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ABSTRACT

Mathematicians have made various attempts to understand the dynamical behaviour of

HIV and AIDS using within-and between-host transmission models. Since the mechanism

of HIV and AIDS transmission is an intricate process, treating these processes separately

may not comprehensively unravel the many properties that can emerge as a result of the

interdependence of the two transmission processes. Hence a paradigm shift on modelling

is fundamental in generating new predictions and strategies for controlling HIV spread.

In view of this, multiscale models for HIV and AIDS are key in addressing this gap.

Existing immuno-epidemiological models for HIV and AIDS however do not incorporate

treatment in the viral and cellular transmission paths. This study focused on developing

an immuno-epidemiological model for HIV and AIDS, incorporating viral and cellular

transmission with antiretroviral treatment. Using ordinary differential equations, the two

transmission subsystems were coupled in which the transmission rate at the population

was expressed as a function of the viral load, while the within-host infection rates were

modelled as functions of the number of infectives. The basic reproduction number, R0C

of the coupled model was found to be a maximum of the two reproduction numbers R0B

and R0W corresponding to the between host and within host subsystems respectively.

Stability analysis revealed that the disease free equilibrium is globally asymptotically

stable whenever R0B < 1 and R0W < 1. Theoretically this means that the disease is

wiped out. Using the center manifold Theorem, the endemic equilibrium was found to

be locally asymptotically stable if R0C > 1 and unstable otherwise. This reveals that the

high transmissibility of HIV caused by high viral load at the within host level will lead

to disease persistence in the population. Numerical simulation shows that an increase in

viral load at the within host level leads to proportional increase in the number of infectives

at the population level. The effectiveness of ARV treatment in combating the spread of

HIV and AIDS depends on the efficacy levels of both RTI and PI. Consequently the study

recommends the administration of ARVs with high treatment efficacy for both RTI and

PI levels.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Since its discovery over three decades ago, HIV/AIDS still remains a major threat to

human life and resource. Human resource is a major recipe for economic and industrial

development. HIV and AIDS has greatly affected and/or depleted this important resource

and exerted great economic burden globally especially in sub-Saharan countries, where its

prevalence has always been high. According to UNAIDS global HIV and AIDS statistics

of 2019 , 37.9 million people globally were living with HIV while 770000 people died from

AIDS related illnesses. In many Sub-Saharan countries, for example, Kenya and Uganda,

the effects of HIV and AIDS on the economy has been adverse due to the high cost of

treatment and management. Thus enormous resources are being channeled to research

and management.

HIV is a virus belonging to the genus lentivirus, which is a family of retrovirus whose

genome is in form of RNA that transfers their genomic material through a process of re-

verse transcription, via viral enzyme called Reverse transcriptase [24]. This is in contrast

to other living cells in which their genome sequence information flow as a result of repli-

cation. HIV mainly infects various immune cells such as microphage and lymphocyte T

cells, which are part of the white blood cells. T cells can further be categorised into CD8

and CD4+T cells. HIV targets mainly the CD4+T cells. Besides attacking CD4+T cells,

HIV also attack other body organs such as kidney, heart and the brain. This may lead

to acute renal failure, cardiomyopathy and dementia. The reverse transcription process

of viral RNA alters the function and genomic structure of CD4+T cells. These changes
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damage the immune system leading to low CD4+T cell count. When the CD4+T cell

count declines below a critical level (with the loss of cell mediated immunity), the overall

immune system fails to hinder the growth of HIV and the body becomes progressively

more susceptible to opportunistic diseases.

Tremendous research work has been conducted on how to contain or eradicate HIV and

AIDS among the human population. This has been done by researchers from diverse fields

such as biology, medicine and mathematics. Mathematicians through mathematical mod-

elling of viral infections, have enhanced greater understanding of virus dynamics. This

achievement has largely been realised by studying HIV infection and transmission dynam-

ics at two levels namely; Within-host infection (immunological models) and Between-host

transmission (epidemiological models) dynamics.

The between-host HIV transmission models (epidemiological models) seek to investigate

how HIV spreads in the population through; sexual contact, intravenous drug use, blood

transfusion and mother to child vertical transmission. Specifically the between host mod-

els describes HIV and AIDS progression among susceptibles, S (people who are vulnerable

to infection), the asymptomatically infected, I (those who are infected without symp-

toms) and the symptomatically infected, A (the AIDS class) population. In the recent

past, mathematical modelling of HIV and AIDS epidemiology has incorporated dynamics

such as the impact of awareness, screening and counselling of infectives [17], adherence

to ART treatment [35], vertical transmission and time delay [23] and HIV dynamics with

treatment and vertical transmission [40] among others.

The immunological models, basically model the dynamics of HIV and target immune

cells-CD4+T cells. These models can further be classified into viral and cellular infection

models. Virus-to-cell models of infection describes the binding of a virus to a receptor on

the surface of target CD4+T cells, replication and transcription into a provirus. Early
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models of within host HIV infection such as those by [24] and [25] were successful in nu-

merically describing dynamics of HIV infection and thus provided standard viral infection

models that are the basis for current modelling of viral disease dynamics. Recent studies

have however revealed that a high virus-to-cell infection rate is likely to lead to a trans-

fer of multiple virions to target cells, hence the virus induced cell-to-cell transmission of

viruses. The inclusion of cell-to-cell transmission in viral modelling has gained consid-

erable attention in the recent past, this has greatly enhanced understanding of the HIV

and AIDS infection in vivo. It has also opened new strategies in designing antiretroviral

treatment, provided new insights into the pathogenisis of HIV as well as improve diagnosis.

The fight against the spread of HIV/AIDS pandemic has intensified over the years through

ARV treatment and preventive programmes such as public awareness campaigns. An-

tiretroviral treatment can be done based on the two levels of infection, that is; virus-to-

cell and cell-to-cell infection. Reverse Transcriptase Inhibitors (RTIs) form of treatment

prevent virus-to-cell transmission by preventing reverse transcription of viral RNA into

DNA, hence serves to reduce the rate of infection of activated CD4+T cells. While Pro-

tease Inhibitors (PIs) prevent cell-to-cell transmission by preventing HIV-1 protease from

clearing the HIV polyprotein into functional units, thereby causing infected cells to pro-

duce immature virus particles that are not capable of infecting additional cells.

Since the mechanisms of HIV and AIDS transmission is an intricate process of interrelated

and interconnected components such as viral replication, immune response system and

other transmission pathways, a paradigm shift on HIV and AIDS modelling is fundamen-

tal in generating new predictions and strategies for HIV control. This may involve, for

instance, for the inclusion of both viral-cell and cell-to-cell transmission treatment in the

within host models. Standard HIV models have over time focused on either within host

(viral and cellular interactions) or the between host (epidemiological) dynamics. However,

for such biological phenomena, it is biologically feasible to study them together. Hence

3



the multiscale modelling framework that couple within-host and between-host processes

of HIV transmission is crucial.

1.2 Statement of the problem

The within host immune viral dynamics and between host transmission dynamics of HIV

can be modelled as an immmunoepidemiological model. These models factor the HIV

transmission dynamics at the population level as a function of within host immune viral

responses at the individual level. Existing immunoepidemiological models however do not

incorporate treatment in the viral and cellular transmission paths. This is critical as it

would determine the viral load as well as transmission at the population level.

1.3 Objectives of the study

1.3.1 General Objective

The main objective of our study is to develop and analyse a coupled immunoepidemi-

ological model for HIV with viral and cellular transmission incorporating antiretroviral

treatment.

1.3.2 Specific Objective

The specific objectives of this study are

(i) To develop and analyze a within host HIV infection model incorporating viral and

cellular transmission with combined antiretroviral treatment.

(ii) To develop and analyse between host HIV transmission model with a saturated

incidence rate incorporating antiretroviral treatment efficacy.

(iii) To develop and analyse a coupled within and between host model for HIV transmis-

sion incorporating viral and cellular transmission with antiretroviral treatment.
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(iv) Numerically simulate the effect of treatment efficacy of the two treatment strategies

namely the reverse transcriptase inhibitors (RTIs) and the protease inhibitors (PIs)

in controlling the spread of HIV and AIDS.

1.4 Justification of the Study

HIV is one of the most researched virus, yet it still remains a threat to human life. Even

with the existence of ARTs, the high level prevalence of HIV among the population, imply

that the transmission rate within an individual as well as between individuals remains

high. The fight against the spread of HIV requires an understanding of the immunoepi-

demiological transmission dynamics and the effects of ART drugs. An immunoepidemi-

ological transmission model incorporating drug efficacy is therefore crucial in enhancing

efforts towards the reduction of HIV prevalence and subsequent eradication of the virus.

1.5 Significance of the Study

Mathematical modelling of viral infection is a very important component in clinical and

public health understanding of HIV prognosis, transmission risk and intervention effec-

tiveness. By using ODEs we quantitatively represent a coupled immunoepidiemological

model of within host and between host transmission with ART treatment. Furthermore

the study will help open new strategies in designing antiretroviral treatment as a key

component in figting HIV spread among the human population. In addition the results

obtained from the analysis of this model will have a significant impact on future research

on the evolutionary dynamics of HIV.

1.6 Outline of the study

To achieve the objectives of the study we shall;

(i) Formulate a within host dynamics model in which the CD4+ T-cells are classified

as uninfected (T (t)) and infected (T ?(t)). The third compartment for the model
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are the free virus cells (V (t)). The rates of change of the population of these cells

are modelled by a system of ordinary differential equations. Efficacy of treatment

is incorporated in the transmission terms for both viral to cell and cell to cell

transmission.

(ii) Formulate between host model in which the population is compartmentalized as

susceptible (S(t)), asymptomatically infected (I(t)), and symptomatically infected

(A(t)). This model captures the transmission dynamics between individuals in a

given population.

(iii) Bridge the two scales or coupling to produce the immunoepidemiological model,

this is done by modelling the transmission rate for the population level model as

a function of viral load V. This functional relationship may be linear, logistic or

saturated type, For example,

– linear function

β(V ) = rV (1.1)

– logistic function

β(V ) = rV (1− V

Vmax
) (1.2)

– saturated function

β(V ) =
rV

V + π
(1.3)

where the parameter r is the rate of transmission due to viral load. The

parameter π is a threshold of the viral load that a host may need to cross to

transmit the infection.

(iv) In order to investigate the theoretical results and determine the qualitative

behaviour of the solutions, numerical simulations using MATLAB were per-

formed. This was done by varying parameter values under different initial

conditions and illustrating the results graphically and making various conclu-

sions on the dynamical behaviour of transmission in the population.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The use of sophisticated mathematical techniques has increasingly been embraced in

unravelling various scientific and technological problems for many years. In particular

mathematical modelling has been applied in complex biomedical processes such as viral

infections. This has enhanced greater understanding of viral disease dynamics and helped

in predicting and controlling the spread of diseases such as HIV and AIDS, dengue fever,

Cholera and Ebola virus.

HIV and AIDS is one of the most widely studied viral disease, since its discovery over

thirty years ago. This is largely due to its complex infection dynamics and its devas-

tating effect on human life. This has prompted both biologists, biomedical researchers

and mathematicians to adopt an interdisciplinary approach as an essential tool in study-

ing the spread of HIV and AIDS in the human population. Mathematical modelling has

emerged as a key component in this endeavour, as it logically and quantitatively describes

the biological mechanisms governing HIV transmission. Also mathematical models have

reliably been used to make predictions on the dynamics of HIV and AIDS. This section

provides a literary journey of some of the main mathematical models that have made

significant contribution in the fight against the spread and devastating effect of HIV and

AIDS pandemic.

2.2 Within-host mathematical models

One of the early mathematical models of HIV infection was developed by [24] and [27],

who came up with model (2.1) which was a basic three component model representing
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HIV interaction with the body’s immune system. The model sought to describe the

dynamics of HIV progression from the onset of infection through the asymptomatic stage

and finally into the symptomatic stage. They however did not include key dynamics like

cellular infection. Though basic, the model provides a basis for future modelling for HIV

and AIDS dynamics.

ẋ = λ− dx− βxy

ẏ = βxy − ay (2.1)

v̇ = ky − uv

where

x: is the population of uninfected cells

y: the infected cells

v: free virus particles

β: rate of infection of uninfected cells

λ: rate at which uninfected cells are produced

d: death rate of uninfected cells

k: rate at which infected cells produce free virus

a: death rate of Infected cells

u: rate at which free virus particles are removed from the system.

In an effort to provide deeper insight on the various aspects of HIV, [26] developed a

mathematical model of partial differential equations to study the spatial dependence on

infection dynamics. In order to investigate the impact of spatial dynamics in a simple

mathematical model of HIV infection they extended the standard three component model

of in host viral dynamics to include spatially random diffusion and spatially dependent T

cells supply rate. Model (2.2) was formulated and a mathematical analysis of the spatial

viral dynamics was conducted. Basic results of well-posedness of smooth solutions and

longtime asymptotic behaviour was determined. By denoting T as uninfected target cells,

I as infected cells and V as free virions, the model assumed that target cells are supplied

at constant rate of λ, and removed either through infection via contact with virions at
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a rate of k per virion or through natural cell death with per capita rate µT . Similarly

µI represents the per capita rate at which infected cells are destroyed, while µV the per

capita at which virions are cleared from the body. N represents burst rate of the virus.

∂tT −DT∆T = λ(x)− µTT − κTV

∂tI −DI = κTV − µII (2.2)

∂t −DV ∆V = NµII − µV V

A study by [30] focused on the analysis of the global and local stability of the within

host virus models incorporating the mechanisms of direct cell to cell viral transmission

and the viral co-infection (absorption of free virions into already infected cells). They

proposed three dimensional system with both virus-to-cell and cell-to-cell transmission

model (2.3), where T , T ? and V denote the concentrations of the uninfected host cells,

infected host cells and free virus particles, respectively. Parameters k1, is the contact rate

of between uninfected cells and viruses, while k2 is the contact rate between uninfected

cells and infected cells. The parameters β and γ represent the death rate of infected cells

and virus particles respectively. N is the average number of virus particles produced by

either infected cells in its entire lifetime or by lytic virions through bursting. K3 models

rate of absorption of free virions into healthy cells during the infection process, while K4

models the absorption of free virions into already infected cells. By analyzing the system

they showed that the model demonstrates a global threshold dynamics. Model (2.3), as

proposed by [30] sought to expand the standard model by including the additional cell to

cell infection mechanism. Further [30] focused on the global stability dynamics of the two

levels. Treatment at both levels of infection was not incorporated.

Ṫ (t) = f(T )− k1V T − k2TT
∗

Ṫ ∗(t) = k1V T + k2TT
∗ − βT ∗ (2.3)

V̇ (t) = NβT ∗ − γV − k3V T − k4V T
∗

An investigation into the dynamical behaviour of a viral disease infection model using
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general contact rate between free virus particles and healthy susceptible cells was done by

[10]. They proposed model (2.4), which is a modified version of the basic viral infection

model proposed by [24]. In the model susceptible host cells are produced at a constant

rate, r, die at the rate of mx, and become infected with the rate of βxv. Infected host

cells are produced at the rate of βxv and die at the rate of ay. Free virus particles are

released from infected host cells at the rate of uv. To meet more biological practices the

constant contact rate β was replaced with the general rate f(v) between susceptible cells

and virus particles. However Model (2.4) did not include cellular infection which is a

significant component in a within host HIV infection dynamics.

dx

dt
= r −mx− f(x)xv

dy

dt
= f(v)xv − ay (2.4)

dv

dt
= ky − uv

The analysis of this model revealed that the value of the basic reproductive ratio deter-

mines the endemicity of the disease. This study focused on a general viral infection and

therefore did not consider a specific disease like HIV and AIDS. Also various dynamics

like role of treatment on disease spread was not incorporated in the study.

A study on the dynamical behaviour of HIV transmission with treatment parameters

and delayed immune response was conducted by [15]. They proposed model (2.5), in

which x, y, v and z represent uninfected CD4+ T cells, infected CD4+ T cells, virus and

CTL(Cytotoxic T Lymphocytes) respectively. Uninfected T cell produced at rate s, dies

at a rate dx and become infected at a rate kxv. Infected CD4+ T cells die at a rate βy,

and are lysed by CTL at a rate pyz. On average each productively infected cells produces

N virions during its lifetime. Free virus particles decay at a rate av. The CTL expands

at a rate cy and decays at a rate bz. vi are infectious virus and vn noninfectious virus.

(1−σ1) and (1−σ2) represent the effectiveness of the RTI and PI treatments respectively.

ẋ = s− dx+ rx(1− x

xmax
)− kv
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ẏ = σ1kxvi − βy − zpy

v̇i = σ2Nβy − avi (2.5)

v̇n = (1− σ2)Nβy − avn

ż = Cy(t− τ)z(t− τ)− bz

Their main findings were that if the Protease Inhibitors (σ1) and Reverse Transcriptase

Inhibitors (σ2) satisfy the conditions 0 ≤ σ1 ≤ 1 and 0 ≤ σ2 ≤ 1 respectively, then the

uninfected steady state is a unique equilibrium and the point is globally asymptotically

stable, and if treatment is not effective enough then the equilibrium becomes unstable and

HIV infection persists. They also analyzed time delays and its impact on the stability of

the immune exhausted equilibrium and infected equilibrium. Although their study incor-

porated treatment, the effect of various levels of RTI and PI treatment on the population

of CD4+ T-cells, infected cells and virions were not elucidated, hence the gap on the role

of efficacy of ART treatment of HIV.

The use of delay differential equations in modelling infection dynamics of HIV was utilized

by [11], in which model (2.6) was developed and analyzed. The model (2.6) incorporated

distributed time delays and humoral immune response in a cellular and viral nonlinear

equations. Their analysis established that time delays play key role in virion clearance

from the human body a role similar to the one played by the use of antiretroviral treat-

ment. Despite this novel result, the study did not incorporate treatment in their analysis.

Ṫ (t) = λ− dT (t)− β1T (t)V (t)− β2T (t)T ∗(t)

Ṫ ∗(t) =

∫ ∞
0

f1(τ)e−δ1τ (β1T (t− τ)V (t− τ) + β2T (t− τ)T ∗(t− τ))dτ − µT ∗(t)

V̇ (t) = b

∫ ∞
0

f2(τ)e−δ2τT ∗(t− τ)dτ − cV (t)− aV (t)W (t),

Ẇ (t) = rV (t)W (t)−mW (t) (2.6)

where T (t), T ?) and V (t) are the concentrations(the number of cells or viruses per unit

volume) of the uninfected cells, infected cells and free virus particles at a time t, respec-

tively. The assumptions are as follows: The uninfected cells are replenished at a rate
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λ, die at rate αT and become infected at rate β1T (t)V (t) + β2T
?(t)V (t) where β1 is the

virus-target incidence rate constant and β2 is the infected-target incidence rate constant.

µ and c are death rate constants of the infected cells and free virus particles, respec-

tively. b is the average number of virus particles that bud out from an infected cell. The

virus or infected cell contacts an uninfected target cell at time t − τ , the cell becomes

infected at time t, where τ is a random variable taken from a probability distribution

f1(τ). The term e−δ1τ modelling the decay of survival of the contacted cell in the time

interval of the decay, where δ1, is a positive constant. In addition the model assumed

that, a cell infected at time t− τ starts to generate new infective virus particles at time t,

where τ is taken from a probability distribution f2(τ). The term e−δ2τ modelling decay of

survival of the infected cell in the time interval of the decay, where δ2 is a positive constant.

Studies by [28], [30], [31], [32] and [33] add to the list of researchers who have factored

various dynamics in the within host infection models in the recent past. For instance

[28] examined a model on the interaction of HIV with CD4+T cells, involving T cells

, latently infected T cells, actively infected T cells and free virus. The effects of AZT

treatment on viral growth and T cell population were highlighted, but was not included

in the mathematical model. In addition only one level of treatment (RTI) was discussed

while cellular infection was not considered. [30] on the other hand sought to expand the

standard models by [24] and [28] by including the additional cell to cell infection mecha-

nisms and mainly focused on global stability dynamics of their model. [31] investigated

stability analysis in delayed within host viral dynamics with both viral and cellular in-

fections while, [32] studied viral mutation rates with a focus on the role of within-host

viral dynamics and the trade off between replication fidelity and speed. [33] in his study

, modelled within host HIV-1 dynamics and the evolution of drug resistance.

Our study seeks to explicitly incorporate both viral and cellular levels of treatment on

the within-host model for HIV infection dynamics, in particular the treatment efficacy of

both treatment levels will be analysed.
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2.3 Between-host mathematical models

Between host models focus on modelling transmission dynamics in the population. For

instance [42], studied the dynamics of a general epidemic model using an SEIR framework

given in model (2.7), with a saturated incidence rate and a continually differentiable

treatment function h(I) = rI
1+kI

to characterise the saturation phenomenon of limited

medical resources. The results of their study showed that improved efficiency and enlarged

treatment capacity are important in the fight against the spread of an epidemic disease.

The study focused on the general transmission dynamics of an epidemic model with

saturated treatment and therefore did not specifically apply to any particular epidemic

such as HIV and AIDS. Furthermore the efficacy of treatment as an important aspect

in control of disease transmission were not elucidated. In view of this, our study in

chapter four focuses on the between-host transmission dynamics of HIV and AIDS in the

population with saturated incidence and combined treatment efficacy. In addition, the

study by [42] did not address how the within host dynamics impacts on the transmission

dynamics in the population for a specific epidemic disease such as HIV/AIDS.

S ′(t) = A− βSI

1 + αI
− ds

E ′(t) =
βSI

1 + αI
− (d+ ε)E

I ′(t) = εE − (d+ µ+ v)I − rI

1 + kI

R′(t) = vI − dR +
rI

1 + kI
(2.7)

where S(t), E(t), I(t) and R(t), denote the number of susceptible, exposed but not in-

fectious, infected and recovered individuals respectively. while A is the recruitment rate

of the population, α the saturation factor that measures the inhibitory effect, β is the

transmission or contact rate, d is the natural death rate of the population, ε is the rate of

transformation from incubation period individuals to infective individuals, µ is the disease

rated mortality, v is the natural recovery rate of the infective individuals, r is the maximal

medical resources supplied per unit time and k is the saturation factor that measures the
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effect of infected being delayed for treatment. S(t), E(t), I(t), R(t) > 0 while β, d, ε, µ, v

and r are all positive, and α and k nonnegative.

In a study on the stability analysis of an HIV/AIDS epidemic model with treatment,

[4] formulated a treatment model using ordinary differential equations, in which individ-

uals infected with HIV, move from symptomatic stage to the asymptomatic stage. They

also investigated the effect of discrete time delay and found that the delay model exhibits

a Hopf bifurcations. Among their key results was that the behaviour of the solutions of

the model can be determined by its basic reproductive number R0, in which R0 ≤ 1 imply

that the disease free equilibrium is globally asymptotically stable while R0 > 1 imply that

HIV persists in the population and the unique endemic equilibrium is globally asymptot-

ically stable. Whereas this study provided significant insights in epidemic modelling with

treatment, it did not put into account how treatment efficacy impacts HIV spread in the

population and at what point of the infection process it is introduced. Chapter four of our

study investigates the effect of treatment efficacy for both the asymptomatic and symp-

tomatically infected classes. Subsequently our study in chapter five, investigates how the

within host viral dynamics of HIV interrelates with the between host viral transmission

dynamics. Thus nesting of both within and between host HIV viral mechanisms will be

vital in modelling HIV and AIDS transmission with treatment.

The impact of awareness, screening and counselling of infectives in the transmission dy-

namics of HIV in a homogenous population with constant immigration of susceptibles

was investigated by [17]. They postulated that an increase in screening decreases the

equilibrium level of infectives and AIDS patients while an increase in awareness decrease

the basic reproduction number below one which forces the system towards the disease free

equilibrium point. Their results further suggested that general awareness and screening of

HIV infectives are crucial in reducing the transmission of HIV. It is however acknowledged

that awareness, screening and counselling alone cannot effectively combat the spread of
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HIV and AIDS, hence the inclusion of treatment in modelling HIV spread in the popula-

tion is crucial. Chapter four of our study seeks to address this gap.

A study on the stability analysis of HIV/AIDS epidemic model with nonlinear incidence

and treatment was done by [16], in which both analytic and numerical results indicated

that a change in the susceptible behaviours’ sexual habits significantly reduces both inci-

dence and prevalence of HIV/AIDS. Even though this study was successful in mathemati-

cally analysing the stability of HIV and AIDS epidemic with treatment, emerging solution

behaviour of HIV and AIDS epidemic model can be unravelled if within-host models are

coupled with between-host models. Furthermore the aspect of HIV treatment efficacy can

be investigated effectively when incorporated in a coupled multiscale model.

2.4 Immunoepidemiological models

Infectious disease dynamics are governed by various interrelated processes, that is , from

complex within host infection processes to between-host transmission dynamics [2]. As

a result, mathematical modelling has become an important tool in understanding these

processes. Over the years, various disease models have focused on the two transmission

scales namely: within-host, involving cellular interactions: and between-host, focusing on

population transmission independently.

For instance viral models by [22, 25, 26, 29, 30] consider the within host dynamics inde-

pendent of the interaction at the population level, whereas epidemic models of population

dynamics such as [1, 3, 4] consider the interaction between susceptible and infected hosts

without an explicit link to the viral dynamics of the within host system. Although when

the two processes are decoupled, the mathematical models are generally easier to analyse,

there are however very insightful questions that can only be answered by coupled models,

such as: (i). What is the impact within-host dynamics on population level quantities

such as Ro and prevalence?, (ii). What is the effect of population dynamics of disease
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transmission on the viral dynamics at the individual level [14, 21], hence the rationale for

multiscale models in mathematical disease modelling.

A multi-scale model linking the two levels of transmission, that is, the immunological

and epidemiological viral infection levels by [2] suggested that the link between the two

levels can be done by considering transmission at the population level as a function of viral

load of the transmitting individual. Consequently, stability and bifurcation analysis were

conducted using the coupling of the two basic reproduction numbers RW
0 and RB

0 for both

subsystems respectively. In the study the derivation of RB
0 as a general increasing func-

tion of RW
0 was their main result. The study also focused on a general approach towards

coupling of an infectious disease, however this novel idea can be applied in modelling HIV

and AIDS transmission dynamics, which we seek to investigate in our research. Further

the model considered only within host dynamics influencing between host processes and

not vice versa.

A coupled model that explicitly links the epidemiological and immunological dynam-

ics was proposed by [14]. The model aimed at establishing new properties and complex

dynamics that can be deduced from the coupled system. In their analysis of the coupled

model two threshold quantities were used, that is, RV and RH which denotes the within-

and between-host threshold values respectively, and it was shown that the magnitudes of

these quantities can jointly determine the disease prevalence. Also as a direct consequence

of coupling of the within- and between-host processes, multiple endemic equilibria and

bi-stability was observed. The model by [14], successfully bridged the two scales by incor-

porating the dependence of epidemics on the viral dynamics, as well as the dependence of

the within host dynamics on the between host dynamics. However [14] only considered a

general infectious disease dynamics. Our study seeks to extend these ideas in developing a

coupled immunoepidemiological model incorporating viral and cellular infection dynamics

of HIV with treatment.
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A nested mathematical model for within-host and between-host transmission dynamics

in the progression of HIV/AIDS in China was formulated and analysed by [20] . They

carried out a model linkage in the rate of transmission of an infection as an increasing

function of viral load. By assuming that the rate of transmission β(τ) is proportional

to the Hill function of viral load V (τ), at a given age-since-infection τ , they came up

with equation (2.8) . The analysis of the stabilities of the equilibria was done by use

of the reproductive ratio R0. Through numerical simulations they established that the

within-host dynamics does influence the between host dynamics, and that the nesting of

within-host and between host play an important role in the HIV/AIDS evolution.

β(τ) = βo(V (τ)) = βO(
V (τ)

V (τ)
+ Ω) (2.8)

Also [20], divides host population into; susceptible, the infected without receiving treat-

ment and the infected receiving treatment in accordance with ”Chinese-Four-Free-one-

Care policy”. It is worth noting that [20] focused on a model that considered only within-

host dynamics influencing between host processes and not vice versa. On treatment [20]

did not explicitly investigate the efficacy of the two levels of treatment (RTI and PI) on

viral and cellular transmission. In our study we endeavour to explore this gap.

A review of the literature on immunoepidemiological modelling as well as the main insights

these models have created, was done by [21]. They categorised the modelling approaches

for coupling into Network models, ODE immunoepidemiological models, size structured

PDE immunoepidemiological models and nested models. The study by [21] did not in-

vestigate the various transmission dynamics, such as viral and cellular infection dynamics

at the within host level or effect of virulence on between host transmission for the case

of coupled models. In particular their study did not focus on any specific disease such as

HIV and AIDS.

17



The global stability of an infection-age structured HIV-1 model linking within-and between-

host dynamics was investigated by [34] . In their study the different disease progression

stages were formulated as age since infection in the form of PDEs, they argued that

the transmission rates at different stages are treated as saturated functions of viral load,

hence adopted a saturation function to describe the relationship between viral load and

the transmission rate in each disease progression stage. The model by [34], however did

not incorporate viral and cellular infections in their multiscale model linkage, in addition

RTI and PI treatment regimes of HIV-1 was not included in their study. Hence our study

seeks to address this gap. From the above literature we observe that most of the proposed

models on HIV and AIDS, focused on the two processes of HIV transmission separately.

Despite great strides that have been made in capturing the many HIV dynamics, it is

clear that treating these processes separately may not comprehensively unravel the many

properties that can emerge from the interdependence of the two transmission processes.

For example, the functional relationship between viral load and rates of transmission at

the population level. Hence there is need to explore a new approach that can elucidate

this phenomena.

This study sought to address this gap by applying the new approach that couples the

two dynamic processes. Specifically this research investigated the behaviour of HIV viral

transmission by formulating a multiscale model that couples the two subsystems, that

is, from early viremia (within host) to the epidemic level (between host). In addition

the study investigated the effect of ART treatment on a within and between host viral

infection dynamics on the human population.

The remaining part of this research is organised as follows; In chapter three, a math-

ematical model of within host HIV infection dynamics in vivo, with combined treatment

is formulated and analysed. Numerical simulation of the theoretical results are done and

graphically represented. In chapter four, the between host model with saturated incidence

is presented. Chapter five seeks to couple the within and between host models discussed
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in chapter three and four respectively. The analysis is done using the centre manifold

theorem, whose results are numerically simulated and deductions made. Conclusion and

recommendations are made in chapter six.

19



CHAPTER THREE

DYNAMICS OF THE WITHIN HOST HIV INFECTION MODEL UNDER

COMBINED ANTIRETROVIRAL TREATMENT

3.1 Introduction

In this chapter we formulate a mathematical model for the within host HIV infection

model, incorporating viral and cellular infection dynamics with combined antiretroviral

treatment. Specifically, the chapter analyses both local and global stability for the within

host model, as well as numerically investigate , the effect of RTI and PI treatment regimes

on the viral load and the population of uninfected CD4+ T cells.

3.2 Model Formulation

In order to conduct a thorough analysis of the dynamics of the in-vivo HIV infection with

combined ART treatment, it is imperative to formulate a mathematical model describing

the interaction between HIV, actively infectious cells and the immune system. This inter-

action involves free virus particles V (t), actively infected T ?(t) and the healthy susceptible

CD4+ T cells T (t). The susceptible CD4+ T cells T (t) are recruited at a constant rate

r from the thymus glands and have a natural mortality rate of µW . It assumed that the

growth of CD4+ T cells is logistic, this is represented by the logistic term (1 − T
Tmax

).

This means that total number of T cells in the body remains bounded, Hence the growth

of T cell population approaches the carrying capacity Tmax. When HIV enters the body,

it infects the healthy CD4+ T cells at a rate βV T , thus the susceptible CD4+ T cells

become actively infected, this makes them infectious and upon interaction with other

healthy CD4+ T cells, will infect them at the rate αWTT
?. The actively infected cells

die at a constant per capita rate κ. The free virions regenerate at a rate ωκT ?, where ω

20



is the bust rate of actively infectious cells. The free virions die at a constant per capita

rate of c.

Viral and cellular infection can be inhibited by using combined ART treatment. Therefore

HIV viral load in the human blood is a function of the combined ART treatment efficacy.

The use of RTI prevents HIV from entering the CD4+ T cell and its efficacy is represented

by parameter ρ. On the other hand the PI prevents the infected cells from reproducing

infectious virions or to become activated into infectious cells and are rendered immature

noninfectious virions, its efficacy is represented by parameter ϑ. The effectiveness of treat-

ment for both RTI and PI ranges between zero and one. For example ρ, ϑ = 0.2 imply low

treatment efficacy, while ρ, ϑ = 0.8 is considered highly effective treatment. The within

host infection host dynamics can be illustrated diagrammatically by Figure (3.1) below.

 

Virus Production         
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Figure 3.1: Flow chart of the within-host HIV transmission

From the description and definitions made, the infection dynamics are summarized by the
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following system of ODEs:

dT

dt
= rT (1− T

Tmax
)− (1− ρ)βV T − (1− ϑ)αWTT

? − µWT

dT ?

dt
= (1− ρ)βV T + (1− ϑ)αWTT

? − κT ?

dV

dt
= ωκT ? − cV (3.1)

With initial conditions

T (0) = T0 > 0, T ?(0) = T ?0 ≥ 0, V (0) = V0 > 0 (3.2)

3.3 Positivity of solutions

Model (3.1) describes cell and virus population whose values will never be negative. We

therefore assume that all variables and parameters are non-negative for all time, t ≥ 0.

Thus positivity of solutions of model (3.1) can be established using the following lemma.

Lemma 3.3.1. Let T (t), T ?(t) and V (t) be the solutions of model (3.1) satisfying the

initial conditions (3.2), the solutions of model (3.1) will remain positive and bounded in

the feasible region Γ = {(T, T ?, V ) ∈ R3
+ : T + T ? + V ≤ Tmax(1− µW

r
)},∀t ≥ 0

Proof. From the third equation of model (3.1), that is

dV
dt

= ωκT ? − cV

we have

dV

dt
= ωκT ? − cV ≥ −cV (3.3)

we can solve (3.3) by separation of variables method, thus∫
dv

V
=

∫
−cdt (3.4)

to obtain

V (t) ≥ V (0)e−ct > 0,∀t ≥ 0 (3.5)
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Similarly, for the infected T-cell population,

dT ?

dt
= (1− ρ)βV T + (1− ϑ)αWTT

? − κT ? ≥ −T ?(κ− (1− ϑ)αWT ) (3.6)

Integrating (3.6) yields

T ?(t) ≥ T ?(0)e−(κ−(1−ϑ)αWT )t > 0 (3.7)

Since κ− (1− ϑ)αWT > 0

Applying the same procedure, it can be shown that the positivity of the uninfected T-

cell population is also positive. Hence each solution of model (3.1) with initial conditions

(3.2) is positive for all t ≥ 0.

3.3.1 Basic Reproduction Number

The basic reproduction number R0W is defined as the average number of secondary in-

fections produced by one infectious virion and one infected cell over the course of their

infectious period in uninfected CD4+ T cell population. The basic reproduction number,

R0W , for model (3.1) is computed using the next generation matrix method as used in

[7, 38]. Model (3.1) has two infected compartments T ? and V . Let fi be the rate of

appearance of new infections in compartment i and νi as the transfer of individuals out of

compartment i for the two compartments respectively, and are given in partitioned form

as follows:

F =

 (1− ρ)βV T + αW (1− ϑ)TT ?

0

 (3.8)

and

V =

 κT ?

−ωκT ? + cV

 (3.9)

The Jacobian of F and V evaluated at the Infection Free Equilibrium

E0 = (Tmax(1− µW
r

), 0, 0) yields ;

F =

αW (1− ϑ)T0 β(1− ρ)T0

0 0

 (3.10)
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V =

 κ 0

−ωκ c

 (3.11)

where F is nonnegative and V is nonsingular. The inverse of V is

V −1 =
1

κc

 c 0

ωκ κ

 (3.12)

hence

FV −1 =

αW ( 1
ϕ
− 1)T0 β(1− ρ)T0

0 0

 1
κ

0

ω
κ

1
c

 (3.13)

FV −1 =

 αW
κ

( 1
ϕ
− 1)Tmax(1− µW

r
) + ωβ

c
Tmax(1− ρ)(1− µW

r
) β

c
Tmax(1− ρ)(1− µW

r
)

0 0


(3.14)

The basic reproduction number is thus given by R0W = ρ(FV −1), where ρ(FV −1) is the

spectral radius of the matrix FV −1. Thus

R0W = Tmax(1−
µW
r

)(1− ϑ)
αW
κ

+ Tmax(1−
µW
r

)
ωβ

c
(1− ρ) (3.15)

3.4 Analysis of the Infection Free Equilibrium

3.4.1 Local Stability Analysis

Since the model is nonlinear, the local stability properties of the infection free equilibrium

can be determined by approximating the nonlinear system of the differential equations

(3.1) with the linear system at the infection free equilibrium E0 = (Tmax(1− µW
r

), 0, 0).

Theorem 3.4.1. The infection free equilibrium E0 is locally asymptotically stable if and

only if R0W < 1

Proof. Evaluating the Jacobian of model (3.1) at E0 we obtain

J(E0) =


µW − r −αWTmax(1− µW

r
)(1− ϑ) −βTmax(1− µW

r
)(1− ρ)

0 αWTmax(1− µW
r

)(1− ϑ)− κ βTmax(1− µW
r

)(1− ρ)

0 ωκ −c

 (3.16)
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clearly

λ1 = µW − r (3.17)

is one of the eigenvalues of the matrix in equation (3.16). The eigenvalue λ1 is negative

since for any population whose growth in numbers is positive; the production rate (birth

rate) is greater than the mortality rate, that is, r > µW .

To determine the nature of the remaining roots of equation (3.16) consider the reduced

matrix,A, below;

A =

αWTmax(1− µW
r

)(1− ϑ)− κ βTmax(1− µW
r

)(1− ρ)

ωκ −c

 (3.18)

Applying the Routh-Hurwitz technique for stability analysis, then matrix A in equation

(3.18) will have negative real roots if and only if the tr(A) < 0 and det(A) > 0, thus

tr(A) = (R0W − 1)− Tmax(1−
µW
r

)(1− ρ)
βω

c
− c

k
(3.19)

and

det(A) = −[
αW
κ
Tmax(1−

µW
r

)(1− ϑ) +
βω

c
Tmax(1−

µW
r

)(1− ρ)] + 1 (3.20)

Using equation (3.15), equation (3.20) reduces to

det(A) = 1−R0W (3.21)

From equations (3.19) and (3.21), tr(A) < 0 and det(A) > 0 if and only if R0W < 1. Thus

E0 is locally asymptotically stable whenever R0W < 1, and unstable otherwise.

Biologically this implies that if a few free virion enters the blood stream, then there is

a high chance of infecting less than one susceptible cell in its entire period of infectivity,

whenever R0W < 1. Theoretically this can be interpreted to mean viral clearance from

the human body if R0W < 1.
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3.4.2 Global Stability Analysis of the Infection Free Equilibrium

In this section the global stability of the Virus Free Equilibrium of Model (3.1), can be

studied by using the theorem ascribable to [7]. This is done by rewriting Model (3.1) as

follows

dX

dt
= H(X,Z)

dZ

dt
= G(X,Z), G(X, 0) = 0 (3.22)

where X ∈ R denotes the number of susceptible cells and Z ∈ R2 denotes the number of

actively infected cells and free virions respectively. The Infection Free Equilibrium (IFE)

assumes the following notation

U0 = (X0, 0), X0 = Tmax(1−
µW
r

) (3.23)

The conditionsH1andH2 given below must be met in order to guarantee global asymptotic

stability:

• (H1): For dX
dt

= H(X, 0), X0 is Globally Asymptotically Stable (GAS)

• (H2):G(X,Z) = PZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0, for (X,Z) ∈ Ω

where P = DZG(X0, 0) is an M- matrix (the off diagonal elements of P are nonnegative)

and Ω is the region where the model makes biological sense. If system (3.22) satisfies

conditions H1 and H2, then the following theorem (3.4.2) holds:

Theorem 3.4.2. The fixed point U0 = (X0, 0) is Globally Asymptotically Stable equilib-

rium of (3.22) provided that R0W < 1 and that assumptions (H1) and (H2) are satisfied.

Proof. Let X(t) = T (t), Z = (T ?(t), V (t)), H(X, 0) =

 rT (1− T
Tmax

)− µWT

0

 and

G(X,Z) = PZ − Ĝ(X,Z) where

P =

αWTmax(1− ϑ)− κ βTmax(1− ρ)

ωκ −c

 (3.24)
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Ĝ(X,Z) =

 Ĝ1(X,Z)

Ĝ2(X,Z)

 =

 0

0

 (3.25)

From equation (3.25) Ĝ1(X,Z) = Ĝ2(X,Z) = 0 this implies that Ĝ(X,Z) ≥ 0. Therefore,

E0 is globally asymptotically stable when R0W < 1

This means that any perturbation of the equilibrium point by the introduction of free

virus particles, the model solutions will always converge to the IFE, whenever R0W < 1.

3.5 Endemic Equilibrium (EE)

3.5.1 Existence of the Endemic Equilibrium (EE) for the Within Host HIV

infection model

Theorem 3.5.1. A positive Endemic equilibrium EE exists provided R0W > 1, T ?e 6= 0

and Ve 6= 0

Proof. The endemic equilibrium EE = (Te, T
?
e , Ve) satisfies:

rTe(1−
Te
Tmax

)− (1− ρ)βVeTe − αW (1− ϑ)TeT
?
e − µWTe = 0 (3.26)

(1− ρ)βVeTe + αW (1− ϑ)TeT
?
e − κT ?e = 0 (3.27)

ωκT ?e − cVe = 0 (3.28)

From equation (3.28) we have

Ve =
ωκT ?e
c

(3.29)

Substituting equation (3.29) in equation (3.27) we get

Te =
1

(1− ρ)βω
c

+ (1− ϑ)αW
κ

(3.30)

Using equation (3.15) equation (3.30) becomes

Te =
Tmax(1− µW

r
)

R0W

(3.31)
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Substituting Ve and Te in equation (3.26) we obtain

T ?e =
Tmax(1− µW

r
)(R0W − 1)(r − µW )

κR2
0W

(3.32)

The endemic equilibrium (EE) is given as

EE = (
Tmax(1− µW

r
)

R0W

,
Te(R0W − 1)(r − µW )

κR0W

,
ωκT ?e
c

) (3.33)

Clearly T ?e > 0 if and only if R0W > 1

3.5.2 Local Stability Analysis of the Endemic Equilibrium

Theorem 3.5.2. The endemic equilibrium EE = (Te, T
?
e , Ve) is locally asymptotically

stable whenever R0W > 1

Proof. The local stability of model (3.1) can be analysed using the eigen values of the

Jacobian matrix of model (3.1) at EE

J(EE) =


(r−2)(r−µW )

rR0W

−αW (1−ϑ)Tmax(1−µW
r

)

R0W

−β(1−ρ)Tmax(1−µW
r

)

R0W

(R0W−1)(r−µW )
R0W

αW (1−ϑ)Tmax(1−µW
r

)

R0W
− κ (1−ρ)βTmax(1−µW

r
)

R0W

0 ωκ −c

 (3.34)

from equation (3.34) we obtain the characteristic equation in the form

λ3 + a0λ
2 + a1λ+ a2 = 0 (3.35)

where

a0 = κ+ c−
αW (1− ϑ)Tmax(1− µW

r
)

R0W

− (r − 2)(r − µW )

rR0W

a1 = (
(1− ϑ)Tmax(1− µW

r )

R0W
)(

(r − 2)(r − µW )

rR0W
+

(R0W − 1)(r − µW )

R0W
)

+ (
(r − 2)(r − µW )

rR0
)(c− κ) + cκ− 1

a2 =
(R0W − 1)(r − µW )

R0W

+
(r − 2)(r − µW )

rR0W

(1− cκ)
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The number of possible negative real roots of equation (3.35) depends on the signs of a0,

a1 and a2. This can be established by applying Descartes Rule of Signs as used in [36].

P (λ) = a1λ
2 + a2λ+ a3 (3.36)

According to this rule the number of negative real zeros of P (λ) is either equal to the

number of sign changes of P (−λ) or less by an even number, as shown in (3.1).

Table 3.1: Roots of characteristic equation (3.36)

cases a0 a1 a2 R0W > 1 no. of sign changes no. of real -ve roots

1 - + - R0W > 1 2 2,0

2 - - - R0W > 1 0 0

3 + + - R0W > 1 1 0

4 + - - R0W > 1 1 0

5 - + + R0W > 1 1 0

6 - - + R0W > 1 1 0

7 + + + R0W > 1 0 0

8 + - + R0W > 1 2 2,0
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From Table (3.1) the maximum number of sign changes in P (−λ) is 2, hence the

characteristic polynomial (3.36) has two negative roots. Thus

P (−λ) = −λ3 + a0λ
2 − a1λ+ a2 = 0 (3.37)

has negative real roots. Hence for r > µW and if cases 1 to 8 are satisfied then the endemic

equilibrium EE is locally asymptotically stable.

Therefore if R0W > 1 and given a small number of free virus particles, each virus, in

the entire period of its infectivity, will produce on average more than one infected cell,

implying viral persistence.

3.5.3 Global Stability Analysis of the Endemic Equilibrium

In this section the global stability of the endemic equilibrium using geometric approach,

as developed by [18] is investigated. Consider the autonomous dynamical system

y′ = f(x) (3.38)

where f : Ω −→ Rn, Ω ⊂ Rn is an open set and is simply connected and y ∈ Ω,

y 7→ f(x) ∈ Rn, f(x) ∈ C ′(Ω). Let y? be an equilibrium point, then y? is said to be

globally stable in Ω if it is locally stable in Ω and that all trajectories in Ω, converge

to y?. In this method the equilibrium y? is locally asymptotically stable provided the

following conditions hold;

• (H1) Ω is simply connected

• (H2) There exist a compact absorbing set K ⊂ Ω

• (H3) Equation (3.38) has a unique equilibrium y? in Ω

Let P (y) be a

n

2

 ×
n

2

 matrix-valued function that is C ′ on Ω and consider

B = PfP
−1 + P ∂f2

∂y
P−1 where the matrix Pf is

∂P ?ij
∂y
f=

dPij
dt

and let the matrix J (2) be
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the second additive compound matrix of the Jacobian matrix J , that is, J(y)=(Jij), J
(2)

is a

n

2

 ×
n

2

 matrix and in our case n=3 hence

J (2)=


J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33


Consider the Lonziskii measure µ of B with respect to a vector norm | · | in RN where

N =

n

2


µ(B) = lim

t→0+

‖ I + hB ‖ −1

h
(3.39)

where ‖ · ‖ is a matrix norm defined by ‖ A ‖= supx<1 | Ax | . It is proved in [18] that if

(H1), (H2) and (H3) hold and condition

q̄ = lim sup
t→∞

sup
y0∈K

1

t

∫ t

0

µW (B(x(s, x0)))ds < 0 (3.40)

is satisfied, then the unique equilibrium y? is globally asymptotically stable

Theorem 3.5.3. The endemic equilibrium EE is globally asymptotically stable in Ω if

R0W > 1

Proof. Consider the Jacobian of model (3.1)

J =


r − 2rT

Tmax
− (1− ρ)βV − (1− ϑ)αWT

? − µW −(1− ϑ)αWT −(1− ρ)βT

(1− ρ)βV + (1− ϑ)αWT
? (1− ϑ)αWT − κ (1− ρ)βT

0 ωκ −c

(3.41)

the second compound additive matrix of (3.41) is given as

J (2) =


a+ b− κ d d

ωκ a− c −b

0 e b− κ− c

 (3.42)
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where

a = r − 2rT

Tmax
− (1− ρ)βV − αW (1− ϑ)T ? − µW

b = αWT (1− ϑ)

d = (1− ρ)βT

e = (1− ρ)βV + αWT
?(1− ϑ)

We define an auxiliary matrix function Q on Ω as

Q = diag

(
1

T ?
,

1

V
,

1

V

)
(3.43)

setting T ?, V > 0 everywhere in Ω, Q is smooth and nonsingular. Qf and QfQ
−1 are

given as

Qf = diag

(
− Ṫ ?

(T ?)2
,− V̇

V 2
,− V̇

V 2

)
(3.44)

QfQ
−1 = diag

(
− Ṫ

?

T ?
,− V̇

V
,− V̇

V

)
(3.45)

where Ṫ ? = dT ?

dt
and V̇ = dV

dt
. Matrix QJ (2)Q−1 is given as

QJ (2)Q−1 =


a+ b− κ dV

T ?
dV
T ?

ωκT ?

V
a− c −b

0 e b− κ− c

 (3.46)

Thus the matrix M = QfQ
−1 + QJ (2)Q−1 as defined in equation (4.4) of [18] can be

written in block form as:

M =

m11 m12

m21 m22

 (3.47)

Where

m11 = a+ b− κ− Ṫ ?

T ?

m12 =
dV

T ?
,
dV

T ?
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m21 =

 ωκT ?

V

0


and

m22 =

 a− c− V̇
V

−b

e b− c− κ− V̇
V



Let the vector norm | · | in R3 ∼= R


3

2


be chosen as

|(u, v, w)| = sup{|u|, |v|+ |w|} (3.48)

The Lozinskii measure µ(M) with respect to | · | can be estimated as follows

µ(M) ≤ sup{g1, g2} (3.49)

where

g1 = µ1(m11)+ ‖ m12 ‖ (3.50)

g2 = µ1(m22)+ ‖ m21 ‖ (3.51)

‖ m12 ‖ and ‖ m21 ‖ are operator norms associated to the linear mappings m12 : R2 → R

and m12 : R → R2 respectively, where R is endowed with the `1 vector norm in both

cases. Specifically µ1(m11) = a + b − κ − Ṫ ?
T ?

, ‖ m12 ‖= dV
T ?

, ‖ m21 ‖= sup{ωκT ?
V
, 0} and

µ1(m22) = −c− V̇
V

+ sup{a+ e,−κ}. From model (3.1) we have

Ṫ ?

T ?
= (1− ρ)βV T + (1− ϑ)αWT − κ (3.52)

V̇

V
=

ωκT ?

V
− c (3.53)

and recalling expressions for a, b, d and e we obtain

g1 = r − 2rT

Tmax
− (1− ρ)βV − (1− ϑ)αWT

? − µW (3.54)

g2 = sup{r − 2rT

Tmax
− µW ,−κ} (3.55)
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Since r− 2rT
Tmax
− (1− ρ)βV − (1−ϑ)αWT

?−µW ≤ sup{r− 2rT
Tmax
−µW ,−κ}, we have that

g1 ≤ g2, and thus equation (3.49) implies that µ(M) ≤ g2, hence

µ(M) ≤ r − 2rT

Tmax
− µW + sup{−(1− ρ)βV − (1− ϑ)αWT

?, 0} (3.56)

µ(M) ≤ r − 2rT

Tmax
− µW (3.57)

Since Tmax is the limiting value of T (t) then this implies that lim supt→∞ T (t) ≤ Tmax,

therefore the expression (3.57) reduces to

µ(M) ≤ r − 2r − µW (3.58)

Integrating (3.58) we obtain

1

t

∫ t

0

µ(M)ds ≤ 1

t

∫ t

0

(−r − µW )ds < 0 (3.59)

using equation (3.40), equation (3.59) means that q̄ < −(r − w), hence the endemic

equilibrium (EE) is globally asymptotically stable whenever R0W > 1.

This implies that regardless of any starting solution, the solution of the model will

converge to EE whenever R0W > 1. Immunologically, it means that any perturbation of

the equilibrium point as a result of the introduction of the free virus particles,the model

solutions will converge to the endemic state.

3.6 Numerical simulations and discussion of the Within Host HIV Infection

Model

In this section we illustrate the validity of our analytical results for model (3.1) by carrying

out numerical simulations using MATLAB with the parameter values given in Table

3.2. The numerical simulation aims at analyzing the change in state of virus progression

with time and also investigate the impact of the variation of treatment efficacy on the

transmission dynamics of HIV. This is achieved by varying the parameter values ρ and ϑ

while keeping the other parameters constant.
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Table 3.2: Parameters values for model (3.1)

Parameters units Description source

Tmax 1500 cells mm−3 Maximum CD4+ cell population level 12

r 0.03 cells day−1 Production rate of 12

uninfected T cells

µW 0.02 cells day−1 Natural death rate of 12

uninfected T cells

κ 0.24 cells day−1 Death rate of actively 12

infected T cells

c 2.4 day−1 Shedding rate of virions 12

β 2.4×10−5mm−3 Viral infection rate 12

by free virions

αW 2.4× 10−5mm−3 cellular infection rate 12

ω varies: ω ≥ 0 Burst rate of actively -

infected T cells

ρ varies: 0 < ρ < 1 Efficacy of RT Inhibitor -

ϑ varies: 0 < ϑ < 1 efficacy of Protease Inhibitor -

3.6.1 Effect of variations in RTI and PI treatment efficacy on the asymptotic

behaviour of the equilibrium points

To investigate the role of ART treatment efficacy on the stability of equilibria, the param-

eter values in Table (3.2) were used. This was achieved by varying the parameters ρ and

ϑ while keeping the other parameters constant. Although each class of ARV (RTI and

PI) drug attacks HIV in a different way, in practice drugs from two (or sometime three)

classes are combined to ensure a combined attack on HIV. Clinically doctors recommend a
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combination or cocktail of at least two of them, an approach called antiretroviral therapy.

For purposes of illustrating the efficacy of RTI and PI treatment our choice of values of

ρ and ϑ will be uniformly done, based on this premise. Consequently we shall consider

three scenarios; when efficacy is relatively low (0.1), moderate (0.5) and relatively high

(0.9). Further with appropriate set of initial conditions listed below

• I1: T1(t) = 1000, T ?1 (t) = 0, V1(t) = 10−3

• I2: T2(t) = 800, T ?2 (t) = 10, V2(t) = 0.001

• I3: T3(t) = 900, T ?3 (t) = 5, V3(t) = 0.01

• I4: T4(t) = 1000, T ?4 (t) = 1, V4(t) = 0.1

and based on Theorems (3.4.2) and (3.5.3), the corresponding stabilities of model (3.1)

are;

• If R0W < 1, the IFE is globally asymptotically stable.

• If R0W > 1, the EE is globally asymptotically stable.

The following results were obtained

Scenario 1 : Setting ρ = 0.1 and ϑ = 0.1, yields R0W = 4.545 > 1, and by Theorem (3.5.3), the

endemic equilibrium is globally asymptotically stable and the system converges to

EE = (110.011, 3.575, 357.53), for all initial conditions I1 to I4. This imply that the

virus persists in the host and that the low treatment efficacy of 0.1 cannot effectively

combat the virus. This is illustrated by Figures (3.2), (3.3) and (3.4).

Scenario 2 When ρ = 0.5 and ϑ = 0.5, the value of R0W is given as R0W = 2.525, which is

greater than one, and the system approaches EE = (198.02, 4.98, 498.31) in accor-

dance to Theorem (3.59). This shows that even with improved drug efficacy the

virus will continue persisting in the host but with low virulence. The Figures (3.2),

(3.3) and (3.4) clearly illustrates this scenario.
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Scenario 3 The high treatment efficacy of ρ = 0.9 and ϑ = 0.9 gives rise to R0W = 0.101 < 1,

in line with Theorem (3.4.2), in which the infection free steady state is GAS for all

initial conditions I1 to I4. This is illustrated by Figures (3.2), (3.3) and (3.4.)

This clearly indicates that high efficacy levels for both forms of ART (RTI and PI)

is crucial in fighting both viral and cellular infection of HIV within a given human

host.

3.6.2 Impact of variations of parameters ρ and ϑ on the CD4+T cell count

(T), number of infected cells (T ?) and viral load (V)

From Figure (3.2), (3.3) and (3.4.) it can be deduced that the level of ART treatment

efficacy has an impact on CD4+T cell count, the infected population as well as viral load.

As can be observed from figure (3.2)(a) the CD4+T cell count undergoes a sharp decline

as a result of low treatment efficacy of 0.1, for both RTI and PI. When ART treatment

efficacy level increase to 0.5, the decline is moderate and takes a shorter time (40 days)

to reduce to a minimum of approximately zero. The situation is however reversed when

the efficacy level is high, that is 0.9, the immunity is boosted and therefore decline is mild

and stabilized at approximately 700mm−3 as can be observed from Figure (3.2)(a). This

is a clear indication that the CD4 T cell count is directly proportional to the efficacy of

ART treatment.

Figures (3.2)(b) and (3.2)(c) depicts how ART treatment efficacy affects the number of

infected cells and viral load respectively. It can be seen that with an efficacy level of 0.1,

the number of infected cells rises to a pick of 519 infected cells, within a short period of

time (17 days), and virions attain a maximum of 5.074×104 over the same period of time.

However when the PI and RTI efficacy levels are high that is above 0.85, both infected

cells and virus population experience remarkable decline to almost undetectable levels

within the first 90 days. This clearly shows that viral replication and cellular infection

within host can effectively be reduced by high efficacy of combined ART treatment.

Figures (3.2)(b) and (3.2)(c), illustrate the effect of treatment efficacy on the number
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Figure 3.2: (a)-(c): The graph trajectory of T (t),T ?(t) and V (t) for ρ = 0.1 and ϑ = 0.1

with the initial conditions IC2-IC4. R0W = 4.545 and EE = (110.011, 3.575, 357.53) is

GAS.
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Figure 3.3: (a)-(c): The graph trajectory of T (t),T ?(t) and V (t) for ρ = 0.15 and ϑ = 0.5

with the initial conditions IC2-IC4. R0W = 2.525 > 1 and EE = (198.02, 4.98, 498.31) is

GAS
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Figure 3.4: (a)-(c): The graph trajectory of T (t),T ?(t) and V (t) for ρ = 0.9 and ϑ = 0.9

with the initial conditions IC2-IC4. R0W = 0.101 < 1 and E0 = (1500, 0, 0) is globally

asymptotically stable.

of actively infected cells and free virions respectively. It is clear that from the time of

infection if treatment efficacy is kept at a minimum of 0.1, then both actively infected cells

and free virions replicates rapidly attaining a primary peak of 519 infected cells within

the first 17 days, while the virions reach a peak of 5.074 × 104 within the same period

of time. With an increase in treatment efficacy both infected cells and viral replication

rates are significantly reduced, for instance at 0.9 efficacy level the number of virus and

infected cells approach zero within the first 90 days.
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3.7 Conclusion

In this chapter, a mathematical model describing a within host HIV infection with viral

and cellular infection incorporating treatment was formulated and analysed . The replen-

ishment rate of CD4+T cells was represented by a logistic growth rate. The qualitative

analysis of model (3.1) shows that the in-vivo HIV infection dynamics can best be de-

scribed by the threshold value R0W , in which for the value of R0W < 1 the infection free

equilibrium is globally asymptotically stable. This is theoretically interpreted to mean

that HIV is cleared from the body, however in reality HIV is not completely eliminated

but can be suppressed to undetectable levels. On the other hand when R0W > 1, the

endemic equilibrium is globally asymptotically stable. This scenario imply viral persis-

tence. Furthermore the global asymptotic stability of IFE and EE were proved using the

method by [7] and the geometric approach [18] respectively. With parameter values in

table (3.2), numerical simulations were performed and the results graphically represented.

The numerical results validated the theoretical results and further showed that treatment

efficacy of combined ART leads to reduced viral replication and eventually low number of

infected cells, this in turn leads to increased CD4 count. This observation is in agreement

with the findings of [27] which showed that if R0W > 1 before treatment then the virus

will increase as would be the number of infected cells, but after treatment if R0W < 1,

then T ? and V would both decline.
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CHAPTER FOUR

DYNAMICS OF THE BETWEEN HOST HIV TRANSMISSION MODEL

WITH SATURATED INCIDENCE RATE AND TREATMENT EFFICACY

4.1 Introduction

In this chapter between-host mathematical model for HIV/AIDS transmission is devel-

oped and analysed. Under the SIA framework, the model takes into account the saturated

incidence rate and treatment efficacy. This chapter is organised as follows; secction 4.2

deals with model description and formulation. In section 4.3 positivity and boundedness

of solutions is determined, while the basic reproduction number is determined using the

next generation matrix in section 4.4. Section 4.5 deals with the use of numerical sim-

ulations to validate the theoretical results obtained in section 4.4, in addition the effect

of antiretroviral treatment on the number of infected individuals in the population is

discussed. Finally the chapter is concluded in section 4.6.

4.2 Model Description and Formulation

A between host epidemiological model for HIV spread in the human population is formu-

lated, in which it is compartmentalized as susceptible (S(t)), asymptomatically infected

(I(t)), and symptomatically infected (A(t)), with a natural death rate of µB in all the

compartments and t is the chronological time. It is assumed that the susceptibles are

recruited into the population with approximately the same equilibrium level of healthy

CD4+TCells at a constant rate Λ and become infected via sexual contact with infected

individuals at the rate π. Depending on the viral count, the infected individuals join

the AIDS class at a rate φσI and die at a rate δ. In this model we have introduced a

saturated incidence rate πSI
1+αI

as opposed to a bilinear incidence rate βSI which assumes
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that contact rate is proportional to the size of the total population. The saturated inci-

dence is reasonable due to the fact that as the infected individuals increase they reach a

saturation point and hence may not exceed the carrying capacity. Due to psychological

effect or inhibition effects from the behavioral changes of infected individuals or protective

measures from susceptible individuals the number of infected individuals decreases as the

susceptibles increase. It is therefore reasonable to consider a saturated incidence rate in

order to prevent the unboundedness of the contact rate [5]. Bilinear incidence rates do

not admit bi-stability or periodicity, as they have at most one endemic equilibrium, i.e,

the disease will be eradicated if the basic reproductive number is less than one and will

persist if otherwise, hence do not provide sufficient details of complexity in the population

behavior [1]. Also considering the infected individuals as predators of the susceptible pop-

ulation, the incidence term will reflect a saturation effect of the infectives’ infectious rate.

This implies that infection is approximately a linear function of the susceptible population

size for a small population size, but the transmission rate approaches a constant when

the susceptible population size is large since the infected do not infect more and more

susceptibles as the susceptible population increases [13]. From the foregoing the dynamics

of between host transmission can be described by the system of ODEs, as shown below;

dS

dt
= Λ− πSI

1 + αBI
− µBS

dI

dt
=

πSI

1 + αBI
− (1− φ)σI − µBI

dA

dt
= (1− φ)σI − δA− µBA (4.1)

The initial conditions for (4.1) are ;

S(0) = S0 > 0, I(0) = I0 > 0, A(0) = A0 ≥ 0 (4.2)

N(t) = S(t) + I(t) + A(t)

The descriptions of all parameters considered in model formulation are summarized in

Table 4.1.
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4.3 Positivity and boundedness

Since the model under consideration involves human population, it is henceforth assumed

that all the associated model variables and parameters are non-negative. This result can

be summarised in the following lemmas:

Lemma 4.3.1. For all time t ≥ 0, all solutions of the system (4.1) are eventually confined

in the compact subset Ω = {(S, I, A) ∈ R3
+ : N+ = (S(t) + I(t) + A(t)) ≤ Λ

µB
}; i.e the

closed set Ω is positively invariant for the system (4.1)

Proof. We show that the positive invariance of Ω, i.e all solutions of (4.1) which start in Ω

remain in the region Ω. The rate of change of the population N , is calculated by adding

the equations considered in the system (4.1), to obtain

dN+

dt
= Λ− µBN − δA (4.3)

It follows that whenever N > Λ
µB

, then dN
dt
< 0 since dN

dt
is bounded by Λ−µBN , therefore

the standard comparison theorem [?] can be used to show thatN ≤ Λ
µB

(1−e−µBt)+N0e
−µBt

for t → ∞, we have lim supt→∞N ≤ Λ
µB

. In particular, N(t) < Λ
µB

if N(0) < Λ
µB

. The

feasible region for system (4.1) is thus

Ω = (S, I, A) | S + I + A ≤ Λ

µB
, S > 0, I ≥ 0, A ≥ 0 (4.4)

Clearly it has been proved that all solutions of system (4.1) which start in R3
+ remain in

the region Ω

.

Lemma 4.3.2. Let Ω = {(S, I, A) ∈ R3
+ : (S0 > 0, I0 ≥ 0, A0 ≥ 0)} then the solutions

S(t), I(t), A(t) of system (4.1) are positive for t ≥ 0

Proof. From the first equation in system (4.1), that is dS
dt

= Λ− πSI
1+αBI

− µBS, we have

dS

dt
= Λ− πSI

1 + αBI
− µBS ≥ −(

πI

1 + αBI
+ µB)S (4.5)

43



Integrating (4.5) yields

S(t) ≥ S0e
−( πI

1+αBI
+µ)t ≥ 0 (4.6)

since πI
1+αBI

+ µB > 0

Applying the same procedure, we can show that the remaining variables are also

positive ∀t ≥ 0. Hence Ω is positively invariant and attracting. System (4.1) is therefore

considered epidemiologically and mathematically well posed in the region Ω therefore it

is sufficient to consider solutions in Ω.

4.4 Basic Reproduction Number

The basic reproduction number of an infection R0B is defined as the expected number

of new infections caused by each infected host per unit density of susceptible hosts. We

obtain the basic reproduction number for system (4.1) using the next generation matrix

method as used in [7] as follows, we define

F =

 πSI
1+αBI

0

 (4.7)

and

V =

 (1− φ)σI + µBI

−(1− φ)σI + δA+ µBA

 (4.8)

The Jacobian of F and V evaluated at the DFE E0 = ( Λ
µB
, 0, 0) yields

F =

 πΛ
µB

0

0 0

 (4.9)

and

V =

 (1− φ)σ + µB 0

−(1− φ)σ δ + µB

 (4.10)

so that the next generation matrix is given as

FV −1 =

 πΛ
µB((1−φ)σ+µB)

0

0 0

 (4.11)
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The basic reproduction number R0B is defined as the spectral radius of FV −1 hence

R0B =
πΛ

µB((1− φ)σ + µB)
(4.12)

4.4.1 Local Stability Analysis of the Disease Free Equilibrium (DFE)

The system (4.1) always has a disease free equilibrium E0 = ( Λ
µB
, 0, 0). We examine the

local stability of the disease free equilibrium (DFE) by analyzing the eigenvalues of the

Jacobian matrix of system (4.1) at the DFE.

Theorem 4.4.1. The disease free equilibrium E0 is locally asymptotically stable when

R0B < 1 and unstable when R0B > 1

Proof. The Jacobian matrix of system (4.1) is as follows

J =


−πI

1+αBI
− µB −πS

(1+αBI)2
0

πI
(1+αBI)

πS
(1+αBI)2

− (1− φ)σ − µB 0

0 (1− φ)σ −(δ + µB)

 (4.13)

and the jacobian matrix at E0 is given by

J(E0) =


−µB −πΛ

µB
0

0 πΛ
µB
− (1− φ)σ − µB 0

0 (1− φ)σ −(δ + µB)

 (4.14)

The corresponding characteristic equation is given as∣∣∣∣∣∣∣∣∣∣
−µB −πΛ

µB
0

0 R0 − 1 0

0 (1− φ)σ −(δ + µB)

∣∣∣∣∣∣∣∣∣∣
= 0 (4.15)

clearly λ1 = −µB, λ2 = R0B − 1 and λ3 = −(δ + µB) are eigenvalues of (4.15). Thus

the DFE is locally asymptotically stable if and only if R0B < 1, otherwise the DFE is

unstable.
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4.4.2 Global stability Analysis of Disease Free Equilibrium (DFE)

Our aim in this section is to establish the global stability of the disease free equilibrium of

the between host infection model by employing the direct Lyapunov method and LaSalle

invariance principle.

Theorem 4.4.2. If R0B < 1 then the DFE (E0) is globally asymptotically stable and if

R0B > 1 then the DFE is unstable

Proof. From the first equation of system (4.1) we have ds
dt
≤ Λ− µBS. A solution of the

equation dx
dt

= Λ−µBx is a maximal solution of S(t). We note that x→ Λ
µB

as t→∞, by

comparison theorem, we see that S(t) ≤ Λ
µB

, and from the set Ω = {(S, I, A) | S+I+A ≤
Λ
µB
, S > 0, I ≥ 0, A ≥ 0} we have I(t) ≤ Λ

µB
Consider the following Lyapunov functional

U = (1− φ)σI + (δ + µB)A (4.16)

evaluating U̇ along the trajectories of system (4.1) we have

U̇ = (1− φ)σİ + (δ + µB)Ȧ

= (1− φ)σ[
πSI

1 + αBI
− (1− φ)σI − µBI] + (δ + µB)((1− φ)σI − δA− µBA)

= ((1− φ)σI)[(
πΛ

µB(1 + αBI)((1− φ)σ + µB)
− 1) + (δ + µB)]− (δ + µB)2A

≤ ((1− φ)σI)[(
R0

1 + αBI
− 1) + (δ + µB)]− (δ + µB)2A ≤ 0 (4.17)

From (4.17) it is clear that U̇ = 0 if and only if I = A = 0, also U̇ < 0 if and only if

R0B < 1. Thus the largest compact invariant sets in {(S, I, A) ∈ Ω, U̇ = 0} are I0 and

A0. Therefore by LaSalle -Lyapunov theorem, every solution that starts in Ω approaches

(I0, A0) as t → ∞, and the global stability of E0 follows from the LaSalle invariance

principle [19].

4.4.3 Existence of Endemic Equilibrium (EE)

We determine the endemic equilibrium (EE) for system (4.1)
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Theorem 4.4.3. A positive endemic equilibrium EE exists whenever I? > 0

Proof. An endemic equilibrium EE = (S?, I?, A?) always satisfies

Λ− πS?I?

(1 + αBI?)
− µBS? = 0 (4.18)

πS?I?

(1 + αBI?)
− (1− φ)σI? − µBI? = 0 (4.19)

(1− φ)σI? − (δ + µB)A? = 0 (4.20)

From equation (4.18) we have

S? =
Λ(1 + αBI

?)

πI? + µB(1 + αBI?)
(4.21)

substituting for S? in equation (4.19) we have

πI?Λ

πI? + µB(1 + αBI?)
− ((1− φ)σ + µB)I? = 0 (4.22)

which reduces to

I? =
(R0B − 1)µB
π + µBαB

(4.23)

and the endemic equilibrium is given as

EE = (S?, I?, A?) = (
Λ(π + αBµBR0)

µBR0B(π + αBµB)
,
(R0B − 1)µB
π + αBµB

,
(1− φ)σµB(R0B − 1)

(π + αBµB)(δ + µB)
) (4.24)

it is clear from equation (4.23) that I? > 0 if and only if R0B > 1, hence there exists an

endemic equilibrium for system (4.1) whenever I? > 0

4.4.4 Local Stability Analysis of the Endemic Equilibrium (EE)

Theorem 4.4.4. When R0B > 1, the endemic equilibrium EE = (S?, I?, A?) is locally

asymptotically stable
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Proof. The jacobian of the system (4.1) evaluated at EE is given as

J(EE) =


− πµB(R0B−1)
π+αBµBR0B

− µB −πΛ(π+αBµB)
µBR0B(π+αBµBR0B)

0

πµB(R0B−1)
π+αBµBR0B

πΛ(π+αBµB)
µBR0B(π+αBµBR0B)

− (1− φ)σ − µB 0

0 (1− φ)σ −(δ + µB)

(4.25)

The characteristic equation of the system (4.25) has one of its eigen values given by

λ1 = −δ− µB < 0. The remaining eigenvalues can be determined by expressing (4.25) as

a 2× 2 block matrix M defined by

M =

 −πµB(R0B−1)
π+αBµBR0B

− µB −πΛ(π+αBµB)
µBR0B(π+αBµBR0B)

πµB(R0B−1)
π+αBµBR0B

πΛ(π+αBµB)
µBR0B(π+αBµBR0B)

− (1− φ)σ − µB

 (4.26)

If R0B > 1 and πµB(R0B−1)
π+αBµBR0B

> πΛ(π+αBµB)
µBR0B(π+αBµBR0B)

, then clearly the trace of M is negative.

The determinant of matrix M is given as

DetM =
π2µBΛ(R0B − 1)(π + αBµB)

µBR0B(π + αBµBR0B)2
+

(1− φ)σπµB(R0B − 1)

π + αBµBR0B

+
πµ2

B(R0B − 1)

π + αBµBR0B

+(1− φ)σµB + µ2
B −

(πµB)2(R0B − 1)2(π + αBµB)

(π + αBµBR0B)2
− πµ2

B(R0B − 1)(π + αBµB)

(π + αBµBR0B)
(4.27)

From equation (4.27) if R0B > 1, then π2µBΛ(R0B−1)(π+αBµB)
µBR0B(π+αBµBR0B)2

+ (1−φ)σπµB(R0B−1)
π+αBµBR0B

+
πµ2B(R0B−1)

π+αBµBR0B

+ (1 − φ)σµB + µ2
B > (πµB)2(R0B−1)2(π+αBµB)

(π+αBµBR0B)2
+

πµ2B(R0B−1)(π+αBµB)

(π+αBµBR0B)
, therefore DetM > 0.

This implies that Routh-Hurwiz criterion holds. Thus the endemic equilibrium EE of

system (4.1) is locally asymptotically stable.

4.4.5 Global Stability Analysis of the Endemic Equilibrium (EE)

Theorem 4.4.5. For R0B > 1 EE is globally asymptotically stable for system (4.1) in Ω

Proof. The Jacobian matrix of (4.1) at EE is as follows

J(EE) =


−πI?

1+αBI
− µB − πS?

(1+αBI)2
0

πI?

1+αBI
πS?

(1+αBI)2
− (1− φ)σ − µB 0

0 (1− φ)σ −(δ + µB)

 (4.28)
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J (2) =


−πI?

1+αBI?
+ πS?

(1+αBI?)2
− (1− φ)σ − 2µB 0 0

(1− φ)σ −πI?
(1+αBI?) − δ − 2µB

−πS?
(1+αBI?)2

0 πI?

1+αBI?
πS?

(1+αBI?)2
− (1− φ)σ − δ − 2µB

(4.29)

We define an auxiliary matrix function P on Ω as P := diag( 1
S?
, 1
I?
, 1
A?

) and P−1 =

(S?, I?, A?) where P is smooth and nonsingular, Pf = diag( −Ṡ
?

(S?)2
, −

˙I?

(I?)2
, −Ȧ

?

(A?)2
) and PfP

−1 =

diag(−Ṡ
?

S?
, −

˙I?

I?
, −Ȧ

?

A?
).

Therefore the matrix B = PfP
−1 + PJ (2)P−1 can be written in block form as follows

B =

B11 B12

B21 B22

 (4.30)

with B11 = C − Ṡ?

S?
, B12 = (0, 0), B21 = (S

?

I?
D, 0)T , B22 =

E − İ? A?

I?
F

I?

A?
G H − Ȧ?

A?

, where

C = πS?

(1+αBI?)2
− πI?

1+αBI?
− 2µB − (1− φ)σ

D = (1− φ)σ

E = −πI?
(1+αBI?)

− 2µB − δ

F = −πS?
(1+αBI?)2

G = πI?

1+αBI

H = πS?

(1+αBI?)2
− (1− φ)σ − 2µB − δ

We choose a vector norm | � | in R3 ∼= R


3

2


as

‖ (u, v, w) ‖= max{| u |, | v | + | w |} (4.31)

then the Lozinskii measure [9], µ(B) with respect to | � | can be estimated as follows

µ(B) ≤ sup{g1, g2} (4.32)

where

g1 = B11+ | B12 | (4.33)

g2 = µ(B22)+ | B21 | (4.34)
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We now obtain B11 = c− Ṡ?

S?
= πS?

(1+αBI?)2
− πI?

1+αBI?
− 2µB − (1− φ)σ − Ṡ?

S?
and | B12 |= 0,

g1 = πS?

(1+αBI?)2
− πI?

1+αBI?
− 2µB − (1− φ)σ − Ṡ?

S?

and from system (4.1) Ṡ?

S?
= Λ

S?
− πI?S?

(1+αBI?)S?
− µB.

Thus g1 = πS?

(1+αBI?)2
− πI?

1+αBI?
− Λ

S?
+ πI?S?

(1+αBI?)S?
− (1− φ)σ − µB.

which reduces to

g1 =
πS?

(1 + αBI?)2
− Λ

S?
− (1− φ)σ − µB (4.35)

Next we calculate µ1(B22) by taking the non-diagonal elements of each column of B22 in

absolute value, and then adding to the corresponding columns of the diagonal elements

we get

B22 =

 I?

A? ( πI?

1+αBI?
)− πI?

1+αBI?
− 2µB − δ − İ? A?

I? ( −πS?
(1+αBI?)2

)

I?

A? ( πI?

1+αBI?
) πS?

(1+αBI?)2
− A?

I? ( πS?

(1+αBI?)2
)− (1− φ)σ − 2µB − δ − Ȧ?

A?

(4.36)

Taking the maximum of two diagonal elements of B22; we have

µ1(B22) = max{ I?
A?

( πI?

1+αBI?
)− πI?

1+αBI?
− 2µB− δ− İ?, πS?

(1+αBI?)2
− A?

I?
( πS?

(1+αBI?)2
)− (1−φ)σ−

2µB − δ − Ȧ?

A?
}

=
πS?

(1 + αBI?)2
− A?

I?
(

πS?

(1 + αBI?)2
)− (1− φ)σ − 2µ− δ − Ȧ?

A?
(4.37)

therefore we have

g2 = µ1(B22)+ | B21 |=
πS?

(1 + αBI?)2
− A?

I?
(

πS?

(1 + αBI?)2
)− (1− φ)σ − 2µB − δ −

Ȧ?

A?
+
S?

I?
(4.38)

Next we obtain

µ(B) ≤ sup{g1, g2} ≤ {
πS?

(1 + αBI?)2
− Λ

S?
− (1− φ)σ − µB, (4.39)

πS?

(1 + αBI?)2
− A?

I?
(

πS?

(1 + αBI?)2
)− (1− φ)σ − (1− φ)σI?

A?
− µB +

S?

I?
}

From system (4.1) İ?

I?
= πS?

1+αBI?
− (1− φ)σ − µB and

Ȧ?

A?
= (1−φ)σI?

A?
− (δ + µB) Then we have

µ(B) ≤ sup{g1, g2} ≤ {
İ?

I?
− Λ

S?
,
İ?

I?
− Ȧ?

A?
− (δ + µB)} ≤ İ?

I?
− Ȧ?

A?
− (δ + µB) (4.40)
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Integrating both sides of inequality (4.40) simultaneously we obtain

1

t

∫ t

0

µ(B)ds ≤ 1

t

∫ t

0

(
İ?

I?
− Ȧ?

A?
− (δ + µB)ds < 0 (4.41)

1

t

∫ t

0

µ(B)ds ≤ lim sup
t→∞

sup
1

t
ln
I?

A?
− (µ+ δ) < 0 (4.42)

From equation (3.40), inequality (4.42) imply that q̄ ≤ −(µ+ δ) < 0. Hence, we have

shown that the endemic equilibrium EE of system (4.1) is globally asymptotically stable

in the region Ω. Epidemiologically this means that, the spread of HIV and AIDS persists

in the population.

4.5 Numerical Simulations for the Between Host HIV transmission Model

In order to verify our analytical results, system (4.1) is simulated numerically for various

sets of parameter values given in Table (4.1). In addition the simulation is meant to

analyse the dynamics of the disease progression with time and investigate the impact of

various parameters on the transmission dynamics of HIV/AIDS.

Figure 4.1: effect of φ on the population of the Infectives (I) in the first 10 years
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Table 4.1: Variables and Parameters used in system (4.1)

Parameters/variable units Description source

dependent variables

S(t) 1000 per year Susceptible population estimated

I(t) 200 per year Asymptomatically infected individuals estimated

A(t) 100 per year Symptomatically infected individuals estimated

parameters and constants

Λ 2258 per year Recruitment rate into the population [35]

via birth and immigration

π 0.000157 Transmission or Infection rate [35]

µB 0.2 per year Natural death rate of the population [35]

σ 0.34 per year Rate of transmission from [35]

infected status to AIDS status

δ 0.2 per year death rate of AIDS individuals [35]

αB 0.2 The saturation factor that [35]

measures the inhibitory effect

φ varies:0 < φ < 1 Treatment efficacy [35]

Figure (4.1) represents the behaviour of the infected population over a period of ten

years under different treatment efficacies. The infected population is seen to experience a

continuous decline in population in the first ten years. This decline can be attributed to

the progression of the infected individuals into the AIDS class. On the other hand the use

of high treatment efficacy plays a major role in accelerating this decline as opposed to low

treatment efficacy (φ). It can be noted that, for some values of (φ), e.g 0.1, 0.5 and 0.9

the corresponding values of R0B are R0B = 0.00034, R0B = 0.000214 and R0B = 0.000157

thus R0B � 1. This clearly shows that DFE is both locally and globally asymptotically
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Figure 4.2: effect of φ on the population of AIDS (A) in the first 10 years

stable which is in line with (Theorem (4.4.2)). A similar scenario is observed, in figure

(4.2), which represents the behaviour of AIDS population within the same period of time.

For values of Λ = 0.55year−1, π = 0.003, µB = 0.0196year−1, σ = 0.15year−1,

δ = 0.0909year−1 we obtain the following graphs:

Figure 4.3: effect of φ on the population of the Infectives (I) in the first 10 years
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Figure 4.4: effect of φ on the population of the Aids individuals (A) in the first 10 years

It can be observed from Figures (4.3) and (4.4), that low treatment efficacy of φ =

0.1 corresponds to R0B = 2.4. This means that the endemic equilibrium is globally

asymptotically stable (Theorem (4.4.5)) implying disease persistence in the population.

On the other hand high treatment efficacy of φ = 0.5 and φ = 0.9 yields R0B = 0.88

and R0B = 0.54 respectively. This means that the endemic equilibrium is unstable, and

that the infected population is gradually reduced. Similarly from figure (4.4) it can be

deduced that the transfer rate of individuals to the AIDS class declines steadily due to the

high treatment efficacy. Also due to high treatment efficacy the increase in the number

of AIDS population is relatively low compared to the case when treatment efficacy is low.
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4.6 Discussion and Conclusion

We have modeled a between-host HIV/AIDS infection, by taking into account a saturated

incidence rate and treatment efficacy. Through meticulous mathematical analysis, we

have theoretically proved that both local and global dynamics of the proposed model are

fully determined by the basic reproduction number R0B. More precisely the disease free

equilibrium is both locally and globally asymptotically stable if R0B < 1. Biologically

this implies that HIV/AIDS is theoretically extinct hence the prevalence rate among the

population is low and that the fight against HIV/AIDS through antiretroviral treatment

is efficient. The endemic equilibrium has been proved to be globally asymptotically stable

whenever R0B > 1 by the geometric approach method, as used by Li and Muldowney

[18], which implies that HIV/AIDS persists in the population. Numerical simulations

conducted confirm our theoretical results and further show that early treatment with

high treatment efficacy is important in combating the spread of HIV/AIDS.
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CHAPTER FIVE

COUPLED IMMUNOEPIDEMIOLOGICAL MODEL FOR HIV AND AIDS

TRANSMISSION

5.1 Introduction

Since its discovery over thirty years ago, mathematical modelling of HIV and AIDS disease

transmission has mainly concentrated on modelling the two transmission levels separately,

namely the immunological process and the epidemiological process. This is due to the

tractability of modelling the immunological process independent of the between host pro-

cess [14]. Yet coupled models have the capacity to unravel pertinent questions such as the

effect of within host on between host models. Attempts to use immunoepidemiological

models in modelling disease dynamics of other diseases have been successful, for example

recent study by [41] used a multiscale modelling framework to investigate transmission

dynamics of cholera while [4] developed an immunoepidemiological framework on malaria.

However the application of this modelling framework on HIV and AIDS has received little

attention. In this chapter we endeavour to bridge the two scales of HIV transmission and

generate an immunoepidemiological model. This is motivated by the fact that there exists

an interdependence of parameters between the two scales of infection such as virulence

and transmission rate.

5.2 Model Description and Formulation

In this section, we construct a coupled HIV and AIDS model linking both the within-

host and between-host transmission subsystems. The coupled model will consist of two

processes, one for the epidemiological processes at the population level and the other for

the viral dynamics within an individual host. System (4.1) developed in chapter four
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of this study forms the between host component of the coupled system, while model

(3.1) formulated in chapter three of this study is used as the within host component

in formulating the coupled model. Both systems (4.1) and (3.1) have been discussed

extensively in literature.

5.2.1 Coupling the subsystems

In order to link the two processes, we examine the relationship between the two subsystems

(4.1) and (3.1), by employing the method used by [14]. From the SIA subsystem (4.1),

it can be established that the host viral load has significant effect on HIV transmission

rate in the population, hence we suppose that the rate of transmission of HIV is indeed

proportional to virulence levels of the transmitting host, this can be represented by the

functional relationship of the form

π = π(V )

π(0) = 0, π′(V ) =
dπ

dV
(5.1)

We further explore how the viral and cellular system depends on HIV prevalence in the

host population, I. Let N(t) = S(t) + I(t) + A(t) → Λ
µB

as t → ∞, be the total host

population and denoting Λ
µB

by N̂ in the remainder of this chapter, we consider n systems,

where every(each) system represents the viral dynamics of one host. We can obtain an

average system that can be used to describe the average cell densities and viral load from

the n systems. Therefore for every single host j(j = 1, 2, ..., N), denote the viral load of

an infective as Vj while the number of uninfected and infected cells can be denoted as Tj

and T ?j respectively. Define

Vav =
1

N̂

N̂∑
j=1

Vj

T ?av =
1

N̂

N̂∑
j=1

T ?j

Tav =
1

N̂

N̂∑
j=1

Tj (5.2)
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Where Tav, T
?
av and Vav are average number of uninfected cells, infected T cells and viral

load respectively, For 0 < I < N̂ , the following assumptions hold

• that only individuals with indices j = 1, 2, ...., I are infected i.e Vj > 0 for j =

1, 2, ...., I

• Vj = 0 for j = I + 1, ...., N̂ .

Thus for each individual, the within host HIV infection dynamics is described as

dTj
dt

= rTj(1−
Tj

Tjmax
)− (1− ρ)βVjTj − (1− ϑ)αWTjT

?
j − µWTj

dT ?j
dt

= (1− ρ)βVjTj + (1− ϑ)αWTjT
?
j − κT ?j

dVj
dt

= ωκT ?j − cVj, j = 1, 2, ...., N̂ (5.3)

To derive an equation for the average Tav, we sum up the whole population and using

(5.2) and Tj equation in (5.3) we obtain

dTav
dt

=
1

N̂

N̂∑
j=1

dTj
dt

(5.4)

= rTj(1−
Tj

Tjmax
)− (1− ρ)β

1

N̂

N̂∑
j=1

VjTj − (1− ϑ)αW
1

N̂

N̂∑
j=1

TjT
?
j − µWTav

= rTj(1−
Tj

Tjmax
)− (1− ρ)β

1

N̂

I∑
j=1

VjTj − (1− ϑ)αW
1

N̂

I∑
j=1

TjT
?
j − µcTav

where the term
∑I

j=1 VjTj and
∑I

j=1 T
?
j Tj represent the total incidence. To maintain the

mass action law for the averages, the total contact rate and the average contact rate is

assumed to have a relationship of the form:

I∑
j=1

VjTj = Θ(I)TavVav (5.5)

and

I∑
j=1

T ?j Tj = Θ(I)T ?avTav (5.6)

Where the function Θ is dependent on how HIV transmission processes at the popula-

tion level affect the within host HIV infection dynamics, hence a simple linear relation
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that preserves the mass action law for the contact rate incorporated in equation (5.3) is

proposed as follows:

Θ(I) = θI (5.7)

where θ is a constant of proportionality. Therefore the terms
∑I

j=1
VjTj and

∑I

j=1
T ?j Tj

in equation (5.4) can be replaced by

θIVavTav (5.8)

and

θIT ?avTav (5.9)

respectively, that is,

I∑
j=1

VjTj = θIVavTav (5.10)

and

I∑
j=1

T ?j Tj = θIT ?avTav (5.11)

Expanding the RHS of equation (5.10) and (5.11) we obtain

θITavVav =
θI

N̂2
(
N̂∑
i=1

ViTi +
N̂∑
i 6=j

ViTj) =
θI

N̂2
(f(Vi, Ti) +

I∑
i 6=j

ViTj) (5.12)

where (f(Vi, Ti) =
∑I

i=1
ViTi

similarly

θITavT
?
av =

θI

N̂2
(
N̂∑
i=1

T ?i Ti +
N̂∑
i6=j

T ?i Tj) =
θI

N̂2
(f(T ?i , Ti) +

I∑
i 6=j

T ?i Tj) (5.13)

where (f(T ?i , Ti) =
∑I

i=1
T ?i Ti

Let β̂ = θ and α̂W = θ

then

β̂

N̂

I∑
j=1

VjTj =
θ

N̂
f(Vi, Ti) ≥

θ

N̂

1

N̂
(f(Vi, Ti)) (5.14)
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and

β̂

N̂

I∑
j=1

T ?j Tj =
θ

N̂
f(T ?i , Ti) ≥

θ

N̂

1

N̂
(f(T ?i , Ti)) (5.15)

assuming that both θI

N̂2

∑I

i6=j
ViTj and θI

N̂2

∑I

i6=j
T ?i Tj are small enough, then from equation

(5.4) we obtain an equation for dTav
dt

as follows

dTav
dt

= rTav(1−
Tav
Tmax

)− (1− ρ)βIVavTav − (1− ϑ)αW ITavT
?
av − µCTav (5.16)

similarly from T ?j and Vj equations in (5.3) we get

dT ?av
dt

= (1− ρ)βIVavTav + (1− ϑ)αW ITavT
?
av − κT ?av (5.17)

,

dVav
dt

= ωκT ?av − cVav (5.18)

assembling equations (5.16), (5.17) and (5.18) we obtain a system for the averages for the

within-host dynamics given as,

dTav
dt

= rTav(1−
Tav
Tmax

)− (1− ρ)βIVavTav − (1− ϑ)αW ITavT
?
av − µWTav

dT ?av
dt

= (1− ρ)βVavTav + (1− ϑ)αWTavT
?
av − κT ?av

dVav
dt

= ωκT ?av − cVav (5.19)

From subsystems (4.1) and (5.19) for the between- and within-host dynamics respectively,

and dropping subscripts av for the averages ( i.e, T = Tav, T
? = T ?av, V = Vav) we obtain

the coupled model (5.20) linking the immunological and epidemiological transmission

processes for HIV. The summary of the model can be described schematically as shown

below.
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Figure 5.1: Flow chart of the coupled immunoepidemiological model for HIV/AIDS

Mathematically, this can be described by the following system of equations;

dS

dt
= Λ− πV SI

1 + αBI
− µBS

dI

dt
=

πV SI

1 + αBI
− (1− φ)σI − µBI

dA

dt
= (1− φ)σI − δA− µBA

dT

dt
= rT (1− T

Tmax
)− (1− ρ)βIV T − (1− ϑ)αW ITT

? − µWT

dT ?

dt
= (1− ρ)βIV T + (1− ϑ)αW ITT

? − κT ?

dV

dt
= ωκT ? − cV (5.20)

Since the rate of transmission of HIV in the human population is considered as a function

of the number of free viruses, then the viral load (V) at the between-host compartments

can be considered as a parameter value and can therefore be denoted as θ1. Similarly

the infectives (I) at the within host can also be taken as a parameter and denoted as θ2.

Hence model (5.20) becomes

dS

dt
= Λ− πθ1SI

1 + αBI
− µBS
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dI

dt
=

πθ1SI

1 + αBI
− (1− φ)σI − µBI

dA

dt
= (1− φ)σI − δA− µBA

dT

dt
= rT (1− T

Tmax
)− (1− ρ)βθ2V T − (1− ϑ)αW θ2TT

? − µWT

dT ?

dt
= (1− ρ)βθ2V T + (1− ϑ)αW θ2TT

? − κT ?

dV

dt
= ωκT ? − cV (5.21)

5.3 Analysis of the coupled Immunoepidemiological model

5.3.1 Basic Reproductive Ratio

The local stability of the model (5.21) is governed by the basic reproduction number

R0 = Max {R0B, R0W}, where R0B and R0W are the basic reproduction numbers for

between-host and within-host subsystems respectively. Model (5.21) has four infected

compartments, namely I, A, T ? and V . Using the next generation matrix method as

applied by [37], the new infection terms and the remaining transfer terms for those four

compartments are given below, in partitioned form.

F =



πθ1SI
1+αBI

0

(1− ρ)βθ2V T + (1− ϑ)αW θ2TT
?

0


(5.22)

and

V =



(1− φ)σI + µBI

δA− µBA− (1− φ)σI

κT ?

cV − ωκT ?


(5.23)
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The Jacobian of f and ν evaluated at the Infection Free Equilibrium E0 = ( Λ
µB
, 0, 0, Tmax(1−

µ
r
), 0, 0) yields ;

F =



πθ1Λ
µB

0 0 0

0 0 0 0

0 0 (1− ρ)αW θ2Tmax(1− µW
r

) (1− ρ)βθ2Tmax(1− µW
r

)

0 0 0 0


(5.24)

V =



(1− φ)σ + µB 0 0 0

−(1− φ)σ δ + µB 0 0

0 0 κ 0

0 0 −ωκ c


(5.25)

and

V −1 =



1
(1−φ)σ+µB

0 0 0

(1−φ)σ
((1−φ)σ+µB)(δ+µB)

1
δ+µB

0 0

0 0 1
κ

0

0 0 ω
c

1
c


(5.26)

where F is nonnegative and V is nonsingular. Computing FV −1 we have

FV −1 =



πθ1Λ
µB((1−φ)σ+µB)

0 0 0

0 0 0 0

0 0 Tmax(1− µW
r

)[(1− ρ)βθ2ω
c

+ (1− ϑ)αW θ2
κ

] 0

0 0 0 0


(5.27)

The basic reproductive ratio is thus given by R0C = ρ(FV −1), where the term ρ(FV −1)

denotes the spectral radius of the matrix FV −1. Hence

R0C = Max

(
πθ1Λ

µB((1− φ)σ + µB)
, Tmax(1−

µW
r

)
ωβθ2

c
(1− ρ) + Tmax(1−

µW
r

)(1− ϑ)
αW θ2

κ

)
(5.28)
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from equations (3.15) and (4.12), equation (5.28) can be expressed as

R0C = Max {R0B, R0W} (5.29)

R0B is a measure of the average number of secondary HIV infections in human (host)

population caused by a single infective host introduced into an entirely susceptible popu-

lation. Similarly, R0W is a measure of the average number of secondary viral and cellular

infections within host caused by a single virion and infectious cells introduced into an

entirely susceptible CD+ T cell population.

5.3.2 Disease Free Equilibrium for the Coupled model

The system (5.21) always has a disease free equilibrium (DFE), E0 = (S, 0, 0, T, 0, 0, ) =

( Λ
µB
, 0, 0, Tmax(1− µW

r
), 0, 0). We examine the local stability of the DFE by analysing the

eigenvalues of the Jacobian matrix of system (5.21) at the DFE. The Jacobian matrix of

system (5.21) is as follows;

M =



−πθ1I
1+αBI

− µB −πθ1S
(1+αBI)2

0 0 0 0

πθ1I
1+αBI

πθ1S
(1+αBI)2

− (1− φ)σ − µB 0 0 0 0

0 (1− φ)σ −δ − µB 0 0 0

0 0 0 r − 2rT
Tmax

− b− µW −d −e

0 0 0 b d− κ e

0 0 0 0 ωκ −c


(5.30)

Where

b = (1− ρ)βV θ2 + (1− ϑ)αθ2T
?

d = (1− ϑ)αθ2T

e = (1− ρ)βθ2T

The Jacobian matrix M in equation (5.30) at E0 = ( Λ
µB
, 0, 0, Tmax(1 − µW

r
), 0, 0) is given
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as

M =



−µB −πθ1Λ
µB

0 0 0 0

0 πθ1Λ
µB((1−φ)σ+µB)

− 1 0 0 0 0

0 (1− φ)σ −δ − µB 0 0 0

0 0 0 r − 2rT
Tmax

− µW a1 −a2

0 0 0 0 a1 − κ a2

0 0 0 0 ωκ −c


(5.31)

Where a1 = Tmax(1− µW
r

)(1− ϑ)αθ2

a2 = Tmax(1− µW
r

)(1− ρ)βθ2

Since at the DFE T0 = Tmax, then the element r − 2rT
Tmax

− µW reduces to −r − µW . The

eigenvalues of the matrix M (5.31) are

λ1 = −µB (5.32)

λ2 =
πθ1Λ

µB((1− φ)σ + µB)
− 1 (5.33)

λ3 = −δ − µB (5.34)

λ4 = −r − µW (5.35)

while the remaining eigenvalues were determined from the reduced matrix A

A =

Tmax(1− µW
r

)(1− ϑ)αθ2 − κ Tmax(1− µW
r

)(1− ρ)βθ2

ωκ −c

 (5.36)

Applying Routh-Hurwiz criteria , matrix A in equation (5.36) will guarantee negative real

roots if and only if the trA < 0 and detA > 0 thus

trA = θ2R0W − 1− c

κ
− Tmax(1−

µW
r

)(1− ρ)
βωθ2

c
(5.37)

and

detA = −θ2[Tmax(1−
µW
r

)(1− ρ)
βω

c
+ Tmax(1−

µW
r

)(1− ϑ)
α

κ
] + 1 (5.38)
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Equation (5.38) reduces to

detA = 1− θ2R0W (5.39)

From (5.37) and (5.39) trA < 0 and detA > 0 if and only if R0W < 1. Similarly equation

(5.33) can be written as

λ2 = ROB − 1 (5.40)

Thus the DFE is locally asymptotically stable wheneverR0W < 1 and ROB < 1 . The

epidemiological significance of this is that; any introduction of an infected individual into

the population would not lead to new transmission and the disease is wiped out.

5.3.3 Endemic Equilibrium for the Coupled model EE

A disease is endemic in a population if it persists in the population. The endemic equi-

librium of system (5.21) can be studied using the Centre Manifold Theorem [8, 6].

Theorem 5.3.1. Consider the following general system of ordinary differential equations

with a parameter a?

dx
dt

= f(x, a?), f : Rn ×R→ Rn and f ∈ C2(Rn ×R)

Without loss of generality, it is assumed that zero is an equilibrium point for system (5.21)

for all values of the parameter a?, ( that is f(0, a?) ≡ 0,∀a?). Assume

1 . B = Dxf(0, 0) = ( ∂fi
∂xi

(0, 0)) is the linearized matrix of system (5.21) around the

equilibrium 0 with a? evaluated at zero.

2 . Zero is a simple eigenvector of B and all other eigenvalues of B have negative real

parts.

3 . Matrix B has a right eigenvector w and a left eigenvector v corresponding to the

zero eigenvalue

Let fk be the kth component of f and

s? =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),
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r? =
n∑

k,i=1

vkwi
∂2fk
∂xi∂a?

(0, 0)

The local dynamics of the system around the equilibrium point 0 is totally determined by

the signs of s? and r? Particularly

(i) In the case where s? > 0; r? > 0 we have that when ϕ < 0, with |ϕ| � 1, (0,0)

is locally asymptotically stable and there exist a positive unstable equilibrium; when

0 < a? � 1, (0,0) is unstable and there exists a negative and locally asymptotically

stable equilibrium.

(ii) In the case where s? < 0; r? < 0, when a? < 0 with |a?| � 1 (0,0) is unstable; when

0 < a? � 1, (0,0) is locally asymptotically stable, and there exists a positive unstable

equilibrium.

(iii) In the case where s? > 0; r? < 0, when a? < 0 with |a?| � 1, (0,0) is unstable and

there exists a negative and locally asymptotically stable equilibrium, when 0 < a? �

1, (0,0) is stable and there exists a positive unstable equilibrium.

(iv) In the case where s? > 0; r? < 0, a? < 0 changes from negative to positive, (0,0)

changes its stability from stable to unstable. Correspondingly, a negative unstable

equilibrium becomes positive and locally asymptotically stable.

To apply theorem (5.3.1) the following simplification and change of variables are made

on the system (5.21). Let S = x1, I = x2, A = x3, T = x4, T
? = x5, V = x6 so that

NB = x1 + x2 + x3 and NW = x4 + x5 + x6. The system (5.21) can be written in the form

dx

dt
= F (x)

where

X = (x1, x2, x3x4, x5, x6)

F = (f1, f2, f3, f4, f5, f6)
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such that

dx1

dt
= f1 = Λ− πθ1x1x2

1 + αx2

− µBx1

dx2

dt
= f2 =

πθ1x1x2

1 + αx2

− (1− φ)σx2 − µBx2

dx3

dt
= f3 = (1− φ)σx2 − δx3 − µBx3

dx4

dt
= f4 = rx4(1− x4

Tmax
)− (1− ρ)βθ2x6x4 − (1− ϑ)αθ2x4x5 − µWx4

dx5

dt
= f5 = (1− ρ)βθ2x6x4 + (1− ϑ)αθ2x4x5 − κx5

dx6

dt
= f6 = ωκx5 − cx6 (5.41)

It can be verified that the Jacobian of system (5.21) at the DFE, E0 is given by

M =



−µB −πθ1Λ
µB

0 0 0 0

0 Q1 − 1 0 0 0 0

0 (1− φ)σ −δ − µB 0 0 0

0 0 0 −r − µW Q2 −Q3

0 0 0 0 Q2 − κ Q3

0 0 0 0 ωκ −c


(5.42)

Where

Q1 =
πθ1Λ

µB((1− φ)σ + µB)
(5.43)

Q2 = Tmax(1−
µW
r

)(1− ϑ)αθ2 (5.44)

Q3 = Tmax(1−
µW
r

)(1− ρ)βθ2 (5.45)

To analyze the dynamics of (5.21), we compute the eigenvectors of the Jacobian of (5.21)

at the DFE. It can be shown that the Jacobian matrix (5.42) has a right eigenvector

given by W = (w1, w2, w3, w4, w5, w6)T where w1 = 0, w2 = 0, w3 = 0, w4 =
w5(Q2−Q3

ωκ
c

)

(r+µW )
,

w5 = w5 > 0, w6 = w5ωκ
c

.

Similarly, the components of the left eigenvector of the jacobian matrix (5.42) denoted by
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U = (v1, v2, v3, v4, v5, v6)T are given by v1 = 0, v2 = 0, v3 = 0, v4 = 0, v5 = v5 > 0 and

v6 = Q3v5
c

.

Let a and b be the coefficients defined in theorem (5.3.1) . We can calculate s? as fol-

lows: for the transformed system (5.41), the associated nonzero partial differentials of f

(evaluated at the DFE, (E0) are given by;

6∑
k,i,j

v2wiwj
∂2f2

∂xi∂xj
(0, 0) = 2v5w

2
5(Q2 −Q3)

ωκ

c
[(1− ϑ)αθ2 + (1− ρ)

βθωκ

c
] > 0

Consider the case when R0C = 1 (assuming that R0W > R0B) and choose θ2 = ϕ as a

bifurcation parameter. Solving for θ2 from R0C = R0W = 1 gives

θ2 = ϕ =
1

Tmax(1− µW
r

)[(1− ρ)βω
c

+ (1− ϑ)α
κ
])

(5.46)

Obtaining r? we have

r? =
n∑

k,i=1

vkwi
∂2fk
∂xi∂ϕ

(0, 0)

= 2v5w5(1− ϑ)αTmax(1−
µW
r

) > 0

Since s? > 0 and r? > 0, Theorem (5.3.1) holds, thus system (5.21) has a unique endemic

equilibrium which is locally asymptotically stable whenever R0C > 1 and unstable when

R0C < 1.

5.4 Numerical Simulation of the Model

The aim of this section is to conduct numerical simulations to our proposed Immuno-

epidemiological HIV and AIDS model (5.21), in order to verify our theoretical results and

also explore emerging properties that are not covered in our theoretical analysis. This is

made possible by using the base values of the model parameters given in Tables 3.2 and

4.1.

Figure 5.2 (a), illustrate how the within-host viral load impacts on the number of infected

individuals in the population (between-host level). The graph depicts a logistic growth

for the virus population, in which viral replication reveals an increase over time, attaining
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(a) (b)

Figure 5.2: (a).The Graph of infected human population I(t) against Active virions V(t)

(b).The Graph trajectory of infected human population I(t) within the first 30 years.

a maximum of approximately 78000 virions. Since this is a critical point (turning point)

where the number of virions start to decline. This is attributed to immune response, the

natural death of virions and/or exhaustion of uninfected CD4+ T-cells, or the slow process

of viral replication as a result of latency. On the other hand the number of infectives in

the population increases gradually at a much slower rate despite an increase in viral load

at the within-host level.

It can also be deduced that even with declining viral load, the number of infectives

continue to rise. This is attributed to the fact that infectivity at the population is highly

dependent on the contact rate between infected and susceptible individuals. One of the

emerging phenomena from Figure 5.2 (a) is that even with low viral load transmission at

the population level can persist as long as the contact rate is kept high.

Furthermore the graph shows that with high treatment efficacy the rate of increase in the

number of infectives is decreased (kept at low level) while low efficacy of ART corresponds

to an increase in the number of infectives. Hence the level of treatment efficacy is crucial

in combating the spread of HIV and AIDS.
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Figure 5.2 (b), illustrate the long term effect of various ART treatment efficacy levels

on the number of infected human population. It can be observed that when efficacy level

is low (φ = 0.1), the number of infected individuals increases sharply to a peak of 40,000

infected individuals within the first one year, after which the numbers start to decline

moderately to a minimum of 5000 for the next ten years. The decrease in the number of

infected individuals can be attributed to factors independent of treatment efficacy such

as:

• Measures put in place to combat the spread of HIV and AIDS such as public aware-

ness campaigns.

• Most of the asymptomatically infected individuals transit to the symptomatically

infected (AIDS) class.

• Positive behaviour change among the infected and susceptible individuals as a result

of voluntary screening/testing and counselling.

On the other hand, when treatment efficacy is high, that is, 0.5 and 0.9, the graph

trajectory of the infected human population I(t), generally, depicts a very suppressed

increase in the number of new infections, this is in contrast to the case when efficacy is at

0.1. We further observe that the effect of the two levels of antiretroviral treatment (RTI

and PI) on viral replication is quite significant. This is due to the fact that the viral load

at the within-host level almost immediately begins to decay exponentially with a negative

value in less than one year. Also combined ART prevents successful infection of new cells,

furthermore, the lifespan of free virus and infected cells is reduced. This has an overall

effect on the transmissibility of HIV at the population level, hence the small number of

infected individuals corresponding to high treatment efficacy.

5.5 Conclusion

In this chapter we have formulated and analysed a new model framework linking the two

subsystems of within-and between-host HIV viral dynamics discussed in chapter three
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and four respectively. The novelty in this chapter is in deriving the coupled model by

expressing the transmission rate as a function of the viral load at the between host level,

while expressing the infection rate at within host as a function of the infectives. This was

based on the approach by [14]. The six component model obtained, despite incorporating

various HIV viral dynamics such as treatment at both viral and cellular levels, remained

mathematically and computationally tractable. Hence a detailed mathematical analysis

was conducted, this involved determining the basic reproduction number for the coupled

model. This was found to be a maximum of the two reproduction numbers for the

between-and within-host subsystems, that is R0C = max{R0W , R0B}. The analysis of

the DFE was done using the Routh-Hurwiz criteria and was found to be asymptotically

stable when R0W < 1 and R0B < 1. This has both immunological and epidemiological

significance, in that the introduction of a few infected individuals into the population will

not result into new HIV transmissions and thus the disease will be wiped out from the

population. The centre manifold theorem was used to show that the coupled model has a

unique endemic equilibrium. This was found to be locally asymptotically stable whenever

R0C > 1 and unstable when R0C < 1. From the numerical simulations conducted it

was deduced that an increase in viral load has a corresponding increase in the number

of infectives at the population level. However a decline in the viral load at the within-

host may not necessarily lead to a decline in the number of infectives at the population

level. This is because transmissibility is highly dependent on the rate of contact between

the infectives and the susceptibles. In addition numerical simulations revealed that the

efficacy of ART treatment has remarkable effect on HIV transmission, with high efficacy

leading to significant reduction of infectives within a short period of time. Specifically

the high efficacy of both RTI and PI treatment contributes to low viral replication, since

the RTI prevents successful infection of new cells while PI prevents infected cells from

maturing into actively infectious virions. This is likely to result into low transmission

of HIV at the population level. Hence the small number of infected individuals at the

population when treatment efficacy is high.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

This research sought to develop and analyse a coupled immunoepidemiological model for

HIV with viral and cellular transmission incorporating antiretroviral treatment. In or-

der to achieve this, a within host HIV infection model incorporating cellular and viral

infection with combined antiretroviral treatment was developed and analysed. The de-

tailed mathematical analysis revealed that the eradication or persistence of HIV in the

human blood is dependent on the threshold value of ROW . While numerical simulation

showed that high efficacy of combined treatment of RTI and PI levels help in stifling viral

replication leading to low viral load and high CD4+ T cell count. Thus objective (i) was

achieved

The achievement of objective (ii) was realized by developing a between host model with

saturated incidence rate and treatment efficacy. Theoretical analysis revealed that HIV

and AIDS becomes extinct if the threshold value of R0B < 1, which implies that there

is low prevalence due to the treatment efficacy of ARV treatment. On the other hand,

R0B > 1 is indicative of HIV persistence in the population. By successfully coupling

the two subsystems of within and between host models incorporating the two levels of

treatment objective three was realized. In addition the use of numerical simulations to

validate analytical results, ensured that objective four of the study was realized.

6.1 Recommendations

The study used the idea of coupling to investigate how viral load at the within-host level

affect transmissibility at the population level, using ordinary differential equations. In

particular, we incorporated RTI and PI treatment efficacy in the novel immunoepidemi-

ological model.
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Based on our analytical and numerical results obtained, the study recommends that treat-

ment using high efficacy drugs of RTI and PI will go a long way in optimizing the fight

against HIV and AIDS transmission in the population. In addition future design and

development of ARV drugs should focus on improving efficacy of ARV drugs. This is

in line with the global ARV optimization framework established with the purpose of en-

suring transition to new drugs formulation with better efficacy, lower toxicity and high

durability, among others [12, 39].

Further studies may be carried out to investigate the impact of other dynamics such as

drug resistance on efficacy of ARV treatment using immuno-epidemiological models..
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