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Fractional variants of distance-based parameters have application in the felds of sensor networking, robot navigation, and integer
programming problems. Complex networks are exceptional networks which exhibit signifcant topological features and have
become quintessential research area in the feld of computer science, biology, andmathematics. Owing to the possibility that many
real-world systems can be intelligently modeled and represented as complex networks to examine, administer and comprehend
the useful information from these real-world networks. In this paper, local fractional strong metric dimension of certain complex
networks is computed. Building blocks of complex networks are considered as the symmetric networks such as cyclic networks Cn,
circulant networks Cn(1, 2), mobious ladder networks M2n, and generalized prism networks Gn

m. In this regard, it is shown that
LSFMD of Cn(n≥ 3) and Gn

m(n≥ 6) is 1 when n is even and n/n − 1 when n is odd, whereas LSFMD of M2n is 1 when n is odd and
n/n − 1 when n is even. Also, LSFMD of Cn(1, 2) is n/2(⌈m + 1/2⌉) where n≥ 6 and m � ⌈n − 5/4⌉.

1. Introduction

Distance-based parameters for networks play a vital role in
pharmaceutical chemistry [1], network discovery [2], robot
navigation, and optimizations [3]. Many real-life large-scale
systems having substantial topological features can be
modeled as complex networks such as social networks,
information networks, technological networks, and bi-
ological networks. Tis representation has innovative im-
pacts to information processing and co-ordination of these
large-scale networks. Management of large-scale networks
such as Internet with their tremendous growth and het-
erogeneity is a challenging mathematical problem which
have profound implications for the efcient design of future
communication networks. Complex networks are composed
of building blocks, and if the building blocks are considered
as symmetric networks, then complexity of these networks
can be reduced for better analysis and interpretation. A few
important building blocks are cycles, circulant networks,
mobious ladder networks, and generalized prism networks,
which are discussed in this article.

Over the past few decades, circulant and mobious ladder
networks have been comprehensively explored by many re-
searchers due to their vast application and importance in
telecommunication networks [4], computer science (see
[5, 6]), chemistry [7], discrete mathematics, and very large-
scale integration (VLSI) design. Complex large-scale in-
terconnection networks used in the design of local area
networks, distributed computer systems, and telecommuni-
cation networks have been constructed based on VLSI circuit
technology. In telecommunication networks, many stations
are placed at short distances (less than 5 km) to share data at
a very high speed, and the main objective is to optimize the
exchange of data with an efcient network topology.

In a fnite network N of order n, V(N) and E(N)

represent the collection of vertices and edges of the network
N, respectively. Te collection of all the vertices of the
network N that are adjacent to the vertex v is known as the
open neighbourhood of any vertex v in N. Te distance
between the vertices v1 and v2 of N denoted by d(v1, v2) is
the length of shortest path (geodesic) between these vertices.
A pair of vertices v1 and v2 of N is said to be mutually
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maximally distant if v1 is maximally distant from v2 and v2 is
maximally distant from v1 where the vertex v1 is maximally
distant from v2 if d(v1, v2)≥ d(v, v2) for all v in the open
neighbourhood of v1. A vertex w of N is said to resolve two
vertices v1 and v2 of N if v1 and v2 are at unequal distance
from the vertex w. A set S of vertices of the network N is
a resolving set for N if every two distinct vertices of N are
resolved by some vertex of S. Metric basis is the resolving set
having minimum cardinality, and this cardinality is said to
be the metric dimension (MD) of N, denoted by dim(N). In
1975, the notion of MDwas initiated by Slater [8], motivated
by the problem of uniquely determining the location of an
intruder in a network and later studied independently by
Harary and Melter in [9]. MD has been heavily studied, and
the advancements in this feld can be seen in [10]. Some
bounds for MD in terms of diameter of network are given in
[1]. Chartrand et al. [1] formulated MD as integer pro-
gramming problem. Te problem of fnding MD of a graph
is NP-hard (see [11]). Te MD of trees and Cayley diagraphs
are studied in [1, 12], respectively. A pair of vertices v1 and v2
in N is said to be strongly resolved by a vertex v, if there exist
either a shortest path from v1 to v containing v2 or a shortest
path from v2 to v containing v1. Strong resolving set S of N is
a collection of vertices such that each distinct pair of vertices
in N is strongly resolved by some vertex in S. Strong metric
basis of N is the strong resolving set having smallest car-
dinality, and this cardinality is labelled as strong metric
dimension (SMD) of N, denoted by sdim(N). In 2004, SMD
of a network was discovered by Sebő and Tannier [13] and
later in 2007, and computation of SMD was declared as NP-
hard problem by Oellermann and Peters-Fransen [14]. Te
resolving neighbourhood (RN) denoted by R v1, v2􏼈 􏼉 for
a pair of vertices v1 and v2 in N is composed of all vertices at
varying distances from v1 and v2. If η: V(N)⟶ [0, 1] is
a real valued function that assigns a number between 0 and 1
to each vertex of N and U⊆V(N), then the function η
applied on the set U is given by η(U) � 􏽐v∈Uη(v). If the
weight of R v1, v2􏼈 􏼉 is greater than or equal to 1 for any two
vertices v1 ≠ v2 in N, then the function η is called resolving
function of N. Te fractional metric dimension (FMD) of N

expressed as dimf(N) is given by the least possible weight of
a resolving function of N. In 2001, Currie and Oellermann
[10] initiated the concept of FMD by formulating the linear
programming problem using the integer programming
problem that was presented for MD given in [1]. Tis re-
laxation technique transforms an NP-hard integer pro-
gramming into a related problem that is solvable in
polynomial time. In 2012, Arumugam and Mathew [15]
defned FMD using the concept of resolving neighbour-
hoods. In [16], FMD of Generalized Jahangir graph was
calculated. In [17], FMD of tree and unicyclic graphs was
computed. FMD of hierarchical product, corona product,
and lexicographic product graphs were calculated in [18, 19].
Te problem of computing the FMD for all the connected
networks is an NP-hard problem. Strong resolving neigh-
bourhood (SRN) denoted by S v1, v2􏼈 􏼉 for the pair of vertices
v1 and v2 in N is the set of all vertices w ∈ V(N) such that
either v1 lies on w − v2 geodesic or v2 lies on w − v1 geodesic.
If the weight η(S v1, v2􏼈 􏼉) is greater than or equal to 1, then

the real-valued function that assigns a number between
0 and 1 to each vertex of N given by η: V(N)⟶ [0, 1] is
known as a strong resolving function of N for each distinct
pair of vertices in V(N). Te fractional strong metric di-
mension (FSMD) of N expressed as sdimf(N) is given by the
least possible weight of a strong resolving function of N. In
2013, Kang and Yi [20] gave the notion of FSMD, studied it
for various signifcant fnite connected graph classes and
mentioned that FSMD problem can be interpreted as linear
programming problem with the same strategy as in [12]. In
2010, Okamoto et al. [21] gave the concept of local metric
dimension (LMD) by considering the adjacent vertices of
graph only. A set of vertices W in a connected network N is
a local metric set of N if every two adjacent vertices of N are
distinguished by some vertex of W. Local metric basis is the
local metric set having smallest cardinality, and this car-
dinality is said to be the LMD of N, denoted by ldim(N). In
[22, 23], LMD of corona product graphs and circulant
graphs has been discussed, respectively. LMD of some
families of graphs was given in [24, 25]. Te local resolving
neighbourhood (LRN) denoted by L v1, v2􏼈 􏼉 for a pair of
adjacent vertices v1 and v2 in N is composed of all vertices
which are resolved by L v1, v2􏼈 􏼉. Te concept of local re-
solving neighbourhood and local resolving function arises
similar to resolving neighbourhood and resolving function
in case of dealing with only the pair of adjacent vertices. In
[26], authors set forth a localized variant of FMD known as
local fractional metric dimension (LFMD) and studied it for
strong and cartesian products of graphs. LFMD of the
network N denoted by ldimf(N) is the least possible weight
of local resolving function of N. LFMD of rotationally
symmetric planar graphs arisen from planar chorded cycles
was computed in [27]. In [28, 29], LFMD of rotationally
symmetric and planer networks and corona products graphs
were computed, respectively. Local strong resolving
neighbourhood (LSRN) LS v1, v2􏼈 􏼉 for the pair of adjacent
vertices v1 and v2 in N is the set of all vertices w ∈ V(N)

such that either v1 lies on w − v2 geodesic or v2 lies on w − v1
geodesic. If for each adjacent pair of vertices in V(N), the
weight α(LS u1, u2􏼈 􏼉) is greater or equal to 1, then the
mapping α: V(N)⟶ [0, 1] is called a local strong re-
solving function of N, where α(LS(x, y)) � 􏽐x∈LS(x,y)α(x).
Te local fractional strongmetric dimension (LFSMD) of the
network N denoted by lsdimf(N) is defned as the least
possible weight of a local strong resolving function of N. In
[30], the notion of LFSMD was introduced, and the authors
devised a combinatorial technique to compute LFSMD of
a general network and was further applied to compute
LFSMD for rotationally symmetric and planer networks. In
[30], the notion of LFSMD was initiated. Te combinatorial
criteria to calculate LFSMD of a general network was devised
and further applied to compute LFSMD for rotationally
symmetric and planer networks. Tis criteria is given in
Lemma 1. Tis motivated us to compute LFSMD of certain
complex networks with symmetric networks as their
building blocks. Te symmetric networks considered in this
article are cyclic networks Cn, circulant networks Cn(1, 2),
mobious ladder networks M2n, and generalized prism
networks Gn

m. Te collection of LSRNs of a network N with

2 Complexity



least cardinality and its compliment is represented by the
notations L(N) and L(N), respectively. Here, L(N) �

LS(N) | LS(N) is th{

e LSRNwith the condition |LS(N)| � c(N)}, where c(N) is
the cardinality of smallest SRNs of N. Moreover,
L(N) � 􏽥L | 􏽥L is the LSRNof N not inL(N)􏼈 􏼉.

Lemma 1 (see [30]). Let μ(N) � L(N)∪L(N) be a set
consisting of all LSRNs of network N in such a manner that
for every adjacent pair of vertices x and y in the vertex set of
N, if the condition |S x, y􏼈 􏼉∩ [∪LS(N)]| ≥ c(N) holds. Ten,
lsdimf(N) � 􏽐

β(N)
s�1 (1/c(N)),where β(N) � |[∪LS(N)]|.

1.1. Main Results. Te research conducted in this article
leads to the following results:

Theorem 1

(1) For n≥ 3, lsdimf(Cn) �

1 if  n ≡ 0(mod 2);
n/n − 1 if  n ≡ 1(mod 2)

􏼨

(2) For n≥ 6,

(a) lsdimf(Cn(1, 2)) � n/2(⌈m + 1/2⌉)

(b) lsdimf(M2n) �
1 if  n ≡ 1(mod 2);
n/n − 1 if  n ≡ 0(mod 2)

􏼨

(c) lsdimf(Gn
m) �

1 if  n ≡ 0(mod 2);
n/n − 1 if  n ≡ 1(mod 2).

􏼨

Te remaining part of the article is structured in the
following manner. Sections 2 and 3 are devoted for LSRNs
and LFSMD of certain complex networks with symmetric
building blocks.

2. Local Strong Resolving Neighbourhoods of
Certain Complex Networks

In this section, we compute LSRNs of certain complex
networks. Tese complex networks are composed of
building blocks to unravel the dynamics of these networks,
and symmetric building blocks play a vital role. Te sym-
metric networks considered in this section are cyclic net-
works Cn, circulant networks Cn(1, 2), mobious ladder
networks M2n, and generalized prism networks Gn

m.

2.1. Cyclic Networks. One of the most important building
blocks of complex networks is cyclic network.Te vertex and
edge set of a cyclic network Cn are given by
V(Cn) � ai | 1≤ i≤ n􏼈 􏼉 and E(Cn) � aiai+1 | 1≤ i≤ n􏼈 􏼉, re-
spectively, with indices taken mod n. Te network Cn is
shown in Figure 1. In this section, LSRNs of cyclic network
Cn are considered.

Lemma 2. Let ai ∈ V(Cn), where n≥ 3 and 1≤ r≤ n. Ten,

(1) |S ar, ar+1􏼈 􏼉| �
n if  n ≡ 0(mod 2);
n − 1 if  n ≡ 1(mod 2)

􏼨

(2) S x, y􏼈 􏼉 ∈L(Cn) if and only if x � ar, y � ar+1

(3) |∪ [L(Cn)]| � n where ∪ [L(Cn)] � ∪ LS(Cn)∈L(Cn)

LS(Cn)

(4) |S x, y􏼈 􏼉∩ [∪L(Cn)]|≥ c(Cn) for each distinct
x, y ∈ V(Cn).

Proof. In order to prove this lemma, we proceed as follows:

(1) For n ≡ 0(mod 2), S ar, ar+1􏼈 􏼉 � V(Cn) where as for
n ≡ 1(mod 2), S ar, ar+1􏼈 􏼉 � V(Cn) − ar+⌈n/2⌉􏽮 􏽯.
Hence, |S ar, ar+1􏼈 􏼉| � n or n − 1, respectively.

(2) It is clear that S ar, ar+1􏼈 􏼉 are the only LSRNs of Cn

and hence, we conclude S x, y􏼈 􏼉 ∈L(Cn) if and only
if x � ar, y � ar+1.

(3) From the proof of (1) and (2), we have |∪ [L(Cn)]| �

n where ∪ [L(Cn)] � ∪ LS(Cn)∈L(Cn) LS(Cn).

(4) Indeed, the only pair of adjacent vertices in Cn are
ar, ar+1 so we have |S x, y􏼈 􏼉∩ [∪L(Cn)]|≥ c(Cn) for
each distinct x, y ∈ V(Cn). □

2.2. Circulant Networks. Te circulant network
Cn(s1, s2, s3, . . . , sk) is formed by arranging the n vertices
labelled ai with the indices taken mod n cyclically and
connecting each vertex ai with k immediately following and
k preceeding vertices, where k≤ ⌊n/2⌋. If � ⌊n/2⌋, then the
circulant network represented by a complete graph. Cn(1, 2)

is a circulant network with vertex set
V(Cn(1, 2)) � ai; 1≤ i≤ n􏼈 􏼉 and edge set
E(Cn(1, 2)) � aiai+1, aiai+2, aiai−1, aiai−2; 1≤ i≤ n􏼈 􏼉. Te
network Cn(1, 2) is shown in Figure 2.

Lemma  . Let ai ∈ V(Cn(1, 2)), where n≥ 6 and 1≤ r≤ n.
Ten,

(1) |S ar, ar+1􏼈 􏼉| � |S ar, ar−1􏼈 􏼉| � 2(⌈m + 1/2⌉), where
m � ⌈n − 5/4⌉

(2) S x, y􏼈 􏼉 ∈L(Cn(1, 2)) if and only if either x � ar, y �

ar−1 or x � ar, y � ar+1

(3) |∪L(Cn(1, 2))| � n where ∪L(Cn(1, 2)) �

∪ LS(Cn(1,2))∈L(Cn(1,2))LS(Cn(1, 2))

(4) |S x, y􏼈 􏼉∩ [∪L(Cn(1, 2))]|≥ c(Cn(1, 2)) for each
distinct x, y ∈ V(Cn(1, 2))

an

a1

a2a3

a4

a5

Figure 1: Cyclic network Cn.
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Proof. Te proof of this lemma is as follows:

(1) We consider the LSRNs of the vertex pair arar+1
which are S ar, ar+1􏼈 􏼉 � ar, ar+1, . . . , ar+k, ar,􏼈

ar−2, . . . , ar−m} where m � 2⌈n − 5/4⌉ and
k � 2⌈n − 5/4⌉ + 1. Hence, due to symmetry of
Cn(1, 2), |S ar, ar−1􏼈 􏼉| � |S ar, ar+1􏼈 􏼉| � 2(⌈m + 1/2⌉).

(2) To prove this claim, we consider the LSRNs for
arar+2 and arar−2. Here, following cases arise:

Case 1 (n ≡ 0(mod 2))

It is easy to see that the LSRNs in this case are given
by S ar, ar+2􏼈 􏼉 � ar+1, ar+n/2+1􏼈 􏼉

c. Hence, due to
symmetry, |S ar, ar+2􏼈 􏼉| � |S ar, ar−2􏼈 􏼉| � n − 2.
Case 2 (n ≡ 1(mod 2))

Tis case is further subdivided into following cases:

Case 2.1 (when n � 7 + 4k where k ∈ Z)
Here, we have S ar, ar+2􏼈 􏼉 � ar+1􏼈 􏼉

c. Hence, due to
symmetry, |S ar, ar+2􏼈 􏼉| � |S ar, ar−2􏼈 􏼉| � n − 1
Case 2.2 (when n � 9 + 4k where k ∈ Z)
Te LSRNs in this case are given by S ar,􏼈

ar+2} � ar+⌈n/2⌉, ar+⌈n/2⌉+1, ar+1􏽮 􏽯
c
. Hence, due to

symmetry, |S ar, ar+2􏼈 􏼉| � |S ar, ar−2􏼈 􏼉| � n − 3.
Hence from above, we conclude S x, y􏼈 􏼉 ∈L(Cn

(1, 2)) if and only if either x � ar, y � ar−1 or
x � ar, y � ar+1. Also, |LS(Cn(1, 2))|≤ |S ar,􏼈

ar+2}| and |LS(Cn(1, 2))|≤ |S ar, ar−2􏼈 􏼉|.

(3) From the proof of (1) and (2), we have |(∪ n
r�1

S ar, ar−1􏼈 􏼉)∪ (∪ n
r�1Sar, ar+1)| � | ai | 1≤ i≤ n |􏼈 􏼉 � n.

Hence, |∪L(Cn(1, 2))| � n where ∪L(Cn(1, 2)) �

∪ LS(Cn(1,2))∈L(Cn(1,2))LS(Cn(1, 2)).
(4) It can be concluded from the proof of (1) and (2) that

|S x, y􏼈 􏼉∩ [∪L(Cn(1, 2))]|≥ c(Cn(1, 2)) for each
distinct x, y ∈ V(Cn(1, 2)). □

2.3. Mobious Ladder Network. Te network obtained by
introducing a twist in a prism network of order n is known as
the mobious ladder network denoted by M2n. It is formed by
arranging its 2n vertices labelled ai and bi with the
indices taken mod n cyclically and connecting each vertex ai

with bi similar to a prism with two edges crossed. Te-
collection of vertices and edges of mobious ladder M2n is
represented by V(M2n) � ai, bi; 1≤ i≤ n􏼈 􏼉 and E(M2n) � ai􏼈

ai+1, bibi+1, ajbj, a1bn, anb1; 1≤ i≤ n −1, 1≤ j≤ n}, re-
spectively. Te network M2n is shown in Figure 3.

Lemma 4. Let ai, bi ∈ V(M2n), where n≥ 6, 1≤ r≤ n − 1 and
1≤ q≤ n. Ten,

(1) |S ar, br+1􏼈 􏼉| � |S aq, bq􏽮 􏽯| � |S an, b1􏼈 􏼉| � |S a1, bn􏼈 􏼉| �

|S br, br+1􏼈 􏼉| �
2(n − 1) if  n ≡ 0(mod 2);
2n if  n ≡ 1(mod 2)

􏼨

(2) S x, y􏼈 􏼉 ∈L(M2n) if and only if S x, y􏼈 􏼉 ∈
S ar, br+1􏼈 􏼉, S aq, bq􏽮 􏽯, S􏽮 br, br+1􏼈 􏼉, S an, b1􏼈 􏼉, S a1, bn􏼈 􏼉}

(3) |∪ [L(M2n)]| � 2n where ∪ [L(M2n)] �

∪ LS(M2n)∈L(M2n)LS(M2n)

(4) |S x, y􏼈 􏼉∩ [∪L(M2n)]|≥ c(M2n) for each distinct
x, y ∈ V(M2n).

Proof. To prove this lemma, we proceed as follows:

(1) In order to prove this claim, we consider the fol-
lowing cases:

Case 1 In this specifc case, when n ≡ 0(mod 2), the
LSRNs of the vertex pairs arar+1 and brbr+1 are
given by S ar, ar+1􏼈 􏼉 � ar+n/2+1, br+n/2􏼈 􏼉

c and S br,􏼈

br+1} � ar+n/2, br+n/2+1􏼈 􏼉
c. For the vertex pair aqbq,

the LSRN is given by S aq, bq􏽮 􏽯 � aq+n/2, bq+n/2􏽮 􏽯
c

where 1≤ r≤ n − 1 and 1≤ q≤ n. Also, S a1, bn􏼈 􏼉 �

an/2+1, bn/2􏼈 􏼉
c and S an, b1􏼈 􏼉 � an/2, bn/2+1􏼈 􏼉

c. Hence,
we have |S ar, br+1􏼈 􏼉| � |S aq, bq􏽮 􏽯| � |S an, b1􏼈 􏼉|

� |S a1, bn􏼈 􏼉| � |S br, br+1􏼈 􏼉| � 2(n − 1).
Case 2 It can be seen when n ≡ 1(mod 2), all the
LSRNs of M2n are given by S x, y􏼈 􏼉 � V(M2n)

where xy ∈ E(M2n). Hence, we have |S aq, bq􏽮 􏽯| �

|S ar, ar+1􏼈 􏼉|� |S br, br+1􏼈 􏼉|� |S a1, bn􏼈 􏼉|� |S an, b1􏼈 􏼉| �

|V(M2n)|.

(2) Te only LSRNs of M2n are S ar, br+1􏼈 􏼉, S aq,􏽮 bq}, S

br, br+1􏼈 􏼉, S an, b1􏼈 􏼉, S a1, bn􏼈 􏼉, and hence, we conclude
S x, y􏼈 􏼉 ∈L(Cn) if and only if S x, y􏼈 􏼉 ∈ S ar,􏼈􏼈

br+1}, S aq, bq􏽮 􏽯, S br, br+1􏼈 􏼉, S an, b1􏼈 􏼉, S a1, bn􏼈 􏼉}.
(3) From the proof of (1) and (2), we have |∪ [L

(M2n)]| � 2n where ∪ [L(M2n)] � ∪ LS(M2n)∈L(M2n)

LS(M2n).
(4) As the only LSRNs of the pairs of adjacent vertices in

M2n are S ar, br+1􏼈 􏼉, S aq, bq􏽮 􏽯, S br, br+1􏼈 􏼉, S􏽮 an, b1􏼈 􏼉, S

a1, bn􏼈 􏼉}. Hence, we have |S x, y􏼈 􏼉∩ [∪L (M2n)]|

≥ c(M2n) for each distinct x, y ∈ V(M2n). □

a1

a2

a3

a4

a5a6

a7

a8

a9

a10

a11
a12

Figure 2: Te circulant network C12(1, 2).
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2.4. Generalized Prism Network Pm × Cn. Generalized prism
network Gn

m is formed by the box product of networks Pm

and Cn. Te vertex set of Gn
m is given by V(Gn

m) � aij: 1􏽮

≤ i≤m, 1≤ j≤ n}, and edge set is represented as E(Gn
m) �

aikai(k+1); 1≤ i≤m, 1≤ k≤ n􏽮 􏽯∪􏽮 asta(s+1)t; 1≤ s≤m − 1, 1􏽮

≤ t≤ n}}, respectively, where for the vertices, the frst indices
are taken modm, and the second indices are taken mod n.
Gn

m is shown in the Figure 4. LSRNs of generalized prism
network Gn

m will be calculated in this section.

Lemma 5. Let aij ∈ V(Gn
m), where n≥ 6, 1≤ i≤m and

1≤ j≤ n. Ten,

(1) |S aij, a(i+1)j􏽮 􏽯| � mn and |S aij, ai(j+1)􏽮 􏽯| �

mn if  n ≡ 0(mod 2);
m(n − 1) if  n ≡ 1(mod 2)

􏼨

(2) S x, y􏼈 􏼉 ∈L(Gn
m) if and only if x � aij, y � ai(j+1)

when n ≡ 1(mod 2) and S x, y􏼈 􏼉 ∈L(Gn
m) if and only

if x � aij, y � ai(j+1) or x � aij, y � a(i+1)j when
n ≡ 0(mod 2)

(3) |∪ [L(Gn
m)]| � mn where ∪ [L(Gn

m)] �

∪ LS(Gn
m)∈L(Gn

m)LS(Gn
m)

(4) |S x, y􏼈 􏼉∩ [∪L(Gn
m)]|≥ c(Gn

m) for each distinct
x, y ∈ V(Gn

m).

Proof. To prove this lemma, we proceed in the following
way:

(1) It can be seen in this case when n ≡ 0(mod 2) that all
the LSRNs of Gn

m are given by S x, y􏼈 􏼉 � V(Gn
m)

where xy ∈ E(Gn
m). On the account of n being an

odd number for generalized prism network Gn
m, the

cardinality of LSRNs of the vertex pairs aijai(j+1)

is given by |S aij, ai(j+1)􏽮 􏽯| � | ai(j+⌈n/2⌉+1)􏽮

|1≤ i≤m, 1≤ j≤ n}c| � m(n − 1). Te cardinality
of the LSRNs of aija(i+1)j is given by
|S aij, a(i+1)j􏽮 􏽯| � |V(Gn

m)| � mn.
(2) From the proof of (1), we have S x, y􏼈 􏼉 ∈L(Gn

m) if
and only if x � aij, y � ai(j+1) when n ≡ 1(mod 2)

and S x, y􏼈 􏼉 ∈L(Gn
m) if and only if x � aij,

y � ai(j+1) or x � aij, y � a(i+1)j when n ≡ 0(mod 2).
(3) From (1) and (2), we note that |∪ [L(Gn

m)]| � mn

where ∪ [L(Gn
m)] � ∪ LS(Gn

m)∈L(Gn
m)LS(Gn

m).

(4) From above, we conclude that

S x, y􏼈 􏼉∩ ∪L G
n
m( 􏼁􏼂 􏼃

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ c G

n
m( 􏼁, (1)

for each distinct x, y ∈ V(Gn
m). □

 . Local Fractional Strong Metric Dimension of
Certain Complex Networks

In this section, LFSMD of certain complex networks is
computed.

Theorem 2. For n≥ 3,

lsdimf Cn( 􏼁 �

1, if  n ≡ 0(mod 2);

n

n − 1
, if  n ≡ 1(mod 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

Proof. To prove the above claim, we consider the following
cases:

Case 1 (n ≡ 0(mod 2))

We take note of Lemma 2, c(Cn) � |V(Cn)| � n and
β(Cn) � |∪L(Cn)| � |V(Cn)| � n. Hence, from
Lemma 1, we conclude

lsdimf Cn( 􏼁 � 􏽘

β Cn( )

s�1

1
c Cn( 􏼁

� 1. (3)

Case 2 (n ≡ 1(mod 2))

Here, from Lemma 2, c(Cn) � (n − 1) and β(Cn) �

|∪L(Cn)| � n. By using the Lemma 1, we have

am3

am4

a33

a34

a23

a24
a14

a13
a12 a11

a1n a2n a3n

a22 a21

a32 a31

am2

a(m−1)2

a(m−1)3

a(m−1)4

a(m−1)1

a(m−1)n

am1

amn

Figure 4: Generalized prism network Gm,n.
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b4

b5

b6
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a3

a4

a5

a6

a7

a8

Figure 3: Mobious ladder network M16.

Complexity 5



lsdimf Cn( 􏼁 � 􏽘

β Cn( )

s�1

1
c Cn( 􏼁

�
n

n − 1
. (4)

□

Theorem  . For n≥ 6, lsdimf(Cn(1, 2)) � n/2(⌈m + 1/2⌉).

Proof. On account of Lemma 3, c(Cn(1, 2)) � |S ar, ar+1􏼈 􏼉| �

|S ar, ar−1􏼈 􏼉| � 2(⌈m + 1/2⌉) where 1≤ r≤ n and m �

⌈n − 5/4⌉. Moreover, β(Cn(1, 2)) � |∪L(Cn(1, 2))| � n.
Terefore, from Lemma 1, we have

lsdimf Cn(1, 2)( 􏼁 � 􏽘

β Cn(1,2)( )

s�1

1
c Cn(1, 2)( 􏼁

�
n

2(⌈m + 1/2⌉)
.

(5)
□

Theorem 4. For n≥ 6,

lsdimf M2n( 􏼁 �

1, if  n ≡ 1(mod 2);

n

n − 1
, if  n ≡ 0(mod 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Proof. Te proof of this theorem is subdivided into the
following two cases:

Case 1 (n ≡ 1(mod 2))

Taking Lemma 4 into consideration, we have c(M2n) �

|V(M2n)| � 2n and β(M2n) � |∪L(M2n)| � |V(M2n)|

� 2n. Hence, from Lemma 1, the following can be
concluded:

lsdimf M2n( 􏼁 � 􏽘

β M2n( )

s�1

1
c M2n( 􏼁

� 1. (7)

Case 2 (n ≡ 0(mod 2))

In this case by considering Lemma 4,
c(M2n) � 2(n − 1) and β(M2n) � |∪L(M2n)| � 2n.
Hence, from Lemma 1 we have

lsdimf M2n( 􏼁 � 􏽘

β M2n( )

s�1

1
c M2n( 􏼁

�
n

n − 1
. (8)

□

Theorem 5. For n≥ 6,

lsdimf G
n
m( 􏼁 �

1, if  n ≡ 0(mod 2);

n

n − 1
, if  n ≡ 1(mod 2).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Proof. Te proof can be segregated into the following two
cases:

Case 1 (n ≡ 1(mod 2))

In view of Lemma 5, c(Gn
m) � m(n − 1) and

β(Gn
m) � |∪L(Gn

m)| � |V(Gn
m)| � mn. By using

Lemma 1, we have

lsdimf G
n
m( 􏼁 � 􏽘

β Gn
m( )

t�1

1
c G

n
m( 􏼁

�
n

n − 1
. (10)

Case 2 (n ≡ 0(mod 2))

In this case using Lemma 5, c(Gn
m) � mn and

β(Gn
m) � |∪L(Gn

m)| � mn. Hence, from Lemma 1, we
conclude that

lsdimf G
n
m( 􏼁 � 􏽘

β Gn
m( )

s�1

1
c G

n
m( 􏼁

� 1. (11)

□

4. Application

In this section, an application of LFSMD is considered in the
information processing and co-ordination of large-scale in-
terconnection networks. Complex large-scale interconnection
networks used in the design of local area networks, distributed
computer systems, and telecommunication networks have
been constructed based on VLSI circuit technology. In tele-
communication networks, many stations are placed at short
distances to share data at a very high speed, and the main
objective is to optimize the exchange of data with an efcient
network topology. For an illustrative case, consider a tele-
communication network consisting of diferent stations
placed at nodes of a network C6(1, 2) as shown in Figure 5. In
order to maintain connectivity, certain stations are required
to maintain their working capacity at an optimal level. Tese
stations are required to be at a uniform distance from all
stations in order to achieve optimal connectivity.Te nodes of
the network C6(1, 2) are x1, x2, x3, x4, x5, x6. Te LSRNs of
C6(1, 2) are given as follows: S x1, x2􏼈 􏼉 � S x2, x4􏼈 􏼉 � S

x4, x5􏼈 􏼉 � S x1,􏼈 x5} � x1, x2, x4, x5􏼈 􏼉, S x1, x3􏼈 􏼉 � S x3, x4􏼈 􏼉 �

S x4, x6􏼈 􏼉 � S x1, x6􏼈 􏼉 � x1, x3, x4, x6􏼈 􏼉, S x2, x3􏼈 􏼉 � S x3, x5􏼈 􏼉

� S x5, x6􏼈 􏼉 � S x2, x6􏼈 􏼉 � x2, x3, x5, x6􏼈 􏼉. For any given net-
work, LSRN is the collection of nodes that are at unequal
distances from a pair of adjacent nodes, and therefore, by
assigning minimum weights to the nodes from LSRNs of the
network, there will be minimum reliance on these nodes, and
an optimal exchange of data is achieved in certain complex
large-scale networks. In a network, stations are placed in such
a way that the distance of every node of the network to the
station is minimumwhich aids in the sharing of data at a very
high speed. Taking Lemma 1 into consideration, if weight of
1/4 is assigned to all the nodes in the union of all LSRNs with
minimum cardinality and zero to the remaining vertices of
C6(1, 2), then optimal exchange of data is achieved.
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5. Conclusion

In this paper, LFSMD of complex networks is computed
with the building blocks of complex networks considered as
the symmetric networks such as cyclic networks Cn, cir-
culant networks Cn(1, 2), mobious ladder networks M2n,
and generalized prism networks Gn

m.

Problem 1. Compute the LFSMD of some general classes of
convex polytopes.
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