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Abstract
This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood
morbidity and mortality, analyzed the entire expressed transcriptome in whole blood from children with
non-SMA (Hb ≥ 6.0 g/dL, n = 41) and SMA (n = 25). Analyses revealed 3,420 up-regulated and 3,442
down-regulated transcripts, signifying impairments in host inflammasome activation, cell death, innate
immune responses, and cellular stress responses in SMA. Immune cell profiling showed a decreased
antigenic and immune priming response in children with SMA, favoring polarization toward cellular
proliferation and repair. Enrichment analysis further identified altered neutrophil and autophagy-related
processes, consistent with neutrophil degranulation and altered ubiquitination and proteasome
degradation. Pathway analyses highlighted SMA-related alterations in cellular homeostasis, signaling,
response to environmental cues, and cellular and immune stress responses. Validation with a qRT-PCR
array showed strong concordance with the sequencing data. These findings identify key molecular
themes in SMA pathogenesis, providing potential targets for new malaria therapies.

INTRODUCTION
Malaria remains a significant global public health challenge with 247 million annual cases and 619,000
deaths 1. The majority of the cases (234 million) and mortality (593,000) occurred in the WHO African
region and are due to infections with Plasmodium falciparum1, mainly in children under five of age.
Kenya faces a substantial challenge with P. falciparum malaria, reporting ∼3.42 (2.48–4.64) million
annual cases and ∼12,011 (10,800 − 14,000) deaths, primarily in the under-five population 1,2. Since the
disease burden increases with transmission intensity, severe malaria remains among the leading causes
of morbidity and mortality in children residing in holoendemic P. falciparum regions of Kenya, and other
such regions of sub-Saharan Africa 3–5. In high transmission regions, the primary manifestation of severe
malaria is severe malarial anemia [SMA, hemoglobin (Hb) < 6.0 g/dL] in both the presence and absence
of respiratory distress with cerebral malaria occurring only in rare (atypical) cases 5–7.

The etiology of SMA is multifaceted and includes overlapping characteristics such as the destruction of
infected and uninfected erythrocytes, sequestration of erythrocytes in the spleen, and suppression of
bone marrow functions (reviews, see Perkins 8,9). Although natural immunity is acquired following
repeated infections with P. falciparum10–12, innate immunity is particularly important for determining
disease severity in young, malaria-naïve children. Our previous longitudinal studies in Kenyan children
using a combination of candidate-gene approaches, genome-wide association studies, high-throughput
genotyping, and array-based whole transcriptional profiling revealed that the development of SMA is
mediated, partially by innate immune response genes 8,13−16. Our targeted transcriptome analyses also
revealed that differentially expressed genes (DEGs) in host ubiquitination processes are a central feature
of SMA pathogenesis 17. Microarray analysis of candidate genes in whole blood has also identified DEGs
that encode amino acid transport, phospholipid metabolic processes, and positive regulation of nitrogen
compound metabolic processes in Gabonese children with SMA (< 6 years old) 18.
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Advances in high-throughput sequencing technologies and bioinformatics analyses have provided
important insight into the human immune response to P. falciparum and identified potential vaccine
candidates 18–21. For example, studies investigating gene expression in adults during controlled human
malaria infection experiments identified > 2,700 DEGs in the whole blood transcriptome, for which a
subset of 265 genes was associated with transcription and cell-cycle regulation, phosphatidylinositol
signaling, and erythrocytic development 22. In addition, dual next-generation RNA sequencing in whole
blood, which concomitantly captures host and parasite gene expression, showed that severe malaria (i.e.,
cerebral malaria, hyperlactatemia, or their combination) in Gambian children (< 16 years old) was
associated with increased expression of granulopoiesis and interferon-γ–related genes, and suppression
of type 1 interferon signaling 20. Despite progress in defining the human immune response to P.
falciparum, a comprehensive investigation of the entire expressed transcriptome has not been reported in
children who develop SMA, the group who suffers the highest global morbidity and mortality 5,6,9,23−26.
Here, we present the top emergent biological processes, networks, and pathways for the first entire
expressed whole blood transcriptome in Kenya children (< 5 years old) from a holoendemic region of
western Kenya who develop SMA as the exclusive phenotype of severe malaria.

RESULTS
Demographic and Clinical Characteristics of the Study Participants

Admission demographic and clinical characteristics of the children selected for RNA-Seq in whole blood
are shown in Table 1. Based on the selection criteria, sex (p = 0.800), overall age (p = 0.797), and
distribution within age categories (p = 0.461) were comparable. Glucose levels (p = 0.967) and auxiliary
temperature (p = 0.051) were comparable between the groups. Consistent with more profound anemia in
children with SMA, hematocrit (p = 1.242E-11) and red blood cells (p = 1.790E-11) were lower, while red
cell distribution width (p = 4.050E-4) and mean corpuscular volume (p = 0.002) were elevated. White blood
cells (p = 1.390E-4) and lymphocyte (p = 1.000E-6) counts were also elevated in children with SMA. Other
hematological measures were comparable between the groups, as were parasitological indices. There
was a lower distribution of HbAS and higher proportion of HbSS in the SMA group (p = 0.029), yet not
significant after multiple test correction.
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Table 1
Demographic and clinical characteristics of the study participants.

Characteristics Total non-SMA

(Hb ≥ 6.0
g/dL)

SMA

(Hb < 6.0
g/dL)

p-value

No. of participants, n 66 41 25  

Sex, n (%)        

Male 33 (50.0) 20 (48.8) 13 (52.0) 0.800a

Female 33 (50.0) 21 (51.2) 12 (48.0)

Age, months 24.5 (23.3) 24.0 (22.0) 25.0 (28.5) 0.797b

0–12.9 12 (18.2) 7 (17.1) 5 (20.0) 0.461

13–24.9 21 (31.8) 14 (34.1) 7 (28.0)

25–35.9 14 (21.2) 9 (22.0) 5 (20.0)

36–48.9 17 (25.8) 11 (26.8) 6 (24.0)

> 49 2 (0.0) 0 (0.0) 2 (8.0)

Glucose, mmol/L 5.0 (2.0) 5.0 (2.3) 5.0 (1.7) 0.967b

Admission temperature, °C 37.9 (1.1) 38.0 (1.2) 37.7 (0.8) 0.051b

Hematological Parameters

Hemoglobin, g/dL 9.2 (5.2) 9.9 (1.4) 4.6 (1.2) NA

Hematocrit, % 25.1 (15.8) 29.8 (5.9) 14.4 (2.9) 1.242E-
11b

Red blood cells, × 106/µL 3.5 (2.5) 4.3 (1.0) 1.9 (0.9) 1.790E-
11b

Red cell distribution width, % 19.8 (5.9) 18.7 (3.4) 22.3 (8.9) 4.050E-
4b

Data are the median (interquartile range; IQR) unless otherwise noted. Children (n = 66) presenting
with malaria at SCRH were recruited. Based on hemoglobin (Hb) levels, children were categorized into
either non-severe malaria anemia (non-SMA; Hb ≥ 6.0 g/dL, n = 41) or severe malarial anemia (SMA;
Hb < 6.0 g/dL, n = 25). aFisher’s exact test with exact p-values for homogeneity was performed. bTwo-
sided Mann-Whitney-U tests were used to compare the non-SMA and SMA groups, cGroup means
were compared by two-sided, two-sample t-test, with equal variance. All p-values shown in bold
remained below the significance level after multiple test correction using the Bonferroni-Holm method
(familywise error rate, significance level 0.050). Abbreviations: MPS - malaria parasites presented as
mean (standard deviation).
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Characteristics Total non-SMA

(Hb ≥ 6.0
g/dL)

SMA

(Hb < 6.0
g/dL)

p-value

Mean corpuscular volume, fL 71.0 (14.2) 69.5 (9.2) 78.6 (29.9) 0.002b

Mean corpuscular hemoglobin, pg 23.9 (6.3) 22.9 (4.8) 26.7 (9.4) 0.022b

Mean corpuscular hemoglobin
concentration, g/dL

31.9 (5.9) 32.4 (6.7) 31.4 (5.6) 0.372b

Platelets, ×103/µL 130.3
(99.2)

124.4 (85.7) 134.0
(139.7)

0.615b

Platelet distribution width, % 16.9 (1.2) 16.5 (1.3) 17.3 (0.9) 0.730c

Mean platelet volume, fL 8.6 (1.8) 8.5 (1.6) 8.9 (1.9) 0.124b

WBCs, ×103/µL 12.7 (10.3) 11.3 (6.9) 19.8 (11.5) 1.390E-
4b

Lymphocytes, ×103/µL 4.2 (4.7) 3.7 (1.6) 10.0 (9.2) 1.000E-
6b

Monocytes, ×103/µL 1.4 (1.3) 1.2 (1.3) 1.7 (1.4) 0.022b

Neutrophils, ×103/µL 5.4 (6.1) 5.3 (4.2) 6.0 (6.9) 0.438c

Granulocytes, ×103/µL 7.0 (4.3) 6.7 (3.0) 9.1 (5.8) 0.373c

Parasitological Indices

Parasite density, MPS/µL 38250
(82263)

57915
(81568)

14191
(68728)

0.155b

Low (1–5,000) 14 (21.2) 6 (14.6) 8 (32.0) 0.134a

Moderate (5001–50,000) 23 (34.8) 13 (31.7) 10 (40.0)

High (50,001–100,000) 17 (25.8) 14 (34.1) 3 (12.0)

Hyper (> 100,001) 12 (18.2) 8 (19.5) 4 (16.0)

Data are the median (interquartile range; IQR) unless otherwise noted. Children (n = 66) presenting
with malaria at SCRH were recruited. Based on hemoglobin (Hb) levels, children were categorized into
either non-severe malaria anemia (non-SMA; Hb ≥ 6.0 g/dL, n = 41) or severe malarial anemia (SMA;
Hb < 6.0 g/dL, n = 25). aFisher’s exact test with exact p-values for homogeneity was performed. bTwo-
sided Mann-Whitney-U tests were used to compare the non-SMA and SMA groups, cGroup means
were compared by two-sided, two-sample t-test, with equal variance. All p-values shown in bold
remained below the significance level after multiple test correction using the Bonferroni-Holm method
(familywise error rate, significance level 0.050). Abbreviations: MPS - malaria parasites presented as
mean (standard deviation).
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Characteristics Total non-SMA

(Hb ≥ 6.0
g/dL)

SMA

(Hb < 6.0
g/dL)

p-value

Geomean parasitemia, /µL 23,647 28,888 17,029 0.447c

Genetic Variants

Sickle cell trait, n (%)       0.029a

Hb AA 51 (77.3) 35 (85.4) 16 (64.0)

Hb AS 6 (9.1) 4 (9.8) 2 (8.0)

Hb SS 9 (13.6) 2 (4.9) 7 (28.0)

Data are the median (interquartile range; IQR) unless otherwise noted. Children (n = 66) presenting
with malaria at SCRH were recruited. Based on hemoglobin (Hb) levels, children were categorized into
either non-severe malaria anemia (non-SMA; Hb ≥ 6.0 g/dL, n = 41) or severe malarial anemia (SMA;
Hb < 6.0 g/dL, n = 25). aFisher’s exact test with exact p-values for homogeneity was performed. bTwo-
sided Mann-Whitney-U tests were used to compare the non-SMA and SMA groups, cGroup means
were compared by two-sided, two-sample t-test, with equal variance. All p-values shown in bold
remained below the significance level after multiple test correction using the Bonferroni-Holm method
(familywise error rate, significance level 0.050). Abbreviations: MPS - malaria parasites presented as
mean (standard deviation).

Differential Gene Expression and Central Regulatory Features in SMA

Differential expression analysis identified 3,420 up- and 3,442 down-regulated genes (padj < 0.050) in
children with SMA (Fig. 1A). Comparison of the DEGs revealed 992 genes that were uniquely expressed in
non-SMA, 328 in SMA, and 15,592 co-expressed genes (Fig. 1B). A non-supervised hierarchical cluster
analysis of the top 1000 DEGs identified unique co-regulated gene clusters in children with SMA, and
computed the distribution of clinical variables (i.e., parasitemia, sickle cell status, and age) in each of the
groups (Fig. 1C).

Canonical pathway maps for direct functional interactions were generated to gain insight into the
networks for two of the major clusters, one down-regulated (n = 156, cluster 1) and one up-regulated (n = 
114, cluster 2). The network for the down-regulated genes (cluster 1) was IRF1↔IL-1β↔Caspase-
1↔Caspase-4↔FasR with the transcription factor, IRF1, as the central divergence hub (36 direct
interactions) and IL-1β as the central convergence hub (27 direct interactions, Fig. 1D). The top process
associated with the functional interactions for cluster 1 was Response to Stress (p = 2.404E-08). Cluster 2
(up-regulated) generated a TCF7L1↔E2A↔RING2 network with two transcription factors, TCF7L1, as the
central divergence hub (26 direct interactions) and E2A, as a secondary divergence hub (10 functional
interactions). The central convergence hub in cluster 2 was RING2 with 5 functional interactions (Fig. 1E).
Regulation of Metabolic Process was the top represented process for cluster 2 (p = 2.671E-09).
Collectively, these results suggest that SMA is characterized by enhanced stress responses and
perturbations in metabolic processes.
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Altered Leukocytic Immune Cell Profiles in SMA

To determine if leukocytic immune profiles differed in children who developed SMA, a bioinformatic
approach was implemented using CIBERSORTx. Although there was interindividual variability, 10 immune
cell types were differentially expressed at p < 0.050 (Fig. 2A). Children with SMA had increased expression
of naïve B cells (p = 9.741E-05), CD8 T cells (p = 0.009), CD4 memory resting T cells (p = 0.001), resting
NK cells (p = 0.002), monocytes (p = 0.039), and M2 macrophages (p = 0.002) (Fig. 2B). In contrast, the
SMA group had a lower proportion of expression for activated dendritic cells (p = 0.001), activated mast
cells (p = 0.014), and neutrophils (p = 4.826E-04), along with marginally reduced expression of naïve CD4
T cells (p = 0.053) (Fig. 2B). The immune cell type patterns observed indicate that children with SMA have
a decreased antigenic response, reduced immune priming, and enhanced polarization towards cellular
proliferation and tissue repair.

Functional Enrichment Analysis Reveals Distinct Features of SMA

To identify biological processes characteristic of developing SMA, enrichment analysis was performed.
Gene ontology (GO) enrichment analysis was performed for three domains (i.e., biological process,
cellular components, and molecular functions) with the top 20 in each presented in Fig. 3A. Of the three
domains, biological processes showed the greatest enrichment in children with SMA, for which altered
neutrophil responses (padj = 1.041E-20 to 1.528E-20) and autophagy-related processes (padj = 3.215E-20
to 6.970E-15) ranked among the highest. The top cellular components enriched in SMA included
endosome responses (padj = 5.427E-10 to 5.427E-10). For molecular functions, ubiquitin-related process
showed the greatest enrichment (padj = 2.867E-07 to 1.779E-03). Consistent with GO process results, the
top-ranked Reactome enriched pathways in children with SMA were neutrophil degranulation (padj = 
8.388E-18), class I MHC-mediated antigen processing and presentation (padj = 4.400E-08), and antigen
processing involving the ubiquitination and proteasome degradation (padj = 3.810E-05, Fig. 3B and C).
Results from the GO and Reactome enrichment analyses converge on common biological processes and
suggest that SMA is characterized by altered neutrophil responses, perturbations in autophagy and
endosomal pathways, and activation of ubiquitin-related processes.

KEGG Canonical Pathways Implicated in SMA: Functional classification of the DEGs between SMA and
non-SMA for the KEGG pathways is shown in Fig. 4A. The top-ranked pathways were: (i) cellular
processes - endocytosis (padj = 3.380E-05); (ii) environmental information processing - TNF signaling
(padj = 3.829E-04); (iii) genetic information processing - protein processing in ER (padj = 7.880E-09),
which was also the most significant of all pathways; (iv) metabolism - inositol phosphate metabolism
(padj = 4.369E-02); and (v) organismal systems - FcγR-mediated phagocytosis (padj = 3.829E-04).
Collectively, the KEGG results suggest that children with SMA exhibit significant alterations in immune
response triggering, cellular recycling processes, and protein regulation.

Endoplasmic Reticulum Quality Control Dysfunction in SMA: To further characterize the pathogenesis of
SMA, we focused on the top emergent pathway generated from the KEGG database: Protein Processing in
Endoplasmic Reticulum (ER; Fig. 4B). Children with SMA had elevated expression of ERManI and PERK
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and decreased expression of HSP40, EDEM, PDIs, and TRAP, indicating that the ER quality control system
is impaired, leading to potential protein misfolding and cellular dysfunction. This is consistent with up-
regulation of several transcripts in the ubiquitin ligase complex in the ER membrane (i.e., Ubx, gp78, and
Derlin1) and dysregulation in the ER cytoplasm (i.e., elevated HSP40, RBX1, and Skp1, and decreased
UbcH5 and FBP). Because of misfolded or damaged proteins, the ER-associated degradation pathway
was activated, as illustrated by increased Otu1 and RAD23 expression. Further indications of ER-
associated cellular stress and attempts to maintain cellular homeostasis in children with SMA are
demonstrated by elevated Sec62/Sec63 complex subunits and MKK7.

MetaCore™ Canonical Pathways Implicated in SMA: Additional characterization of SMA pathogenesis
was carried out by exploring the top 20 pathway maps generated with MetaCore™ (Fig. 4C). The top-
ranked pathways were: (i) apoptosis and survival - p53/p73-dependent apoptosis (padj = 3.706E-08); (ii)
autophagy – autophagy (padj = 1.027E-07); (iii) cytoskeleton remodeling - regulation of actin
cytoskeleton organization by the kinase effectors of Rho GTPases (padj = 4.491E-08); (iv) development -
positive regulation of WNT β-catenin signaling (padj = 5.429E-10); and (v) immune response - IL-5
signaling via JAK/STAT (padj = 5.429E-10). These results show that the pathogenesis of SMA is a
complex and multi-faceted process that involves multiple molecular mechanisms involved in cell growth
and differentiation, as well as cellular and immune stress responses.

Deciphering Cellular Stress Responses in SMA

Of the top canonical pathways that emerged from MetaCore™, we focused on positive regulation of WNT/
β-catenin signaling to further define cellular and immune stress responses in SMA (Fig. 4D). Children with
SMA had reduced expression of WNT, but increased expression of the WNT receptor, LRP5/LRP6, and its
target, Axin, which was also signaled by increased expression of ZBED3, SIAH2, PP2C, PP1-cat, and
tankyrases. This transcriptional pattern indicates enhanced proteasomal degradation in the context of
reduced protection from degradation (i.e., down-regulation of NKD1 and NKD2), despite increased
expression of Dsh signaled by up-regulation of the WNT receptor (i.e., Frizzled), transmembrane receptor
(i.e., ITGB1), IRS-2, and USP9X, accentuated by decreased phosphorylation from RIPK4 and reduced
binding by GRB2 and β-aresstin2. Children with SMA also had increased expression for SMAD3, SMAD4,
TBLR1, Makorin-1, Trabid, UBE2B, RNF220, USP7, PKB, and USB47 in the context of decreased expression
in β-catenin, indicating activation of the non-canonical WNT signaling pathway. This pattern of
expression also suggests cellular stress responses and attempts to regulate protein degradation and
stabilize cell survival through alterations in ubiquitination and de-ubiquitination processes.

Validation of Whole Blood Transcriptome Data using a Targeted Gene Array: To validate the RNA-Seq
results, we utilized a targeted gene approach with a qRT-PCR array that captured 84 genes involved in
ubiquitination. A heatmap cluster analysis showed strong concordance in the fold-change and
directionality in the two platforms (Fig. 5A). Cluster analysis of the significant DEGs in the qRT-PCR array
showed a significant correlation with the same genes captured from RNA-Seq (r = 0.834, p < 0.001;
Fig. 5B). To further compare findings from the two datasets, a workflow was generated in MetaCore™ to
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identify common (shared) genes that mapped to pathways, GO processes, and process networks. The
combined data objects (gene set) from the two platforms revealed the following top-ranked features: (i)
pathway map – Proteolysis Ubiquitination (padj = 2.193E-11); (ii) GO process – Protein ubiquitination
(padj = 1.083E-12); and (iii) process network - Proteolysis Ubiquitin - proteasomal proteolysis padj = 
2.250E-05) (Supplemental Fig. 1A-C).

DISCUSSION
Severe life-threatening malaria is represented by distinct and overlapping disease features (one or more)
of the following: impaired consciousness, prostration, multiple convulsions, acidosis, hypoglycemia,
SMA, renal impairment, jaundice, pulmonary edema, significant bleeding, shock, and hyperparasitemia
27–33. Identifying common gene pathways/networks that encompass the diverse pathophysiological
landscape of severe malaria (i.e., mixed phenotype) has presented significant challenges, likely because
distinct biological processes may not share common networks. The clinical manifestations of severe
malaria and the age at which they present are largely driven by P. falciparum endemicity 9,34. The
overwhelming majority of life-threatening severe malaria occurs in holoendemic P. falciparum
transmission areas of sub-Saharan Africa in children under five years who develop SMA, making this
severe manifestation a leading cause of childhood deaths in such regions 8,9.

A major advantage of studies in holoendemic malaria regions, such as western Kenya, is that children
have a distinct pathophysiological presentation of SMA, making the discovery of gene-disease
relationships more feasible. Our previous studies have identified innate immune response genes that
influence the pathogenesis of SMA, largely through imparting changes in soluble mediators of
inflammation 8,9,15,35,36. However, this is the first investigation to examine the entire expressed peripheral
blood transcriptome in children whose primary phenotype of severe disease is SMA. Findings from this
study identify novel biological pathways and process networks that converge on perturbations in cellular
and immune stress responses, illustrating that the pathogenesis of SMA is complex and multi-faceted.

Molecular patterns in children with SMA were initially identified by hierarchical clustering of the top 1000
DEGs. Relationships that emerged from the analysis were then further deciphered by creating canonical
process networks for several gene clusters. Cluster 1 (IRF1↔IL-1β↔Caspase-1↔Caspase-4↔FasR)
contained a set of down-regulated genes that are central to host inflammasome activation, cell death,
and innate immune responses 37. Children with SMA had a decrease in the transcription factor, IRF1, and
downstream targets (i.e., IL-1β, capsases 1 and 4, and FasR) in the absence of a Nod-like receptor family
(i.e., NLRP1, NLRP3, and NLRC4) response 37–39. This suggests an inability to initiate pyroptosis and
dysregulated inflammasome. Cluster 2 (TCF7L1↔E2A↔RING2) was up-regulated in SMA and contained
a family of genes involved in cellular stress responses 40,41. This set of genes also emerged in the top-
ranked pathway (i.e., positive regulation of WNT/β-catenin signaling) suggesting that SMA is
characterized by increased cellular stress responses via enhanced proteasomal degradation in the
context of reduced protein degradation through the non-canonical WNT signaling pathway.



Page 11/30

Inheritance of sickle cell trait (HbAS) has protective effects against the development of severe malaria 42–

46. As expected in a holoendemic region, there was a higher proportion of HbSS carriage (sickle cell
disease) in the SMA group. Since hierarchical clustering analysis indicated more pronounced gene
dysregulation in children with HbSS, the analyses were repeated without these children. This resulted in
an identical network of down-regulated genes (cluster 1), but a different set of up-regulated genes
(TAL1↔LYL1↔EKLF1↔HMBS↔RHD) that are involved in the regulation and maturation of erythrocytes
and Hb production (review, see Love 47). Thus, there are both overlapping and distinct molecular profiles
in children who develop SMA with and without inheritance of HbSS (Supplemental Fig. 2A-C).

Results from the immune profiling with CIBERSORTx indicate that children with SMA have a decreased
antigenic response, reduced immune priming, and an enhanced polarization towards cellular proliferation
and repair. The hematological patterns captured by the CBC, although not as specific, parallel results
obtained from the immune cell profiling. Consistency between the two independent methods supports the
reliability of the observed immune alterations in SMA.

To gain further insight into SMA pathogenesis, we used a combination of functional enrichment analysis
platforms to identify convergent patterns amongst central themes. One distinct feature of SMA was
neutrophil activation and degranulation. Although not specifically in children with SMA, previous studies
suggest that neutrophil activation is more pronounced in severe malaria 20,48−53. An additional molecular
convergence among children with SMA was perturbations in autophagy. Altered autophagy, to our
knowledge, has not been described in human malaria pathogenesis, but autophagy defects appear
common in various other infectious diseases (review, see Deretic 54).

The transcriptome in children with SMA also revealed dysregulation in proteasome-mediated activity.
This finding parallels our earlier studies that were the first to report DEG in ubiquitin-related processes as
a feature of SMA 17,55. Canonical pathway analyses showed additional molecular features of SMA
including changes in cellular homeostasis, signaling, environmental response, and various molecular
mechanisms that regulate cellular and immune stress responses. A key emergent pathway in SMA was
protein processing in the ER with DEGs involved in protein folding, export, targeting, ERAD, and the
ubiquitin ligase complex. While these pathways have not been described for the human response to
malaria, similar pathways are operational in human malaria parasites and are being explored as novel
therapeutic targets 56–58.

Changes in endocytosis-mediated pathways were also witnessed in SMA, indicating significant changes
to cellular structure as a molecular theme, as has been described in experimental murine cerebral malaria
models 59. The central role of cellular stress response disruptions in SMA is further supported by
dysregulation in the WNT/β-catenin signaling pathway. While changes in this pathway have been
implicated in various diseases and are known to be affected by antimalarial drugs 60–64, its role in
immune response to malaria is a novel finding. Validation of the transcriptome data was performed using
a targeted human ubiquitination qRT-PCR array technology containing 84 genes. We compared 15
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significant DEGs previously identified in children with SMA 17, and observed a high level of concordance
and identical directionality from the two platforms. Moreover, enrichment analyses using the full datasets
for both platforms revealed highly consistent and shared process networks and pathways’, providing
further validation and confirmation that disruptions in the ubiquitin proteasome system is a fundamental
feature of SMA pathogenesis.

In conclusion, an unbiased RNA-Seq analysis capturing the entire expressed blood transcriptome
identified key molecular aspects of SMA pathogenesis, such as changes in neutrophil responses,
autophagy, endosomal pathways, and activation of ubiquitin-related processes and cellular stress
responses. Strengths of this study are the extensive clinical characterization of the cohort which allowed
for the exclusion of co-infections known to influence the immune response 65–67, and a robust sample
size. Limitations of the study include potential generalizability to other forms of severe malaria, such as
cerebral malaria, which is likely a distinct pathogenesis. To determine the impact of the observed
transcriptional changes on protein expression, we are currently performing proteomics in the cohort
presented here. Collectively, results presented here highlight the complexity and multi-dimensional nature
of SMA. An improved understanding of this complexity can guide the development of novel targeted
therapies for improved clinical outcomes.

METHODS
Study region and participants

This study was conducted at Siaya County Referral Hospital (SCRH), located in a holoendemic P.
falciparum transmission region in western Kenya where SMA is among the main causes of childhood
morbidity and mortality in the community 5,6,25,26,68−70. Individuals inhabiting the study area are
predominantly from the Luo group (> 96%), an ethnically homogeneous population 71. Children presenting
at SCRH with symptoms of infectious diseases, and who met the following inclusion criteria; auxiliary
temperature ≥ 37.5°C (axillary), age 0–59 mos., distance to hospital ≤ 25 km, and parent/guardian
willing and able to provide signed informed consent and attend follow-up visits (14 days later), were
approached for enrollment into the study. Children presenting with suspected non-infectious diseases
were excluded. Based on inclusion/exclusion criteria, 565 children were enrolled into the acute febrile
cohort (3/2017 to 9/2020). For children requiring hospitalization and those released as outpatients,
venipuncture blood samples (3-4mL) were collected on admission into the study (day 0), prior to
treatment with antimalarials or other medication. The study was approved by the Kenya Medical
Research Institute Scientific and Ethics Review Unit, the University of New Mexico Institutional Review
Board, and the Maseno University Scientific and Ethics Review Committee. Written informed consent was
provided by the parents/legal guardian of the study participants.

Laboratory procedures
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At enrollment, demographic and clinical data were collected, and a physical examination performed.
Giemsa-stained thin blood smears were prepared, examined, and asexual malaria parasite densities
determined 25. Complete blood counts (CBCs) were determined using a DxH 500 hematology analyzer
(Beckman-Coulter). Since we have shown that co-infections influence malarial anemia severity in the
Siaya community, all children were tested for HIV-1 and blood-borne bacterial infections according to our
previously described methods 65–67. Parents/legal guardians of participating children received pre- and
post-test HIV&AIDS counseling. To further characterize potential causes of anemia, sickle-cell trait status
was determined by alkaline cellulose acetate electrophoresis (Helena BioSciences).

Study participant selection for RNA-Seq

For selection of samples for the RNA-Seq from the 565 enrolled study participants, children with malaria
were stratified into two groups based on Hb levels (i.e., Hb ≥ 6.0 g/dL and Hb < 6.0 g/dL), and then
matched according to age and sex. Further selection criteria for the RNA-Seq included omitting children
with any detected co-infections (e.g., HIV, tuberculosis, bacteremia, etc) 65–67. This selection strategy
yielded 41 children with non-SMA (Hb ≥ 6.0 g/dL) and 25 children with SMA (Hb < 6.0 g/dL).

RNA isolation, library construction, and sequencing

Approximately 500µL of whole blood collected from venipuncture prior to treatment was stabilized with
Trizol® (Thermo Fisher Scientific Inc.), immediately frozen in liquid nitrogen, and then subsequently
stored at -80°C. Total RNA was batch-isolated using E.Z.N.A® Total RNA Kit (Omega Bio-Tek Inc.), treated
with RNase-free DNase I (New England Biolabs Inc.), and further processed using RNA Clean &
Concentrator (ZYMO Research Corp.). Prior to library preparation and sequencing, RNA degradation and
contamination were captured on agarose gels with purity confirmed using a NanoPhotometer®
(IMPLEN). RNA integrity and quantification were measured using the RNA Nano 6000 Assay Kit on a
Bioanalyzer 2100 system (Agilent Technologies). To capture the entire expressed transcriptome,
sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina (NEB)
following the manufacturer’s protocol. Clustering of index-coded samples was performed on a cBot
Cluster Generation System using PE Cluster Kit cBot-HS (Illumina). Sequencing was performed to a depth
of > 20 million high-quality mappable reads on an Illumina NovaSeq 6000 sequencer (Novogene
Corporation Inc.). Raw reads of FASTQ format were processed to obtain clean reads used in the
downstream analyses.

Bioinformatics analysis

Raw data were quality-controlled and filtered using fastp 72 and aligned to the human reference genome
(GRCh38.p13) 73 using STAR version 2.5 74. HTSeq v0.6.1 75 was used to generate read counts for
individual transcripts for each sample with mRNA abundance normalized as Fragments Per Kilobase
Million Reads (FPKM) of each gene 19. P-values were adjusted using the Benjamini Hochberg procedure
76.
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Differential expression analysis: Differential expression analysis of the two clinical conditions was
performed using edgeR (3.16.5). For this study, adjusted p-values (padj) of < 0.050 plus absolute log2-
(fold-change) of > 1 were used as the threshold for DEGs. To identify the correlation between different
genes, samples were clustered using expression level FPKM utilizing the hierarchical clustering distance
method.

Leukocytic immune cell profiling: The relative percentage of different immune cell types/subtypes in
whole blood was imputed using CIBERSORTx 77,78. This analytical tool processes gene expression data
from a bulk admixture of different cell types to estimate the abundance of member cell types in a mixed
cell population 79. The curated signature matrix file, LM22, was used as the reference to deconvolute the
relative fraction of different cell types in whole blood, resulting in inference of 22 types/subtypes of
leukocytes. Imputation of cell-type specific gene expression levels were performed at the sample-level
with the output presented as the fractional proportion in whole blood for each study participant. The
relative proportions of immune cell types were then compared between the non-SMA and SMA groups.

Enrichment analysis: ClusterProfiler 80,81 R package was used to implement the enrichment analysis.
Gene Ontology (GO) analysis of DEGs was used to infer functional and biological functions, correcting
for gene length bias 81. Reactome Enrichment Analysis was used to identify pathways that mapped to
biological and cellular networks 82. Significantly enriched pathways were identified with Kyoto
Encyclopedia of Genes and Genomes (KEGG) using the R package 'ClusterProfile’ 81. For all analysis,
padj < 0.050 were considered significant enrichment. Confirmation and further discovery of the findings
were implemented by using MetaCore™ (https://clarivate.com/products/metacore/) to identify DEGs that
mapped to GO processes, process networks, and pathways.

Validation of transcriptome profiles

To validate the transcriptome data, we used data generated from a targeted gene approach that
measured transcript expression levels of 84 key genes involved in the ubiquitination process (Human
Ubiquitination Pathway RT² Profiler PCR Array kit, Qiagen). Total RNA was isolated from whole blood
samples from children with non-SMA (Hb ≥ 6.0 g/dL, n = 23) and SMA (Hb < 6.0 g/dL, n = 21) who were
not included in the RNA-Seq. Cluster analysis was used to compare the significantly expressed genes in
the quantitative reverse transcription polymerase chain reaction (qRT-PCR) array with identical genes
generated from the RNA-Seq. Convergence between the two datasets was determined by the ‘compare
experiments workflow’ in MetaCore™ for GO processes, process networks, and pathways.
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Figure 1

RNA-seq data for Kenyan children presenting with non-SMA (Hb≥6.0g/dL, n=41) and SMA (Hb<6.0g/dL,
n=25). We used the edgeR R package (3.16.5) to infer the overall distribution of differentially expressed
genes. (A). Volcano plot showing 3,420 up-regulated and 3,442 down-regulated protein coding genes in
Kenyan children presenting with non-SMA (Hb³6.0 g/dL, n=41) and SMA (Hb<6.0 g/dL, n=25) cases. 
Horizontal axis shows the fold change of genes in different groups. Vertical axis shows the statistically
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significant degree of changes in gene expression levels. The points represent genes, blue dots indicate no
significant difference in genes, red dots indicate up-regulated differential expression genes, green dots
indicate down-regulated differential expression genes. (B).  Venn Diagram showing Co-expression genes
uniquely expressed within each clinical group, with the overlapping regions showing the number of genes
that are co-expressed in two or more groups.  At enrollment into the study, children with non-SMA had 992
uniquely expressed genes, while those in the SMA group had 328 genes expressed.  Co-expressed genes
in both clinical groups were 15,596. (C). Hierarchical Clustering Heatmap showing a Cluster analysis on
top 1000 differential expressed genes. Hierarchical clustering analysis was carried out for log2(FPKM+1)
of union differential expression genes in children with SMA relative to those in the non-SMA group. Genes
within the same cluster show the same trends in expression levels under different clinical groups.  The
distribution of parasitemia, sickle cell status, and age are shown on the top for each group. The white
color implies the average magnitude of gene expression. The brightest blue represents the smallest value,
and the brightest red represents the highest value.  Cluster 1 shown in hatched black outline and cluster 2
shown with solid black outline.  (D and E). DEGs enrichment analysis of the process networks based on
emerging clusters from the hierarchical Heatmap. The relationship between significant DEGs in the
selected clusters for the SMA and non-SMA groups was determined using enrichment analysis to identify
process networks on MetaCoreTM. The IRF1, IL-1β, caspase-1, caspase-4, FasR (CD95) present down-
regulated genes (n=164) in cluster 1 of the heatmap (Fig. 1D), while the TCF7L1 (TCF3), E2A, RING2
network shows up-regulated (n=114) genes in cluster 2 (Fig. 1E).  The blue-shaded circles show down-
regulated genes and the red-shaded circles are up-regulated genes.  The details of symbols used in these
figures are available at: https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf.
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Figure 2

Estimation of Immune Cell Type Proportions in Whole Blood. Deconvolution analysis of the different cell
types in blood was determined using CIBERSORTx. Cellular frequencies were imputed using LM22 as the
signature matrix file. (A) Heatmap representing the cell type expression for 22 types/subtypes of
leukocyte cell populations presented at the individual patient level in the non-SMA (Hb³6.0 g/dL, n=41)
and SMA (Hb<6.0 g/dL, n=25) groups. *Indicates significant differences (p<0.050) in immune cell



Page 25/30

proportions between the two groups determined using two-sided, two-sample t-tests with Welch
correction.  (B) Relative proportion (%) of expression for the immune cell types that differed significantly
between children with non-SMA and SMA. Bivariate analysis was performed using two-sided, two-sample
t-tests with Welch correction and presented as mean (SEM) for the non-SMA and SMA groups.

Figure 3
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Functional enrichment analysis. (A) GO Enrichment Analysis showing the top 20 enriched terms in the
biological process, cellular component, and molecular function categories of DEGs in children with SMA
(Hb<6.0 g/dL, n=25), relative to those in the non-SMA (Hb≥6.0 g/dL, n=41) group.  GO enrichment
analysis was done using the clusterProfiler R package, while correcting for bias on gene length.  GO terms
of enriched DEGs with p-adjusted values <0.050 were considered significantly. The X-axis represents the
negative log10 of p-adjusted (-log10[p-adjusted) values. (B) Reactome enrichment analysis of top 20
enriched terms that were significantly different in children with SMA, relative to those with non-SMA. (C)
Reactome enrichment histogram of the top 20 terms. The Y-axis indicates the pathway name. The X-axis
represents the gene ratio of up- and down-regulated genes. The size of the black dots corresponds to the
number of genes annotated, and the depth of the red color implies magnitude of enrichment (p-adjust)
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Figure 4

Canonical pathway analysis of DEGs.  (A)  Functional classification of KEGG pathway of the DEGs
between non-SMA (Hb³6.0 g/dL, n=41) and SMA (Hb<6.0 g/dL, n=25) groups. The KEGG terms were
grouped into 5 categories, namely; (i) cellular processes, (ii) environmental information processing, (iii)
gene information processing, (iv) metabolism, and (v) organismal systems.  The left Y-axis shows the
KEGG terms.  The right Y-axis shows p-adjusted values for each KEGG term.  The X-axis represents the
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negative log 10 of p-adjusted values (-log10[p-adjusted]). (B) The top emerging KEGG term was the protein
processing in the endoplasmic reticulum pathway. DEGs mapped to the pathway in children with SMA
relative to non-SMA groups.  Red boxes show genes that were up-regulated in children with SMA and
green boxes were genes down-regulated in SMA cases relative to controls. (C) Distribution of top 20 gene
ontology (GO) terms using MetacoreTM. The GO terms were classified into 5 categories; (i) apoptosis and
survival, (ii) autophagy, (iii), cytoskeleton remodeling, (iv) development and (v) immune response.  The
left Y-axis shows the GO terms. The right Y-axis shows p-adjusted values for each GO term. The X-axis
represents the -log10[p-adjusted.  (D)  A schematic model of the top GO enrichment term, the positive
regulation of WNT/Beta-catenin signaling in the cytoplasm. The pathway map was generated using
MetaCoreTM. The red color thermometers show annotated genes that were up-regulated in children with
SMA. Blue colored thermometers show genes that were down-regulated in cases versus controls. The
details of symbols used in these figures are:
https://portal.genego.com/legends/MetaCoreQuickReferenceGuide.pdf.
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Figure 5

Validation of the transcriptome data. A Human Ubiquitination Pathway RT2 Profiler PCR Array kit (Qiagen,
LLC-USA, Germantown, MD, United States) was used to measure the expression of genes involved in the
ubiquitination process (A) Heat map shows a graphical and color-coded representation of fold regulation
(Log2) comparison of significant DEGs using the RT-qPCR array versus data generated from the whole
blood transcriptome analysis. The Y-axis shows the gene names. The X-axis shows the assay type. The
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darkest purple represents the lowest fold change, and the brightest yellow represents the highest fold
change in children with SMA relative to non-SMA. (B) Correlation scatter plot of the significantly
expressed ubiquitination process genes in the RT-qPCR analysis (Y-axis) versus the transcriptome data
(X-axis). There was a strong positive correlation of the DEGs in SMA cases (r=0.834, p<0.001).
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