Thickness Dependence of Window Layer on CH₃NH₃PbI_{3-X}Cl_X Perovskite Solar Cel

Abstract

CH₃NH₃PbI_{3-x}Cl_x has been studied experimentally and has shown promising results for photovoltaic application. To enhance its performance, this study investigated the effect of varying thickness of FTO, TiO₂, and CH₃NH₃PbI_{3-x}Cl_x for a perovskite solar cell with the structure glass/FTO/TiO₂/CH₃NH₃PbI_{3-x}Cl_x/Spiro-OMeTAD/Ag studied using SCAPS-1D simulator software. The output parameters obtained from the literature for the device were 26.11 mA/cm², 1.25 V, 69.89%, and 22.72% for *J*_{sc}, *V*_{oc}, FF, and , respectively. The optimized solar cell had a thickness of 100 nm, 50 nm, and 300 nm for FTO, TiO₂, and CH₃NH₃PbI_{3-x}Cl_x layers, respectively, and the device output were 25.79 mA/cm², 1.45 V, 78.87%, and 29.56% for *J*_{sc}, *V*_{oc}, FF, and , respectively, showing a remarkable increase in FF by 8.98% and 6.84% for solar cell efficiency. These results show the potential of fabricating an improved CH₃NH₃PbI_{3-x}Cl_x perovskite solar cell.

Authors.

Wycliffe Isoe, 1 Maxwell Mageto, 1,2 Christopher Maghanga, 2,3 Maurice Mwamburi, 4 Victor

Odari,1,2 and Celline Awino