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Abstract

Let N be a zero-symmetric local near-ring. An element x ∈ N is either regular, zero or a zero divisor. In this
paper, we construct a class of zero symmetric local near-ring of characteristic pk; k ≥ 3 admitting an identity
frobenius derivation, characterize the structures and orders of the set R(N ), the regular compartment with
an aim of advancing the classification problem of algebraic structures. The number theoretic notions relating
the number of regular elements to Euler’s phi-function and the arithmetic functions of Galois near-rings are
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adopted. Using the Fundamental Theorem of finitely generated Abelian groups, the structures of R(N ) are
proved to be isomorphic to cyclic groups of various orders. The study also extends to the automorphism
groups Aut(R(N )) of the regular elements.

Keywords: Regular elements; Von-Neumann inverses; zero symmetric local near-rings.

Subject Classification: 16N60, 16W25, 16Y30.

1 Introduction

The study of near-rings with identity is very vital in generalizing characterization of commutative rings with
identity. The original works on near-rings and their applications are attributed to Pilz[1] who have very
good foundations upon which these algebraic structures could be advanced. Much of the recent works on
the classification of finite rings with identity have however considered a characterization paradigm using the unit
groups, the zero divisor graphs, adjacency and incidence matrices among others. This has left the non-linear
aspects fairly untouched. In particular, regular elements and Von-Neumann inverses of near rings admitting
derivations hardly exist in the available literature.

Oduor, Ojiema and Mmasi[2] determined construction of idealized local rings of characteristic pn : n = 1, 2, 3
and determined the structures of the unit groups R∗. Osba, Henriksen and Osama [3] conducted a classification
survey on combining local and Von Neumann Regular Rings as a basis upon which the regularity properties of
rings and their ideals could be explored. The rings studied in [3] were finite and their Von Neumann inverses
gave some asymptotic patterns. Their findings demonstrated how to combine the Von- Neumann inverses of
classes of rings such as the power series rings and the ring of integers. They however did not count the number
of regular elements in a given finite ring nor did they give the structural formulae for the regular elements and
the Von Neumann inverses of the specified classes of rings. In a closely related research, the study on regular
elements of Galois rings can be attributed to Osama and Emad [4] where they characterized the regular elements
in the ring of integers modulo n, Zn. Furthermore, they studied the arithmetic functions denoted as V (n) and
determined the relationship between V (n) and the Euler’s phi function, ϕ(n). This gave an extension of the
ring theoretic algebra employed in counting the regular elements of Zn to the number theoretic methodologies.
For instance, the research revealed that if a is a regular element in Zn, then a(−1) ≡ aϕ(n)−1 (mod n). They
proposed a criterion for getting the possible Von Neumann inverses in the set of regular elements of Zn and
explored the asymptotic properties of V (n). Their findings did not consider extensions and idealization using
maximal submodules of Zn∀n ∈ Z.

Closely related works can also be seen in Osba et al [5] and Oduor, Omamo and Musoga[6]. Furthermore,
Abujabal et al[7] considered the structure and commutativity of general near-rings. The ideas postulated in [7]
were later improved by Asma and Inzamam[8] who gave a number of conditions that determine the commutators
and anticommutators of zero symmetric near-rings with Jordan ideals and derivations. Akin[9] studied IFP ideals
in near-rings while Ali, Bell and Miyan[10] considered generalized derivations in rings. In order to advance the
problem of classification of algebraic structures, the paper discovers new classes of near-rings and classifies them
via their regular elements.

2 Zero-Symmetric Local Near-Ring of Characteristic pk : k ≥ 3

Let Ro = GN (pkr, pk). Let i = 1, ..., h and ui ∈ ZL(N ) and M =< ui >.
Then,

N = Ro ⊕M = Ro ⊕
h∑

i=1

(Ro/pRo)
i

33



Abuga et al.; Asian Res. J. Math., vol. 19, no. 1, pp. 32-44, 2023; Article no.ARJOM.94127

is a group with respect to addition.

On N , let
(ro, r1, ..., rh)(so, s1, ..., sh) = (roso, ros1 + r1so, ..., rosh + rhso)

δ

where δ is the identity Frobenius automorphism. The multiplication turns N into a local zero symmetric near-
ring with identity (1, 0, ..., 0).

Indeed N = Ro ⊕M is commutative since δ is the identity Frobenius automorphism.

Proposition 2.1. Consider N = GN (pkr, pk) where k ≥ 3. Then, charN = pk and:

(i). ZL(N ) = pRo ⊕
∑h

i=1(Ro/pRo)
i

(ii). (ZL(N ))k−1 = pk−1Ro 6= (0)

(iii). (ZL(N ))k = (0).

Proof. Char GN (pkr, pk) = charN and idN = idGN (pkr,pk)

Let a ∈ Ro and a not contained in pR0 and let s ∈ ZL(N ).
Then

(a+ s)pr = apr + s′ : (s′ ∈ ZL(N ))

= (a+ s′′)p
r−1 : (s′′ ∈ ZL(N ))

But (a+ s′′)p
r−1 ≡ 1 + s′′′ with s′′′ ∈ ZL(N ) and (1 + s′′′)p

k−1 = 1. Hence (a+ s) is regular and not zero.
Since | ZL(N ) |= p(h+k−1)r and
| (Ro/pRo)

∗ + ZL(N ) |= (pr − 1)(p(h+k−1)r), it follows that
(Ro/pRo)

∗ + ZL(N ) = N − ZL(N ) and hence all the elements outside ZL(N ) \ {0} are regular. �

Remark 2.1. A regular element x ∈ R(N ) may have more than one Von-Neumann inverse. However, for the
classes of near-rings considered in this study, the Von-Neumann inverses are unique.

Proposition 2.2. Let N be a class of near-ring of the construction. For x ∈ N and x0 ∈ I(x), where I(x) is
the inner inverse set, then:

I(x) = {x0 + α− x0xαxx0 | α ∈ N}

Proof. From the construction, if x ∈ N , then

x = (r0 + (
h∑

i=1

r0 + pr
′

)r
′

∈ GN (pkr, pk)/pGN (pkr, pk)).

So the definition of the multiplication in N gives the desired result. �

Denote by l(x) and r(x) the left and the right annihilator of an element x ∈ N . So the inner annihilator of
x ∈ N is: Iann(x) = {y ∈ N : xyx = 0}.

Theorem 2.1. Let N be the near ring of the construction. If a ∈ R(N ), then for any b ∈ N , bI(a)b is a
singleton set if and only if b ∈ Na ∩ aN .

Proof. Suppose there exists x, y ∈ N such that b = xa = ay and let ao ∈ I(a). We then have that for any t ∈ N ,

b(ao + t− aoataao)b = (xaao + xat− xataao)ay

= xay + xatay − xatay

= xay
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Thus the set bI(a)b = {xay} is singleton.

Conversely, suppose that bI(a)b = {baob}.

We then have: b(ao + t − aoataao)b = baob for any t ∈ N . This implies that for any t ∈ N , we have:
b(t− aoataao)b = 0..............(i). Substituting (1− aoa)t for t in this equality yields b(1− aoataao)tb = 0 for any
t ∈ N . But N constructed is semiprime so that b(1− aoa) = 0 ⇒ b = baoa ∈ Na .....(ii)
Similarly, substituting t by t(1− aao) in the equality (i)
gives b = aaob ∈ aN .........(iii)
Comparing (ii) and (iii), we conclude that b ∈ Na ∩ aN �

Lemma 2.1. Let N be the near ring constructed and let b, d ∈ N such that b + d is a Von Neumann regular
element. Then the following are equivalent:

(i) bN ⊕ dN = (b+ d)N

(ii) N b⊕Nd = N (b+ d)

(iii) bN b ∩ dN = {0} and N b ∩Nd = {0}.

The next result shows when I(a) ⊆ I(b) necessarily and sufficiently where a, b ∈ N

Proposition 2.3. Let a, b ∈ R(N ). Then I(a) ⊆ I(b) if and only if bN ∩ dN = {0} and N b ∩Nd = {0} where
a = d+ b

Proof. Let I(a) ⊆ I(b). Then by definition, there exists some x ∈ I(a) such that bxb = b.

Now b ∈ Na ∩ aN .

Write b = αa = aβ where α, β ∈ N .

Then bI(a)a = b.

Next

bI(a)d = bI(a)a− bI(a)b

= b− bI(a)b = 0

Consider now

dI(a)b = aI(a)b− bI(a)b

= αβ − bI(a)b

= b− b = 0

We thus have bI(a)d = 0 and dI(a)b = 0..........................................(i)

Then for any x ∈ I(a) we have;

b+ d = a = axa

= (b+ d)x(b+ d)

= bxa+ dxb+ dxd

= b+ 0 + dxd
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This yields dI(a)d = d.........................................................................(ii)

To show that dN ∩ bN = {0}.

Let bx = dy ∈ bN ∩ dN .

Multiplying both sides of (ii) by y on the right and using bx = dy yields, dI(a)bx = dy

But from above we have that dI(a)b = 0 and so dy = 0 which clears the proof.

Similarly, we show that N b ∩Nd = {0}.

Let xb = yd ∈ N b ∩Nd. Multiplying both sides of (ii) on the left by y. We get:

ydI(a)d = yd. This proves that xbI(a)d = yd.

Since bI(a)d = 0, we obtain yd = 0 showing that N b ∩Nd = {0}.
�

Theorem 2.2. Let a, b ∈ R(N ). Then I(a) = I(b) if and only if a = b.

Proof. From the construction, N = ZL(N ) ∪ N ∗ ∪ {0}. Now, assume that I(a) = I(b), we can write a = b+ d
with bN ∩ dN = 0 and Nd ∩Nd = 0. But (b+ d)N = bN ⊕ dN . Since I(a) = I(b), we have that aI(b)a = {a}
and bI(a)b = {b} and therefore it follows that Na = N b and aN = bN which leads to aN = (b+d)N = bN⊕dN
giving d = 0. Hence a = b as desired.
�

Next, we provide the analogue to the previous theorem by generalizing the case to reflexive inverses:

Theorem 2.3. Let a, b ∈ R(N ). Then Ref(a) = Ref(b) iff a = b

Proof. Let ao ∈ Ref(a) = Ref(b). Since a = 0 if and only if Ref(a) = 0, assume that a, b 6= 0.Since bRef(a)b =
bRe(b)b = b and Ref(a) = I(a)aI(a), we have that for any t ∈ N . b(ao + t− aoataao)a(ao + t− aoataao)b = b.
Replacing t by (1− aoa)t and noting that a(1− aoa) = 0,we obtain successively
b(aoa+ (1− aoa)ta)(ao + (1− aoa)t)b = b and b(aob+ (1− aoa)ta)(ao)b = b and so baob+ b(1− aoa)taao)b = b.
Since baob = b gives b(1− aoa)taaob = 0 ∀ t ∈ N , this leads to aaob(1− aoa)taaob(1− aoa) = 0 ∀ t ∈ N .
But we are guaranteed of semi-primeness od N which then implies that aaob(1− aoa) = 0. Left multplying by
ao ∈ Ref(a), we get that
aob(1− aoa) = 0 and hence since ao ∈ I(b), we conclude that b(1− aoa) = 0.
Therefore we obtain that N b ⊆ Na and Na ⊆ N b which implies that Na = N b.
�

3 Structures and Orders of Von-Neumann Regular Elements

Definition 3.1. Let (N ,+) be a group. The exponent of the group is the least common multiple of all the orders
of the group elements.

Remark 3.1. Let N be a finite near-ring with identity 1 and n be the exponent of (N ,+). Then ord(1) = n.

Let Zn be the ring of integers modulo n. Then | Z∗
n |= ϕ(n), ϕ- being the Euler-Phi function. We now give a

generalization of this result to an arbitrary case:
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Proposition 3.1. Let N be the near-ring from classes of near-rings in construction I and II and N ∗ be as
obtained in the constructions. Let n be the exponent of (N ,+) and ϕ be the Euler’s-Phi function. Then there is
a subgroup of order ϕ(n) contained in N ∗.

Proof. We use the fact that the identity (1, 0, 0, ..., 0) ∈ N generates a subring of N . Assume the usual (+) and
the multiplication (.) defined on N . Consider the cyclic group < 1, 0, 0, ..., 0 >, additively generated by 1 where
1 ≡ (1, 0, 0, ..., 0). Then l.1 = 1 + 1 + ...+ 1

︸ ︷︷ ︸

l

and k.1 = 1 + 1 + ...+ 1
︸ ︷︷ ︸

k

are two elements of < 1 >. Since 1 is an

identity: (l.1)(k.1) = (lk.1) ∈< 1 >. Thus S = (< 1 >,+, .) is a sub-near ring containing the identity. Indeed
f : S −→ Zn : f(k.1) = [k]n is a near-ring isomorphism. Thus ∼= Zn. Let S∗ be the group of units of S. It
follows from the canonical isomorphism above that S∗ has ϕ(n) invertible elements. Since S and N have the
same identity elements, an element y ∈ S : y−1 ∈ S implies that y−1 ∈ N
∴ S∗ ⊆ N∗ and S∗ is a subgroup of order ϕ(n). �

In the sequel, we recall some notions in Number Theory: Let N = Zpk . For each natural number n, we have
the following functions:

ϕ(n) = {♯x : 1 ≤ x ≤ n gcd(x, n) = 1}, w(n) = number of distinct primes dividing n, τ(n) = number of the
divisors of n and σ(n) = sum of the divisors of n.
For example if p = 2 and k = 2 ⇒ n = 4, then: ϕ(4) = 2, w(4) = 1, τ(4) = 3 and σ(4) = 1 + 2 + 4 = 7

Theorem 3.1. ([4], Theorem 2) Let p be a prime integer and k ∈ Z+ then a ∈ GN (pk, pk) is regular if

apk−pk−1+1 ≡ a(mod pk)

The element apk−pk−1+1 is a Von Neumann inverse of a

Example 3.1. Let N = Z4[x]�< x+ 1 >. Then N = {0, 1, 2, 3}. By definition, an element a is a memeber of

R(N ) if and only if apk−pk−1+1 ≡ a(mod pk). Thus, if a = 3̄, then, 3̄2
2−22−1+1 ≡ 3̄(mod 4) which implies that

(3̄)3 ≡ 3̄(mod 4)
Therefore, 3̄ is a regular element and (3̄)3 is a Von-Neumann inverse. So, the Von-Neumann inverses of 1̄, 3̄
are 1̄, 3̄ respectively

Theorem 3.2. Let N = GN (pk, pk). Then,

V (pk) = pk − pk−1 + 1 = ϕ(pk) + 1.

Proof. Since N = GN (pk, pk) is zero-symmetric local, every element a ∈ R(N ) is either 0 or a unit.
But | N ∗ : pk−1 + 1 and the zero element is unique, it follows from the arithmetic function formula that:

V (pk) = pk − pk−1 + 1 = ϕ(pk) + 1.

�

Definition 3.2. Let x, y ∈ Z+. We say that x is a unitary divisor of y if x | y and gcd(x, y

x
) = 1 and we write

x‖y.

The number of regular elements in N can then be calculated using the unitary divisors of an integer n =| N |

Proposition 3.2. Let N = GN (pk, pk). Then V (N ) = Σx‖pkϕ(x) and V (N)/ϕ(pk) = Σx‖pk
1

ϕ(x)

Proof. In N above x = 1 and x = pk ≡ 0(modpk).
By definition, ϕ(1) = 1. But ϕ(pk) = pk − pk−1 and

V (pk) = pk − pk−1 + 1

= ϕ(pk) + ϕ(1)
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Moreover,

V (pk)

ϕ(pk)
=

pk − pk−1 + 1

pk − pk−1

= 1 +
1

pk − pk−1

=
1

ϕ(1)
+

1

ϕ(pk)

The summatory function:

K(pk) =
∑

x‖(pk)

V (x)

=
k∑

i=0

V (pi)

= V (1) +
k∑

i=1

V (pi)

= V (1) +

k∑

i=1

[(pi − pi−1) + 1]

= 1 + (p+ p2 + ...+ pk)− (1 + p+ p2 + ...+ pk−1) + k

K(pk) = pk + k �

Example 3.2. Consider N = GR(22, 22), then

V (22) =
∑

t||

ϕ(t)

= ϕ(1) + ϕ(4)

= 1 + 2 = 3.

Thus the number of regular elements are 3.

Theorem 3.3. Let N = GR(pk, pk) and σ(pk) be the sums of the divisors of pk. Then

σ(pk) =

k∑

i=0

piand

V (pk)σ(pk) = [pk − pk−1][

k∑

i=0

pi]
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Proof. Clearly,

V (pk)σ(pk) = [pk − pk−1][

k∑

i=0

pi]

= pk(1−
1

p
+

1

pk
)(

k∑

i=1

pi)

= pk(1−
1

p
+

1

pk
)(1 + p+ p2 + ...+ pk)

= pk[1 + p+ p2 + ...+ pk −
1

p
− 1− p− ...pk−1 +

1

pk
+

1

pk−1
+

1

p2
+

1

p
+ 1]

= pk[1 + pk + p−2 + p−3 + ...+ p2−k + p1−k + pk]

= pk[1 + pk +

k∑

i=2

p−i]

= p2k[1 + p−k +

k∑

i=2

p−(k+i)]

which implies that

V (pk)σ(pk)

p2k
= 1 + p−k +

k∑

i=2

p−(k+i)

as required �

Theorem 3.4. Let N = GR(pk, pk). Then σ(pk) + ϕ(pk) ≤ pkτ(pk)

Proof. Let k = 1. Then σ(pk) = p+ 1 and ϕ(p) = p− 1 so that
σ(p) + ϕ(p) = 2p. Since p has only two divisors 1 and p, this implies that
2p = p(pτ). Thus σ(p) + ϕ(p) = 2p. Now suppose that k > 1, then,

σ(pk) =

k∑

i=1

pi

and ϕ(pk) = pk − pk−1 so that

σ(pk) + ϕ(pk) = 1 + p+ ...+ pk + pk + pk−1

= 2pk + pk−2 + ...+ p+ 1 < (k + 1)pk

But pk has (k + 1) divisors so that (k + 1)pk = pkτ(pk)
thus σ(pk) + ϕ(pk) < pkτ(pk) �

Example 3.3. Let N = Z4[x]/ < x+ 1 >= GR(22, 22)

σ(22) + ϕ(22) ≤ 22τ(22)

⇒ σ(4) + ϕ(4) ≤ 4τ4

⇒ 7 + 2 ≤ 4× 3.

Thus the result of σ(pk) + ϕ(pk) < pkτ(pk) holds.

Proposition 3.3. Consider N = GR(pkr, pk) where kr = n > 1. Then σ(pn) + V (pn) < pnτ(pn)
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Proof. 1 + 1
p
+ 1

p2
+ ...+ pn < n = (n+ 1)− 1 = τ(pn)− 1 Now

σ(pn)

pn
=

1 + p+ p2 + ...+ pn

pn
< τ(pn)− 1

⇒ σ(pn) < σpn[τ(pn)− 1]

= pnτ(pn)− pn

Since V (pn) < pn, we clear that σ(pn) + V (pn) < pnτ(pn). However, if n = 1, then σ(p) + V (p) > pτ(p). Let

N = Z2[x]/ < x2 + x+ 1 >: p = 2, r = 2, k = 1, n = kr > 1

= {0, 1, x, x+ 1}

We notice that,

σ(p) = σ(2) = 1 + 2 = 3

V (p) = V (2) = 2

τ(p) = τ(2) = 2

⇒ σ(p) + V (p) > pτ(p)i.e.5 > 4.

But, if N = Z2[x]/ < x2 + x+ 1 >∼= GR(pkr, pk), k = 2, r = 2, p = 2,
σ(pk) = σ(4) = 2, V (4) = 4, pkτ(pk) = 4τ(4) = 4× 3 = 12

Therefore σ(pk) + V (pk) < pkτ(pk)(6 < 12) which justifies the previous result. �

Lemma 3.1. Let N = GN (pkr, pk)⊕M where p is prime k and r are positive integers and M is a h-dimensional
module over N . Then if h = 0,

(i) R(N ) ∼= (1 + Z(N )) ∪ {0} and

(ii) | R(N ) |= (p(k−1)r)(pr − 1) + 1

Proof. Let a ∈ R(N ) ∼= (1 + Z(N )). Then a is invertible or 0. But N is local means that a is regular i.e.
a ∈ R(N ).

Thus R(N ) ⊆ [< a > ×1 + Z(N ))] ∪ {0}.........................................(i)

Conversely, let a ∈ R(N ). Then by definition ∃ an element b ∈ R(N ) such that a = a2b ⇒ a(1− ab) = 0.

If a ∈ (N ∗) then 1− ab = 0 ⇒ ab = 1.

Hence b is a Von Neumann inverse of a. If is not a member of N ∗ then ab is not a member of N ∗ but
ab = aabb = a2b2 = abab = (ab)2.

Since N commutes ⇒ ab = (ab)2 ⇒ ab(1− ab) = 0.

Now ⇒ 1− ab is a unit and ab = 0 so that a = 0 because b is its Von Neumann inverse.

[{< a > ×1 + Z(N )} ∪ {0}] ⊆ R(N ).......................................................(ii)

Combining (i) and (ii) gives

R(N ) ∼= [1 + Z(N )] ∪ {0}

= < a > ×[1 + Z(N )] ∪ {0}
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Next,

N ∗ = (N ∗/1 + Z(N ))× 1 + Z(N )

∼= < a > ×[1 + Z(N )]

= Zpr−1 × [1 + Z(N )]

But

| [1 + Z(N )] | = | Z(N ) |

= p(k−1)r

Therefore | N ∗ |= (pr − 1)(p(k−1)r)
But R(N ) = N ∗ ∪ {0} | R(N ) |= (pr − 1)(p(k−1)r) + 1 as required. �

Theorem 3.5. Let N be the near-ring constructed and R(N ) be the set of all the regular elements. Then

R(N ) =

{
Z2r−1 × Z2 × Z2k−2 × Zr−1

2k−1 × (Z2)
h ∪ {0} p = 2;

Zpr−1 × Zr
pk−1 × (Zr

p)
h ∪ {0} p 6= 2 : CharN = pk : k ≥ 3.

Proof. Let char N = pk : k ≥ 3. We provide the general case using p = odd.

Notice that every l = 1, ..., r; (1 + pτ1)
pk−1

= 1

(1 + τlu1)
pk = 1, ..., (1 + pτLu1 + τlu2 + ...+ τlun)

pk = 1.

Let al, b1l, ..., bhl ∈ Z+ with al ≤ pk−1, bil ≤ pk : 1 ≤ i ≤ h. We notice that

r∏

l=1

{(1 + pτL)
aL} ·

r∏

l=1

{(1 + τlu1)
b1l} ·

r∏

l=1

{(1 + τlu1 + τlu2 + ...+ τluh)} = 1

which implies that al = pk−1, b1l = pk = · · · = bhl = pk. Set

Tl = < {(1 + pτl)
a | a = 1, ..., pk−1} >

S1l = < {(1 + τlu1)
b1 | b1 = 1, · · · , pk} >

...

Shl = < {(1 + τlu1 + · · ·+ τlun)
bh | bh = 1, · · · , pk} >

The sets defined are all cyclic subgroups of the group 1+Z(N ) and they are of the indicated orders. Furthermore,
the intersection of any pair of the cyclic subgroups indicated gives an identity group and the product of the
(h+ 1)r subgroups gives:

| Tl × S1L × Shl |= pk((h+1)r)−1 exhausting 1 + Z(N ).

Thus 1 + Z(N ) ∼= Zr
pk−1 × (Zr

p)
h.

Therefore
R(N ) =< α > ⋉(1 + (Z(N ))) ∪ {0}

= Zpr−1 × Z
r
pk−1 × (Zr

p)
h ∪ {0}.

�
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Theorem 3.6. Let N = Ro ⊕ M where r = 1 and p-prime, k ∈ Z+. If M = R0/pR0 ⊕ ... ⊕ R0/pR0. Let
r0 ∈ R(R0) then, its Von-Neumann inverse is

r−1
0 = rp

k−pk−1−1
0 and (r0, ..., rh)

−1 = (rp
k−pk−1−1,−r1t0r

−1
0 , ...,−rht0r

−1
0 )

Proof. We know that if a ∈ R0 = GN (pkr, pk) and a ∈ R0 then, the Von-Neumann inverse of a is given by:

a−1 ≡ ap(k−1)r(pr−1(modpk) therefore

r−1
0 ≡ rp

k−pk−1−1
0

as required in step 1

Now let (t0, ..., th) = (r0, ..., rh)
−1, then

(r0, r1, ..., rh) = (r0, ..., rh)
2(t0, ..., th)

= (r20, r0r1 + r1r0, ..., r0rh + rhr0)(t0, ..., th)

= (r20t0, r
2
0t1 + (r0r1 + r1r0)t0, ..., r

2
0th + (r0rh + rhr0)t0)

therefore r0 = r20t0 ⇒ r0t0 = 1 ⇒ t0 = r−1
0 = rp

k−pk−1−1
0

For i = 1, ..., h, ri = r20ti + (r0ri + rir0)t0

⇒ r20ti = ri − (r0ri + rir0)t0

⇒ ti =
ri − 2r0rit0

r20
(∴ N commutative)

⇒ ti =
ri
r20

−
2rit0
r0

But t0 = r−1
0

⇒ ti =
ri
r20

−
2ri
r20

= −
ri
r20

= −rir
−2
0

∴ t1 = −r1r
−2
0 ...th = −rhr

−2
0

⇒ (r0, ..., rh)
−1 = (rp

k−pk−1−1
0 , ...,−rhr

−2
0 ) as required �

Example 3.4. N = Z9 ⊕ Z9/3Z9 ⊕ ...⊕ Z9/3Z9

Then

(2, 2, ..., 2)−1 = (29−3−1, (−2)(5)2, ..., (−2)(5)2)

= (5, 1, 1, ..., 1)

(5, 1, 1, ..., 1)(2, 2, ..., 2) = (1, 0, ..., 0)

Example 3.5. Consider N = GN (pkr, pk) ∼= Z2[x]� < x2 + x+ 1 > where p = 2, k = 1, r = 2.

Now GN = {0, 1, x, x+ 1} and R(N ) = {0, 1, x, x+ 1}.

Let N = GN (4, 2)⊕GN (4, 2) with GN (4, 2) as defined above, then:

N = {0, 1, x, x+ 1} ⊕ {0, 1, x, x+ 1}
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= {(0, 0), (0, 1), (0, x), (0, x+ 1), (1, 0), (1, 1), (1, x), (1, x+ 1), (x, 0), (x, 1), (x, x),
(x, x+ 1), (x+ 1, 0), (x+ 1, 1), (x+ 1, x), (x+ 1, x+ 1)}
So | N |= 16, ZL(N ) = {(0, 0), (0, 1), (0, x), (0, x+ 1)}. Since N is an extension of GN (4, 2),

| R(N) |= 13 = (pr − 1)(pkr) + 1

Applying (r0, r1)
−1 = (rp

k−pk−1−1
0 ,−r1r

−2
0 ), we can find the Von Neumann inverses of all the members of R(N ).

For instance,
R(N ) = {(1, 0), (1, 1), (1, x), (1, x+ 1), (x, 0), (x, 1), (x, x), (x, x+ 1),

(x+ 1, 0), (x+ 1, 1), (x+ 1, x), (x+ 1, x+ 1)}.

So (1, 0)−1 = (12
1−20−1,−01−1) = (12, 0) = (1, 0), (x, x)−1 = (x−2, x−1)

This can be done in the same manner for the other members of R(N ). The next result gives the structures
and orders of the automorphism groups of the regular elements, R(N ).

Theorem 3.7. Let N be a near-ring of construction R(N ) be the set of all the regular elements including 0.
Then if
Aut : R(N ) → R(N ) we have that

Aut(R(N )) ∼= [(Zpr−1)
∗ ×GL(k−1)r(GN(pkr, pk))]×GLhr(GN(pkr, pk))]∪ △

Theorem 3.8. Let N be a zero symmetric local near-rings from the class of near-rings of the construction.
Then:

| Aut(R(N )) | = [ϕ(pr − 1) �

(k−1)r
∏

k=1

(pk − pk−1) �
hr∏

k=1

(pk − pk−1)] + 1

when charN = pk : k ≥ 3

4 Conclusion

This study was set up with an aim of determining and classifying the regular elements and Von-Neumann inverses
of the zero symmetric local near-rings with n-nilpotent radical of Jordan ideals admitting Frobenius derivations.
The study gave a general construction representing the classes of the near-rings under investigations whose
algebraic structures assumed commutation checks attributed the Theorems of Asma and Inzamam in [8] . The
structures and orders of R(N ) were then characterized in a case by case basis using the Fundamental Theorem
of Finitely Generated Abelian Groups and the properties of the general linear groups in the endomorphism of
R(N ) respectively. The structures of V (| R(N ) |) followed asymptotic patterns proposed by Osama and Emad
[4] using the properties of V (n), τ(n), ω(n), σ(n) and K(n). The results reveal unique algebraic structures.
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