babbie, E., & Rubin, A. (2008). Research methods for social work. California, USA:

Thomson Brooks/Cole.

195

Babu, P. C., Prasad, A. N., & Sudhakar, D. (2013, August). Software Complexity
Metrics: A Survey. International Journal of Advanced Research in Computer
Science and Software Engineering, 3(8), 1359-1362.

Bagheri, E., & Gasevic, D. (2011). Assessing the maintainability of software product

line feature models using structural metrics. Software Quality Journal, 19(3),
579-612.

Bandi, R.K., Vaishnavi, V.K. and Turk, D.E. 2003. Predicting maintenance performance

using object-oriented design complexity metrics, IEEE Transactions on Software
Engineering 29: 77-87.

Baroni, A. L., & Abreu, F. B. (2003, July). A formal library for aiding metrics
extraction. In International Workshop on Object-Oriented Re-Engineering at
ECOOP.

Basci, D., & Misra, S. (2008). Entropy Metric for XML DTD Documents. ACM

SIGSOFT Software Engineering Notes, 33(4).

Basci, D., & Misra, S. (2009). Data Complexity Metrics for XML Web Services.

Advances in Electrical and Computer Engineering, 9(2).

Basci, D., & Misra, S. (2011a). Entropy as a Measure of Quality of XML Schema

Document. The International Arab Journal of Information Technology, 8(1), 16-
24.

Basci, D., & Misra, S. (2011b). Metrics Suite for Maintainability of XML Web-

Services. IET Software, 5(3), 320-341.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on software engineering,
22(10), 751-761.

Basili, V. R.,(1992) Software modeling and measurement: the Goal/Question/Metric

paradigm.

Bhattacherjee, A. (2012). Social Science Research: Principles, Methods, and Practices
(2nd ed.). Florida, USA: Textbooks Collection.

Bieman, J. M., & Ott, L. M. (1994). Measuring functional cohesion. IEEE transactions

on Software Engineering, 20(8), 644-657.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., & Merritt, M. (1978).

Characteristics of Software Quality. North Holland.

196

Borade, J. G., & Khalkar, V. R. (2013). Software project effort and cost estimation
techniques. International Journal of Advanced Research in Computer Science
and Software Engineering, 3(8).

Briand, L.C., Morasca, S., & Basili, V.R., (1996) “Property-Based Software Engineering

Measurement”.

Bryaman, A. and Bell, E.(2007). Business research methods (15th ed.). Oxford: Oxford
University Press.

Bukhari, Z., Yahaya, J., and Deraman, A. (2015, August.)“Software metric selection

methods: A review”. In Electrical Engineering and Informatics (ICEEI), 2015
International Conference on, IEEE, pp. 433-438,

Canfora, G., García, F., Piattini, M., Ruiz, F. & Visaggio, C.A.(2005,August).A family

of experiments to validate metrics for software process models.Journal of
Systems and Software.Volume 77, Issue 2, Pages 113-129.

Cardoso, J. (2006). Complexity analysis of BPEL Web processes. Software process:

Improvement and Practice Journal, 35-49.

Catlin, H., & Catlin, M. L. (2011). Pragmatic Guide to Sass. (K. Keppler, Ed.) USA:

The Pragmatic Programmers, LLC.

Cederholm, D. (2013). A BOOK APART: Sass for Web Designers. (M. Brown, E.

Kissane, J. Bolton, & T. Lee, Eds.) New York, USA: Jeffrey Zeldman.

Charpentier, A., Falleri, J. R., & Réveillère, L., (2016) October. Automated Extraction

of Mixins in Cascading Style Sheets. In IEEE International Conference on
Software Maintenance and Evolution (ICSME). pp56-66.

Chawla, S. and Nath, R.(2013, July), “Evaluating Inheritance and Coupling Metrics”,

International Journal of Engineering Trends and Technology (IJETT), vol.4, no.7, pp.
2903-2908.

Cherniavsky, J. C., & Smith, C. H. (1991). On Weyuker's axioms for software

complexity measures. IEEE Transactions on Software Engineering, 17(6), 636-
638.

Chhillar, U., & Bhasin, S. (2011). A New Weighted Composite Complexity Measure for

Object-Oriented Systems. International Journal of Information and
Communication Technology Research, 1(3), 101-108.

Chidamber, S. R., & Kemerer, C. F. (1991, November). Towards a metrics suite for

object-oriented design,. In Object Oriented Programming Systems Languages
and Applications, 197-211.

197

Chidamber, S. R., & Kemerer, C. F. (1994, June). A metrics suite for object-oriented

design. IEEE Transactions on Software Engineering, 20(6), 467-493.

Chung, C. and Lee, M.(1992), “Inheritance based Object-Oriented Software Metrics:,

IEEE Region 10 Conference. Melbourne, Australia.

Cohen, L., Manion. L., & Morrison, K. (2011). Research methods in education. London:
Routledge.

Creswell, J. W. (2014). The selection of a research approach. Research design:

Qualitative, quantitative, and mixed methods approaches, 3-24.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., & Love, T. (1979). Measuring

the psychological complexity of software maintenance tasks with the Halstead
and McCabe metrics. IEEE Transactions on software engineering, (2), 96-104.

Darcy, D. P., Slaughter, S., Kemerer, C. F.(2005). “The structural complexity of software:

An experimental test”. IEEE Transactions on software engineering, vol. 31, no. 11.

Daud N. M. and Kadir W. M.(2014, September). “Static and Dynamic Classifications for

SOA Structural Attributes Metrics”, Software Engineering Conference (MySEC),
2014 8th Malaysian. IEEE, pp. 130-135.

Debbarma, M. K., Debbarma, S., Debbarma, N., Chakma, K., & Jamatia, A. (2013,

March). A Review and Analysis of Software Complexity Metrics in Structural
Testing. International Journal of Computer and Communication Engineering,
2(2), 129-133.

Dempsey, B. (2003) Target your brand. Library journal, 129(13):32.

Denaro, G., Lavazza, L., & Pezze, M. (2003, November). An empirical evaluation of

object oriented metrics in industrial setting. In The 5th CaberNet Plenary
Workshop, Porto Santo, Madeira Archipelago, Portugal.

Dhawan, S., & Kiran. (2012). Software Metrics – A Tool for Measuring Complexity.

International Journal of Software and Web Sciences (IJSWS), 2(1), 4-7.

Dromey, R. G. (1995). “A model for software product quality,” IEEE Transactions on

Software Engineering, 21:146-162

Dubey, S.K & Soumi Ghosh & Ajay Rana. (2012). “Comparison of Software Quality

Models: An Analytical Approach,” International Journal of Emerging
Technology and Advanced Engineering, Volume 2, Issue 2, pp 111-119

198

Dufour, B., Driesen, K., Hendren, L., & Verbrugge, C. (2003, October). Dynamic
metrics for Java. In ACM SIGPLAN Notices, 38(11), 149-168.

 eAbreau, F.B., Carapuça, R.(1994,October) "Object-orientated software engineering:

measuring and controlling the developmentprocess", Proc. 4th Int. Conf. On
Software Quality, McLean, VA, USA.

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical

methods for software engineering research. In Guide to advanced empirical
software engineering (pp. 285-311). Springer, London.

El Emam, K., Melo, W., & Machado, J. C. (2001). The prediction of faulty classes using

object-oriented design metrics. Journal of Systems and Software, 56(1), 63-75.

Falah, B., and Magel, K (2015). “Taxonomy Dimensions of Complexity Metrics”. Int'l

Conf. Software Eng. Research and Practice.

Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., & Oivo, M.

(2018). Empirical software engineering experts on the use of students and
professionals in experiments. Empirical Software Engineering, 23(1), 452-489.

Fenton N., and Pfleeger, S. L.(1997). “Software Metrics: A Rigorous and Practical

Approach”, 2nd Edition, IT Publishing Company,.

Fenton, N. (1994). Software measurement: a necessary scientific basis. IEEE

Transactions on Software Engineering, 199-206.

Fenton, N. and Bieman, J. (2014). “Software Metrics: A Rigorous and Practical

Approach”, 3rd Edition, Chapman & Hall/CRC Innovations in Software Engineering
and Software Development Series,.

Frain, B. (2013). Sass and Compass for Designers. Birmingham, UK: Packt Publishing.

Genero, M., Manso, E., & Cantone, G. (2003). Building UML Class Diagram

Maintainability Prediction Models Based on Early Metrics. Proc. 9th
International Symposium on Software Metrics(METRICS '03), (pp. 263-275).

Genero, M., Manso, E., Visaggio, A., Canfora, G., & Piattini, M. (2007). Building

measure-based prediction models for UML class diagram maintainability.
Empirical Software Engineering, 12(5), 517-549.

Ghosheh, E., Black, S., & Qaddour, J. (2008). Design metrics for web application

maintainability measurement. IEEE/ACS International Conference on Computer
Systems and Applications (pp. 778-784). Doha: IEEE.

199

Gill, N. S., & Sikka, S. (2011). Correlating Dimensions of Inheritance Hierarchy with
Complexity & Reuse. International Journal on Computer Science and
Engineering (IJCSE), 3(9), 3250-3253.

Gupta, R. (2015). LI metrics which predicts maintainability. International Journal of

Engineering Technology and Computer Research, 3(3). Retrieved from
http://ijetcr.org/index.php/ijetcr/article/view/171

Gursaran. (2001). Viewpoint representation validation: a case study on two metrics from

the Chidamber and Kemerer suite. Journal of Systems and Software, 59(1), 83-
97.

Halstead, M. H. (1977). Elements of Software Science. New York: Elsevier North-

Holland.

Hammersley, M. (2013). What is Qualitative Research? London and New York:

Bloomsburry.

Harrison, R., Counsell, S., & Nithi, R. (1997, July). An overview of object-oriented

design metrics. In Proceedings Eighth IEEE International Workshop on Software
Technology and Engineering Practice incorporating Computer Aided Software
Engineering (pp. 230-235). IEEE.

Harrison, W., Magel, K., Kluczny, R., & Dekok, A. (1982). Applying Software

Complexity Metrics to Program Maintenace Compute. 15, 65-79.

Henderson-Sellers, B.(1996).“Object Oriented Metrics: Measures of Complexity”,

Prentice Hall, Upper Saddle River, NJ.

Henley, C., (2015) Better CSS with Sass. UK: Five Simple Steps. ISBN: 978-3-863730-

81-9

Henry,S., and Kafura, D.(1984). The evaluation of software systems structure using

quantitative software metrics. Software:Practice and Experience, 14(6), 561-573.

Hissom, A. (2011). (MIT) Retrieved September 13, 2016, from

http://amyhissom.com/HTML5-CSS3/history.html

IEEE . (1998). Std. 1061-1998 IEEE Computer Society: Standard for Software Quality

Metrics Methodology.

IEEE Std. 610.12-1990. (1993). Standard Glossary of Software Engineering

Terminology. Los Alamito, CA: IEEE Computer Society Press.

Imenda, S. (2014). Is there a conceptual difference between theoretical and conceptual

frameworks?. Journal of Social Sciences, 38(2), 185-195.ISBN: 013179292X.

200

ISO, International Organization for Standardization (2001) "ISO 9126-1:2001, Software
engineering-Product quality, Part 1: Quality model",

ISO/ IEC CD 25010. (2008). Software Engineering: Software Product Quality

Requirements and Evaluation (SQuaRE) Quality Model and guide. International
Organization for Standardization, Geneva, Switzerland.

Kandpal, M., & Kandpal, A. (2012). Critical Analysis of Traditional Size Estimation

Metrics for Object Oriented Programming. International Journal of Computer
Applications, 58(13).

Kaner, C. (2004). Software Engineering Metrics:what do they measure and how do we

know? In:Proc. Tenth Int. Software Metrics Symp.,Metrics, (pp. 1-10).

Kaur, S., & Maini, R. (2016). Analysis of various software metrics used to detect bad

smells. Int J Eng Sci (IJES), 5(6), 14-20.

Khan, A. A., Mahmood, A., Amralla, M. S., & Mirza, T. H. (2016, January).

Comparison of Software Complexity Metrics. International Journal of
Computing and Network Technology, 4(1), 19-26.

Kiewkanya, M., Jindasawat, N., & Muenchaisri, P. (2004). A Methodology for

Constructing Maintainability Model of Object-Oriented Design. Proc. 4th
International Conference on Quality Software (pp. 206-213). IEEE Computer
Society.

Ko, A. J., Latoza, T. D., & Burnett, M. M. (2015). A practical guide to controlled

experiments of software engineering tools with human participants. Empirical
Software Engineering, 20(1), 110-141.

Kocaguneli, E., Tosun, A., Bener, A. B., Turhan, B., & Caglayan, B. (2009, July). Prest:

An Intelligent Software Metrics Extraction, Analysis and Defect Prediction Tool.
In SEKE (pp. 637-642).

Koh, T. W., Selamat, M. H., Ghani, A. A. A., & Abdullah, R. (2008). Review of

complexity metrics for object oriented software products. International Journal of
Computer Science and Network Security, 8(11), 314-320.

Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age

International.

Kumar, L., Naik, D.K. and Rath, S.K. (2015) ‘Validating the effectiveness of object-

oriented metrics for predicting maintainability’, Procedia Computer Science,
Vol. 57, pp.798–806

201

Kumar, R. (2011). Research methodology: A step-by-step guide for beginners. Los
Angeles: SAGE.

Kushwaha, D. S., & Misra, A. K. (2006, September). Improved Cognitive Information

Complexity Measure: A Metric that establishes Program Comprehension Effort.
SIGSOFT Software Engineering Notes, 31(5), 1-7.

Laird, L. M., & Brennan, M. C. (2006). Software measurement and estimation: a

practical approach (Vol. 2). John Wiley & Sons.

Landis,J.R.,Koch,G.G.,1977.The measurement of observer agreement for categorical

data. Biometrics 33(1),159–174

Li, E. Y.(1987). “A measure of program nesting complexity” National Computer

Conference, San Luis Obispo, California, pp. 531-538.

Li, W. (1998). Another metric suite for object-oriented programming. Journal of

Systems and Software, 44(2), 155-162.

Li, W., & Henry, S. (1993). Object-oriented metrics that predict maintainability. The

Journal of Systems and Software, 23(2), 111-122.

Libakova, N. M., & Sertakova, E. A. (2015). The method of expert interview as an

effective research procedure of studying the indigenous peoples of the north.

Lie, H. W., & Bos, B. (2005). Cascading Style Sheets:Designing for the Web (3rd ed.).

Boston, MA,USA: Addison-Wesley Professional.

Liehr P, Smith MJ 1 99 9. Middle range theory: Spin-ning research and practice to

create knowledge forthe new millennium. Advances in Nursing Science, 2 1(4):
81 -91 .

Lincke, R., Lundberg, J., & Löwe, W. (2008). Comparing software metrics tool. In

proceedings of the 2008 international symposium on Software testing and
analysis (pp. 131-142). ACM.

Linos, P., Lucas, W., Myers, S., & Maier, E. (2007, November). A metrics tool for multi-

language software. In Proceedings of the 11th IASTED International Conference on
Software Engineering and Applications (pp. 324-329). ACTA Press.

Littlefair, T. (2001). An investigation into the use of software code metrics in the

industrial software development environment. Retrieved from
https://ro.ecu.edu.au/theses/1508

Lorenz, M. & Kidd, J.(1994). Object-Oriented Software Metrics. Prentice Hall.

202

Lu, Y., Mao, X., & Li, Z. (2016). Assessing software maintainability based on class
diagram design: A preliminary case study. Lecture Notes on Software
Engineering, 4(1), 53.

Madi, A., Zein, O. K., & Kadry, S. (2013). On the improvement of cyclomatic

complexity metric. International Journal of Software Engineering and Its
Applications, 7(2), 67-82.

Maheswaran, K., & Aloysius, A. (2018a). Cognitive weighted inherited class complexity

metric. Procedia Computer Science, 125, 297-304.

Maheswaran, K., & Aloysius, A. (2018b). An Interface based Cognitive Weighted Class

Complexity Measure for Object Oriented Design. International Journal of Pure and
Applied Mathematics, 118(18), 2771-2778.

Manso, M. E., Cruz-Lemus, J. A., Genero, M., & Piattini, M. (2008, September).

Empirical validation of measures for UML class diagrams: A meta-analysis study. In
International Conference on Model Driven Engineering Languages and Systems (pp.
303-313). Springer, Berlin, Heidelberg.

Marco, T. D. (1982). Controlling software projects. New York: Prentice Hall.

Marden, P. M., & Munson, E. V. (1999). Today's Style Sheet Standards: The Great

Vision Binded. Computer.

Martinsons, M., Davison, R., & Tse, D.,(1999) The balanced scorecard: a foundation for

the strategic management of information systems. Decision support systems, Vol
25, No.1, pp71-88.

Mazinanian, D. and Tsantalis, N. (2016, March). “An empirical study on the use of CSS
preprocessors”. In 2016 IEEE 23rd international conference on Software Analysis,
Evolution, and Reengineering (SANER), pp.168-178.

McCABE, T. J. (1976, December). A Complexity Measure. IEEE Transactions on

software engineering, se-2(4), 308-320.

McCall, J.A., Richards,P.K., and Walters, G.F.(1977) "Factors in Software Quality", Nat'l

Tech Information Service, no. Vol.1,2 and 3,

McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., & Hall, F. (2002).

Practical software measurement: objective information for decision makers.
Boston: Addison-Wesley.

Mens, T. (2016) “Research trends in structural software complexity”. arXiv preprint

arXiv:1608.01533.

203

Mesbah, A., & Mirshokraie, S. (2012, June). Automated analysis of CSS rules to support
style maintenance. In Proceedings of the 34th International Conference on Software
Engineering (pp. 408-418). IEEE Press.

Miguel, J. P., Mauricio, D., & Rodríguez, G. (2014). A review of software quality

models for the evaluation of software products. arXiv preprint arXiv:1412.2977.

Mishra, D. (2012). New Inheritance Complexity Metrics for Object-Oriented Software

Systems: An Evaluation with Weyuker's Properties. Computing and Informatics,
30(2), 267-293.

Mishra, S. and Sharma, A. (2015) ‘Maintainability prediction of object oriented software

by using adaptive network based fuzzy system technique’, International Journal of
Computer Applications, Vol. 119, No. 9

Misra S. and Cafer, F.(2012, November) “Estimating Quality of JavaScript” The

International Arab Journal of Information Technology, vol. 9, no.6, pp. 535-543.

Misra, S. , Adewumi, A. , Fernandez-Sanz, L. & Damasevicius, R .,(2018) A Suite of

Object Oriented Cognitive Complexity Metrics. IEEE Access, Vol. 6, pp8782-8796.

Misra, S., & Cafer, F. (2012, November). Estimating Quality of JavaScript. The

International Arab Journal of Information Technology, 9(6), 535-543.

Misra, S., Akman, I., & Koyuncu, M. (2011, June). An inheritance complexity metric

for object-oriented code: A cognitive approach. Indian Academy of Sciences,
36(3), 317-337.

Mohajan, H. K. (2017). Two criteria for good measurements in research: Validity and

reliability. Annals of Spiru Haret University. Economic Series, 17(4), 59-82.

Morasca, S.(2015). “Rethinking Software Attribute Categorization”. 6th International
Workshop on Emerging Trends in Software Metrics. IEEE. pp. 31-34,. DOI
10.1109/WETSoM.2015.8

Morasca, S., and Briand, L. C.(1997, November) “Towards a theoretical framework for

measuring software attributes”, In proceedings Fourth International Software Metrics
Symposium, IEEE, pp. 119-126.

Mugenda, O. M., & Mugenda, A. G. (2003). Research methods. Quantitative and

Qualitative.

Muketha, G. M. (2011). “Size and Complexity Metrics as Indicators of Maintainability of

Business Process Execution Language Process Models”, Doctoral dissertation,

204

Muketha, G.M., Ghani, A.A.A., Selamat, M.H. & Atan, R, (2010a) Complexity Metrics
for Executable Business Processes. Information Technology Journal, Vol. 9, No.
7, pp1317-1326.

Muketha, G. M., Ghani, A. A. A., Selamat, M. H., & Atan, R, (2010b) A Survey of
Business Process Complexity Metrics. Information Technology Journal, Vol 9,
No. 7, pp1336-1344.

Myers, M.D. and Avison, D. (2002). Qualitative Research in Information Systems. MIS
Quarterly. 22(2), 241-242.

Naderifar, M., Goli, H., & Ghaljaie, F. (2017). Snowball sampling: A purposeful method

of sampling in qualitative research. Sdmej, 14(3).

Neelamegam, C., & Punithavalli, M. (2009). A survey-object oriented quality metrics.

Global Journal of Computer Science and Technology, 9(4), 183-186.

Netherland, W., Eppstein, C., Weizenbaum, N., & Mathis, B. (2013). Sass and Compass

in Action. (S. Stirling, & A. Carroll, Eds.) New York, USA: Manning
Publications Co.

Nunnally, J. C. (2008)., Psychometric theory (2nd ed.). New York: McGrawHill

Ogheneovo, E. E. (2014, December). On the Relationshipbetween Software Complexity

and Maintenance Costs. Journal of Computer and Communications, 2, 1-16.

Parthasarathy, S., and Anbazhagan, N. (2006). Analyzing the software quality metrics for

object oriented technology. Inform. Technol. J, 5, 1053-1057.

Praveen, S., Agarwal, D., & Srivastava, A. (2018). Literature survey on object oriented

function point: a reusability metrics. International Journal of Advanced
Research in Computer Science, 9(Special Issue 2), 152.

Ramasubbu, N. and Kemerer, C. F.(2012) “Structural Complexity and Programmer Team

Strategy: An Experimental Test”, IEEE Transactions on software engineering, vol.
38, no. 5.

Rea, A., & Rea, W. (2016). How Many Components should be Retained from a

Multivariate Time Series PCA?. arXiv preprint arXiv:1610.03588.

Remenyi D., SAGE Publications Ltd; 1 edition. Doing Research in Business and

Management 1st Edition September 14, 1998

Rietveld, T., & Van Hout, R. (2011). Statistical techniques for the study of language and

language behaviour. Walter de Gruyter.

205

Riguzzi, F.(1996). A survey of software metrics. Università degli Studi di Bologna.

Rizvi, S. W., & Khan, R. A. (2010, April). Maintainability Estimation Model for

Object-Oriented Software in Design Phase(MEMOOD). Journal of Computing,
2(4).

Saini, S., Sharma, S., & Singh, R. (2015, December). Better utilization of correlation

between metrics using Principal Component Analysis (PCA). In 2015 Annual
IEEE India Conference (INDICON) (pp. 1-6). IEEE.

Salman, I., Misirli, A. T., & Juristo, N. (2015, May). Are students representatives of

professionals in software engineering experiments?. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering (Vol. 1, pp. 666-676).
IEEE.

Saunders, M., Lewis, P. and Thornhill, A., 2012. Research methods for business

students.6th edition, Pearson Education Limited.

Serrano, M., Calero, C., Trujillo, J., Luján-Mora, S., & Piattini, M. (2004, June).

Empirical validation of metrics for conceptual models of data warehouses. In
International Conference on Advanced Information Systems Engineering (pp.
506-520). Springer, Berlin, Heidelberg.

Shaik, A., Reddy, C. R. K., & Damodaram, A. (2012). Object oriented software metrics

and quality assessment: Current state of the art. International Journal of
Computer Applications, 37(11), 6-15.

Sharma, N., Joshi, P., & Joshi, R. K. (2006). Applicability of Weyuker's Property 9 to

object oriented metrics. IEEE Transactions on Software Engineering, 32(3),
209-211.

Spinellis, D.: Tool writing: a forgotten art?, IEEE Software, vol. 22, (2005) 9-11

Srinivasan, K.P. and Devi, T.(2014, November). Software metrics validation

methodologies in software engineering. International Journal of Software
Engineering & Applications (IJSEA), Vol.5, No.6.

Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM

Systems Journal, 13(2), 115-139.

Sullivan M.(2015), Fundamentals of Statistics, Upper Saddle River, NJ: Pearson

Education, Inc., pp. 382-383.

206

Tamayo, A., Granell, C., & Huerta, J., (2011) Analysing complexity of XML schemas in
geospatial web services. In Proceedings of the 2nd international conference on
computing for geospatial research & applications. ACM. pp17.

Thaw, T., & Misra, S. (2013) Measuring the Reusable Quality for XML Schema
Documents. Acta Polytechnica Hungarica, Vol. 10, No.4, pp87-106.

Tomar, A. B., & Thakare, V. M. (2011). A systematic study of software quality models.
International Journal of Software Engineering & Applications, 2(4), 61.

Törn, A., Andersson, T. and Enholm, K. 1999. A complexity metrics model for software,

South African Computer Journal 24: 40-48.

Verner, J., & Tate, G. (1992). A software size model. IEEE Transaction on Software
Engineering, 18(4).

Vinobha, A., Velan, S., & Babu, C. (2014, May). Evaluation of reusability in aspect

oriented software using inheritance metrics. In 2014 IEEE International
Conference on Advanced Communications, Control and Computing
Technologies (pp. 1715-1722). IEEE.

Weyuker, E. J. (1988). Evaluating software complexity measure. IEEE Transaction on

Software Engineering, 14(9), 1357-1365.

Whitfield, D., Ruddock M. and Bullman, R.(2008) “Expert opinion as a tool for

quantifying bird tolerance to human disturbance”. Journal of Biological
Conservation, vol. 141, pp 2708-2717.

Wohlin, C., Runeson, P., Höst, M., Olsson, M.C., Regnell, B. and Wesslén, A. 2000.

Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers.

Wolf, A. (2009). Subjectivity, the researcher and the researched. Operant Subjectivity:
The International Journal of Q Methodology, 32, 6-28.

Yamane, T. (1967). Statistics: An Introductory Analysis (2nd ed.). New York: Harper
and Row.

207

APPENDICES

208

APPENDIX 1: EXPERT OPINION QUESTIONNAIRE FOR VALIDATING THE

STRUCTURAL COMPLEXITY ATTRIBUTES FRAMEWORK

JOHN GICHUKI NDIA
P.O. BOX 75-10200
MURANG’A, KENYA.
Email: ndiajg@gmail.com

RE: LETTER OF INTRODUCTION

I am a PhD (Information Technology) student at Masinde Muliro University of Science
and Technology Kenya carrying out a study on Structural Complexity Attributes for
Sassy Cascading Style Sheets.

The aim of this questionnaire is to seek for your opinion as an expert concerning the
Relevance and Comprehensiveness of the attached SASSY CSS COMPLEXITY
ATTRIBUTE CLASSIFICATION FRAMEWORK. The attributes classification scheme
is informed by the internal structure of Sassy CSS code (i.e. the elements within a rule-
block and how they are related to each other).

NB: The data collected in this exercise is for research purposes only and will therefore be
treated with strict confidentiality.

Kindly follow the link below to provide your responses.

Your participation in this study as a respondent is highly appreciated.

John Gichuki Ndia
Student Registration Number:
SIT/LH/004/2015

Survey Link

209

A. Personal Information

i) Please state your highest academic qualification.

a) Bachelor’s Degree b) Master’s Degree c) PhD

d) Other

ii) Kindly indicate your years of industry experience.

iii) How do you rank your knowledge of Software Engineering processes? Please tick

appropriately.

iv) How do you rank your knowledge of Sassy cascading style sheets (SCSS)? Please

tick appropriately.

B. Relevance of the Classification Framework

i) It has been argued that SCSS code is more complex (i.e. it requires more

time to understand and implement it) as compared to CSS because it has

more features. This necessitates development of an attribute classification

framework that will enable researchers to measure and control SCSS code

complexity. Please indicate your level of agreement by ticking () in the

appropriate boxes

0 – 1 2 – 3 4- 5 6 – 7 Above 7

Very Low Low Moderate High Very high

Very low Low Moderate High Very high

210

ii) The framework attached has been developed for the purpose of identifying

the factors that contribute to Sassy CSS complexity. Please rate the extent

to which you agree the framework is useful in identifying these factors.

C. Comprehensiveness of the Classification Framework

i) It has been argued that the following eight (8) SCSS features as presented in the

table below and in the attached framework could increase SCSS code complexity

(difficult to understand and modify) if overly and improperly used. Please indicate

your level of agreement by ticking () in the appropriate boxes.

Don’t agree Slightly agree Agree Strongly
agree

Very Strongly
agree

Don’t agree Slightly agree Agree Strongly
agree

Very Strongly
agree

 SCSS features Don’t
agree

Slightly
agree

Agree Strongly
agree

Very
Strongly
agree

1. Global
variables

2. Declarations
/Attributes

3. Operators

4. Control
directives

5. Functions
6. Mixins
7. Extend

directives

8. Nesting

211

ii) In your opinion, do you think the eight features captured in the table above have

sufficiently covered all the possible complexity-causing factors in Sassy CSS?

a) Yes b) No

iii) If no, list any other features that in your opinion has not been covered.

NB: The SCSS Structural Complexity Attributes Classification Framework was attached

with the guideline on interpretation of the framework

Thank you for your time and responses

212

APPENDIX 2: METRICS VALIDATION EXPERIMENT QUESTIONNAIRE

Purpose:
The purpose of this exercise is to investigate the relationship between your rating of
complexity of each of the SCSS file provided and the SCSS metrics values. In addition
the relationship between the understanding time, modification time and testing time of the
files provided and the SCSS metrics values will be investigated.

Please answer ALL questions. There is no right or wrong answers. If you are unsure of
some question, simply indicate your best from the provided options. You are required to
tick () the appropriate box where applicable. You will also be required to record certain
measurements in the spaces provided.

Please read all questions carefully before answering. You are given two hours to complete
your task. Please return the completed forms to me when you are through.

Note: The data collected in this exercise is for research purposes only, and will therefore
be treated with strict confidentiality. The returned dully completed forms will be
destroyed upon completion of the research project.

Thank you very much for participating in this study.

John Gichuki Ndia
PhD student
Department of Information Technology
Masinde Muliro University of Science and Technology

Please fill up the information below:

Name: ...

Programme of study: ..

Year of study: ...

Cell Phone No: ...

Email Address: ...

213

Background knowledge on Sassy Cascading Style Sheet Evaluation

Please complete this section by ticking () as appropriate.

1. How many programming languages have you covered in your course of study?

 0 – 2 3 – 4 5 – 6 years Above 7

2. How many software engineering courses have you taken?

 None 1-4 courses More than 4 courses

3. Which features of Sassy Cascading Style Sheets (SCSS) can you comfortably use.

 Global variables Mixins Nesting

 Extends/Inheritance Functions Control directives

Operators Use of Declarations/attributes

Opinion on the understandability of each of the SCSS file provided

Write the time before you start to observe the SCSS Code File (starting time) in hh:mm:ss,
and the time after you rate the SCSS Code File (ending time) in hh:mm:ss.

1. You are required to enter the name of the SCSS file attached to this question and

then rate its understandability by ticking () as appropriate.

Definition: Understandability is how easy it is to comprehend an SCSS code.

SCSS File No. Very
difficult

(1)

Difficult
(2)

Moderately
difficult (3)

Easy
(4)

Very easy
(5)

Opinion on the modifiability of each of the SCSS file provided

2. You are required to enter the name of the SCSS file attached to this question
and then rate its modifiability by ticking () as appropriate.

214

Definition: Modifiability is how easy it is to incorporate changes to an SCSS code.

SCSS File No. Very
difficult

(1)

Difficult
(2)

Moderately
difficult (3)

Easy
(4)

Very easy
(5)

Opinion on the testability of each of the SCSS file provided

3. You are required to enter the name of the SCSS file attached to this question
and then rate its testability by ticking () as appropriate.

Definition: Testability is how easy it is to identify errors or faults in an SCSS code.

SCSS File No. Very
difficult

(1)

Difficult
(2)

Moderately
difficult (3)

Easy
(4)

Very easy
(5)

Understandability questions

Definition: Understandability is how easy it is to comprehend an SCSS code.

1. Write the time before you start to observe the SCSS Code File (starting time)
in hh:mm:ss, and the time after you answer the questions (ending time) in
hh:mm:ss.

Starting time (hh:mm:ss) ________

Answer the following questions in the space provided

i. Identify one of the mixins defined and indicate how many times it has been
used in the SCSS file?-------------------------------

ii. In which element(s) and/or selectors has inheritance been implemented?------

Ending time (hh:mm:ss) ________

215

Modifiability questions
Definition: Modifiability is how easy it is to incorporate changes to an SCSS code.

2. Write the time before you start to observe the SCSS Code File (starting time)
in hh:mm:ss, and the time after you answer the questions (ending time) in
hh:mm:ss.

Starting time (hh:mm:ss) ________

Make the necessary changes to the SCSS file provided based on the following
requirements.
You should write the SCSS codes in the space provided

i. You are required to ensure all the links change to color green and are
underlined when you hover on them.

ii. You are required to define a mixin named Common that has three
declarations/attributes i.e padding:2px, margin-left:5px and position:relative
The mixin should be included in all the existing body, heading 4, table, form
and list element selectors in the SCSS file.

Ending time (hh:mm:ss) ________
Testability questions

Definition: Testability is how easy it is to identify errors or faults in an SCSS code.

3. Write the time before you start to observe the SCSS Code File (starting time)
in hh:mm:ss, and the time after you answer the questions (ending time) in
hh:mm:ss.

Starting time (hh:mm:ss) ________

Indicate the errors identified in the SCSS file.

You should write the SCSS codes in the space provided

i. Identify the errors in the SCSS file based on the first global variable declared.
ii. In the nesting of selectors, some situations require one to select parent

selectors. The selection uses ampersand symbol (&). Identify in the SCSS file
where the parent selector has not been well implemented.

Ending time (hh:mm:ss) ________

216

APPENDIX 3: SCSS Complexity Metrics Values

SCSS File No. ABCCSCSS NFSCSS SUIL CLSCSS
1 3.01 1794 0.01 0.44
2 3.3 702 0 0
3 3.26 6466 0.04 0.29
4 2.17 15125 0 0.05
5 4.48 56 0.05 0.17
6 3.38 9890 0.09 0.12
7 2.04 33600 0.05 1.4
8 3.69 152 0 0.13
9 2.49 14097 0.06 0.22

10 3.18 2535 0.03 0.26
11 2.76 323 0 0
12 2.29 6958 0.06 0.2
13 2.33 36411 0.1 1.5
14 3.05 930 0 0.16
15 2.89 2511 0.03 0.07
16 1.89 44384 0.13 1.75
17 2.99 984 0 0.83
18 2.86 6348 0 0.16
19 2.36 11152 0.03 0.53
20 4.19 126 0 0
21 3.1 2482 0.06 1.33
22 2.46 7200 0.04 0.36
23 2.47 2050 0 0
24 2.69 5624 0.06 0.15
25 2.28 64 0.07 0.06
26 3.27 702 0 0
27 2.27 6958 0.06 0.2

217

APPENDIX 4: TIME TO UNDERSTAND SCSS FILE

SCSS File No. Time to Understand SCSS File (Seconds)
1 417
2 474.5
3 955
4 1238
5 232.5
6 621
7 1306.5
8 416.67
9 1069.5

10 662.33
11 539.67
12 641
13 1504
14 365.67
15 832.67
16 1925
17 377
18 536.33
19 482
20 126
21 710.67
22 366
23 417
24 775
25 713
26 130
27 650

218

APPENDIX 5: TIME TO MODIFY SCSS FILE

SCSS File No. Time to Modify SCSS File(Seconds)
1 567
2 636.5
3 967
4 1302.5
5 613
6 636.5
7 1024.5
8 658.67
9 903.33

10 813
11 539.67
12 903.33
13 1289
14 640
15 385.33
16 1410
17 354.67
18 567
19 567
20 232.5
21 640
22 715
23 420
24 760
25 620
26 823
27 758

219

APPENDIX 6: TIME TO TEST SCSS FILE

SCSS File No. Time to Test SCSS File (Seconds)
1 571
2 670
3 953
4 1141.5
5 468.33
6 648.5
7 1197
8 689.67
9 955

10 775
11 485.33
12 775
13 1302.5
14 658.67
15 670
16 1306.5
17 847
18 518
19 934
20 222
21 867
22 866.33
23 420
24 760
25 613
26 583.33
27 1069.33

220

APPENDIX 7: EXPERIMENT QUESTIONNAIRE FOR VALIDATING THE
METRICS TOOL

Purpose:
The purpose of this exercise is to investigate the efficiency, accuracy, functionality and
usability of the Structural Complexity Metrics Tool (SCMT) for SCSS.

Please answer ALL questions. There is no right or wrong answers. If you are unsure of
some question, simply indicate your best from the provided options. You are required to
tick () the appropriate box where applicable. You will also be required to record time
taken to compute metrics values for SCSS files in the spaces provided.

Please read all questions carefully before answering. You are given one hour to complete
your task. Please return the completed forms to me when you are through.

Note: The data collected in this exercise is for research purposes only, and will therefore
be treated with strict confidentiality. The returned dully completed forms will be
destroyed upon completion of the research project.

Thank you very much for participating in this study.

John Gichuki Ndia
PhD student
Department of Information Technology
Masinde Muliro University of Science and Technology

Please fill up the information below:

Name: ...

Programme of study: ..

Year of study: ...

Cell Phone No: ...

Email Address: ...

221

A. Manual Collection of SCSS metrics in the SCSS file provided

 Write the time before you start to count the metrics in SCSS File (starting time)
n mm:ss, and the time after you count the metrics in the SCSS File (ending
time) in mm:ss.

Starting time (mm:ss) ________

 Fill in the metrics value in the table based on the manual count of the metrics

FILE NO:

Base Metrics

S.No. Metrics Metrics
Value

1 Number of Regular Attributes

2 Number of Operators

3 Number of Decision Nodes

4 Number of function calls

5 Number of Mixins Defined

6 Number of Mixin calls

7 Number of extend directives

8 Number of selectors

9 Number of SCSS Blocks

10 Number of Variables Defined

11 Number of Variables Instances

Derived Metrics

1 Average Block Cognitive Complexity

2 Nesting Factor

3 Selector Use Inheritance Level

4 Coupling Level

Ending time (mm:ss) ________

222

B. Automated Collection of SCSS metrics in the SCSS file provided

 Write the time before you start to count the metrics in SCSS File (starting time)
n mm:ss, and the time after you count the metrics in the SCSS File (ending
time) in mm:ss.

Starting time (mm:ss) ________

 Fill in the metrics value in the table based on the automated count of the
metrics

FILE NO:

Base Metrics

S.No. Metrics Metrics
Value

1 Number of Regular Attributes

2 Number of Operators

3 Number of Decision Nodes

4 Number of function calls

5 Number of Mixins Defined

6 Number of Mixin calls

7 Number of extend directives

8 Number of selectors

9 Number of SCSS Blocks

10 Number of Variables Defined

11 Number of Variables Instances

Derived Metrics

1 Average Block Cognitive Complexity

2 Nesting Factor

3 Selector Use Inheritance Level

4 Coupling Level

Ending time (mm:ss) ________

223

OPINION ON SUITABILITY, ACCURACY AND OPERABILITY OF THE
SCSS METRICS TOOL

a) How do you rate the Suitability of the SCSS-Metrics Tool?

Definition: Suitability is the capability of the tool to provide adequate set of
functions for the tasks to be carried out.

b) How do you rate the Accuracy of the SCSS Metrics Tool?
Definition: Accuracy is the capability of the tool to provide correct results

c) How do you rate the Operability of the SCSS Metrics Tool?
 Definition: The capability of the tool to allow the user to operate it

Not Suitable

(1)

Slightly
Suitable

(2)

Moderately
Suitable

(3)

Suitable

(4)

Very Suitable

(5)

Not Accurate

(1)

Slightly
Accurate

(2)

Moderately
Accurate

(3)

Accurate

(4)

Very Accurate

(5)

Not Operable

(1)

Slightly
Operable

(2)

Moderately
Operable

(3)

Operable

(4)

Very Operable

(5)

224

APPENDIX 8: MMUST RESEARCH AUTHORIZATION LETTER

225

APPENDIX 9: NACOSTI RESEARCH LICENSE

226

227

APPENDIX 10: NACOSTI RESEARCH AUTHORIZATION LETTER

228

APPENDIX 11: MUT DATA COLLECTION RESEARCH PERMIT

229

APPENDIX 12: PUBLICATIONS

The following papers have been published from this thesis

1. Ndia, J. G., Muketha, G. M., & Omieno, K. K. (2019, May). A Survey of
Cascading Style Sheets Complexity Metrics. International Journal of Software
Engineering & Applications (IJSEA), 10(3), 21-33.
http://dx.doi.org/10.2139/ssrn.3405783

2. Ndia, J. G., Muketha, G. M., & Omieno, K. K. (2019). Complexity Metrics for

Sassy Cascading Style Sheets. Baltic Journal of Modern Computing, 7(4), 454-
474. https://doi.org/10.22364/bjmc.2019.7.4.01

