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Abstract

Aims/ objectives: To develop a state-transition model for malaria symptoms.
Study design: Longitudinal study.
Place and Duration of Study: Department of Mathematics Masinde Muliro University of
Science and Technology between January 2015 and December 2015.
Methodology: We included 300 students (patients) with liver malaria disease, with or without
the medical history of malaria disease, physical examination for signs and symptoms for both
specific and non-specific symptom, investigation of the disease through laboratory test (BS test)
and diagnostic test results. the focus of this study was to develop state-transition model for
malaria symptoms. Bayesian method using Markov Chain Monte Carlo via Gibbs sampling
algorithm was implemented for obtaining the parameter estimates.
Results: The results of the study showed a significant association between malaria disease and
observed symptoms
Conclusion: The study findings provides a useful information that can be used for predicting
malaria disease in areas where Blood slide test and rapid diagnostic test for malaria disease is not
possible.
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1 Introduction

Malaria is an ancient disease that has been affecting people since the beginning of recorded time.
It poses serious economic, social and health burdens in tropical and subtropical countries where
it is predominantly found [1]. Malaria still remains a huge public health issue regardless of how
many years of research has been conducted on how to combat this disease. According to WHO [2],
the latest world malaria report released in November 2017 shows that the number of malaria cases
reported in the year 2016 was 216 million up from 211 million cases reported in 2015. The report
also shows that malaria death estimates in 2016 stood at 445,000 compared to 446,000 deaths in
2015. The high burden of malaria cases in 2016 was in Africa at 90% with 91% cases of deaths
reported in children. According to WHO report on malaria cases in Kenya, malaria is one of the
leading causes of morbidity and fatality with about 3.5 million children at risk of developing severe
malaria, out of which an estimated 34,000 children under five years die every year. The disease is
also responsible for 30% of out-patient visits at health centres, economically, it is estimated that
170 million working hours are lost each year because of malaria illness [3].

Symptoms are experienced deviations from an individual’s perception of his or her normal healthy
state of being, yet not necessarily an indicator of illness. A symptom can emerge from sensitivity
to certain combinations of biological, social and environmental processes and vary in magnitude,
severity, persistence and character. Symptoms can be subjectively reported or objectively observed.
Depending on the disease, the scope and intensity, the duration of symptoms can vary over time.

The malaria symptoms can be grouped into two; symptoms for uncomplicated malaria (suspected
malaria) and symptoms for complicated malaria (severe malaria). Malaria is considered uncomplicated
when symptoms are present but there are no clinical or laboratory signs to indicate severity or
vital organ dysfunction. The symptoms of uncomplicated malaria are non-specific i.e. they are
self-reported symptoms that do not indicate a specific disease process, they are initial symptoms
and include fever (temperature), chills, headache, pains (joint, muscle, abdominal), muscle aches,
loose stool, tiredness, nausea, high pressure, vomiting and diarrhoea. Infection with Plasmodium
falciparum if not promptly treated can quickly progress to complicated malaria (severe malaria).
The main symptoms of severe malaria include coma, severe breathing difficulties, low blood sugar,
hallucination, prostration, immobility, confusion and incoherent speech, seizure, loss of consciousness,
hyperparasitaemia, black quarter urine and low blood haemoglobin [4]

2 Literature Review

Martens et al [5] examined the relationship between malaria and environmental and socio-economic
variables in Sudan using health production modified model. They used regression analysis method
to analyse their results, the regression results showed significant relationships between malaria,
rainfall and water bodies while other variables such as Human Development Index, temperature,
population density and percent of cultivated areas were not significant. Teklehaimanot et al [6] used
robust Poisson regression model to model the daily average number of cases in 10 districts of Ethiopia
that was associated with rainfall, minimum temperature and maximum temperature as explanatory
variable in a polynomial distributed lag model. To improve reliability and generalizability within
similar climatic conditions, the districts were grouped into two climatic zones, hot and cold. The
results showed that malaria was associated with rainfall and minimum temperature in Ethiopia. In
cold districts, rainfall was associated with a delayed increase in malaria cases while the association
in the hot districts occurred at relatively shorter lags. The results also showed that in cold districts,
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minimum temperature was associated with malaria cases with a delayed effect while in hot districts,
the effect of minimum temperature was non-significant at most lags, and much of its contribution
was relatively immediate.

In many studies of medical treatment, symptoms are measured repeatedly over time in observation
called longitudinal observation. Though we cannot observe directly latent variables, we learn about
it by measuring symptom. For the longitudinal models, two latent variables govern disease, one for
the probability of experiencing a particular symptom and another for the severity of the experienced
symptom. Thus the probability of a symptom and the severity of it depends on both latent variables
and observed variables [7]. Latent variable link observable data in the real world to symbolic data in
the model. Bayesian statistics is often used for inferring latent variables, the common method used
inferring latent variables in Bayesian statistics are; Hidden Markov Model (HMM), factor analysis,
principal component analysis and Expectation Maximization (EM) algorithm [7].

Zammit et al [8] developed an intra-individual consistency model using a logistic-type latent variable
model. The latent variable in the model was used to represent the propensity of symptoms
and intensity of episodes as these could not be observed directly and needed to be estimated
through observation of symptoms episodes in hypoglycaemia. The model results showed that their
was individual difference in symptom reporting and that adults exhibit distinct intra-individual
variability in symptom reporting. Hans et al extended on the model developed by Zammit et
al by allowing for different forms of symptom experiencing thresholds between groups variability
when symptoms are classified in groups and performing variable selection to determine a predictive
model for the effect of patient characteristics and their interactions on symptom consistency. The
study was conducted in several health centers in the United Kingdom and data collected from 381
participants aged between 17-75 years. Bayesian estimation was performed for all coefficients in
the developed model without grouped symptoms and with grouped symptoms. The analysis shows
that a multiplicative form of symptom propensity and episode intensity provides the most suitable
symptom experiencing threshold and groups of symptoms show distinct propensity and that gender
subjects had significant impact on the consistency of symptom reporting.

3 Materials and Methods

3.1 Observed symptoms

From a population point of view, one has the disease if he/she exhibits malaria symptoms. Following
an infective bite by mosquito, symptoms appear in about 9 − 14 days. The initial symptoms of
malaria are non-specific and mimic a flu-like syndrome [5]. In a study by Martins et al [5], there
are 19 common symptoms associated with malaria disease which were confirmed and assessed by
blood smear microscopy. The symptoms are; fever, chills, sweating, headache, myalgia, arthralgia,
abdominal pain, nausea, vomiting, dizziness, cough, diarrhoea, weakness, inappetence, bitter mouth,
pallor, coryza, sneezing and sore throat. Some of these symptoms are observable symptoms in
patients for instance fever (body temperature), chills, sweating, vomiting, cough, diarrhoea, pallor
and sneezing. A healthy person infected with malaria, develops mild to moderate and finally severe
symptoms depending on treatment measures taken.

In this study, the observations are data of observed symptoms recorded by the health officer for each
student who visited the health facility with malaria related symptoms. The observed symptoms
used in this study are; fever (body temperature), rigors, sweating, vomiting, diarrhoea, pallor,
cough, convulsion and prostration.
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4 Model Assumption

The following assumption were used in the development of the model;

(i) At a given time, individual i is in a particular state i.e either in an infective state (I) or
susceptible state (S).

(ii) The probability of transiting from state S to state I is time dependant.

(iii) We do not explicitly model the distinction between state E and I as these states are not
distinguishable with the data considered because it is only symptoms that allow for distinction
of states and therefore state S is characterised by no symptoms or minimal symptoms and
state I is one in which symptoms are observed.

5 The State-Transition Model

State-transition model is developed from a Markov chain, in this model, only the pathways or
transitions are considered and the probability of every transition is calculated, furthermore, the
model can be used on population of any size. To aid our discussion, we first provide an overall
modelling framework.

Fig. (1) provides a transition diagram on how an ith individual susceptible to malaria evolves.

Fig. 1. Malaria transition diagram

An ith student can become infected at time t given that he/she was not infected at time t− 1. The
process of individual i becoming infected is denoted by Zi, thus when in state S (susceptible state)
at time t− 1, the process is Zit−1. When a student transit to the next state for instance from S to
I (infected state), the process becomes Zit. When in state I, the process evolves with time and the
three possible categories within state I are mild (I1), moderate (I2) and severe (I3).
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6 Computation of Transition Probability for the ith

Student

In this section, we are interested in the computation of transition probabilities in Fig. (1) which
are vital to our model. The transition probabilities are:

a
(t)
iSS = P (Zi(t) = S|Zit−1 = S),

a
(t)
iSI = P (Zit = I|Zit−1 = S), (1)

and

a
(t)
iII = P (Zi(t) = I|Zit−1 = I)

where a
(t)
iSI is the probability that ith individual transits from state S at time t−1 to state I at time

t, a
(t)
iSS is the probability that ith individual remains at state S at time t and a

(t)
iII is the probability

that ith individual evolves within state I at time t.

To calculate the probabilities of a
(t)
iSI or a

(t)
iSS , we require probit models. This model simply use the

cumulative Gaussian normal distribution to calculate the probability of being in one state/category

or not. For instance the probability of a
(t)
iSI is given by

a
(t)
iSI = P (Zit = I|Zit−1 = S) =

∫ ψit

−∞

1√
2π

exp−1

2
t2dt = ϕ(ψit) (2)

where ϕ is the cumulative standard normal distribution and the upper bound parameter ψit is a
transition parameter ( ψit ∈ ℜ) which defines the transition of the ith student from a state of
susceptibility at time t − 1 to a state of illness at time t. In the next Section (3.6), we shall show
how to compute ψit.

Similarly a
(t)
iSS is given by

atiSS = P (Zit = S|Zit−1 = S) =

∫ ψc
it

−∞

1√
2π

exp−1

2
t2dt (3)

where ψcit is the complement of ψit. We rewrite the compliment in Equation (3) as

a
(t)
iSS = P (Zit = S|Zit−1 = S) =

∫ ℜ−ψit

−∞

1√
2π

exp−1

2
t2dt (4)

where ℜ is in the scale of time t given by the interval ℜ = [−∞,+∞]. Equation (4) can further be
simplified to

a
(t)
iSS = P (Zit = S|Zit−1 = S) =

∫ ∞

−∞

1√
2π

exp−1

2
t2dt−

∫ ψit

−∞

1√
2π

exp−1

2
t2dt (5)

upon simplification of Equation (5), we get

a
(t)
iSS = P (Zit = S|Zit−1 = S) = 1−

∫ ψit

−∞

1√
2π

exp−1

2
t2dt (6)

Therefore Equation (3) can be written as

a
(t)
iSS = P (Zit = S|Zit−1 = S) = 1− a

(t)
iSI (7)
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7 Computation of Transition Parameter

The probability of student i transiting from a state of susceptibility at time t−1 to a state of illness
at time t is modelled as

P (Zit = I|Zit−1 = S) = ϕ(ψit) (8)

where ϕ is a cumulative distribution function, with N(φ; 0, 1) a normal distribution function for
variable φ characterized by zero mean and unit variance. Therefore, the transition parameter
ψi(t) in concert with a probit link function, defines the probability with which one transits from a
susceptible state to infective state. We model this transition parameter via two terms:

ψit = It + γ∗
it (9)

where the term It ∈ ℜ is the malaria incidence rate of an area as influenced by environmental/climatic
factors at time t and γ∗

it is a latent regression term.

To determine the value of transition parameter ψit , we compute the values of It and γ∗
it. In the

next Section, we show how to compute It.

7.1 Computation of expected malaria incidence rate

In this section, we first determine the association between environmental/climatic factors with
malaria disease then afterwards determine the influence of factors on malaria incidence rate using the
the model proposed by Alberto et al [9]. According Alberto et al, the influence of environmental/climatic
factors on the malaria incidence rate of an area can be explained by the relation∑

κIt ∗
∑

νsin(
2π

ρ
)[Rt ∗ Tt ∗ Vt] → It+d (10)

where

It is the malaria incidence rate at time t , Rt, Tt, Vt, are the environmental/climatic factors at time
t, which are rainfall, the average temperature and the mean vegetation density respectively. ρ is
the seasonal oscillation at time t, It+d is malaria incidence at time t+ d i.e d days from t, κ is the
linear regression coefficient for the incidence rate, ν is the parameter that determines the amplitude
of seasonal oscillations estimated by regression and ∗ is the operator that link the components and
expresses the lack of a priori knowledge of how the variables are related.

Equation (10) expresses cumulative combination of previous values of the incidence rate as an
estimator of population reservoir and the cumulative combination of past levels of rain, temperature
and vegetation density as estimators of vector capacity that combine to influence future values of
the incidence rate. The term that includes rainfall, temperature and vegetation density implies
that the malaria incidence oscillates with a period that is proportional to their common seasonality.
The model in Equation (10) combines all those terms having significant autocorrelation and cross-
correlation coefficients with the malaria incidence rate in their corresponding lags at a significance
level of p ≤ 0.05. To this end we need to estimate parameters of the model in Equation (10) by
using historical data.

8 Computation of Regression Term in the Transition
Model

To determine the value of γ∗
it, we assume the transition probabilities to vary based on various

observed symptoms. We summarize these symptoms for student i in period t in vector form as
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Xit = {X1 - fever (body temperature), X2 - rigors, X3 - convulsion, X4 - sweating, X5 - vomiting,
X6 - diarrhoea, X7 - pallor, X8 - cough and X9 - prostration }

The transition of an individual from one state to another can only occur as a result of the observed
symptoms. Thus, we assume that there exist a linear relationship defined by

γ∗
it = Xitθ + ϵit (11)

where the random error ϵit is assumed to be randomly normally distributed with mean 0 and unity
variance i.e ϵ ∼ N(0, 1). θ is a p × 1 vector of unknown regression parameters. Xit is a 1 × p
observed symptoms.

To obtain γ∗
it, we need to estimate the parameter θ which we show how to estimate in the next

section.

8.1 Estimation of regression coefficients

The density function for the ith observation is given by

f(ϵ) = (2π)
−1
2 exp−1

2
ϵ′ϵ (12)

From Equation (11), ϵ = γ∗
it −Xθ, replacing ϵit in Equation (12) becomes

f(ϵ) = (2π)
−1
2 exp−1

2
(γ∗
it −Xθ)′(γ∗

it −Xθ) (13)

when we use the proportionality sign (∝), we do not write the term that does not involve θ.
Therefore Equation (13) becomes

f(ϵ) ∝ exp−1

2
(γ∗
it −Xθ)′(γ∗

it −Xθ) (14)

distributing the transpose in the first term of the exponential, we get

f(ϵ) ∝ exp{−1

2
(γ∗′
it − θ′X ′)(γ∗

it −Xθ) (15)

we expand the exponent to get

f(ϵ) ∝ exp{−1

2
(γ∗′
it γ

∗
it − γ∗′

itXθ − θ′X ′γ∗
it + θ′X ′Xθ)} (16)

Since the first term is a constant with respect to θ and so it can be removed as a multiplicative
proportionality constants so as to get

f(ϵ) ∝ exp{−1

2
(−γ∗′

itXθ − θ′X ′γ∗
it + θ′X ′Xθ)} (17)

Suppose we assume that g(θ) to be the conjugate prior of Equation (17) i.e g(θ) ∼ N(0, σ2). Then
the distribution of g(θ) is given as

g(θ) = (2πσ2)
−1
2 exp− 1

2σ2
θ
′
θ (18)

when we use the proportionality sign (∝), we do not write the term that does not involve θ

g(θ) ∝ exp− 1

2σ2
θ
′
θ (19)

Next we find the posterior distribution (P (θ|γ∗
it, X) by multiplying Equation (17) and Equation

(19) to get

P (θ|γ∗
it, X) ∝ exp−1

2
(γ∗
it −Xθ)

′
(γ∗
it −Xθ) exp− 1

2σ2
θ
′
θ (20)
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we expand the term in the exponent to get

P (θ|γ∗
it, σ2,X) ∝ exp−1

2
{(γ∗′

it γ
∗
it − γ∗′

itXθ − θ
′
X

′
γ∗ + θ

′
X

′
Xθ +

1

σ2
θ
′
θ} (21)

Since the first term is a constant with respect to θ, it can be removed as a multiplicative proportionality
constant, thus we have

P (θ|γ∗
it, σ2, X) ∝ exp−1

2
{(−γ∗′Xθ − θ

′
X

′
γ∗
it + θ

′
X

′
Xθ +

1

σ2
θ
′
θ} (22)

rewrite Equation (22) as

P (θ|γ∗
it, σ2, X) ∝ exp−1

2
{(−γ∗′

itXθ − θ
′
X

′
γ∗
it + θ

′
(X

′
X +

1

σ2
)θ} (23)

In Equation (23), the first two terms are identical to one another i.e one is just a transposed version
of the other, therefore the two terms can be added and Equation (23) rewritten as

P (θ|γ∗
it, σ2, X) ∝ −1

2
{exp(θ

′
(X

′
X +

1

σ2
)θ)− 2γ∗′

itXθ} (24)

To simply the expression in Equation (24), we let
M = (X ′X + 1

σ2 )
and
b = X ′γ∗

it

Then Equation (24) becomes

P (θ|γ∗
it, σ2, X) ∝ exp−1

2
{θ′Mθ − 2b′θ} (25)

completing the square (quadratic form) in Equation (25) and applying the following identity
θ′Mθ − 2b′θ=((θ −M−1b)′M(θ −M−1b)− b′M−1b
Equation (25) becomes

P (θ|γ∗
it, σ2,X) ∝ exp−1

2
{(θ −M−1b)′M(θ −M−1b)− b′M−1b} (26)

which can be written as a product of likelihood and prior as follow;

P (θ|γ∗
it, σ2, X) ∝ exp−1

2
{(θ −M−1b)′M(θ −M−1b)} exp−1

2
[b′M−1b] (27)

The Gaussian density of Equation (27) is given by

P (θ|γ∗
it, σ2,X) ∝ exp−{[(θ − (X ′X +

1

σ2
)−1X ′γ∗

it](X
′X +

1

σ2
)[(θ − (X ′X +

1

σ2
)−1X ′γ∗

it]}

but γ∗
it is a constant value and not a density in θ so it can be removed as a multiplicative

proportionality constants, therefore we rewrite it in Gaussian form as as

P (θ|γ∗
it, σ2, X) ∝ exp−(θ − (X ′X +

1

σ2
)−1X ′γ∗

it(X
′X +

1

σ2
)X ′(θ − (X ′X +

1

σ2
)−1X ′γ∗

it

which implies that a posterior mean is given by

E[θ] = (X ′X +
1

σ̂2
)−1X ′γ∗

it (28)

thus, the Bayes estimate of θ̂ is

θ̂ = (X ′X +
1

σ̂2
)−1X ′γ∗

it (29)

In Equation (29), γ∗
it and X are observed from an experiment.

Next we obtain the estimate of σ̂ which we show how to estimate in the next section.
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8.2 Estimation of varaiance

To estimate σ2 in Equation (21), we assume that ϵ is randomly distributed with mean 0 and variance
σ2 i.e ϵ ∼ N(0, σ2). Therefore the density function for the ith observation is given as

f(ϵ|σ2) =
n∏
i=1

(
1

π
)
1
2 (

1

2σ2
)
1
2 exp− 1

2σ2
(γ∗
it −Xθ)2 (30)

when we use the proportionality sign (∝), we do not write the term that does not involve σ2

f(ϵ|σ2) ∝ (
1

2σ2
)
n
2 exp− 1

2σ2

n∑
i=1

(γ∗
it −Xθ)2 (31)

To estimate σ2, we need a family of prior distribution that has a support on (0,∞) and one such
family of distribution is the gamma family. When using such a prior distribution, we say that σ2

has inverse-gamma distribution. Therefore, it is convenient to work with the precision parameter
τ .
Let τ = ( 1

2σ2 ). Then Equation (31) becomes

f(ϵ|σ2) ∝ τ
1
2 exp−τ

n∑
i=1

(γ∗
it −Xθ)2 (32)

Suppose the conjugate prior of τ is the gamma density G(α, β) i.e

p(τ) =
β

Γα
τα−1 exp−τβ (33)

then the posterior distribution P (τ |γ∗
it, X) of τ is given by

p(τ |γ∗
it, X) ∝ τ

1
2 exp−τ

n∑
i=1

(γ∗
it −Xθ)2 × β

Γα
τα−1 exp−τβ (34)

dropping the term that does not involve a function of τ , we have

p(τ |γ∗
it,X) ∝ τ

1
2 exp−τ(γ∗

it −Xθ)2 × τα−1 exp−τβ (35)

Let r , 1
2
, then Equation (35) simplifies to

p(τ |γ∗
it) ∝ τr+α−1 exp−τ

n∑
i=1

(((γ∗
it −Xθ)2 −Xθ)2 + β) (36)

thus

p(τ |γ∗
it, X) ∝ G(r + α,

n∑
i=1

((γ∗
it −Xθ)2 + β) (37)

therefore

E[τ ] =
r + α− 1∑n

i=1(γ
∗
it −Xθ)2 + β

(38)

and

var[τ ] =
r + α− 1∑n

i=1(γ
∗
it −Xθ)2 + β

(39)

Next, we compute the Bayes estimator of σ2. We know that
2σ2 = 1

τ
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then
σ2 = 1

2τ

Therefore, the Bayes estimate of σ2 is

σ̂2 =
1

2
[
1

τ̂
] =

1

2
[

∑n
i=1(γ

∗
it −Xθ)2 + β

r + α− 1
]

we simplify to get

σ̂2 =

∑n
i=1(γ

∗
it −Xθ)2 + β

2r + 2α− 2

on further simplification, we get

σ̂2 =

∑n
i=1(γ

∗
it −Xθ)2 + β

n+ 2α− 2
provided n+ 2α > 2 (40)

Since the Fisher information for σ is proportional to 1
σ2 as it will be seen Jeffreys prior density in

the present case is proportional to the improper density 1
σ2 which induces for τ the density 1

τ
dτ .

This corresponds to the limiting case α = 0 and β = 0. Hence the Bayes estimator is

σ̂2 =

∑n
i=1(γ

∗
it −Xθ̂)2

n− 2
, n > 2 (41)

Now we need to obtain the empirical parameter estimates of the model (29) and the model (41)
using collected data. The data was collected from MMUST health facility for the time period of
1st January, 2015 to 31st December,2015.

9 Results

9.1 Environmental data

In this study a case of malaria was defined as a patient (student) seeking medical attention.
Microscopically confirmed malaria cases was collected from MMUST health facility over an average
of 5 years. The data was extracted from records of students who visited the health facility for
consultations with medical officer for the years 2011 through 2015. The average monthly rainfall
in mm, normalized difference vegetation index (NDVI), minimum and maximum temperature in
(0C) data was obtained from Kakamega Central meteorological station for the time period between
2011-2015.

9.2 Analysis of data to determine malaria incidence rate

The association between climatic/environmental variables and malaria incidence was carried out
using Pearson’s correlation analysis and outcome of the association shown in Table 1.

Pearsons correlation analysis showed that malaria incidences were highly correlated with climatic
variables at 5% significance level. All correlations were positive and the highest correlation was
found to exist between maximum temperature and NDVI (coefficient= .512).

Exploration of malaria incidence, temperature, rainfall and vegetation (NDVI) was first carried
out to identify regularities in the data. The results in Fig. 2 showed that exploration of malaria
incidence, rainfall, temperature and vegetation for the time period 2011-2015 exhibits numerous
peaks, many of which appear to be equally spaced with no clear upward and downward trend. The
equally spaced peaks suggests the presence of a periodic component with seasonal dependency in
the series of data with 12-month period. From the figure we can also see that there peaks that do

31



Mbete and Nyongesa; AJPAS, 10(4): 22-46, 2020; Article no.AJPAS.64479

not appear to be part of the seasonal pattern and which represent significant deviations from the
neighbouring data points.

Periodogram of the malaria incidence rate with Fast Fourier and Tukey Transformation was carried
out to identify the periodic oscillations to be modelled. Fig. 3 shows the periodogram of malaria
incidence.

Table 1. Association between Climatic Variables and Monthly Malaria Incidence

Variable Test Mal incidence Rainfall MinTemp MaxTemp NDVI

Mal incidence Pearson Cor 1 0.409 0.326 0.301 0.407
Sig. (2-tailed) 0.001 0.011 0.02 0.001

Rainfall Pearson Cor 0.409 1 0.486 0.546 0.481
Sig. (2-tailed) 0.001 0.000 0.000 0.000 0.000

Min Temp Pearson Cor 0.326 0.486 1 0.152 0.347
Sig. (2-tailed) 0.011 0.000 0.246 0.007

Max Temp Pearson Cor 0.301 0.546 0.152 1 0.512
Sig. (2-tailed) 0.020 0.000 0.246 0.000.

NDVI Pearson Cor 0.407 0.481 0.347 0.512 1
Sig. (2-tailed) 0.001 0.000 0.007 0.000

Fig. 2. Observed monthly data for malaria incidence, rainfall, temperature and
Vegetation
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Fig. 3. Periodogram of malaria incidence

Table 2. Univariate Statistics for malaria incidence

Frequency Period Sine Transform Cosine Transform Periodogram

.00000 .000 627.100 .000 1519980.364

.01667 -60.112 -62.157 224308.821 1274539.658

.03333 -58.492 22.543 117885.095 2269020.477

.05000 -3.205 -14.763 6846.454 10300179.316

.06667 -149.465 14.129 676186.498 9940058.033

.08333 142.869 -317.734 3640998.571 9792371.683

.10000 14.539 15.040 13127.341 9861048.189

.11667 30.484 18.444 38083.043 9368580.069

.13333 -44.158 10.248 61648.306 2615516.270

.15000 112.032 63.637 498027.285 2697150.533

The plot of the periodogram shows a sequence of peaks that stand out from the background noise,
with the lowest frequency peak at a frequency of just less than 0.1. Each of the data points in the
time series represents a month, so an annual periodicity corresponds to a period of 12 in the current
data set. Because period and frequency are reciprocals of each other, a period of 12 corresponds
to a frequency of 0.08333 shown in Table 2. Therefore, an annual component implies a peak in
the periodogram at 0.08333, which seems not to be the case with the peak just below a frequency
of 0.1. The univariate statistics in Table 2 contains the data points that were used to plot the
periodogram. From the table, we can see that for frequencies that less than 0.1, the largest value
in the Periodogram column occurs at a frequency of 0.01667 and not 0.08333 as it is expected to
be for the annual periodic component. Periodic components that have the shape of a sine or cosine
function (sinusoidal) show up in the periodogram as single peaks. Periodic components that are not
sinusoidal show up as a series of equally spaced peaks of different heights, with the lowest frequency
peak in the series occurring at the frequency of the periodic component. Therefore, from the results
in Table 2, we conclude that the data contains no periodic oscillation.
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To remove seasonality from the data we carried out trend analysis using seasonal decomposition in
time series. Fig. 4-8 shows seasonal adjustment for the series of data.

Fig. 4. Seasonal Adjustment for Rainfall data

Fig. 5. Seasonal Adjustment for minimum temperature data

34



Mbete and Nyongesa; AJPAS, 10(4): 22-46, 2020; Article no.AJPAS.64479

Fig. 6. Seasonal Adjustment for maximum temperature data

Fig. 7. Seasonal Adjustment for NDVI data
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Fig. 8. Seasonal Adjustment for malaria incidence data

The seasonally adjusted series shows a clear upward trend. A number of peaks are evident, but
they appear at random intervals, showing no evidence of an annual pattern.

Correlograms was carried out for the simple autocorrelation function (ACF) for the malaria incidence,
temperature, rainfall and NVDI variables with lags equal to their period of oscillation. From Figs.
9 - 13, the estimated correlations in the ACF decay to zero, this suggests that the time series is
stationary and should not be differenced. The results further shows how the ACF looks like for the
malaria incidence, rainfall, temperature and NDVI variable. The autocorrelation function shows a
significant peak at a lag of 1 with a long exponential tail i.e typical pattern for time series. We
can clearly see that their is moderately large negative/positive spike at the first lag followed by
correlations that bounce around between being positive and negative of which they are either not
statistically significant or just barely cross the threshold of statistical significance.

Fig. 9. Observed Autocorrelation plot for rainfall data

36



Mbete and Nyongesa; AJPAS, 10(4): 22-46, 2020; Article no.AJPAS.64479

Fig. 10. Autocorrelation plot for maximum temperature data

Fig. 11. Autocorrelation plot for minimum temperature data
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Fig. 12. Autocorrelation plot for NDVI data

Fig. 13. Autocorrelation plot for malaria incidence data
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Correlograms was also carried out for the partial autocorrelation function (PACF) for malaria
incidence, rainfall, temperature and NDVI variables as shown in Figs. 14 - 18.

Fig. 14. Partial autocorrelation plot for rainfall data

Fig. 15. Partial autocorrelation plot for maximum temperature data
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Fig. 16. Partial autocorrelation plot for minimum temperature data

Fig. 17. Partial autocorrelation plot for NDVI data

The results in Figure 14 - 18 shows a decay in the partial correlations toward zero. From the figures,
we can conclude that we estimate the model using the first difference i.e ARIMA(0,1,0)

Next we carried out estimation to determine the values that influences malaria incidence.

In Table 3, results showed that malaria incidence is best described by a seasonal ARIMA model
with one order of differencing. The seasonal nature of the model accounted for the seasonal peaks
in the series of plots and the single order of differencing reflects the upward trend that was evident
in the data.
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Fig. 18. Partial autocorrelation plot for malaria incidence data

Table 3. Model description

Model Type

malaria incidence Model1 ARIMA(0,0,0)(0,1,0)

Table 4. Model statistics

Model Predictors Model Fit statistics Ljung-Box Q(18)
Stationary R-squared Statistics DF Sig.

malaria incidence1 3 .732 28.886 15 .571

The model statistics in Table 4 provides summary information and goodness-of-fit statistics for each
estimated model. From the table, the model contains three predictors out of the four candidate
predictors that were originally specified. Therefore, the Expert Modeller identified three independent
variables used in for forecasting. The stationary R-squared value provides an estimate of the
proportion of the total variation in the series that is explained by the model and is preferable to
ordinary R-squared when there is a trend or seasonal pattern, as is the case with the model. Larger
values of stationary R-squared indicates better fit. For instance a value of 0.732 means that the
model does an excellent job of explaining 73% of the observed variation in the series. The Ljung-Box
statistic provides an indication of whether the model is correctly specified. A significance value less
than 0.05 implies that there is structure in the observed series which is not accounted for by the
model. The value of 0.571 shown in Table 4 is not significant, therefore we conclude that the model
is correctly specified.
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Fig. 19. Predicted and observed values of the data

Figure 19 shows the predicted value and the observed data. From the figure, the predicted values
shows good agreement with the observed values indicating that the model had satisfactory predictive
ability. For instance, the figure shows how the model predicts the seasonal peaks by capturing the
upward and downward trend of the data.

Table 5. Regression Modelling results

Variable coefficient SE 95% CL p-value

It−1 .67 .088 0.55 -0.75 .0001
sin(0.52Rt−1Tt−1Vt−1) .83 .185 0.45-0.95 .0001

In Table 5, the results showed that the model explained a substantial percentage of the observed
variability in the malaria incidence rate (R2=73%) with a coefficient of 0.67 for the autoregressive
term and 0.83 for the environmental/climatic factors. The model leaves a base rate residual in
the form of white noise which is normally distributed with a mean 0 and standard deviation of
0.088. Therefore, after adding the autoregressive term and the term representing the influence of
environmental/climatic variables, we get the parameter estimates of in model (10) as

It = 0.67It−1 + 0.83sin(0.52Rt−1Tt−1Vt−1) (42)

where It is the malaria incidence rate for any month t, It−1 is the observed rate in the preceding
month, Rt−1 is the cumulative rainfall in the preceding month, Tt−1 is the mean maximum temperature
of the preceding month and Vt−1 is the mean vegetation density in the preceding month.

9.3 Symptomatic data

The data for malaria symptoms was extracted from records of students who visited the health
facility for consultations with medical officer for the year 2015. The data was then divided into two;
structured test data and unstructured test data. The structured test data consisted of laboratory
results (based on doctor’s recommendation for blood slide (BS) test), age, gender and registration
number of the students while the unstructured test data consisted of students narration of their
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illness and doctors’ interrogation and diagnosis. For this study, unstructured test data was used for
analysis. The 9 observed symptoms used for the the study were; fever (body temperature), rigors,
convulsion, sweating, vomiting, diarrhoea, pallor, cough and prostration. The number of symptoms
for each student was then recorded on an ordinal scale from 0 to 3 with 0 being symptoms that
cannot cause malaria, 1 being symptoms that can cause mild malaria, 2 being symptoms that can
cause moderate malaria and 3 being symptoms that cause severe malaria (Appendix VIII). These
information is summarised in Table 3.6 using frequency distribution.

Table 6. Frequency distribution of Malaria severity

malaria severity Frequency Percent ordinal scale

No malaria symptoms 20 6.7 0
mild symptoms 46 15.3 1

moderate symptoms 52 17.3 2
severe symptoms 182 60.7 3

Total 300 100.0

In Table 6, results showed that 20(6.7%) of the students who visited the health facility with
malaria-like symptoms had no malaria infection despite the fact that they had displayed initially
displayed malaria-like symptoms. The absence of malaria infection may be due to symptom(s)
overlap or misdiagnosis of the disease. The results also showed that 46 (15.3%) had mild symptoms
(mild malaria infection), 52(17.3%) had moderate symptoms (moderate malaria infection) while
182(60.7%) had severe symptoms (severe malaria infection). The presence of malaria infection
among the students can highly be attributed to the influence of environmental factors on the
malaria incidence and the endemicity of the area of study which is Hyperendemic i.e the prevalence
of malaria infection is between 51% and 75%.

Let

X1=fever, X2=rigors, X3=convulsion, X4=sweating, X5=vomiting, X6=diarrhoea
X7=pallor, X8=cough, X9=prostration and y =status of an individual (ordinal scale) as a result
of transition due to observed symptoms.

Table 7 gives the descriptive statistics of the collected data.

Table 7. Descriptive statistics

Variable % Mean Std. Dev. S.E skewness kurtosis

X1 73.7 1.806667 0.901108 0.0520255 -0.0022965 1.909835
X2 50.7 1.716667 1.194912 0.0689883 -0.1478512 1.445367
X3 53 1.743333 1.250066 0.0721726 -0.2266415 1.381524
X4 57.3 0.79 0.407988 0.0235552 -0.423983 3.022728
X5 72.3 1.903333 1.047687 0.0604882 -0.5580152 2.101434
X6 44.3 1.23 1.077483 0.0622085 0.3369825 1.832919
X7 58.0 1.8 1.075728 0.0621072 -0.435974 1.92676
X8 0.7 0.34 1.214002 0.0700905 -0.0160609 1.43978
X9 80.3 1.91333 0.4951943 0.0285901 1.087602 3.991302

y 78.0 1.923333 1.217537 0.0702945 0.0009702 2.68562

From Table 7, results showed that prostration (80.3%), fever (73.7%) and vomiting (72.3%) were
the highly observed symptoms among students with cough (0.7%) being the least observed. The
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small standard error (SE) in the results shows that the sample mean is a reflection of the actual
population mean. For instance, fever (X1) had a mean of 1.8067 with a S.E of 0.0521 while cough
(X8) had a mean of 0.34 with S.E of -0.01606. The standard deviation (SD) indicates a variation
between set of scores with the mean, for instance, fever X1 with a mean of 1.8067 had SD of 0.9011
implies that 73.7% on average of fever X1 was over 0.9011 point away from the mean.

9.4 Simulation of regression parameters

To estimate the parameters of the model, we used Normal distribution as a prior for θ parameter
and the Normal-gamma distribution as the prior for σ2. The regression model in Equation (11) was
fitted to the data to obtain the parameter estimates of the model using Bayesian method where
random samples were generated based on the posterior distribution of each parameter using Gibbs
sampler via Markov Chain Monte Carlo (MCMC) method which produced an iteration of about
12500 with Burn-in of 1000 and thinning of 10 resulting to effective sample size of 10000 as shown
in Table 3.8

Table 8. Bayesian simulation results

Name value

Number of chains Per MCMC = 3
Iterations = 12500
Burn-in = 1000

Sample size = 10,000
Number of observation = 300
Average acceptance rate = 0.3394

Average efficiency:minimum = .9927
Average efficiency:maximum = .9993
Maximum Gelman-Rubin Rc = 1.176
Average marginal likelihood = -231.54658

From Table 8, the results showed that Gibbs algorithm achieved an overall acceptance rate (AR)
of 34% and an average efficiency of about 99%. The acceptance rate specifies the proportion of
proposed parameter values that was accepted by the algorithm. For the Gibbs algorithm, this
number rarely exceeds 50% and efficiencies of greater than 10% is considered good [10]. An
acceptance rate of 0.3394 in the results means that 34% out of 10000 proposal parameter values
was accepted by the algorithm with efficiencies of 99%.

The summary of Bayesian simulation results is shown in Table 9.

Table 9. Bayesian Normal Regression with MH sampling

parameter Mean Std. Dev. MCSE Median HPD[ 95% Cred.Interval]

θ1 0.1502703 .0317274 .000106 .0503697 .0110428 .1130387
θ2 0.0260683 .0339402 .000113 .0459884 .0193016 .1131818
θ3 0.1460505 .0437595 .000146 .4605534 .3747775 .5460086
θ4 -0.0096916 .069681 .000232 -.0094585 -.1461358 .1256172
θ5 0.1381898 .0331668 .000111 .0820614 .0190056 .1488435
θ6 0.1452622 .0271493 .00009 -.1134825 -.1663481 -.0601344
θ7 0.1344508 .0432297 .000144 .4525424 .3671538 .5370451
θ8 -0.1135517 .0292297 .000097 .0643512 .0052016 .1200136
θ9 0.1678915 .0584017 .000195 .0078181 -.1069035 .1222403
σ2 0.2395643 .0198361 .000066 .2384632 .2019022 .278897
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From the results in Table 9, the median column provides estimates of median of the posterior
distribution which is used to assess the symmetries of the posterior distribution. From the results,
the estimates of means and medians were very close implying that the posterior distribution is
symmetric. The results also shows credible intervals which have probabilistic interpretation, for
instance, the probability of observing fever (X1) has a credible interval that lies between 0.0110428
and 0.1130387. The lower bound of the interval is greater than 0, which implies that fever has an
effect on the transition of an individual from one disease state to the next disease state.

Therefore the Bayes estimates of the parameter θ in Equation (29) is

θ̂ =



0.1502703
0.0260683
0.1460505
−0.0096912
0.1381898
0.1452622
0.1344508
−0.1135517
0.1678915


(43)

Therefore, the regression components in Equation (??) can now be written as

γ̂∗
it = 0.1502703X1 + 0.0260683X2 + 0.1460505X3 − 0.0096912X4 + 0.1381898X5 + 0.1452622X6 +

0.1344508X7 − 0.1135517X8 + 0.1678915X9

Based on Equation(9), the value of transition parameter is now given as

ψit = 0.67It−1 + 0.83sin(0.52Rt−1Tt−1Vt−1) + 0.1502703X1 + 0.0260683X2 + 0.1460505X3

− 0.00969142X4 + 0.1381898X5 + 0.1452622X6 + 0.1344508X7 − 0.1135517X8

+ 0.1678915X9

Therefore the transition probability model (1) is now given as

a
(t)
iSI = ϕ(0.83 + 0.5027028X1 + 0.0460683X2 + 0.4605055X3 − 0.0093X4

+ 0.3818986X5 + 0.4526221X6 + 0.1344508X7 − 0.1135517X8 + 0.7778915X9)

We illustrate the above computation by using an example.

Example 3.1: Consider a student displaying the following symptoms; fever, diarrhoea, cough and
rigors. The likelihood that the student will transit from susceptible state to infective state is given
by

a
(t)
iSI = ϕ(0.83 + 0.5027028X1 + 0.0460683X2 + 0.4526221X6 − 0.1135517X8)

= ϕ(1.6717732)

= 0.9525

Therefore, from the results, the student has a higher chance (95.25%) of transiting from susceptible
state to infective state.

10 Conclusions

Bayesian method using Markov Chain Monte Carlo via Gibbs sampling algorithm was implemented
for obtaining the parameter estimates of the model. The results of the study showed a significant
association between malaria disease and observed symptoms. the estimate also indicates that a one
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unit change in observed symptom is has a significant effect on the transition of an individual from
one disease state to the other disease state.
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