# The influence of $\alpha, \alpha^{\prime}$-diimine bridging ligand on the reactivity of binuclear para-cymene ruthenium(II) complexes. Kinetic, mechanistic and computational study 

## Abstract.

Substitution kinetics of the aqua ligands in four binuclear ruthenium(II) para-cymene complexes with different $\alpha, a^{\prime}$-diimine bridging ligands [2-pyridylaldazine ( $\mathrm{Ru}-1$ ), $\boldsymbol{p}$ phenylenebis(picoline)aldimine ( $\mathrm{Ru}-\mathrm{e}$ ), $\boldsymbol{p}$ -
biphenylenebis(picoline)aldimine ( $\mathrm{Ru}-3$ ) and $p$ xylenebis(picoline)aldimine (Ru-4)] was investigated as a function of nucleophile concentration and temperature under pseudo-first order conditions using thiourea nucleophiles. The rates of the simultaneous substitution of the aqua ligands decreased in the order: $\mathrm{Ru}-1>\mathrm{Ru}-4>\mathrm{Ru}-3>\mathrm{Ru}-2$. The reactivity of the complexes is controlled by the inherent electronic and steric contributions of the bridging ligand. The strong $\pi$-acceptor bridging ligand is responsible for the high reactivity observed in $\mathrm{Ru}-1$ compared to the rest of the complexes. From Ru-2 to Ru-4, the reactivity increases with decrease in steric congestion around the metal centres. The cage effect plays a role in the enhanced reactivity of Ru-4 compared to Ru-3 and Ru-2. Reactivity trends are excellently supported by computational results. All the complexes showed a stepwise deprotonation of the coordinated aqua ligands except Ru4 and the pKa values increased from $\mathrm{Ru}-1$ to $\mathrm{Ru}-4$ due to progressive increase in $\sigma$-donicity of the spacers. The activation parameters ( $\Delta H^{*}>0, \Delta S^{*}<0$ ) obtained for all the complexes support an associative mechanism of activation.

Authors.

Gershom KyaloMutua, Daniel O.Onunga, MeshackSitati, DeogratiusJaganyi,
AllenMambanda

