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ABSTRACT

Sustainable exploitation of renewable resources such as marine fish has been a con-

cern to both ecologists and economists with threats of species extinction due to over

- exploitation a stark reality. Fish exhibits co-operative and social characteristics

among individuals which increases its survival through predator surveillance and

enhanced spawning. Overfishing compromises this con - specific interactions and

socialism. In this study, a mathematical model of a fishery with an Allee effect in

the population growth equation is developed. This is achieved by formulation of

a set of ordinary differential equations governing the evolution in the population

growth, harvesting effort and the stock market price. The model is aggregated to

reduce its dimensions from a system of three equations to a system of two equa-

tions since market price is taken to evolve faster. Four equilibrium points are

obtained, and analysed using local stability and local bifurcation. Simulation of

the model for equilibrium points with zero harvesting is performed using MATLAB

while further stability analysis, at three different values of the threshold population

is carried out yielding three different cases of equilibrium solutions; Stable equi-

librium, co-existence of three positive equilibria two being saddles and the other

being stable and the co-existence of three positive equilibria with two being stable

separated by a saddle. The stable equilibrium corresponds to the case of a fishery

with the fish stock at high levels with a small economic activity, the harvesting is

artisanal with low economic returns. The co-existence of three positive equilibria,

two being saddles and the other being stable corresponds to a fishery where, fish-

ery management practices of monitoring, control and surveillance are practised,

hence exploited in a sustainable manner. Finally, the co-existence of two stable

equilibria points separated by a saddle corresponds to co-existence of two kinds

of fishery; an over- exploited fishery with a large economic activity with the stock

facing extinction and an under - exploited fishery with a small economic activity

with the stock maintained at high levels far from extinction. Bifurcation diagrams

obtained show how equilibria changes from stable to unstable at critical value of

the carrying capacity as the fish population and harvesting effort vary. From the

analysis, setting of appropriate fishery management practices like fishing quotas,

shall guide sustainable exploitation of the Kenya commercial marine fish species.

This shall be enhanced by more monitoring on fish stock density and total catches.

vi



TABLE OF CONTENTS

DECLARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

COPYRIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF VARIABLES AND PARAMETERS . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER ONE: INTRODUCTION 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background of the study . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Exploitation of Renewable resources . . . . . . . . . . . . . 1

1.2.2 Fishery modeling . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.3 Allee effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.4 Outlook of Kenyan Commercial Marine fisheries . . . . . . 5

1.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Perfect Aggregation . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Approximate Aggregation . . . . . . . . . . . . . . . . . . . 7

1.4 Assumptions of the study . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Main objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . 9

vii



1.7 Methods of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Justification of the study . . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER TWO: LITERATURE REVIEW 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Discrete and continuous time models . . . . . . . . . . . . . . . . . 12

2.3 Models with delay differential equations . . . . . . . . . . . . . . . 17

2.4 Models With Allee Effect . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER THREE:FISHERY MODEL WITH ALLEE EFFECT 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 General Model Formulation . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Equation for Fish Population growth With Allee effects . . 24

3.3.2 Harvesting Effort Equation . . . . . . . . . . . . . . . . . . 30

3.3.3 Market Price Equation . . . . . . . . . . . . . . . . . . . . 31

CHAPTER FOUR: THE MODEL ANALYSIS AND RESULTS 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Local Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.3 Case One: T = n
4

. . . . . . . . . . . . . . . . . . . . . . . 39

4.3.4 Case Two: T = n
2

. . . . . . . . . . . . . . . . . . . . . . . 41

4.3.5 Case Three : T = 3n
4

. . . . . . . . . . . . . . . . . . . . . 44

4.4 Bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



4.4.1 Non dimensionalisation . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER FIVE: DISCUSSION, CONCLUSION AND RECOM-

MENDATIONS 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER A: APPENDIX: MATLAB R2017b COMMANDS

FOR FIGURES 60

1.1 Figure 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

1.2 Figure 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.3 Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.4 Figure 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.5 Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.6 Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.7 Figure 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.8 Figure 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

1.9 Figure 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



List of Figures

3.1 Exponential growth . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Logistic growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Solution curves for Fish Population Equation with zero harvesting . 28

3.4 Solution curves for Fish Population Equation with minimal harvesting 30

4.1 The function c(n∗) plotted for k = 2, 3, 4 and 5. for T = n
4

. . . . . 39

4.2 The function c(n∗) plotted for k = 2, 3, 4 and 5. for T = n
2

. . . . . 41

4.3 The function c(n∗) plotted for k = 2, 3, 4 and 5. for T = 3n
4

. . . . . 45

4.4 One Parameter bifurcation diagram for fish population with k as

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 One Parameter bifurcation diagram for Fishing Effort with k as pa-

rameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



List of variables and Parameters

n(t) : Fish population

E(t) : Harvesting Effort

p(t) : Market price

r : Intrinsic growth rate

k : Carrying capacity

T : Threshold population

xi



LIST OF ABBREVIATIONS

MSY : Maximum Sustainable Yield

EEZ : Exclusive Economic Zones

YFT : Yellow Fin Tuna

IUCN : International Union for the Conservation of Nature

MDGs : Millenium Development Goals

SDGs : Sustainable Development Goals

xii



CHAPTER ONE

INTRODUCTION

1.1 Introduction

This chapter provides a background information to the study and the description

of the procedures to be used. The rest of the chapter is arranged as follows: Section

1.3 provides a description of aggregation method. Assumptions made in this study

are in Section 1.4. The statement of the problem and its objectives are presented

in Sections 1.5 and 1.6 respectively. Section 1.7 presents methods of study in the

research. Significance of study is presented in Section 1.8.

1.2 Background of the study

In this sub section, we provide an over- view on exploitation of renewable resources,

mathematical fishery modeling, Allee effect and the national outlook of commercial

marine fish species in the Kenyan coastal waters.

1.2.1 Exploitation of Renewable resources

Resources are said to be renewable if they posses the capacity to self regenerate,

enhancing commercial harvesting of the resources by humans in perpetuity. More

Often, an assumption is made that harvesting of fish do not have a direct threat

to the fish stock collapse as fish in marine waters are generally very fertile and the

ocean coverage is expansive. However, humans often over-harvest fish species to

near extinction or actual species collapse, Bridson [34].

In Bio-economics, exploitation of renewable resources has been considered from

control theory perspective Barpan[11], Clark[14] focusing on the existence of a max-
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imum sustainable yield (MSY), this is the maximum fraction that can be removed

from the stock in a time period without causing the population to decline below the

optimum level. This theory however, is not essentially the most appropriate man-

agement method Kar T.K and Matsuda H. [19], since the long run consumption

profile does not coincide with that of utility maximization. The renewable resource

stock exploited under the maximum sustainable yield is not optimum with respect

to production due to the positive relationships between productivity in harvesting

activities and the resource stock size. MSY policy only considers the returns of

resource exploitation but totally disregards the cost operation of exploiting the

resource.

1.2.2 Fishery modeling

Many fishery models, consider two state variables, n(t); the fish resource with mass

in kg per unit area and E(t); the harvesting effort. Earlier contributions had models

which read as

ṅ(t) = f(n)− h(n,E)

Ė(t) = β(ph(n,E)− cE), (1.1)

where f(n) and h(n,E) are the growth and harvesting functions respectively, p the

price of a unit fish resource, c, the cost per unit of harvesting the resource and

β an adjustment parameter. Smith [32] considered time continuous version while

Barbier et al. [7] considered time discrete version. These mathematical models

have two equations; the first equation shows the evolution with time of the fish

stock density determined by the natural growth and fishing. The other equation

describes the variation with time of the number of vessels involved in resource

exploitation and is assumed to increase when the fishing is economically viable and

conversely. Reference is also made to the fishery models in Mchich et al.[28], where

2



the fishery was assumed to have logistic growth with f(n) taking the form

f(n) = rn(1− n

k
),

with r the intrinsic growth rate and k, the carrying capacity in the first Equation

of (1.1) and harvested according to Type 1 functional response commonly known

as the Schaefer function where

h(n,E) = qnE,

with q, a positive constant called capturability.

Several models involving Allee effect phenomena in a single equation model or a

predator-prey system have also been considered, see for instance Wentworth C. et

al.[13], Elaydi[15], Kar T.K and Matsuda H.[19] with many considering exploitation

basing on the Maximum sustainable yield policy with a particular interest on how

it depends on the initial population.

1.2.3 Allee effect

Over-fishing can cause the population of a fishery to persist at low densities. For

centuries, North Atlantic Cod fishing was a main economic activity in the New-

foundland in Canada Bridson[34], [16]. The area was settled, in fact due to its

vast stock of cod and other Atlantic fish. However, in 1992 cod population had

declined so drastically that the government of Canada placed a total ban on cod

fishing in the area. Data then suggested that as much as sixty percent of the adult

Cod species had been harvested in a row for several years. The drastic drop in

Cod populations was a major setback to the region’s economy. Consequently, for

months in 1996, the unemployment in the Burin Peninsula in Newfoundland was

highest in Canada. The North Atlantic Cod, that had been thought to be an in-

exhaustible resource had not been inexhaustible at all.
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Nile perch, Lates Niloticus, a fresh water fish was introduced in Lake Victoria in

1954 by the British government. In the period between 1980-1990, before the intro-

duction of fish processing plants, Nile perch was favored by ordinary families that

could not afford more expensive Tilapia, see Azeroul et al.[6]. Between 1992-2004,

Nile perch became a delicacy of the elite European countries due to valuable omega-

3 fatty acids in the fish that help to check heart problems and high blood pressure.

Nile perch stocks have steadily dwindled with increased vulnerability of the stock

reported with a drastic decline in stock abundance from 1.44 million tonne in 2006

to 0.55 million tonne in 2008. Though a gradual increase was reported between

2009 and 2011 up to 1.23 million tonne in 2014 but with dominance of juvenile fish.

This further depletion compromised the reproductive capacity of the stock hence

a risk of stock collapse.

The above scenarios can be attributed to a phenomenon known as Allee effect in the

study of population, which is associated to the biologist Warder C. Allee [1],[12].

Allee suggested that the per capita birth rate declines when the population is at low

densities. Under such circumstances, a population may persist at that low density

or eventually become extinct. Stephens, Sutherland and Freckleton [33] defined

Allee effect as “ a positive relationships between component of individual fitness

and either numbers or density of conspecific”. In classical study of population

dynamics, we have a negative density dependence, that an increase in density

causes a decrease in fitness. Allee effect however, postulates an increase in density

causes fitness of individuals to increase.
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1.2.4 Outlook of Kenyan Commercial Marine fisheries

Kenya, lies within the rich tuna belt of west Indian ocean where twenty five percent

of the world’s tuna is caught. The tuna family comprises of Kawakawa, Euthynnus

affinis, Skipjack tuna, Bigeye tuna, thunnus obesus and the dominant Yellow fin

tuna, thunnus albacares. Yellow fin tuna is an open pelagic and oceanic species

which schools primarily by size either in monospecific or multispecies groups. It is

estimated at between 150 000 to 300 000 metric tonnes per year, where the current

harvested stock from this is nearly 9 000 metric tonnes in a year. At the moment,

Kenya has one factory installed that has a processing capacity of 105 metric tonnes

per day for tuna hence accounts for less than five percent of the western Indian

ocean’s processing capacity. The tuna development and management strategy [24],

targets to change tuna fisheries into productive and sustainable modern commer-

cial based coastal and oceanic fisheries with immediate impacts on employment,

wealth creation, improved economic outcomes and foreign exchange earning. The

strategy was scheduled to run from 2013 - 2018 aimed at growing Kenya’s largely

undeveloped tuna supply chain that has artisanal harvesting vessels not capable

of going beyond 20nm to undertake tuna harvesting to be transitioned to modern

commercial fisheries in the high seas.

This strategy aligns itself with sustainable development goals SDGs since, ac-

cording to MDGs report [25],[26], the first goal was to halve, between 1990-2015

the proportion of people who suffer from hunger. Hunger is still a global chal-

lenge and undernourished people globally stand at 870 million which is an eighth

of the World’s population where Kenya is not an exception. Provision of food

and nutrition to the populace must be given a priority in attaining the rest of the

seven millennium development goals. Fishery provides cheap animal protein due
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to availability of large water bodies. United Nations report indicates that 200 mil-

lion people in the world are depended on fishing as their food source or livelihood.

Kenya, is faced with the challenge of food security and malnutrition among the

citizens, sustainable exploitation of fishery resources is essential to enhance the

economic benefits associated with its exploitation and at the same time ensuring

that the fish population do not suffer extinction. Thus, sustainable tuna resource

exploitation is inevitable to avoid the Newfoundland Cod scenario since Yellow fin

tuna has registered a 33 percent decline globally and now declared as a threatened

species , see for instance Azeroul et al.[6], IUCN [18], Report [23].

1.3 Aggregation

Aggregation refers to the process in which the dimension of a dynamical system is

reduced for ease of mathematical analysis, see Poggiale et al.[29]. Aggregation can

be attained either through perfect aggregation or approximate aggregation.

1.3.1 Perfect Aggregation

This is the exact replacement of a large scale mathematical model system that

involves a huge number of variables with a condensed aggregated version. The

condensed system is written in a form and combination of new global variables

which are defined by the first integrals of the large scale system that are assumed

to be conservative. For example, consider a case of prey and predator populations

with densities n1, n2, and n3 respectively, such that

ṅ1 = r1n1(1− a13n3

k1

),

ṅ2 = r2n2(1− a23n3

k2

), (1.2)

ṅ3 = −r3n3 + (a31n1 + a32n2)n3,

6



where ri, for i = 1, 2, 3, a13, a23, a31 and a32 are parameters is a system of three

equations that can be aggregated to a new system with equations in variables

Y1 = n1 + n2 and Y2 = n3, where the prey is aggregated into a single compartment

and the parameters in Equation (1.2) satisfy the following set of relations:

r1 = r2 = r,

k1 = k2 = k, (1.3)

a23 = a13 = a,

a32 = a31 = a′.

The aggregated system now becomes,

Ẏ1 = rY1(1− aY2

k
),

Ẏ2 = −r3Y2 + a′Y1Y2. (1.4)

These set of relations are quite restricted and take particular values of the param-

eters.

When perfect aggregation is possible, the aggregated model is a condensed proto-

type of the initial model. In practice, perfect aggregation is sometimes impossible

to realize since the conditions for condensing the large system are restrictive and

may only be possible where the parameters of the large system satisfy very specific

relationships, Poggiale et al.[29].

1.3.2 Approximate Aggregation

This corresponds to the replacement of a large scale mathematical model by an

aggregated system, obtained by appropriate approximation. The approximation is

realized by justified simplification. This is easily attained when some variables are
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on a fast time scale with respect to others. Variables on a fast time scale rapidly

attain equilibrium and the approximation involves replacement of the fast variables

with non trivial equilibrium values. For Instance, incase fast variables approach an

asymptotically stable point, they are replaced with non trivial equilibrium values,

while if the variables on a fast time scale are periodic functions of time, they

are replaced with their time averages. In other cases, approximation is done by

neglecting the evolution of very slow variables which do not vary during the period

of observation of the system. This is the type of aggregation used in this study.

1.4 Assumptions of the study

In this study the following assumptions have been made:

(i) Effects of adverse environmental variations and diseases have little impact on

the Fishery;

(ii) The harvesting of the fish species is a continuous process;

(iii) The variation of the market price of the fish is more rapid than the fishing

effort and the growth of the fish stock.

1.5 Statement of the problem

Fishery models have mainly considered logistic equation for its population growth

either continuous or discrete with type1 functional response for resource exploita-

tion, see for instance Arino[3], Auger et al.[4], Barbier[7]and Mchich et al.[28]. Fish,

exhibits co-operative and social characteristics among individuals which increases

its survival through predator surveillance and enhanced spawning. Individual re-

production rates are known to decrease if the density is below particular critical

values due to difficulty in finding mates. A population growth equation, with a de-

pensation term, to address Allee effect phenomena induced by over-exploitation is
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thus more suitable to investigate the dynamics of a fishery. The threshold charac-

teristics determines whether the population will collapse and not recover in foresee-

able time, which is of great concern to conservationists and economists interested

in sustainable fishery resource exploitation. This research presents analysis of a

mathematical fishery model that takes into account three main aspects; growth

of the fish population with Allee effect, harvesting effort and the market price of

the fish resource. The results form a basis to guide sustainable exploitation of

commercial fish stock in the Kenya coastal marine waters.

1.6 Main objective

To develop and study the dynamics of a fishery model under exploitation, with

Allee effects in the population.

1.6.1 Specific objectives

The specific objectives of this research are;

(i) To Formulate a mathematical fishery model with over-fishing induced Allee

effects in its population growth.

(ii) To analyze the long term solutions of the model in (i)

(iii) To Investigate and identify the threshold population value T for sustainable

fishery exploitation with Kenyan coastal marine commercial fish species as

an example.

1.7 Methods of Study

The following methods are used in this research study;

(i) Model formulation.

9



We formulate a model using a set of ordinary differential equations. The

equations in this study are formulated with population, harvesting effort and

the market price as dependent variables whereas the independent variable is

time.

(ii) Aggregation.

This is the reduction of the dimension of a dynamical system for ease of

analysis. It is attained through either perfect aggregation or approximate

aggregation. We employ approximate aggregation in this study.

(iii) Numerical simulation.

MATLAB software is used to generate numerical simulations to determine

the long term behavior of the fishery model.

1.8 Significance of the Study

Optimal exploitation of a fishery resource is a concern for economists whilst species

extinction is a stark reality for conservationists. This research sought to identify

the threshold population value for which sustainable fishery resource exploitation

can be done and suggest fishery management practices to curb eminent species

extinction. This is with respect to the Kenya Tuna Fisheries development and

management strategy of 2013-2018, which is consistent with the aspirations of

the national development blueprint, the Vision 2030 and the Kenya Oceans and

Fisheries policy. In these policy documents, sustainable exploitation of under-

exploited Exclusive Economic Zones(EEZ) is of foremost priority.

1.9 Justification of the study

The results obtained in this study forms a basis for setting relevant parameters like

capturability q and threshold population T . This is subject to availability of data
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on stock density and total catches. These parameters will guide setting of fishing

quotas which shall enhance sustainable exploitation of the commercial fish stock

in the Kenya coastal marine waters.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, we review the literature on fishery modeling dynamics. Discrete and

continuous time models are discussed in section 2.2, models with delay differential

equations are discussed in section 2.3 while in section 2.4, models with an Allee

effect are discussed.

2.2 Discrete and continuous time models

In Smith [32], the following model is considered ;

ṅ = f(n)− h(n,E)

Ė = β(ph(n,E)− cE). (2.1)

with n := n(t) representing the mass of the fish stock resource, E := E(t) repre-

senting the harvesting effort at time t. The function f(n) represents the natural

growth of the fish resource, h(n,E) the harvesting term that depends on the fish

resource and the effort of fishing. The harvesting function h(n,E) = g(n,E)E,

where g(n,E) is the amount of the fish captured per unit time and per unit of

fishing effort commonly referred to, as a functional response, see Murray [27]. In

this model, a Holling Type II functional response is used. The constant c is the

cost of fishing effort per unit of resource, β is a positive co-efficient of adjustment

that depends on the fishery and p , the price per unit landed fish stock of the fish

resource at time t. Analysis of bifurcation and stability for the model in Equa-

tion (2.1) reveals two positive equilibria that are stable and a saddle. Barbier [7],

studied a discrete version of (2.1) in which the functional response used was a
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Schaefer function, g(n,E) = qn with q, a constant always positive called captura-

bility, Schaefer[30]. Stability and time pooled analysis of the parameters revealed

existence of a saddle, and two stable fixed equilibrium point. The work do not

consider market price as a variable in the fishery model.

Mchich et al.[28] considered the model;

ǹ1 = kn2 − k′n1 + ε{r1n1(1− n1

k1

)− q1n1E1},

ǹ2 = k′n1 − kn2 + ε{r2n2(1− n2

k2

)− q2n2E2}, (2.2)

È1 = mE2 −m′E1 + εE1{pq1n1 − c1},

È2 = m′E1 −mE2 + εE2{pq2n2 − c2},

where the grave indicates the differentiation with τ , a faster scale of time as inde-

pendent variable in which a fishery of two patches with two fishing areas is studied.

It is assumed that the fish resource as well as the fishing vessels moves rapidly

between the two fishing zones. The first two equations show the growth of two

fish species with population n1 and n2, dispatched on the two fishing patches with

migration rates k′ and k respectively, and exploited by two vessels. The last two

equations of the model show the evolution of the harvesting efforts E1 and E2 by

the fishing boats with fishing rates m′ and m in the two zones respectively. Each

equation in the model (2.2) has two parts; one describes the migration between

the fishing patches at a faster time scale τ and the other part describes the natural

growth and the capturability for fish species and the harvesting efforts at a slower

time scale t. With the assumption of rapid movement of the fish species and har-

vesting vessels between the two zones, the model is a system completely at a fast

time scale τ = ε t ; ε << 1 with respect to a slower time scale t. The constants ri,

ki and qi for i = 1, 2 denote the intrinsic growth rates, the carrying capacities and
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capturability co-efficients respectively in the ith patch. Bifurcation and stability

analysis of the model in Equation (2.2) revealed stable equilibrium and stable limit

cycle, their existence depending on parameters k′ , k ,m′ and m . These results

were obtained with an assumption of a fixed market price which is only relevant to

a fishery with small economic activity.

Auger et al. [4], modified Equation (2.2) by adding an equation in market price.

The dynamics of Equation (2.2) under effects of linear market price was studied.

The addition of the fifth equation realised;

ǹ1 = kn2 − k′n1 + ε{r1n1(1− n1

k1

)− q1n1E1},

ǹ2 = k′n1 − kn2 + ε{r2n2(1− n2

k2

)− q2n2E2},

È1 = mE2 −m′E1 + εE1{pq1n1 − c1}, (2.3)

È2 = m′E1 −mE2 + εE2{pq2n2 − c2},

p̀ = α{D(p)− (q1n1E1 + q2n2E2)},

with p = p(t) as the market price of a unit fish stock at time t, α constant that

describes the speed at which price is adjusted on the market while D(p) is a function

of demand assumed to decrease when price increases. The last equation of (2.3)

represents the evolution of the price with time and it is taken that variation in

price is due to the difference between the demand D(p) and the supply S(p) :=

q1n1E1 + q2n2E2, which is the catch. A further assumption that the evolution of

the price of the catch is with respect to a faster time scale is made. Since two

time scales are assumed, model aggregation of (2.3) is achieved by calculating the

fast equilibrium by setting ε = 0 and then assuming that faster dynamics attains

stable equilibrium state. These fast equilibrium equations are substituted in model
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in Equation (2.3) to become;

ṅ = n{r(1− n

k
)− qE},

Ė = E{−c+ qn(A− qnE)}, (2.4)

a system in two dimensions of differential equations ordinary in nature that governs

the total fish stock n(t) = n1(t) + n2(t) and the total harvesting effort E(t) =

E1(t) + E2(t) at a slower time scale t, such that

r = r1v1
∗ + r2v2

∗

r

k
=

r1v1
∗2

k1

− r2v2
∗2

k2

q = q1v1
∗µ1
∗ + q2v2

∗µ2
∗

c = c1µ1
∗ + c2µ2

∗,

v1
∗ =

k

k + k′
,

v2
∗ =

k′

k + k′
,

µ1
∗ =

m

m+m′
,

µ2
∗ =

m′

m+m′
, (2.5)

with µ1
∗ and µ2

∗ representing the proportion of the harvesting effort on each patch

while v1
∗ and v2

∗ gives the proportion of fish resource in each zone at a faster equi-

librium and c1 and c2 the cost per unit of harvesting effort on each patch at a faster

equilibrium. When bifurcation and local stability analysis is done for the model in

Equation (2.4), two stable positive equilibria are found to co-exist with a separatrix

of the stable manifold in the middle . This shows that two very different stable

equilibria can exist for the same fishery, one corresponding to an over-exploitation

of the resource and the other, to a traditional fishery in which the fish stock is

maintained at large level which is with little risks of becoming extinct but does
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not permit a meaningful economic exploitation. These two stable equilibria co ex-

isting causes a dilemma since each does not enhance sustainable economic fishery

exploitation.

Steinworth et al.[8] considered a fish population model under the effects of over

harvesting using the equation;

ẏ = −ry(1− y

T
)(1− y

k
)− Ey (2.6)

for y > 0 , 0 < T < k, where r, T and k are parameters of a particular species

of fish population whose population is denoted by y(t) and E(t) is the harvesting

effort. Built on assumptions:

(i) Rate of harvesting of the fish by the humans is the only factor which changes

the equilibrium states of the fish population and it is a constant.

(ii) Factors that limit population such as diseases, climatic conditions and pre-

dation would not vary and would not be affected by harvesting.

(iii) Harvesting activity did not affect reproduction behaviour of the fish.

Model in Equation (2.6), is a modified logistic growth with resource dependent

harvesting. In this model, there is a realization that there is an optimum population

below which meaningful reproduction cannot be sustained hence the population

becomes extinct. This is taken care of by a threshold population T such that the

population grows logistically as in the model

ẏ = ry(1− y

k
), (2.7)

when y > T but declines and cannot recover once y is below T, see [8] for instance.
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The equilibrium solution of (2.6) yields two values of the population;

yk =
kT [r( 1

k
+ 1

T
) +

√
r2( 1

k
+ 1

T
)
2 − 4r(r+E)

kT

2r
(2.8)

and

yT =
kT [r( 1

k
+ 1

T
)−

√
r2( 1

k
+ 1

T
)
2 − 4r(r+E)

kT

2r
(2.9)

the limiting population and the threshold population respectively both dependent

on the fishing effort. Since yk and yT depends on E, sustainable rate of fishing is

determined for each particular E as

yE = ykE.

Using the raw data of the Chinook Salmon fish population, model parameters were

examined and analyzed determining the sustainable fishing rate and the absolute

fishing rate. The model in Equation (2.6) makes assumption that the harvesting is

constant whereas in commercial fisheries, harvesting is a variable depending on the

difference between the returns and harvesting expenses. Moreover, the assump-

tion that fish stock reproduction behavior was not changed by fishing activity is

unrealistic since fish exhibits social characteristics which are affected by harvesting.

2.3 Models with delay differential equations

With a logistic equation

f(n) = rn(1− n

k
), (2.10)

P. Auger and Arnould Ducrot [5] considered a fishery model with fish stock involv-

ing a delay given by;

ṅ = rn(1− η)− ρ(n,E),

Ė = P [(1− η)ρ(n,E) + δS)]− cE,

17



Ṡ = ηρ(n,E)− δS. (2.11)

The variables and parameters in Equation (2.11) have the same meaning as in

Equation (2.1) except for S, a new stock variable in which it was assumed that

some fraction of the harvested fish is immediately sold while the remaining is

stocked for processing and later enters the market. The fraction η ∈ [0, 1] of the

fish harvest enters to the stock compartment, the remaining fraction 1− η is sold

immediately to contribute to the harvesting effort E. The parameter δ > 0 denotes

the rate at which the fish in the stock compartment is returned to the market. By

integrating the third equation and eliminating S, the system in Equation (2.11) is

reduced to a two component delay differential equations:

ṅ = rn(1− n)− ρ(n,E),

Ė = (1− η)pqnE + ηpq

∫ 0

−∞
w(θ)nt(θ)Et(θ)dθ − cE, (2.12)

with nt(θ) = n(t+θ) and Et(θ) = E(t+θ) as historical functions while w(θ) = δeδθ

is a weighted function taking a simple exponential damped rate with θ ∈ (−∞, 0).

Stability and bifurcation analysis for Equation (2.12) shows that for each contin-

uous, bounded initial condition (n0, E0), the model has a defined global solution

(n(t), E(t)) for 0 ≤ n(t) ≤ 1, E(t) ≥ 0 ∀t > 0. The model, considers a fixed market

price whereas it is known that the price of resources varies as a determined by the

difference between demand and supply. Commercialized fish species risks extinc-

tion and the use of the logistic growth function in a such an over-exploited species

do not address threats of extinction.

Arino O. et al. [3], considered the delayed logistic model ( Hutchinson’s equation)

for population growth

ṅ = rn(t)[1− n(t− τ)

k
], (2.13)
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where r and k are as defined in the logistic equation and τ > 0 is a constant. With

initial value as

n(θ) = φ(θ) > 0, θ ∈ [−τ, 0]

with φ continuous on [−τ, 0], Equation (2.13) has equilibria n = 0 which is unstable

and a positive equilibrium n = k. Stability analysis of the positive equilibria yields

different results of stability; for 0 ≤ rτ ≤ π
2

the equilibrium point is positive and

asymptotically stable, for rτ > π
2

the positive equilibrium is unstable and when

rτ = π
2
, Hopf bifurcation occurs at n = k,with bifurcation of periodic solutions

from n = k. These periodic stable solutions exist for rτ > π
2

.

Gopalsamy [17], studied a single population species model with Allee effects. In

the model, the per capita growth rate is a density dependent quadratic function

subjected to time delays given by;

ẋ = x(t)[a+ bx(t− τ)− cx2(t− τ)] (2.14)

where a > 0, c > 0,τ ≥ 0 and b are positive constants. In the single equation model,

when the population density is high, the compensatory effects of aggregation and

social cooperation are dominated by density dependent stabilizing negative feed-

back effects caused by intraspecific competition. It was found that the positive

equilibrium point of Equation(2.14),

x∗ =
b±
√
b2 + 4ac

2c
(2.15)

is conditionally globally attractive. But if the delay is sufficiently large, solutions

of Equation (2.14) oscillate about the positive equilibrium and if τx∗(2cx∗−b) ≤ 3
2
,

then the positive equilibrium x∗ attracts all positive solutions. The model equations

in Gopalsamy [17] and Arino[3] do not consider fishing mortality hence not suitable
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for studying fishery population dynamics.

2.4 Models With Allee Effect

Wentworth C. et al.[13], constructed a harvest strategy of a fish population with

Allee effect using the model

ṅ = n(n− a)(1− n)− fn, (2.16)

where a denote the Allee effect such that 0 < a < 1, n(t) the fish population at

time t and f the fishing rate. The equation (2.16) has two equilibrium population

density given by

n∗ =
−1− a±

√
a2 + 6a+ 4f ∗ + 1

2
.

Using implicit differentiation and optimization, two solutions for the maximum

yield are obtained as;

Y ∗1 = − 1

18
[1 + a(8 + a)−

√
(1 + a)2(1 + 5a+ a2]× [−1− a+

√
1 + 6a+ a2 + 4f,

which is unstable and

Y ∗2 =
1

18
[1 + a(8 + a) +

√
(1 + a)2(1 + 5a+ a2]× [−1− a+

√
1 + 6a+ a2 + 4f

which is stable. The fish yield over time γ given by

Y =

∫
0

γ

fn(t, f)dt,

the yield was maximized by taking

d

df
Y = [n(t, f) + f∂fn(t, f)]dt = 0.

An algorithm for calculating the optimum harvest rate was determined and simi-

larly, for various values of γ, sustainable population density solutions with harvest
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rates that maximize yield are determined, dependent on the initial population. The

results only focus on the MSY and considers only the population dynamics in the

presence of fishing without other factors that affect fishing effort like the market

price of the harvested fish.

Kar T.K. and Matsuda H. [19], considered a predator - prey system with an Allee

effect in the growth of the prey( fish ) given by

ẋ = rx(1− x

k
)(
x

L
− 1)−mxy − qEx,

ẏ = mαxy − dy, (2.17)

where m and α are the interaction parameters between the predator (y) and the

prey (x), d is the death rate of the predator while L is the threshold population

in the prey. This was premised on the fact that marine ecosystem are interlinked

and competition and predator - prey are the common interaction for fishery. The

system in (2.17) has interior equilibrium (x∗, y∗), with

x∗ =
d

mα

and

y∗ =
1

m
[r(1− d

mαk
)(

d

mαL
− 1)],

which is locally asymptotically stable if

x∗ > (
k + L)

2

and unstable if

d

mα
< (

k + L)

2
.
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Using the optimal harvesting problem

J =

∫ ∞
0

e−δt(pqx− (c+ τ)Edt,

bang - bang control is applied to the system in Equation (2.17) from the initial

state (x0, y0) and the optimal policy for harvesting obtained with the optimal point

being globally asymptotically stable. This model does not consider market price

as a variable which is more relevant to the commercial fishery.

Saber N. and Robert J. Sacker [15], developed several models of Allee effect using

discrete maps and made a modification to the classical Ricker map to control the

extinction of the population and enhance the return of the population to the car-

rying capacity in the concave Beverton-Holt maps. These single equation models

do not consider other factors like harvesting effort and market price, hence not

suitable for the study of commercial fishery dynamics.

Although mathematical fishery models exist for both ordinary differential equa-

tions, delayed differential equations and difference equations, an attempt made to

model dynamics of a fishery with population growth exhibiting Allee effect mainly

considers exploitation of the fishery basing on the MSY theory and does not con-

sider harvesting effort and the market price as dynamic variables. In this research,

we consider a model comprised of three ordinary differential equations, with Allee

effect in the population growth equation. A threshold population below which the

fish population is not viable due to vulnerability to diseases, predators and inade-

quate reproduction is considered. Thus, we have population growth of a fish stock

exhibiting Allee effect, the harvesting effort and the price changes on the market

which dictates investment in the harvesting effort, as variables in this study.
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CHAPTER THREE

FISHERY MODEL WITH ALLEE EFFECT

3.1 Introduction

In this chapter, we develop a mathematical fishery model with the fish population,

harvesting effort and market price as variables. The model is considered as a dy-

namical system in which the fish population growth equation has a sparsity term

to address Allee effect. General Model derivation is presented in section 3.2 while

discussion on model equations is presented in section 3.3

3.2 General Model Formulation

In this study, a system of ordinary differential equations that describes the relation-

ship between three dependent variables: the fish population n = n(t), fishing effort

E = E(t) and market price p = p(t) at time t is considered. The rate of change

in population is taken to be the difference between population growth function

with Allee effects and the harvesting function. The rate of change in harvesting is

taken to be proportional to the difference between cost of harvesting and the total

gains while the rate of change in market price is taken to be proportional to price

dynamics and the difference between the demand and supply of the fish stock

A general fishery model that can be used to study the relationship between these

variables is thus,

ṅ = f(n)− h(n,E),

Ė = β(ph(n,E)− cE), (3.1)
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ṗ = αp(D(p)− h(n,E)),

which is a time continuous model. The constants β and α are taken as positive.

The function f(n) is a function for growth of the fish population with the popula-

tion exhibiting Allee effects that shall be accounted for by the sparsity term. The

harvesting function h(n,E), depends on the fish resource and the fishing effort E.

Constant c is the cost per unit of the harvesting effort, p the market price per unit

of the harvested fish while D(p) is the demand function.

3.3 Model Formulation

In this section we detail how the equations in the market price, harvesting effort

and fish population are obtained.

3.3.1 Equation for Fish Population growth With Allee effects

The first equation in (3.1), describes the rate of change in the fish resource popula-

tion which is harvested. Given a fish population n(t) at time t not being harvested,

if b and d denote the birth rate and death rate respectively, then

f(n) = ṅ = bn− dn = rn, (3.2)

where r = b−d is the intrinsic growth rate. The analytic solution of (3.2) with the

initial population n(0) = n0 is

n(t) = n0e
rt. (3.3)

The function (3.3) is a traditional exponential growth if r > 0 or a decay if r < 0

see Figure 3.1. Such a growth in population is only valid within a short period of
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Figure 3.1: Exponential growth

time and cannot persist forever, due to population limiting factors like food supply

and oxygen levels in the fishery. Taking into account that resources are limited in

nature, a growth equation of the form

f(n) = ṅ = rn(1− n

k
), (3.4)

has been used in several population models, see for instance Auger P., Arnould

D.[5],Auger et al.[4] and Mchich et al. [28] and is referred to as the logistic growth

equation. In this equation, r > 0 is the intrinsic growth rate and k > 0 is the

carrying capacity of the fishery which essentially is, the quality of the fishery in

terms of food availability and oxygen levels. When n < k, ṅ > 0 and the population
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grows and if the term n
k

is very small, the differential equation (3.4) is not different

from (3.2). When n > k, ṅ < 0 and the population declines since individuals of

the species compete with each other for resources that are limited. The differential

equation (3.4) has two steady states; the non-trivial n = k, and n = 0. Any

population above or below k will result in a growth rate that restores the population

back to k, whereas for any initial population n0 = k, the population remains

constant. The analytic solution of (3.4) is of the form

n(t) =
n0k

n0 + (k − n0)e−rt
, (3.5)

see for instance Boyce W. E., Diprima C. R [10] numerically shown in Figure 3.2,
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Figure 3.2: Logistic growth
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It can be seen that for n0 < k, there is asymptotic growth in population approach-

ing k as t → ∞, this is due to social-cooperativeness behavior in the fishery. If

n0 > k, the population decreases again approaching k asymptotically as t → ∞.

If n0 = k, the population remains at n = k in time. This implies that the positive

equilibrium n = k of (3.4) is globally stable, that is for any solution n(t) of (3.4)

with initial value n(0) = n0, limt→∞ n(t) = k.

The assumption that the rate of growth at any time dependent is on relative num-

ber of members of the species at that time and ṅ > 0 even when n is near zero is

not realistic. Moreover, the view in classical population dynamics that competi-

tion of resources causes a population to experience a reduced overall growth rate at

higher density and an increase in the rate of growth at lower density may apply in

certain populations but not all like the fish population which exhibits co-operative

and social characteristics. In such populations, there has to be a threshold popula-

tion below which reproduction cannot be effective and the population may decline

irrecoverably due to reduced likelihood of finding mates, juvenile mortality and

reduced predator surveillance. This phenomena in which there is a positive corre-

lation between the population density and the fitness of individuals negating the

classical view of population dynamics is referred to as the Allee effect. There are

a number of equations which describes this population growth phenomena, If we

consider the case in which a threshold population T is included, f(n) takes the form

f(n) = ṅ = rn(
n

T
− 1)(1− n

k
), (3.6)

for n > 0 , 0 < T < k. The term

(
n

T
− 1),
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is the sparsity term which takes account of Allee effect. The solutions of (3.6) are

such that any initial population above k and T will approach k in time while ini-

tial population below T will approach zero in time. Figure 3.3 shows the solution

curves of the Equation (3.6) for various initial populations with r = 0.05, T = 100

and k = 500.
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Figure 3.3: Solution curves for Fish Population Equation with zero harvesting

The population just behaves as described in Equation (3.4) when n > T but de-

clines to zero when n < T . If the population is above the threshold value T , there

is compensation due to positive effects of density dependence associated with co-

operativeness manifests making the population to grow logistically but controlled
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by negative density feedback making the growth approach the carrying capacity.

Below the critical value, compensation weakens due to sparsity causing lower repro-

duction chances and juvenile mortality, the population declines approaching zero.

Thus, in the first equation of (3.1) the function f(n) takes the form as expressed

in (3.6) where 0 < T < k is the critical population abundance and k > 0 is the

carrying capacity of the fishery.

In classical predator prey models, predation mimicked by fishing, in this model it is

a function written as h(n,E) = g(n,E)E. The function g(n,E) is referred to as a

functional response, the amount of the resource captured per unit of fishing effort.

In this fishery model, the Schaefer function is assumed thus g(n,E) = qn with

q as a positive constant called capturability. This functional response depends

linearly on the resource, referred to in ecological modeling as the law of mass

action. This is suitable in fishery since it accounts for fishing effort and mortality

as variables controlling the growth of the fish population, see Schaefer[30]. Thus

h(n,E) = qnE. The given functions of f(n) and h(n,E) makes the first equation

in the Model equation (3.1) becomes;

ṅ = rn(
n

T
− 1)(1− n

k
)− qnE (3.7)

Numerical simulation of Equation (3.7) for q = 1 and a constant harvesting effort

E shows that initial population below and slightly above the threshold population

T = 100 now decays to zero, see Figure 3.4.

This implies that harvesting increases sparsity which further compromises social -

cooperativeness benefits hence increasing the extinction of the species. Moreover,
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Figure 3.4: Solution curves for Fish Population Equation with minimal harvesting

initial populations below the carrying capacity grows logistically towards a lower

new value of the carrying capacity k = 350 . This is as a result of the reduced

number of individuals responsible for spawning and predator surveillance. This

makes the maximum population of the species that can be supported by the fishery

to reduce.

3.3.2 Harvesting Effort Equation

The second equation of (3.1) describes how the fishing effort evolves depending on

the difference between the total benefits and the cost incurred during harvesting.
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A suitable equation that can describe the dynamics in harvesting effort is

Ė ∝ (benefit− cost),

with the total benefit given by the product of the market price p with the total

catch h(n,E). The total cost is the product of the cost per unit of harvesting c

and the harvesting effort E. The equation

Ė = β(ph(n,E)− cE), (3.8)

is obtained with β a constant of proportionality which is a positive adjustment

co-efficient. With h(n,E) given, Equation (3.8) becomes ;

Ė = βE(pqn− c). (3.9)

3.3.3 Market Price Equation

The third equation describes how the market price p varies dependent on the de-

mand, the supply of fish resource and the price dynamics. Relative variations in the

market price are assumed to be governed by a simple balance between the supply

of fish stock, the catch and its demand on the market. We represent this relation

by

ṗ = αp(D(p)− S(p)),

where D(p) and S(p) are functions of demand and supply of the fish stock respec-

tively, see for instance Mackey [21]. It is assumed that the maximum supply always

exceeds minimum demand, that is,

minpD(p) ≤ maxpS(p).
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The argument for demand is such that for any change in demand, a simplest as-

sumption that consumers base all buying decisions on the current market price p(t)

is taken. Thus, a demand function linearly dependent on the market price p, is

chosen as

D(p) = A− p(t),

with A a positive constant parameter that represents the limit threshold of the

market price, see for instance Arne E. et al. [2], Lafrance [20]. In this case, there is

a linear decrease in demand as price increases . This is suitable for resources whose

price is sensitive with a unit marginal cost since their consumption is dependent

on the availability of their substitutes. The argument of the supply schedule for

the stock is made basing on its dependence on the captured fish stock. Therefore,

S(p) = qnE. (3.10)

These functions of supply and demand make the Equation in market price to be-

come ;

ṗ = αp(A− p− qnE). (3.11)

Equation (3.11), has nonlinear variation in market price depending on the differ-

ence between supply and demand, see for instance Makwata H. et al.[22].

Equations (3.7),(3.9) and (3.11) constitute the complete time continuous model

which shows the evolution of the three variables given by,

ṅ = rn(
n

T
− 1)(1− n

k
)− qnE,

Ė = βE(pqn− c), (3.12)

ṗ = αp(A− p− qnE),
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CHAPTER FOUR

THE MODEL ANALYSIS AND RESULTS

4.1 Introduction

In this chapter, we aggregate equations in (3.12) to reduce them to a two dimen-

sional system, obtain its equilibrium points and analyse their local stability in order

to study the long-term behaviour of the solutions of the system. Bifurcation anal-

ysis is done for the case in which the threshold population is T = n
2
. In section

4.2 an aggregated model is obtained while local stability and bifurcation analysis

presented in section 4.3 and 4.4 respectively.

4.2 Aggregation

The model in Equation (3.12) is aggregated by considering that the market price

evolves comparatively faster than the fish stock and the fishing effort. Fishing firms

adjust to the market prices and the fishery conditions in order to avoid loses, recoup

their investment and make profit. Approximate aggregation enables the reduction

of the model in (3.12) to a system of two differential equations since the market

price is assumed to be at a faster time scale than harvesting effort and population

growth, see for instance Poggiale[29] and Segel[31]. The price in the harvesting

effort is replaced with the nontrivial equilibrium values p = p∗. This is obtained

when

ṗ = αp(A− p− qnE) = 0, (4.1)

so that p∗ is given by,

p∗ = A− qnE. (4.2)
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Thus, the second equation in (3.12) now becomes

Ė = βE((A− qnE)qn− c). (4.3)

We take β = 1 , which is a maximum value in the range 0 ≤ β ≤ 1 and may occur

when the environmental conditions and harvesting are favorable for stock growth

in the fishery. This aggregation reduces Equation (3.12) to ;

ṅ = rn(
n

T
− 1)(1− n

k
)− qnE,

Ė = E((A− qnE)qn− c), (4.4)

a system of two differential equations we analyze in this study.

4.3 Local Stability Analysis

In this section, we seek for long term solutions of the model in (4.4) and carry out

stability analysis to establish the nature of the equilibrium points.

4.3.1 Equilibrium Points

Solutions of the Model in (4.4) that do not change with time are found, these are

the points where the system dynamics persist in time. In Model equations (4.4),

the n nullclines are: n = 0 and r(1 − n
k
)( n
T
− 1) − qE = 0 while the E nullclines

are: E = 0 and −c + qn(A − qnE) = 0. The equilibrium points are basically the

intersection of E and n nullclines, that is,

E0 = (n0, E0) = (0, 0)

E1 = (n1, E1) = (T, 0)

E2 = (n2, E2) = (k, 0)

E3 = (n3, E3) = (n∗, E∗) (4.5)
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such that (n∗, E∗) is the solution of

E(n) =
r

q
(1− n

k
)(
n

T
− 1),

E(n) =
1

qn
(A− c

qn
). (4.6)

4.3.2 Stability Analysis

To analyse the stability of the equilibrium points of Equation (4.4), the system is

linearized at the equilibrium points. The trace and determinant of the matrix of

linearisation is studied, as model parameters are varied. The matrix of linearisation

defines a linear map which is the best linear approximation of the function near the

equilibrium point and it gives information about the local behaviour of the function.

Equation (4.4) can be expressed as

f(n,E) : = nr(1− n

k
)(
n

T
− 1)− qnE,

g(n,E) : = −cE + qnE(A− qnE). (4.7)

The Jacobian matrix of Equation (4.4) is

J(n,E) =

(
n(2r

T
− 3rn2

Tk
+ 2r

k
)− qE − r −qn

qEA− 2q2nE2 −c+ qnA− 2q2n2E

)
.

At E0 the Jacobian matrix is

J(0, 0) =

(
−r 0
0 −c

)
,

whose eigenvalues are: −r and −c. Since both are negative, the equilibrium

point E0 is a stable equilibrium point. This implies that any fish population and

harvesting effort close to E0 approaches E0 in time. The population decays to zero

due to sparsity which compromises reproduction, any small amount of harvesting
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makes the fish stock extinct. At E1,

J(k, 0) =

(
r(1− k

T
) −qk

0 −c+ qkA

)
.

Since r � k, r � T and k > T , then r(1− k
T

) < 0 if k < c
Aq

, then J(k, 0) is a stable

equilibrium point, for both eigenvalues are negative but if k > c
Aq

, then J(k, 0) is

a saddle point since one eigenvalue is negative and the other positive. Increased

costs of the harvesting as compared to the maximum stock that can be supported

in the fishery makes harvesting untenable hence stable state of equilibrium. In

case the fish stock that can be supported by the fishery is larger enough than the

costs, there is an increased harvesting effort which reduces the stock tremendously

making the equilibrium point E1 a saddle, which is unstable.

At the equilibrium E2, the Jacobian matrix is given by

J(T, 0) =

(
r(1− T

k
) −qT

0 −c+ qTA

)
.

Since T < k , r(1 − T
k
> 0 if T < c

Aq
then J(T, 0) is a saddle while if T > c

Aq
,

then J(T, 0) is unstable since both eigenvalues are positive. This equilibrium E2

is unstable since any small perturbation from E2 makes the fish stock to grow to

the carrying capacity or decay to zero. It can be considered as a point where the

fishery either declines to depensation and eventual species extinction or transits to

a compensation population level where the population grows exponentially towards

the carrying capacity .

At the Equilibrium E3 denoted by (n∗, E∗) the Jacobian matrix is

J(n∗, E∗) :=

(
n∗(2r

T
− 3rn∗2

Tk
+ 2r

k
)− qE∗ − r −qn∗

qE∗A− 2q2n∗E∗2 −c+ qn∗A− 2q2n∗E∗

)
. (4.8)
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To study the nature of the equilibrium point (n∗, E∗), we express c as a function

of the equilibrium fish population n∗ by equating the two equations in Equation

(4.6) to have

r

q
(1− n

k
)(
n

T
− 1) =

1

qn
(A− c

qn
). (4.9)

On expansion and algebraic manipulation, Equation (4.9) yields

c(n∗) =
rqn∗4

Tk
− rqn∗3

T
− rqn∗3

k
+ rqn∗2 + Aqn∗. (4.10)

With parameter values set at

r = q = A = 1,

Equation (4.10) takes its basic form whose geometric profiles portrays the dynamics

of the fish stock and thus becomes,

c(n∗) =
n∗4

Tk
− n∗3

T
− n∗3

k
+ n∗2 + n∗. (4.11)

We investigate this Equilibrium point (n∗, E∗) by having the threshold population

T, as a factor of the fish population at a particular time n, at three different values.

Exploitation of marine fish stock basing on MSY policy suggests that the stock

is said to be sustainable if thirty to twenty percent of the stock that was initially

present is in a fishery see Kar [19]. The threshold value T is a population value at

which the fish stock population may decline into depensation and eventual species

extinction due lack of social co-operative benefits associated to Allee effect or into

compensation due to the harvesting of the stock. Analysis of each case is contained

in the propositions and their proofs herein.

38



4.3.3 Case One: T = n
4

With T = n
4

and q = 1, Equation (4.10) becomes

c(n∗) =
3rn∗3

k
− 3rn∗2 + An∗. (4.12)

Figure 4.1 below shows how c(n∗) depends on k.
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Figure 4.1: The function c(n∗) plotted for k = 2, 3, 4 and 5. for T = n
4

Proposition 4.1

For T = n
4

there are three equilibrium points (ni
∗, Ei

∗) with i = 1, 2, 3 satisfying the

Equilibrium condition

E∗ = 3r(1− n∗

k
)
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such that (n1
∗, E1

∗) and (n2
∗, E2

∗) are saddle points while (n3
∗, E3

∗) is a stable

equilibrium point .

Proof

The Jacobian matrix in Equation (4.8) for this value of T is

J(n∗, E∗) :=

( −3rn
k

−qn
qEA− 2q2nE2 −q2n∗2E∗

)
.

The trace is trJ(n∗, E∗) = −3rn
k
− q2n∗2E∗ < 0. The determinant DetJ(n∗, E∗) =

3r
k
q2n∗3E∗ + q2n∗E∗(A− 2qn∗E∗) which is equal to

DetJ(n∗, E∗) = q2n∗E∗(
3r

k
n∗2 − 2qn∗E∗ + A.)

Using

E =
3r

q
(1− n

k
). (4.13)

we have

qE∗ = 3r(1− n∗

k
)

which when substituted in the expression for determinant we obtain

DetJ(n∗, E∗) = q2n∗E∗(
9r

k
n∗2 − 6n∗r + A) = q2n∗E∗ψ1(n∗).

Where

ψ1(n∗) =
9r

k
n∗2 − 6n∗r + A.

The derivative of c(n) = 3rn3

k
− 3rn2 + An, with respect to n is c′(n∗) = 9r

k
n∗2 −

6rn∗ + A. The solution to this quadratic equation is

n∗1,2 =
k

3

(
1±

√
1− A

kr

)
. (4.14)

c′(n∗) is equal to ψ1 and sign DetJ(n∗, E∗) = sign ψ1. From the Figure 4.1 above,

we have sign c′(n) = sign DetJ(n∗, E∗) > 0 when n ⊆ [n2,+∞] and sign c′(n) =

sign DetJ(n∗, E∗) < 0 when n ⊆ [0, n1]
⋃

[n1, n2]. With c(n1) > 0 and c(n2) < 0 we
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have three equilibrium points (n1
∗, E1

∗), (n2
∗, E2

∗), (n3
∗, E3

∗) such that n1
∗ < n1 <

n2
∗ < n2 < n3

∗. For (n3
∗, E3

∗), n2 < n3
∗ , sign c′(n) = sign DetJ(n∗, E∗) > 0 thus

stable since detJ(n3
∗, E3

∗) > 0 and trJ(n3
∗, E3

∗) < 0. For (n1
∗, E1

∗), (n2
∗, E2

∗),

n1
∗ < n1 < n2

∗ sign c′(n) = sign DetJ(n∗, E∗) < 0 thus saddle equilibrium points

since trJ(n∗, E∗) < 0 and DetJ(n∗, E∗) < 0.

4.3.4 Case Two: T = n
2

For T = n
2

and q = 1, Equation (4.10) becomes

c(n∗) =
rn∗3

k
− rn∗2 + An∗ (4.15)

the graph of Equation (4.15) shows that as the parameter value k varies.
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Figure 4.2: The function c(n∗) plotted for k = 2, 3, 4 and 5. for T = n
2
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the number of Equilibrium points is one for k < 3 and two more equilibrium points

emerge for k > 3 as seen in Figure 4.2. In this case, c′(n∗) = 3r
k
n∗2 − 2rn∗ + A.

The solution n∗ for c′(n∗) = 0 are

n∗1,2 =
k

3

(
1±

√
1− 3A

kr

)
. (4.16)

Furthermore, The Jacobian matrix in Equation (4.8) with respect to these value of

T is

J(n∗, E∗) =

(
− r
k
n∗ −qn∗

qE∗(A− 2qn∗E∗) −q2n∗2E∗

)
.

The trace and the determinant of J(n∗, E∗) are:

trJ(n∗, E∗) = − r
k
n∗ − q2n∗2E∗ < 0

and

Determinant of J(n∗, E∗) = Det(J) := q2n∗E∗(
r

k
n∗2 + A− 2qn∗E∗)

respectively. Using

E∗ =
r

q
(1− n∗

k
),

in det(J), we obtain

Det(J) = q2n∗E∗ψ2(n∗),

where ψ2(n∗) := 3r
k
n∗2 − 2rn∗ + A. Since q2n∗E∗ is positive, the sign of Det(J)

depends on ψ2(n∗). For Det(J), ψ2(n) and (c′(n)) have the same sign, we have:

Det(J) > 0 if nε[0, n1]
⋃

[n2,+∞],

Det(J) < 0 if nε(n1, n2).

If r < 3A
k

, then c′(n∗) is positive and c(n∗) is monotonic increasing with complex
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roots. If r > 3A
k

then there are two real zero’s for c′(n∗). If r = 3A
k
, the two real

zero’s coincide. At this point n∗1,2 = k
3
, the parameters have further relationship

as c = k
9

and E∗ = r
q
(1 − n∗

k
) = 2A

k
. Further analysis distinguishes two different

cases:

Proposition 4.2

For 0 < r < 3A
k

and k > c
Aq

, E2 = (k, 0) is a saddle point and (n∗, E∗) is a positive

stable equilibrium point.

Proof

If 0 < r < 3A
k

in Equation (4.15), the sign of c′(n∗) is positive. Moreover,

c′′(n∗) = 6rq
k
n∗ − 2rq thus n∗ = k

3
is a point of inflection. We have c(k) = qAk but

since c is strictly increasing and may take positive or negative values depending

on k, we consider c(k) = qAk − c and as limn→+∞c(n) = +∞, we conclude that c

vanishes at a unique point n∗, thus a unique equilibrium point (n∗, E∗) is obtained.

If k < c
Aq

, then c(k) < 0 and c vanishes at a value n∗ > k,which corresponds to

a negative effort equilibrium (E∗ < 0). In this case, the equilibrium point E2 is a

stable equilibrium but (n∗, E∗) does not present any interest since it is correspond-

ing to unrealistic negative fishing effort, but if k > c
Aq

then c(k) > 0 and c vanishes

at a value n∗ < k, with a positive effort equilibrium E∗ > 0. In this case E2 is a

saddle point and (n∗, E∗) is the unique positive stable since detJ(n3
∗, E3

∗) > 0 and

trJ(n3
∗, E3

∗) < 0.

Proposition 4.3

For 0 < 3A
k
< r, Ei := (n∗i , E

∗
i ) for i = 1, 2, 3 three positive equilibrium points exist

with three subcases:

1. If c(n∗) < 0, c(n∗1) < 0 , there is a unique positive and stable equilibrium

point(n∗, E∗);
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2. If c(n∗1) > 0 and c(n∗2) > 0 , a unique positive and stable equilibrium point is

obtained (n∗, E∗);

3. If c(n∗1) > 0 and c(n∗2) < 0 , three positive equilibrium points (n∗i , E
∗
i ) for

i = 1, 2, 3 exist with (n∗1, E
∗
1) and (n∗3, E

∗
3) stable while (n∗2, E

∗
2) is a saddle

equilibrium point.

Proof

If 0 < 3A
k
< r in Equation (4.15), c′ vanishes at two values n1 and n2 given by

0 ≤ n1 =
k

3

(
1−

√
1− 3A

rk

)
<
k

3
,

and

k

3
< n2 =

k

3

(
1 +

√
1− 3A

rk

)
< k.

Recall that limn∗→+∞ c(n
∗) = +∞. As c(n∗1) and c(n∗2) can have positive or negative

signs,so for subcase 1, with c(n∗) < 0, c(n∗1) < 0 and n∗ > n1, det(J) > 0 and

tr(J) < 0 thus a stable equilibrium point (n∗, E∗). For Subcase 2, since c(n∗1) > 0

and c(n∗2) > 0, with n∗ < n∗1, det(J) > 0 and tr(J) < 0 thus a stable equilibrium

point (n∗, E∗). Finally for Subcase 3, given that n∗1 < n1 < n∗2 < n2 < n∗3 is

satisfied, (n∗1, E
∗
1) and (n∗3, E

∗
3) are stable since det(J) > 0 and tr(J) < 0 while

(n∗2, E
∗
2) is a saddle equilibrium point since det(J) < 0 and tr(J) < 0.

4.3.5 Case Three : T = 3n
4

With T = 3n
4

and q = 1, Equation (4.10) becomes

c(n) =
rn3

3k
− r

3
n2 + An. (4.17)

Figure 4.3 shows how c(n) depends on k.

The derivative of Equation ((4.17)) with respect to n is c′(n∗) = r
k
n∗2 − 2

3
rn∗ +A.
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Figure 4.3: The function c(n∗) plotted for k = 2, 3, 4 and 5. for T = 3n
4

Which vanishes at

n∗1,2 =
2k

3

(
1± k

√
1

9
− A

kr

)
. (4.18)

The Equation (4.18) has complex roots not relevant to a realistic fish population.

Proposition 4.4

For T = 3n
4

there is one equilibrium point (n∗, E∗) satisfying the equilibrium con-

dition

E∗(n) =
r

3
(1− n∗

k
) (4.19)

which is stable.

45



Proof

The Jacobian matrix in Equation (4.8) corresponding to this value of T is

J(n∗, E∗) :=

( −rn∗

3k
−qn∗

qE∗A− 2q2n∗E∗2 −q2n∗2E∗

)
.

The trace is trJ(n∗, E∗) = − rn∗

3k
− q2n∗2E∗ < 0. The determinant DetJ(n∗, E∗) =

r
3k
q2n∗3E∗ + q2n∗E∗(A− 2qn∗E∗), which is equal to

DetJ(n∗, E∗) = q2n∗E∗(
r

3k
n∗2 − 2qn∗E∗ + A).

Using

E =
r

3q
(1− n∗

k
), (4.20)

in the expression of the determinant, we obtain

Det J(n∗, E∗) = q2n∗E∗(
r

k
n∗2 − 2

3
n∗r + A) = q2n∗E∗ψ3(n∗).

Where

ψ3(n∗) =
r

k
n∗2 − 2

3
n∗r + A.

Figure 4.3 shows that c′(n) > 0 and c(n) is monotone increasing thus c(n) vanishes

at a unique value n∗ < k. Since the sign of the determinant is the same as the

sign of ψ3 which is also the sign of c′, the equilibrium point (n∗, E∗) is stable since

sign c′(n) = sign DetJ(n∗, E∗) > 0. The stable equilibrium points in the above

propositions corresponds to solution values for the fish population and harvesting in

which any initial population and harvesting effort close to them will eventual move

close to the points in time whereas the saddle equilibrium points are the solution

values for the system in which any initial fish population and harvesting effort close

to the point will move away from the point in time. This is mainly attributed to

the cost of harvesting which dictates whether harvesting is economically tenable or

not. It is the magnitude of harvesting effort which determines the fish stock levels
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in the fishery.

4.4 Bifurcation analysis

Bifurcation is the study of the changes in the qualitative structure of a given family,

often, a dynamical system. Bifurcation is said to occur when a smooth change in

the parameter of a system causes a sudden qualitative change in its behaviour, see

Blanchard E. P et al.[9].

In this section, we examine the model for the case in which T = n
2
, and k as

the bifurcation parameter. For k = 2, 3, there is one equilibrium point and when

k = 4, 5, two more equilibrium points emerge depicting a bifurcation. The model

in (4.4) when T is replaced with T = n
2
, it becomes

ṅ = n(r(1− n

k
)− qE),

Ė = E(−c+ qn(A− qnE)). (4.21)

4.4.1 Non dimensionalisation

We make Equation (4.21) dimensionless by making the following transformations:

υ =
√
qn, ε =

√
q

A
E, τ =

√
qAt, (4.22)

and introducing the parameters;

ρ =
r

A
√
q
, γ =

c

A
√
q
, κ :=

√
qk. (4.23)

By chain rule, the derivative of n is given thus:

ṅ =
dn

dυ
.
dυ

dτ
.
dτ

dt
= A

dυ

dτ
, (4.24)

using (4.22), (4.23) and (4.24) in the first equation of (4.21) we get

A
dυ

dτ
=

υ
√
q

(ρA
√
q(1− υ

κ
)− υ2

n2
.
εA
√
q

), (4.25)
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which upon simplification yields:

υ̇ = υ(ρ(1− υ

κ
)− ε), (4.26)

where the dot “.” indicates differentiation with respect to τ. Similarly, the derivative

of E is given in dimensionless terms by :

Ė =
dE

dε
.
dε

dτ
.
dτ

dt
= A2 dε

dτ
,

which upon substitution in the second equation of (4.21) and the use of the dimen-

sionless variables and parameters in Equations (4.22) and (4.23), we obtain:

A2 dε

dτ
=
εA
√
q

(−γA√q + q
υ
√
q

(A− q υ√
q

εA
√
q

)), (4.27)

that simplifies to:

ε̇ = ε(−γ + υ(1− ευ)) (4.28)

The model in Equation (4.21) expressed in dimensionless terms becomes:

υ̇ = υ(ρ(1− υ

κ
)− ε),

ε̇ = ε(−γ + υ(1− ευ)), (4.29)

Three parameters; κ, ρ, γ remain. These parameters are interpreted as follows; in

case ρ � 1, and γ � 1, then A
√
q � r and A

√
q � c where we have demand

driven over-exploitation of the fish resource. If γ � 1 and ρ � 1 then it follows

that A
√
q � r and A

√
q � c which will lead to under-exploitation of the fish

resource.

Comparison of dimensionless model in Equation (4.29) to Equation (4.21), shows

that if we set r = q = A = 1 in (4.21), we obtain Model equation in (4.29) with

υ = n, ε = E, ρ = r, γ = c and κ = k, thus, we use initial parameters k, c and r.
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Bifurcation will show us the long-term dynamic behaviour of the aggregated model.

We shall show that there is a value of the bifurcation parameter k =: k0 where the

system in (4.29) undergoes a saddle-node bifurcation showing the co-existence of

two stable equilibria separated by a saddle, whereby the fish population and the

fishing effort varies with k. This is done by stating and proofing Proposition 4.5

and describing two bifurcation diagrams that show the number and type of stability

of points of equilibria as k is varied.

Proposition 4.5 For n > 2c, there is a value of k =: k0 where the system in

Equation (4.21) undergoes saddle - node bifurcation as the fish population and the

fishing effort dynamics vary with the carrying capacity. Furthermore, for k < k0,

there are only two equilibria while when k > k0, two more equilibria emerge, one

stable and the other unstable.

Proof

Using Equations (4.21) and

E(n) =
r

q
(1− n

k
)

E(n) =
1

qn
(A− c

qn
), (4.30)

the second equation in Equation (4.30) gives

qE =
1

n
(A− c

qn
). (4.31)

Equation (4.31) when substituted in the first equation of Equation (4.21) it yields

ṅ = n(r − rn

k
− A

n
+

c

qn2
), (4.32)

with r = q = A = 1 as earlier seen, we obtain

ṅ = nφ(n, k) =: Φ(n, k),
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where

φ(n, k) := 1− n

k
− 1

n
+

c

n2
. (4.33)

Clearly, n = 0 and the curve φ(n, k) = 0 gives the equilibrium points. For the

stability of the equilibria points φ(n, k) = 0, we have

Φ′(n, k) = φ(n, k) + nφ′(n, k),

when φ(n, k) = 0, we obtain

Φ′(n, k) = nφ′(n, k),

where the prime indicates differentiation with respect to n. There is stability when

φ′(n, k) < 0 and instability when φ′(n, k) > 0. Since φ′(n, k) is continuous for n > 0,

we have a change in stability at φ′(n, k) = 0; that is,

φ′(n, k) =
−1

k
− 2c

n3
+

1

n2
= 0,

or

−n3 − 2ck + nk = 0,

and find that

k = k0 :=
n3

n− 2c
, (4.34)

as the value of k where a bifurcation occurs.

To be able to indicate the nature of stability in the bifurcation diagram in Figure

4.4 obtained using (4.33), consider

ṅ = nφ(n, k) = 0.

The curve φ(n, k) = 0 defines equilibrium point (n∗, k∗). Clearly

dφ

dk
=
n∗
k2
|(n∗,k∗)> 0,
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thus by the Implicit Function Theorem, there exists

φ(n, k(n)) = 0, (4.35)

k(n) defined in the neighbourhood of (n∗, k∗) with k(n∗) = k∗ as smooth as φ(n, k).

Differentiating Equation (4.35) with respect to n, we get

dφ

dn
+
dφ

dk

dk

dn
= 0

and hence

dφ

dn
= −dφ

dk

dk

dn
,

from which we can see that

sign(
dφ

dn
) = −sign(

dk

dn
).

Hence the nature of stability in the bifurcation diagram in Figure 4.4, where the

variation of k, beyond k =: k0 as earlier defined in Equation (4.34). leads to

creation of two more additional equilibrium solutions. This is a bifurcation with

the fish population as the variable and the carrying capacity k as the bifurcation

parameter. As earlier seen in simulation in Figure 3.4, a harvesting reduces the

carrying capacity of the fishery, thus as the k varies, there is a value of k as given

in Equation (4.34),where a decrease in the fish population in an under-exploited

fishery causes the stable population value n3
∗ to attain the saddle population value

n2
∗ earlier presented in proposition 4.3 (iii).

For the variation of the fishing effort with the carrying capacity as the bifurcation
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Figure 4.4: One Parameter bifurcation diagram for fish population with k as pa-
rameter

parameter, we obtain

Ė = E(−c+ n− n2E), (4.36)

where q = A = 1 in the second equation of Equation (4.21). Similarly, we also

obtain

n = k(1− E), (4.37)

from the first equation in Equation (4.30) such that

k = k0 =
k3(1− E)3

k(1− E)− 2c
, (4.38)

is the bifurcation value. Further aggregation in which Equation (4.37) is substituted

52



in Equation (4.36) yields

Ė = EΘ(E, k) = Ψ(E, k),

where

Θ(E, k) = −c+ k − kE − k2E + 2k2E2 − k2E3. (4.39)

Clearly, E = 0 and the curve Θ(E, k) = 0 gives equilibrium points. For the stability

of the equilibrium points Θ(E, k) = 0, we have

Ψ′(E, k) = Θ(E, k) + EΘ′(E, k),

and hence

Ψ′(E, k) = EΘ′(E, k),

if evaluated at Θ(E, k) = 0. The prime indicates differentiation with respect to

E. There is stability when Θ′(E, k) < 0 and instability when Θ′(E, k) > 0. Since

Θ′(E, k) is continuous with E > 0, there is a change in stability at Θ′(E, k) = 0.

To indicate the nature of stability, consider

Ė = EΘ(E, k) = 0.

The curve Θ(E, k) = 0 defines equilibrium points (E∗, k∗).

dΘ

dk
= 1− E − 2kE + 4kE2 − 2kE3,

where it is seen that dΘ
dk
|(E∗,k∗)< 0 for E∗ > 0. Thus, by the Implicit Function

Theorem, there exists

Θ(E, k(E)) = 0, (4.40)

k(E) defined in the neighbourhood of (E∗, k∗) with k(E∗) = k∗ as smooth as
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Θ(E, k). Differentiating Equation (4.40) with respect to E, we obtain

dΘ

dE
+
dΘ

dk

dk

dE
= 0

thus

dΘ

dE
= −dΘ

dk

dk

dE
.

Since dΘ
dk
< 0, it is evident that

sign(
dΘ

dE
) = sign(

dk

dE
),

as seen in Figure 4.5 obtained using Equation (4.39). The stability changes at

Θ′(E, k) = 0, hence the nature of stability shown. There is existence of only two

equilibrium solutions before the bifurcation parameter k passes through the critical

value k = k0 defined in (4.38) where two more equilibrium solutions are generated,

one being stable and the other unstable as seen in Figure 4.5. Harvesting, re-

duces the fish population in the fishery which varies with the carrying capacity. As

harvesting varies, there is a value k = k0 defined in (4.38) where the equilibrium

Value E∗ decreases to make the equilibrium fish population n∗ increase hence a

change from unstable equilibrium point to a stable equilibrium point as presented

in proposition 4.3(iii).
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Figure 4.5: One Parameter bifurcation diagram for Fishing Effort with k as pa-
rameter

55



CHAPTER FIVE

DISCUSSION, CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter presents a discussion of results obtained in chapter 4, in relation to the

commercial marine fishery at the Kenyan coastline, where tuna species is dominant.

Section 5.2 is the discussion while conclusion and recommendation is contained in

section 5.3 and 5.4 respectively.

5.2 Discussion

In this study, we have presented a mathematical model of a fishery with Allee effect

in the population growth equation. Thus we have considered the dynamics of the

fishery at low population levels which addresses fears of species extinction. More-

over, with consideration of the harvesting effort which is determined by the market

price of landed fish, economic aspects have also been incorporated. The market

price is considered to evolve faster than the harvesting effort and the population

growth since prices are determined on a day to day basis as investors strive to

recoup their investment. Rapid evolution in the market price is used to aggregate

the model from a system of three equations to a system of two equations by using

its equilibrium value in the harvesting effort equation. The results obtained with

consideration of Allee effects in the population growth equation differ significantly

from results of models without Allee effects in Auger et al.[4], Mchich et al. [28]

and Makwata H. et al. [22]. Analysis realised four equilibrium points, namely;

(0, 0), (T, 0), (k, 0) and (ni
∗, Ei

∗) for i = 1, 2, 3. The dilemma of co-existence of two

fishery states which do not support sustainable fish resource exploitation in Auger

et al.[4], and Makwata H. et al. [22] is addressed by the threshold population value
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T = n
4

which gives co-existence of three equilibrium points, two saddle equilibrium

points and a stable equilibrium point.

Simulations of the population growth equation

ṅ = rn(
n

T
− 1)(1− n

K
)− qnE, (5.1)

is performed with the population starting at varying initial values as shown in Fig-

ure 3.3 and 3.4. Two situations are displayed; a case where there is zero harvesting

and the case where a minimal harvesting is allowed. These simulation curves de-

pict a fishery where harvesting is not a major priority but the fishery can support

recreational economic activity of fishing sports, with species like Yellow fin tuna,

Skipjack tuna and Black marlins often catched and released in the sport. Thus,

investments can be made in tourism industry to develop fishing sports along the

Kenyan marine coastline to enhance returns from blue economy.

Analysis of the equilibrium (n∗, E∗) at three different values of T = n
4
, T = n

2
and

T = 3n
4

shows one equilibrium or co-existence of three positive equilibria. The

stable equilibrium corresponds to the fish stock being maintained at high levels

but with low economic activity This is obtained when T = 3n
4

. This is the current

situation of the Kenya commercial marine fisheries where fishing activity is mainly

traditional. The case of two stable equilibria co-existing with a saddle between

is reasonably observed in most commercial fisheries, it is obtained when T = n
2
.

This occurs when the condition rk < 3A holds. The condition implies that the fish

species under exploitation has rapid reproduction and a large carrying capacity, a

very common case with most commercial species. The co-existence of these three

equilibria is due to an increase in harvesting costs due to increased fuel prices,
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taxes and wages. The two stable equilibria correspond to an over-exploited and

an under-exploited fish stock. Immediate history of the fishery may play a core

role in its evolution and in its current state. The transient dynamics determines

the closeness of the fishery to either of the two stable equilibria depending on the

initial conditions. Thus the fishery can be found in two distinct situations: Over-

exploited or under-exploited. However, it is not possible to decide wether the fishery

should persist in either of the situations. Over-exploitation has a risk of species

extinction whereas under-exploitation has low economic returns not economically

viable. Kenya commercial marine fishery is in an under-exploited state but with

increased economic exploitation, it can transit to the over-exploited state. The

case of co-existence of three positive equilibria co-existing, two being saddle and

one being a stable obtained when T = n
4

corresponds to a fishery in which there

are management practices in which the fish resource is exploited in a sustainable

manner. When the management practices are enforced, the fish stock is maintained

at sustainable equilibrium value n2
∗ , with a possibility of sliding to vulnerable

levels n1
∗ if the management practices are not enforced or huge levels of little

economic activity n3
∗. In case the fishery is found in over-exploited state, the only

management practice is to enforce a total ban on exploitation for some time for the

fish stock to recover, a management practice commonly practised with threatened

fresh water species.

5.3 Conclusion

Kenya commercial marine fishery is currently under - exploited, for economic ben-

efits, an aggressive harvesting strategy should be in place with appropriate in-

vestments. However, best fishery management practices need to be formulated

depending on the species census data which will enhance setting of sustainable

fishing quotas and enforcement of these regulation by relevant authorities. The
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over-exploitation equilibrium in this study do not cause an immediate extinction

but to a population density n1
∗, of the fish resource. Kenya can maintain a huge

economic activity but this can be done in a durable way in which estimates of

the amplitude of environmental variations which may cause extinction is done and

maintaining the equilibrium fish density n1 at a sufficient density so that the fish

resource can recover incase of a major modification of environmental conditions.

5.4 Recommendations

From the analysis, sustainable harvesting of Kenyan coastal commercial fish stocks

can be achieved with enhanced monitoring and surveillance. Kenya has made ad-

vanced efforts in surveillance with the establishment of the Kenya Coast Guard

Service. However, more efforts need to be made in monitoring where records of

all catches are made and research on fish stocks made so that more analysis to

fix parameter like capturability which sets appropriate fishing quotas at varying

times.

Most commercial marine fish species are highly migratory determined by avail-

ability of prey and movement to reproduction grounds. Similarly, most fishery

harvesting vessels will move to fishery patches with high stock density. Kenya ma-

rine fish species and its harvesting strategy can not be an exception. A fishery

model considering density dependent migratory rates both in the fish stock and in

the harvesting vessels, as they move between the fishing zones is a feasible future

research problem of interest.
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Appendix A

APPENDIX: MATLAB R2017b COMMANDS FOR FIGURES

1.1 Figure 3.1

r = 0.05;

Tot− time = 100;

dt = 0.01;

t = (0 : dt : Tot− time;

n = Zeros(size(t));

tot− steps = Tot− time/dt+ 1

ic(1) = 0;

ic(2) = 1;

ic(3) = 2;

forj = 1 : 3

forj = ic(j);

n(1) = ic(j);

fori = 1 : totsteps− 1

n(i+ 1) = n(i) + dt ∗ (r ∗ n(i));

end

figure(1)

if(j == 1)

plot(t,n,‘r’)

elseif (j == 2)

plot(t,n,‘b’)

else
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plot(t,n,‘g’)

end

end

1.2 Figure 3.2

r = 0.05;

Tot− time = 100;

dt = 0.01;

t = (0 : dt : Tot− time;

n = Zeros(size(t));

k = 500;

tot− steps = Tot− time/dt+ 1

ic(1) = 0;

ic(2) = 1;

ic(3) = 2;

forj = 1 : 3

forj = ic(j);

n(1) = ic(j);

fori = 1 : totsteps− 1

n(i+ 1) = n(i) + dt ∗ (r ∗ n(i) ∗ (1− n(i)/k);

end

figure(1)

if(j == 1)

plot(t,n,‘r’)

elseif(j == 2)

plot(t,n,‘b’)

61



else

plot(t,n,‘g’)

end

end

1.3 Figure 3.3

r = 0.05;

T = 100;

k = 500;

E = 0;

Tot− time = 100;

dt = 0.01;

t = (0 : dt : Tot− time);

n = Zeros(size(t));

tot− steps = Tot− time/dt+ 1;

ic(i) = 520;

ic(2) = 450;

ic(3) = 300;

ic(4) = 120;

ic()5) = 50;

forj = 1 : 5

n(1) = ic(j);

fori = 1 : tot− steps− 1

n(i+ 1) = n(i) + dt ∗ (−r ∗ n(i) ∗ (1− n(i)/T ) ∗ (1− n(i)/k)− E ∗ n(i));

end

figure (1)
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hold on

if(j == 1)

plot(t,n,‘r’)

elseif(j == 2)

plot(t,n,‘b’)

elseif(j == 3)

plot(t,n,‘g’)

elseif(j == 4)

plot(t,n,‘y’)

else plot(t,n,‘k’)

end

end

end

end

end

legend(‘520′, ‘450′, ‘300′, ‘120′, ‘50′)

1.4 Figure 3.4

r = 0.05;

T = 100;

k = 500;

E = 0.5;

Tot− time = 100;

dt = 0.01;

t = (0 : dt : Tot− time);

n = Zeros(size(t));

tot− steps = Tot− time/dt+ 1;
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ic(i) = 520;

ic(2) = 450;

ic(3) = 300;

ic(4) = 120;

ic()5) = 50;

forj = 1 : 5

n(1) = ic(j);

fori = 1 : tot− steps− 1

n(i+ 1) = n(i) + dt ∗ (−r ∗ n(i) ∗ (1− n(i)/T ) ∗ (1− n(i)/k)− E ∗ n(i));

end

figure (1)

hold on

if(j == 1)

plot(t,n,‘r’)

elseif(j == 2)

plot(t,n,‘b’)

elseif(j == 3)

plot(t,n,‘g’)

elseif(j == 4)

plot(t,n,‘y’)

else plot(t,n,‘k’)

end

end

end

end

end
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legend(‘520′, ‘450′, ‘300′, ‘120′, ‘50′)

1.5 Figure 4.1

n = 0 : 0.1 : 5;

c = 3 ∗ (n.3)
2
− n.2 + n;

c1 = 3 ∗ (n.3)
3
− n.2 + n;

c2 = 3 ∗ (n.3)
4
− n.2 + n;

c3 = 3 ∗ (n.3)
5
− n.2 + n;

plot(n, c, n, c1, n, c2, n, c3)

xlabel(′n∗′)

ylabel(′c(n∗)′)

1.6 Figure 4.2

n = 0 : 0.1 : 5;

c = (n.3)
2
− n.2 + n;

c1 = (n.3)
3
− n.2 + n;

c2 = (n.3)
4
− n.2 + n;

c3 = (n.3)
5
− n.2 + n;

plot(n, c, n, c1, n, c2, n, c3)

xlabel(′n∗′)

ylabel(′c(n∗)′)

1.7 Figure 4.3

n = 0 : 0.1 : 5;

c = (n.3)
6
− (n.2)

3
+ n;
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c1 = (n.3)
9
− (n.2)

3
+ n;

c2 = (n.3)
12
− (n.2)

3
+ n;

c3 = (n.3)
15
− (n.2)

3
+ n;

plot(n, c, n, c1, n, c2, n, c3)

xlabel(′n∗′)

ylabel(′c(n∗)′)

1.8 Figure 4.4

b1 = 0.1; in = 0.01;Final = 5;

Fb = (Final−b1)
in

;

n = b1 : in : Final;

hold on

c = 0.2;

for b = 1 : Fb+ 1,

k(b) = n(b)3

(n(b)2−n(b)+c)
;

e(b) = 1
n(b)
∗ (1− c

n(b)
);

end

grid on

plot(k, n)

xlabel(′k,Carrying capacity′)

ylabel(′n,Fish population′)

1.9 Figure 4.5

b1 = 0.1; in = 0.01;Final = 5;

Fb = (Final−b1)
in

;
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n = b1 : in : Final;

hold on

c = 0.2;

for b = 1 : Fb+ 1,

k(b) = n(b)3

(n(b)2−n(b)+c)
;

e(b) = 1
n(b)
∗ (1− c

n(b)
);

end

grid on

plot(k, e)

xlabel(′k,Carrying capacity′)

ylabel(′E,Fishing effort′)
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