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Abstract

Infant mortality is an important marker of the overall society health. The 3rd goal of the
Sustainable Development Goals aims at reducing infant deaths that occur due to preventable
causes by 2030. Due to increased infant mortality the Kenyan government introduced Free
Maternal Health Care as an intervention towards reducing infant mortality through elimination
of the cost burden of accessing medical care by the mother and the infant. The study examines
the impact of Free Maternal Health Care on infant mortality using Intervention time series
analysis particularly the intervention Box Jenkins ARIMA (Autoregressive Integrated Moving
Average) model. There was significant support that Free Maternal Health Care had a significant
impact on infant mortality which was estimated to be a decrease of 10.15% in infant deaths per
month.
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1 Introduction

Infant mortality gives key information about the infant health. The infant mortality is an important
markers of the overall society health. Infant mortality refers to the death of an infant before his/her
first birthday, Center for Disease Control [1]. There has been a decrease in infant mortality rate
globally from 64.8 deaths per 1000 live births in 1990 to 30.5 deaths per 1000 live births in 2016
accounting for annual decline in infant deaths from 8.8 million in 1990 to 4.2 million in 2016,
WHO[2]. According to Bourbonnaires [3], Kenya had experienced high infant mortality rates due
to lack of access to quality maternal health services such as ante-natal, delivery and post-natal
services. The Kenya government therefore introduced the Free Maternal Health Care (FMHC)
on 1st June 2013 in all public hospitals as an intervention towards reducing infant mortality rate,
an initiative that was to be effected immediately. In July 2013 the government allocated Ksh95
billion to health services with Ksh3.8 billion committed to Free Maternal Health Care provision,
Ksh700 million for free access to health centers and dispensaries, Ksh3.1 billion for recruitment
of 30 community nurses for every constituency, Ksh522 million for recruitment of 10 community
health workers per constituency, Ksh1.2 billion for provision of housing units for health workers and
Ksh60 billion was given to the county governments for provision of health services at the county
level. According to a comprehensive report by Ministry of Health [4], the FMHC was to help
increase access to skilled delivery services with the aim of reducing infant mortality which in effect
would help Kenya in moving towards the 3rd Sustainable Development Goal of ending preventable
infant mortalities, UNICEF [5].

1.1 Intervention time series analysis

Time series is a set of observations xt, each one of them recorded at a specific time t, Brockwell
& Richard [6]. Intervention time series analysis is the application of modeling procedures with the
inclusion of the impact of changes or forces such as policy changes, price changes, strikes e.t.c known
as interventions which may occur at a known point in time T, Box et.al [7]. The intervention models
first introduced by Box and Tiao [8] has two main components: 1) The intervention component
which measure the effect of the event (Free Maternal Health Care) on a time series (infant mortality);
and 2) the noise component that accounts for residual variability in the observed infant mortality
data when the effect of Free Maternal Health Care is modeled. Based on Box and Tiao [8] an
intervention model is given as,

Xt = Nt +
ω(B)Bb

δ(B)
It0t (1)

Where B is the backshift operator such that BbIt0t = It0t−b, I
t0
t is the deterministic input of 0’s and

1’s that specifies when the intervention event occurred and whether the event produces a temporary
or permanent event, Bb represents the time delay or backshift of b time units in the model (If b=0
then the intervention effect is felt instantaneously but if b ≥ 1 the intervention effect is felt after
one period and so on) and

Nt =
θ(B)ϵt
φ(B)

(2)

with φ(B) = ϕ(B)(1−B)d where ϕ(B) = 1−ϕ1B−ϕ2B
2.....−ϕpB

p and θ(B) = 1−θ1B−θ2B
2....−

θqB
q.

Where θ is the Moving Average model parameters and φ is the Autoregressive model parameters.
The impact of intervention of Free Maternal Health Care on infant mortality in this study is modeled
as a step function given as
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ft =
ω(B)Bb

δ(B)
ST
t (3)

Where intervention impact with r+1 parameters is given as,

ω(B) = ω0 + ω1B + ....+ ωrB
r (4)

and the the slope at the point of intervention with s parameters has the form,

δ(B) = 1− δ1B,−....,−δsB
s (5)

with r and s being non negative integers.

The presence of the denominator variable in the intervention component indicates whether or
not the process returns to the pre-vent levels gradually or not. In this study the presence of a
damping operator in the intervention component indicates that the infant mortality returns to pre-
intervention time abruptly while the absence of the damping operator in the intervention component
indicates that the infant mortality returns to pre-intervention time gradually, Box and Tiao[8]. The
intervention ARIMA model was use in this study where the Box Jenkins modeling procedure was
used to fit the models before and after intervention.

2 Literature Review

Okereke et.al [9] carried out a study on the impact of needs on inflation rate in Nigeria using the
intervention ARIMA model where the resultant model was

Xt =
4.521

1− 0.508B
lt + 0.986Xt−1 (6)

The study found that needs had significant negative effect on inflation rates in Nigeria and the
effect was abrupt and temporary. The study applied intervention analysis on inflation data whereas
the study under consideration applied the intervention ARIMA model on infant mortality data.

Su J. amd Deng G.[10] carried out a study on application of Intervention Analysis Model in Yu
Ebao (monetary fund) Yield Prediction and found out that the effect of Niu’s comment on decline
in the yield was significant (0.148% decline in Yu Ebao’s yield). The intervention model was given
as

Xt = 6.774− 0.013t+
−0.014

1− 0.928B
ST
t (7)

The study applied intervention time series analysis on monetary fund data while the study under
consideration sought to use intervention time series analysis on infant mortality data.

ITSA has not been applied much in public health data analysis. Moreover it has not been applied
in Kenya in modeling infant mortality.

3 Materials and Methods

The infant mortality sample data was obtained from the Kakamega county Public Health office
between January 2010 to December 2017 on monthly basis. The available data was that collected
from all the health facilities in the county. The data was then subdivided into two:1) the pre-
intervention data between January 2010 to June 2013; 2) the post intervention data between July
2013 and December 2017.
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However the collected data had missing data for some months in the year 2010. These were
intrapolated using the Zoo package in R software. The intervention component was then identified
using the following intervention time series modeling procedure; Using the data before intervention
to fit a model, Using the model fitted to the data before intervention to estimate the after intervention
model,using the data after intervention to fit the after intervention model,obtaining the difference
between the estimated intervention model and the actual intervention model and lastly Observing
the later difference to obtain the intervention effect model, STAT 510[11]. In this study the Box
Jenkins modeling procedure was used to fit both the models before and after the intervention,Box
and Tiao[8]. Model identification was done using the sample ACF and sample PACF where the
best fit was that regarded to have the minimum AIC, AICc and BIC. For parameter estimation the
maximum likelihood method was used and the Box Ljung test and the residual ACF were analysed
to check for non zero autocorrelations in the forecast errors as evidence for model adequacy, Box
et.al[7]. In addition the forecasting performance of the models was compared using the Mean
Absolute Error where the model with the minimum MAE was the best forecasting model for infant
mortality data with intervention, Rob J.H.[12].

4 Results and Discussion

4.1 Model construction for infant mortality before and after
intervention

In Fig. 1 and Fig. 2 below there is presence of non stationarity in the time series data which was
accertained by the Augumented Dickey Fuller (ADF) test (Data before intervention;Dickey Fuller=-
2.5577, Lag order=3, p-value=0.3538, Ha: Stationary and Data after intervention; Dickey Fuller=-
2.256, Lag order=3, p-value=0.4714, Ha: Stationary). To stablize the time series differencing was
carried out which helped in obtaining the order of differencing ’d’.

Fig. 3 and Fig. 4 provided sufficient evidence that the time series data before and after the
intervention had been stationarized which was confirmed by the ADF test (Data before intervention;
Dickey Fuller=-4.303, Lag order=3, p-value=0.01, Ha: Stationary and Data after intervention;Dickey
Fuller=-4.2291, Lag order=3, p-value=0.01, Ha: Stationary).

Fig. 1. Time series plot for the infant mortality data before intervention
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Fig. 2. Time series plot for the infant mortality data after intervention

Fig. 3. Time series plot of the differenced infant mortality data before intervention

Fig. 4. Time series plot of the differenced infant mortality data after intervention

The ACF and PACF plots in Fig. 5 and Fig. 6 respectively were examined to obtain the order for
AR and MA for the differenced infant mortality data before intervention. From the ACF plot the
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autocorrelation at lags 0 and 1 were significant while the others were within bounds. For PACF
plot the autocorrelation was significant at lags 0 and 1 and tailed off after lag 1. This resulted to;
ARMA(0,1), ARMA(1,0) and ARMA(1,1).

Fig. 5. The ACF plot

Fig. 6. The PACF plot

The ACF and PACF plots in Fig. 7 and Fig. 8 respectively were also examined to obtain the
order for AR and MA for the differenced infant mortality data after intervention. From the ACF
plot the autocorrelation were insignificant thus we tested for significance at lag 1. For PACF plot
the autocorrelation were within the bounds but we tested for any significance at lags 1, 2 and 3.
This resulted to; ARMA(0,1), ARMA(1,0), ARMA(1,1), ARMA(2,0), ARMA(2,1), ARMA(3,0)
and ARMA(3,1).

Thus the model identified for before intervention was ARIMA(0,1,1) with AIC=369.82,AICc=370.47
and BIC=374.96 and which was the best forecasting model for future infant mortality data with
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MAE=12.22501. Table 1 also shows that the after intervention ARIMA(1,1,1) with AIC=433.73,
AICc=434.56 and BIC=441.61 was the best forecasting model for infant mortality data with a
MAE=10.69036.

Fig. 7. The ACF plot

Fig. 8. The PACF plot

The correlogram for the before intervention ARIMA(0,1,1) model showed that none of the sample
autocorrelations for lags 1-20 exceeded the significance bounds and the Box Ljung p-value =0.1982
was large, both suggesting that the residuals are white noise. In addition the correlogram for after
intervention ARIMA(1,1,1) model indicated that none of the sample autocorrelations for lags 1-20
exceeded the significance bounds and the Box Ljung p-value =0.9049 was large both suggesting
that the residuals are white noise.
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Table 1. Model statistics

Model AIC AICc BIC

Before intervention ARIMA(0,1,0) 429.16 429.26 430.85

ARIMA(0,1,1) 369.82 370.47 374.96

ARIMA(1,1,0) 398.1 398.43 401.48

ARIMA(1,1,1) 377.05 377.72 382.12

After intervention ARIMA(0,1,0) 480.72 480.8 482.67

ARIMA(0,1,1) 441.89 442.14 445.8

ARIMA(1,1,0) 468.26 468.51 472.16

ARIMA(1,1,1) 433.73 434.56 441.61

ARIMA(2,1,0) 460.13 460.63 465.99

ARIMA(2,1,1) 441.37 442.22 449.17

ARIMA(3,1,0) 453.95 454.8 461.75

ARIMA(3,1,1) 442.63 443.93 452.38

Fig. 9. The Residual ACF plot for ARIMA(0,1,1)

Fig. 10. The Residual PACF plot for ARIMA(1,1,1)

The before intervention model was given as

Xt = (1− 0.7557B)ϵt (8)
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while the after intervention model was

Xt =
1− 0.8600B

1− 0.5258B
ϵt (9)

4.2 Purified Series Model

The purified series model was fitted from a series of infant mortality data without putting the
inclusion of the Free Maternal Health Care intervention. The model was given as

Xt = (1− 0.6158B)ϵt (10)

With the model parameters being significant at 0.05 level of significance. Thus this implied that
the model fitting was adequate. This model shows the residual variability in the purified series of
infant mortality.

4.3 Intervention model construction

The intervention effect model was fitted from the intervention value obtained by getting the difference
between the actual intervention data and the forecasts of the before intervention model ARIMA(0,1,1).
The intervention effect model was

Xt =
0.1015

1−B
(11)

Where the intervention impact ω=0.1015 and δ was constrained as 1 so that there is a temporary
change in infant mortality and that it falls back to the pre-intervention time after a given period of
time. The model parameters were significant at 0.05 level of significance implying that the model
fitting was adequate. The full intervention model was given by combining the intervention effect
model and the purified series model as

Xt =
0.1015

1−B
+ (1− 0.6158B)ϵt (12)

5 Conclusion

This study considered intervention Box Jenkins ARIMA model in assessing the impact of Free
Maternal Health Care. Substantial evidence was obtained from the intervention time series analysis
that Free Maternal Health Care has had a significant impact on infant mortality with a mean
reduction of 10.15% infant deaths per month between July 2013 and December 2017. Model
adequacy was checked using residual analysis which was intended to check for significance in
autocorrelations at different time lags of the forecasting errors of the fitted model.
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