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Abstract

The characterization of finite local rings via the well known structures of their zero divisor
graphs and cayley graphs remains an open problem. Some classes of completely primary finite
rings which are local, have however been characterized by the compartments of their units and
zero divisors where the classification of the unit groups have been done using the Fundamental
Theorem of finitely generated Abelian Groups while the zero divisors have been characterized via
the zero divisor graphs. This paper characterizes the zero divisor graphs Γ(R) and cayley graphs
CAY (R) where R is a finite local ring with 2-radical index of Nilpotence. These two classes of
graphs have been completely described and compared using their algebraic properties. Some of
the graphs have been drawn for purposes of their comparison. The methods of study involved
partitioning the ring under consideration into mutually disjoint subsets of invertible elements and
zero divisors and determining their graphs using case by case basis discovery of their structural
properties. Some symmetric groups associated with the graphs studied have also been given.
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1 Introduction

The definition of terms and notations used in this paper, relating to Graph Theory can be attributed
to Diestel[1]. Other useful terminologies and studies related to Graph Theory and Ring Theory can
be obtained from the remaining references [2-16].

Let R be a commutative ring with unity and let Z(R) be the set of zero divisors. The study of
R in which the subset of zero divisors forms a unique maximal ideal has been extensively done
yielding interesting results (see[2], [3], [4] and [5]). Some attempts have also been made to classify
finite commutative rings using the structures of their zero divisor graphs. For instance, Beck[6],
Anderson and Naseer[7], Anderson and Badawi[8], Anderson and Livingston[9] among others have
determined various graph invariants and characteristics associated with the Total graphs and the
the zero divisor graphs of commutative rings. These studies are however nonconclusive. On the
other hand, the classification of finite local rings R using the Cayley graphs CAY (R) of R is still
very scanty in the existing Literature. The study of the Cayley graphs was introduced by Authur
Cayley in 1878 to explain the concept of abstract groups which are described by a set of generators.
They are the undirected graphs whose vertices are elements of R and such that two distinct vertices
x and y are adjacent if and only if x − y ∈ Z(R), so they are akin to Γ(R). Cayley graphs are
important in relating Group Theory and Graph Theory. Therefore the relationship between the zero
divisor graphs Γ(R) and the cayley graphs CAY (R) of finite local rings is an important dimension
of classification worth advancing. In this paper, vital graph algebraic parameters such as diameter,
girth, colouring, binding number, connectivity among others, of zero divisor and the Cayley graphs
of R have been characterized. We have also obtained the symmetric groups associated with some
of these graphs.

Let R◦ = GR(pkr, pk) be a Galois ring of order pkr and characteristic pk such that p, k, r are
invariants and U an h-generated R◦-module. We provide the construction of R = R◦ ⊕U in which
the set of zero divisors Z(R) satisfies the condition (Z(R))2 = 0.

We follow Raghavendran’s Principle as applied in the construction of Completely Primary finite
Rings.

2 Construction I : 2− Radical Index of Nilpotence Finite
Local Rings of characteristic p

For every prime integer p and a positive integer r, let Ro = GR(pr, p). Now for all iε[1, · · · , h], let
uiεZ(R) and U be an h-dimensional Ro-module generated by {u1, u2, · · · , uh} so that R = Ro ⊕U
is an additive Abelian Group. On R, define multiplication as follows:

(xo, x1, · · · , xh)(yo, y1, · · · , yh) = (xoyo, xoy1 + x1yo, · · · , xoyh + xhyo).

It is well known that the multiplication turns R into a commutative ring with identity (1, 0, · · · , 0)
(see[10]). Moreover,

Z(R) = Ro ⊕Rou1 ⊕ · · ·Rouh

and

(Z(R))2 = (0).
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Given R to be the ring in construction I above, the structural and algebraic properties of such a
ring can be deduced intuitively from the following propositions:

Proposition 1. (The Graph Γ(R)

Let R be the Local ring described by construction I above and let Z(R) be the set of its zero divisors
and R∗, the set of units. Then, the following are the general properties of the zero-divisor graph
Γ(R) of R;

(i) | V (Γ(R)) |= prh − 1.

(ii) Γ(R) is complete.

(iii) Γ(R) ∼= Kprh−1.

(iv) Diam(Γ(R)) = 1.

(v) Girth(Γ(R)) =

{
∞, h=1, p=2,3;
3, elsewhere

(vi) b(Γ(R)) ≤ ∞.
(vii) ∆(Γ(R)) = prh − 1.

(viii) χ(Γ(R)) ≤ prh − 2.

Proof. (i) From construction I, R = R◦⊕U where DimR◦U = h. So R = R◦⊕R◦u1⊕, · · · ,⊕R◦uh.
This implies that | R |= p(h+1)r ∀h, rεZ+. Now, Z(R) = R◦u1 ⊕ R◦u2⊕, · · · ,⊕R◦uh.
⇒| Z(R) |= phr.

But the vertices of Γ(R) are all the elements of Z(R) \ {0}

Thus V (Γ(R)) = (Z(R))? = {x ∈ Z(R) \ {0}}

⇒| (Z(R))∗ |=| V (Γ(R)) |

But
| (Z(R))∗ |=| Z(R) \ {0} |

= phr − 1

∴| V (Γ(R)) |= phr − 1

as required.

(ii) Let (0, x1, · · · , xh)(0, y1, · · · , yh)εZ(R)?. Then using construction I, the product of the pair of
the non-zero zero divisors is

(0, x1, x2, · · · , xh)(0, y1, y2, · · · , yh) = (0, 0, · · · , 0)

and every other pair of the divisors are members of Ann(Z(R))?. So the set (Z(R))∗ =
Ann(Z(R) \ {0}) and thus members of Z(R) \ {0} are pairwise adjacent implying that the
graph Γ(R) whose vertices are Z(R) \ {0} is complete.

(iii) From (ii), Γ(R) is complete and | V (Γ(R)) |= phr − 1. So the graph is denoted K|V (Γ(R))| =
Kphr−1. On the other hand Γ(R) is phr − 1-partite since the total number of independent

set of vertices is phr − 1. Thus Γ(R) ∼= Kphr−1.
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(iv)Diam(Γ(R)) = sup{d(x, y)|x, y ∈ Z(R) \ 0}. Since (Z(R))∗ = Z(R)− {0}, and for all distinct
x, y ∈ Z(R) − {0}, xy = 0, we have that d(x, y) = 1. So, sup{d(x, y)} = 1 ∀x, y ∈ V (Γ(R)).
This implies that

diam(Γ(R)) = 1.

(v) A complete graph Γ(R) on n vertices is denoted that Kn. When r = 1, h = 1 and p = 2, 3,
n = (prh − 1) ≤ 2. So girth Γ(R) =∞. Otherwise,∀ n = (prh − 1) > 2, it is well known from
Anderson and Livingston[9] that

girth(Γ(R)) ≤ 2diam(Γ(R)) + 1.

Since diam(Γ(R)) = 1, the result readily follows.

(vi) Let S be the set of vertices of minimal degree. By definition, b(Γ(R)) = |N(S)|
|S| taken over

all Φ 6= S ⊆ V (Γ(R)) such that V (Γ(R)) = N(S). Clearly S = Φ,, so that | S |= 0 thus
b(Γ(R)) = ∞. Therefore, the vertices of Γ(R) are well bound together and so the edges are
fairly distributed.

(vii) | V (Γ(R)) |= prh − 1. So let ui ∈ Γ(R) be a vertex such that ui.uj = 0; ∀ i, j, thus each
vertex is adjacent to every other vertex except itself for avoidance of loops. Therefore, the
number of vertices adjacent to ui is (prh − 1)− 1. So ∆(Γ(R)) = prh − 2.

(viii) The minimum number of colors that can be assigned to each vertex relates to the maximum
degree of each vertex in Γ(R). Therefore it can be established that χ(Γ(R)) ≤ prh − 2.

Remark 1. In constructing the Cayley graph CAY (R), we consider all elements of R as vertices
and take any two members of R to be adjacent if and only if x − y ∈ Z(R). Moreover, we denote
the cayley graph CAY (R) by G in the sequel.

Proposition 2. (The Graph G) Let R be the Local ring described by construction I above and
let Z(R) be the set of its zero divisors. Then the Cayley graph G will have p copies of complete
subgraphs. Moreover,

(i) | V (G) |= p1+hr.

(ii) G is disconnected hence incomplete.

(iii) G is isomorphic to p copies of Kphr

(iv) Diam(G) ≤ ∞.

(v) Gr(G) ≤ ∞

(vi) b(G) ≤ 1

(vii) ∆(G) = phr − 1.

(viii) χ(G)) ≤ phr.

(ix) ω(G) ≤ phr

(x) CH(G) = 0

Proof. (i) From construction I, we have that R◦ = GR(pr, p) and R = R◦ ⊕ U . So U is an
R◦-module generated by {u1, · · · , uh} elements where h = 2. It is clear that Z(R) = R◦u1⊕
R◦u2 ⊕◦ uh and every element in G is of the form (r◦, r1, r2, · · · , rh).
Since

| R |=| R◦ || U |= p1+hr,

then | V (G) |=p1+hr which establishes (i).

4
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(ii) Note that in Cayley graphs every element of R is a vertex and for any two elements x, yεR
to be adjacent,x− yε(Z(R)) . Thus G has p complete disconnected subgraphs and hence, is
incomplete.

(iii) This is clear Since by (ii), G is not complete. However we have p complete subgraphs of G,
namely, G1

∼= Kphr , G2
∼= Kphr · · ·Gn ∼= Kphr This implies that G ∼= p copies of kphr

(iv) Diam(G) = sup{d(x, y)|x, y ∈ R} and that for all distinct x, y ∈ R, x − y ∈ (Z(R)). Now,
G is having p complete disconnected subgraphs and so we have that d(x, y) = 1. for every
subgraph. However, since there is no connection between the p subgraphs, the sup{d(x, y)} =
∞ ∀x, y ∈ G. This implies that diam(G) ≤ ∞.

(v) A complete graph G with n vertices is denoted that Kn. Now since G is having p copies of
Kprh , it is clear that G has no cycle and so the girth is ∞.

(vi) Let S be the set of vertices of minimal degree. By definition, b(G) = |N(S)|
|S| taken over all

Φ 6= S ⊆ V (G) such that V (G) = N(S). In fact S = N(S) \ Ann(Z(R)). However the
Ann(Z(R)) = 0, thus | N(S) |=| S |, hence the b(G) = 1.

(vii) | V (G) |= p1+hr and that G is not a complete graph. So let ui, uj ∈ Gi, j = 1, 2, · · · such that
ui 6= uj be a vertex such that ui − uj ∈ Z(R), we see that each vertex in each subgraph is
adjacent to each other except itself for avoidance of loops. Therefore the number of vertices
adjacent to ui in each subgraph is phr − 1. Implying that ∆(G) = phr − 1.

(viii) Since ∆(G) = phr−1 and each of the subgraphs of G is complete, then the minimum number
of colors that can be assigned to each vertex is equivalent to the maximum degree of each
vertex in G plus one since the vertex itself is also assigned a colour. Therefore it can be
established that χ(G) = prh.

(ix)The clique number of G is the order of the largest complete subgraph of G. Now, the subgraphs
G1 ,G2 · · · Gnare the largest and of order phr, it then follows that ω(G) ≤ phr.

(x)By definition, let G = (V,E) be a nontrivial graph of order m and let u ∈ V be a vertex of G.
Then the Harmonic centrality of u is defined by;

HG(u) =
RG(u)

m− 1

where RG(u) =
∑
x 6=u

1
d(u,x)

: x ∈ V \ u
and d(u, x) is the shortest distance between u, x ∈ G with 1

d(u,x)
= 0 if there is no path

between u and x.

From the Harmonic Centrality of u, we can define the Harmonic Centralization of G of order
m as;

CH(G) =

∑m
i=1{HGmax(u)−HG(ui)}

m−2
m

where HGmax(u) is the largest Harmonic centrality of u.

Now from the graph G,m =| V | . We have that all the vertices have equal harmonic centrality
and so the harmonic centralization of every vertex will be 0

Remark 2. : In order to characterize the classes of Rings considered in this paper, completely we
must describe both the unit compartments R∗ and the zero divisor Z(R) compartments completely.

Example 1. Consider the ring R = Z2 ⊕ Z2 ⊕ Z2. From the consruction I, we see that p = 2,
h = 2, k = 1, r = 1.

5
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Then
R = {0, 1} ⊕ {0, 1} ⊕ {0, 1}

R = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊕ {(0, 1)}
R = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

The zero divisors of R are of the form

Z(R) = {(0, r, s) : r, s ∈ R0}

Thus from the ring R,
Z(R) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}

and the set or non-zero zero divisors are

Z(R) \ {0} = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}
Now, the order of the ring R is given by; | R |= 8,= 23r = 23 = p(h+1)r since h = 2 and r = 1.
Thus, the order of the zero divisors of R is;

| Z(R) |= 4 = 22 = phr.

and the order of the non-zero zero divisors is given by;

Z(R) \ {0} = phr − 1.

Moreover, the set of the units of this ring is of the form;

R∗ = 1 + Z(R)

= {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
and the order of the units is given by;

| R∗ |= 4

R? = Zpr−1 × 1 + (Z(R))

Thus the general structure of the units of R is

R∗ ∼= 1 + Z(R)

= 1 + r1u1 + r2u2|riεZp, uiεZ(R) : 1 ≤ i ≤ 2

= (1, r1, r2)

We can get the generators of the normal subgroups of 1 + Z(R) in R? as follows;

(1, 0, 0)(1, 0, 0) = (1, 0, 0)

which is an identity.
o(1, 0, 0) = 2

so the cyclic group generated by the element (1, 0, 0) is isomorphic to Z2, and we call it G1 i.e

< (1, 0, 0) >∼= Z2 = G1.

In a similar manner,
o(1, 0, 1) = 2

and
< (1, 0, 1) >∼= Z2 = G2,

o(1, 1, 0) = 2

6
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and
< (1, 1, 0) >∼= Z2 = G3,

o(1, 1, 1) = 2

and
< (1, 1, 1) >∼= Z2 = G4.

Therefore,
G1 = {(1, 0, 0)(1, 0, 0)}
G2 = {(1, 0, 1)(1, 0, 0)}
G3 = {(1, 1, 0)(1, 0, 0)}
G4 = {(1, 1, 1)(1, 0, 0)}

We notice that;

(i) G1,G2,G3 and G4 are normal subgroups of Z(R)

(ii) G1 ∩G2 ∩G3 ∩G4 = (1, 0, 0) identity.

From the illustration above, it follows that the set of all the non-zero zero divisors in R is given by;

(Z(R)) \ {0} = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}.

Thus the graph Γ(R) of the ring illustrated above is as shown below;

(0,0,1)

(0,1,0)(0,1,1)

Thus, from proposition 1 above, Γ(R) has the following algebraic properties:

The | V (Γ(R)) |= 3, Γ(R) is complete, Γ(R) = K3, diam(Γ(R)) = 1, girth(Γ(R)) = 3, b(Γ(R)) =
∞, ∆(Γ(R)) = 2, χ(Γ(R)) ≤ 2, the number of cliques is 1 and the ω(Γ(R)) = 3 (clique number).

Below is the Cayley graph CAY (R) denoted by G, of the same ring above :

Example 2. Consider the ring R of construction I such that p = 2, h = 2, k = 1 and r = 1 so
that R = Z2 ⊕ Z2 ⊕ Z2.

Then
R = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊕ {0, 1}

R = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
Thus;

CAY (R) = {(x, y) | x, y ∈ R, x− y ∈ Z(R)}
R = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

7
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The cayley graph CAY (R) is shown below

Now, G has the following properties:

The | V (G) |= 8, diam(G) = ∞, girth(G) = ∞, b(G) = 1, ∆(G) = 3, χ(G)4, ω(G) = 4 and the
CH(G) = 0

Example 3. Consider the ring R of construction I such that p = 3, h = 2, k = 1 and r = 1 so
that R = Z3 ⊕ Z3 ⊕ Z3 then, the set of non zero-zero divisors of this ring is:

(Z(R)) \ {0} = {(0, 1, 0), (0, 2, 0), (0, 0, 1), (0, 0, 2), (0, 1, 2), (0, 2, 1), (0, 1, 1), (0, 2, 2)}.

Therefore, Γ(R) of this ring is represented by;

8
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Γ(R) has the following properties:

The | V (Γ(R)) |= 8, Γ(R) is complete, Γ(R) = K8, diam(Γ(R)) = 1, girth(Γ(R)) = 3, b(Γ(R)) =
∞, ∆(Γ(R)) = 7, χ(Γ(R)) ≤ 7 and ω(Γ(R)) = 8.

We provide the graph (G) of the same ring as follows:

Example 4. Consider the ring R of construction I such that p = 3, h = 2, k = 1 and r = 1 so
that

R = Z3 ⊕ Z3 ⊕ Z3

so that
R = {(0, 1, 2)(0, 1, 2)(0, 1, 2)}

R = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} ⊕ {0, 1, 2}.
R = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 0, 0),

(1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0),

(2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1), (2, 2, 2)}
Therefore, G of this ring is represented by;

G has the following properties:

The | V (G) |= 27, diam(G) = ∞, girth(G) = ∞, b(G) = 1, ∆(G) = 8, χ(G) = 9, ω(G) = 9, and
CH(G) = 0.

9
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From the cases studied above, we provide the following two propositions on the order of edges and
vertices of Γ(R) of the ring under construction I.

Proposition 3. Let R be a characteristic p local ring of the construction I. Then given E(Γ(R)),

|E(Γ(R))| = 1

2
(phr − 1)(phr − 2)

and
hr−1∑
i=1

∆(Vi) = (phr − 1)(phr − 2)

Proof. We deduce inductively from the examples given that Γ(R) is complete on phr − 1 vertices.
Now each of the phr − 1 vertices of Γ(R) can be labeled as 1, 2, · · · , phr − 1.Thus

V1 ←→ V2, · · · , V(phr−2), V2 ←→ · · ·V(phr−3)

and generally the (n− 1)th vertex will be adjacent to (phr − n) vertices. Therefore the sum of the
edges of Γ(R) is given by:

n∑
i=1

Ei = (phr − 2) + (phr − 3) + (phr − 4) + · · ·+ 2 + 1

=
1

2
(phr − 1)(phr − 2)

∴ |E(Γ(R))| = 1

2
(phr − 1)(phr − 2)

Next, since Γ(R) is complete, every Vi ∈ Γ(R), ∴ i = 1, · · · , (phr − 1) is adjacent to each other.
So each edge Ei is incident to 2 verticesVi and Vj , i 6= j.Therefore the number of degrees will be
double so that

hr−1∑
i=1

∆(Vi) = 2{1

2
(phr − 1)(phr − 2)}

= (phr − 1)(phr − 2)

as required.

Proposition 4. Let R be the Local ring of construction I so that the charR=p and let Z(R)\{0} =
phr − 1 as required. Then:

|V (Γ(R))| = 1

phr − 2
[

phr−1∑
i=1

∆(Vi)]

or

|V (Γ(R))| = 2|E|
phr − 2

Proof. We need to show that the degrees of the vertices and edges are related. Now,

|Z(R) \ {0}| = |V | = phr − 1

and ∑
vεV

deg(V ) = (phr − 1)(phr − 2)

Implies that
|V (Γ(R))|∑
vεV deg(V )

10
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=
phr − 1

(phr − 1)(phr − 2)

= (phr − 2)−1

On the other hand|E| = 1
2
(phr − 1)(phr − 2) and

2|E|
phr − 2

=
(phr − 1)(phr − 2)

(phr − 2)
= (phr − 1) = |V (Γ(R))|

Thus the result follows for both cases.

3 Construction II: 2− Radical Index of Nilpotence Finite
Local Rings of Characteristic p2

For any prime integer p and a positive integer r, let R◦ = GR(p2r, p2) and K = R◦/pR◦ so that
U = Kh is an R◦-module generated by {u1, u2, · · · , uh}, where pui = 0, ∀i = 1− h and ui ∈ R◦.On
the additive group R = R◦ ⊕Kh, define multiplication as follows;

(x◦, x1, · · · , xh)(y◦, y1, · · · , yh) = (x◦y◦, x◦y1 + x1y◦, · · · , x◦yh + xhy◦).

It is well known that the multiplication defined above turns R = R◦⊕Kh into a commutative local
ring with identity (1, 0, · · · , 0). Indeed Z(R) satisfies:

(i) Z(R) = pR◦ ⊕Kh.

(ii) (Z(R))2 = 0. Where Kh = {r◦u1 + r◦u2 + · · ·+ r◦uh}, uiε(Z(R))

Proposition 5. (The graph Γ(R))

Let R be alocal ring of construction II. Then:

(i) | V (Γ(R)) |= p1+h − 1.

(ii) Diam(Γ(R)) = 1.

(iii) Girth(Γ(R)) =

{
∞, h=1, p=2;
3, elsewhere

(vi) b(Γ(R)) = p2−1

(p1+h−1)−(p2−1)

Proof. (i)Z(R) = R◦u1⊕ · · ·⊕R◦uh is a maximal ideal of R. Thus the quotient R/Z(R) is a field
of order p.
Now consider an element α ∈ R/Z(R) but α is neither 0 nor 1 then (R/Z(R)) \ {0} =< a >
and the order of a is
◦(a) = p− 1. Therefore each element that lies outside Z(R) has an inverse.
Thus

| Z(R)∗ |= p1+h − 1

⇒| Γ(R) |= p1+h − 1

(ii)Then Ann(Z(R)) = pR◦. Now for some u ∈ pR◦ there exists some m ∈ Z(R) \ {0} such that
u,m ∈ pR◦. But u,m,w = 0 where w ∈ Ann(Z(R)) = pR◦.
Thus diam(Γ(R)) = 1.

(iii) If r = 1, p = 2, h = 1 then Z(R) \ {0} = {(0, 1), (2, 0), (2, 1)}. So (2, 0) is adjacent to the
other two vertices. Moreover, any y ∈ Z(R) \ {0} is adjacent to x ∈ Ann(Z(R) \ {0}) since
| Ann(Z(R) \ {0}) |=p− 1, the result follows.

11
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(iv) Let N(S) = Ann(Z(R)) = pR◦ and S = V (Γ(R)) \ N(S). Sine | N(S) |= p2 − 1 and
| S |= (ph+1 − 1)− (p2 − 1)

∴ b(Γ(R)) =
N(S)

| s | =
p2 − 1

(ph+1 − 1)− (p2 − 1)
.

Proposition 6. If r = 1, k = 2 and h = 1. Then Γ(R) is p-partite.

Proof. This involves partitioning Γ(R) into disjoint subsets;
Let

Vip = {ip} : 1 ≤ i ≤ p− 1

V1 = Z(R)−Ann(Z(R))

Then

V (Γ(R)) =

p−1⋃
i=1

(Vip ∪ V1)

and each of the pairs of the subsets are disjoint.

We provide some cases based on the propositions above;

Example 5. Consider the ring R of construction II such that p = 2, h = 1, k = 2 and r = 1 so
that R = Z4 ⊕ Z2 then,

R = {(0, 1, 2, 3)} ⊕ {0, 1}.

R = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}.

Z(R) = {(0, 0), (0, 1), (2, 0), (2, 1)}.

Z(R) \ {0} = {(0, 1), (2, 0), (2, 1)}.
Therefore Γ(R) with the vertices (Z(R))∗ is as shown below;

(0,1)
(2,1)

(2,0)

Γ(R) has the following algebraic properties:

The | V (Γ(R)) |= 3, Γ(R) is complete, Γ(R) = K3, diam(Γ(R)) = 1, girth(Γ(R)) = 3, b(Γ(R)) =
∞, ∆(Γ(R)) = 2, χ(Γ(R)) ≤ 2, ω(Γ(R)) = 3 and Γ(R) is a planar graph.

Example 6. Consider the ring R of construction II such that p = 3, h = 1, k = 2 and r = 1 so
that R = Z9 ⊕ Z3 then, the set of non zero-zero divisors of this ring is:

Z(R) \ {0} = {(0, 1), (0, 2), (3, 0), (3, 1), (3, 2), (6, 0), (6, 1), (6, 2)}.

12



Agala et al.; JAMCS, 37(6): 1-19, 2022; Article no.JAMCS.88626

Therefore, Γ(R) of this ring is represented by;

Γ(R) has the following properties:
The | V (Γ(R)) |= 8, Γ(R) is complete, Γ(R) = K8, diam(Γ(R)) = 1, girth(Γ(R)) = 3,b(Γ(R)) =∞,
∆(Γ(R)) = 7, χ(Γ(R)) ≤ 7, ω(Γ(R)) = 8, Γ(R) is not a planar graph.

Proposition 7. (The graph G) Let R = R◦ ⊕Kh according to construction II. Then the Cayley
graph denoted by G has p complete subgraphs. Moreover,

(i) | V (G) |= p(p1+hr).

(ii) G is disconnected hence incomplete.

(iii) G is isomorphic to p copies of Kp(phr)

(iv) diam(G) ≤ 2.

(v) gr(G) ≤ 3

(vi) b(G) ≤ 1

(vii) ∆(G) = p((phr)− 1.

(viii) χ(G) ≤ p(phr).

(ix) ω(G) ≤ p(phr)

(x) CH(G) = 0

(xi) G obtained is non planar.

13
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Proof. (i) From construction II, we have that R◦ = GR(p2r, p2) and R = R◦ ⊕ U . So U is an
R◦-module generated by {u1, · · · , uh} elements where h = 1. It is clear that Z(R) = R◦u1

and every element in G is of the form (r◦, r1).
Since

| R |=| R◦ || U |= p(p1+hr),

then | V (G) |=p(p1+hr) which establishes (i).

(ii)Note that in Cayley graphs every element of R is a vertex and for any two elements x, y ∈ R
to be adjacent,x− y ∈ (Z(R)) . Thus G has p complete disconnected subgraphs and hence,
is incomplete.

(iii) This is clear Since by (ii), G is not complete. However we have p complete subgraphs of G,and
each subgraph Gn ∼= Kp(phr) such that n = p. This implies that G ∼= p copies of kp(phr)

(iv)Diam(G) = sup{d(x, y)|x, y ∈ R} and that for all distinct x, y ∈ R, x − y ∈ (Z(R)). Now,
G is having two complete interconnected subgraphs and so we have that d(x, y) = 1 for
every subgraph. However, since there is an interconnection between the p subgraphs, the
sup{d(x, y)} = 2∀x, y ∈ G. This implies that

diam(G) ≤ 2

(v) A complete graph G with n vertices is denoted that Kn. Now since G is having p copies of
Kp(prh), subgraphs which are interconnected, the shortest cycle has three vertices and so the
girth is 3

(vi) Let S be the set of vertices of minimal degree. By definition, b(G) = |N(S)|
|S| taken over all

Φ 6= S ⊆ V (G) such that V (G) = N(S). In fact S = N(S) \ Ann(Z(R)). However the
Ann(Z(R)) = 0, thus | N(S) |=| S |, hence the b(G) = 1.

(vii) | V (G) |= p1+hr and that (G) is not a complete graph.So let ui ∈ (G) be a vertex such that
ui − uj ∈ Z(R), we see that each vertex in each subgraph is adjacent to each other except
itself for avoidance of loops. Therefore the number of vertices adjacent to uiin each subgraph
is p(phr)− 1. Thus ∆(G) = p(phr)− 1.

(viii) Since ∆(G) = p(phr) − 1 and each of the subgraphs of G is complete,then the minimum
number of colors that can be assigned to each vertex is equivalent to the maximum degree of
each vertex in (G) plus one since the vertex itself is also assigned a colour.Therefore it can
be established that χ(G) = p(prh).

(ix)The clique number of G is the order of the largest complete subgraph of G. Now, the subgraphs
G1,G2 · · · Gn are the largest and of order p(phr), it then follows that ω(G) ≤ p(phr).

(x)The definition of Harmonic centrality HG(u) of a vertex u and the Harmonic centralization
CH(G),of a graph G is given in the proof of proposition 2.

Now from the graph G above, m =| V | .

We have that the Harmonic centrality of all the vertices is equal and thus the harmonic
centralization is finally = 0.

(xi)The graph G obtained has its edges intersecting within the plane. Thus, G is not planar.

We provide some examples of Cayley graphs of rings of construction II.

Example 7. Consider the ring R of construction II such that p = 2, h = 1, k = 2 and r = 1 so
that R = Z4 ⊕ Z2 so that

R = {(0, 1, 2, 3)(0, 1)}
R = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}

Z(R) = {(0, 0), (0, 1), (2, 0), (2, 1)}
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Therefore, G of this ring is represented by;

From the proposition above,G has the following properties:

Let G1 = {v1, v2, v5, v6} and G2 = {v3, v4, v7, v8}, then ,
the | V (G) |= 8, diam(G) = 2, girth(G) = 3, b(G) = 1, ∆(G) = 3, χ(G) = 4, ω(G) = 4,
CH(G) = 0 and G obtained is not planar.

Example 8. Consider the ring R of construction II such that p = 3, h = 1, k = 2 and r = 1 so
that

R = Z9 ⊕ Z3

so that
R = {(0, 1, 2, 3, 4, 5, 6, 7, 8)} ⊕ {0, 1, 2}

R = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2),

(5, 0), (5, 1), (5, 2), (6, 0), (6, 1), (6, 2), (7, 0), (7, 1), (7, 2), (8, 0), (8, 1), (8, 2)}

Z(R) = {(0, 0), (0, 1), (0, 2), (3, 0), (3, 1), (3, 2), (6, 0), (6, 1), (6, 2)}.

15



Agala et al.; JAMCS, 37(6): 1-19, 2022; Article no.JAMCS.88626

Therefore, G of this ring is represented by;

From the proposition above, (CAY (R)) has the following properties:

Let G1 = {v1, v2, v3, v10, v11, v12, v19, v20, v21}, G2 = {v4, v5, v6, v13, v14, v15, v22, v23, v24}, G3 =
{v7, v8, v9, v16, v17, v18, v25, v26, v27},
The | V (G) |= 27, diam(G) = 2, girth(G) = 3, b(G) = 1, ∆(G) = 8, χ(G) = 9, ω(G) = 9,
CH(G) = 0 and G obtained is not planar.

4 The symmetric groups associated with the Zero divisor
graphs for the square radical zero finite local rings
above

Theorem 9. Let R be a local ring of characteristic p with respect to the multiplication in construction
I. Then
Aut(Γ(R)) ∼= Sphr−1 and |Aut(Γ(R))| = (phr−2)!

∑hr
i=1 φ(pi) where φ(pi) is the Euler’s-phi function

of pi ∀i.

Proof. From construction I, we have that R◦ = GF (pr, p), R = R◦ ⊕ U and Z(R) = R◦u1 ⊕ · · · ⊕
R◦uh. Every element in Z(R) − 0 is in the form (0, x1, · · · , xh) so that the product of every pair
(0, x1, · · · , xh)(0, y1, · · · , yh) = (0, · · · , 0) implying that every elements(pairs) of Γ(R) are adjacent.

∴ |V (Γ(R))| = |Z(R)− 0| = phr − 1

⇒ Aut(Γ(R)) ∼= Sphr−1,
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the symmetric group on phr − 1 points. The orders of such groups are given by

|Sphr−1| = (phr − 1)! = (phr − 1)(phr − 2)! · · · (i)

By definition:
hr∑
i=1

φ(pi) = φ(p1) + · · ·+ φ(phr)

= (p− 1) + p(p− 1) + p2(p− 1) + · · ·+ phr−1(p− 1)

= (p− 1){1 + p+ p2 + p3 + · · ·+ phr−1}

= (p− 1)
(phr − 1)

(p− 1)
= phr − 1

Now
|AutΓ(R)|∑hr
i=1 φ(pi)

=
(phr − 1)!

(phr − 1)
= (phr − 2)!

⇒ |Aut(Γ(R))| = (phr − 2)!

hr∑
i=1

φ(pi)

as required

Theorem 10. Let R be a ring of characteristic p2 from classes of rings in constructionII. Then:

(i)| AutΓ(R) |= (2p(h+1)r − 3)! | E |

(ii)Aut(Γ(R)) ∼= Sp(h+1)r−3 × Sp(h+1)r−2 × Sp(h+1)r−1

Proof. Z(R)∗ = {x ∈ Z(R)}\{0} =| V Γ(R) |= p(h+1)r−1 and therefore | AutΓ(R) |= (p(h+1)r−1)!.
But the sum of the degrees of Γ(R) is (p(h+1)r − 1)(p(h+1)r − 2).
Now let

β =
1

2
(p(h+1)r − 1)(p(h+1)r − 2)

and define formally

(p(h+1)r − 1)! = (p(h+1)r − 1)(p(h+1)r − 2)(p(h+1)r − 3)!

⇒ (p(h+1)r − 3)! =
(p(h+1)r − 1)!

(p(h+1)r − 1)(p(h+1)r − 2)

⇒ 2(p(h+1)r − 3)! =
(p(h+1)r − 1)!

β

⇒ (p(h+1)r − 1)! = 2(p(h+1)r − 3)!β,

where β =| E |
⇒| AutΓ(R) |= 2(p(h+1)r − 3)! | E |,

which clears the first part of the proof.

The second part of the proof is easy.
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5 Conclusion

This paper has characterized the 2−radical index of nilpotence finite local ringsR given in constructions
I and II using the structural, geometric and algebraic properties of the Zero divisor and Cayley
graphs of R. It is evident from the main results that the graphs Γ(R) of power two radical zero
local rings of characteristic p and p2 are complete graphs of order prh−1. They are also Hamiltonian
graphs and as the value of p increases, the more the hamiltonian cycles. The Cayley graphs on
the other hand are incomplete with complete subgraphs which are copies of each other. Moreover,
unlike Zero divisor graphs, Cayley graphs represent noisy geometries such that one cannot easily
describe the algebraic and the structural properties of the whole graph.
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