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Abstract. Malaria and malnutrition remain primary causes of morbidity and mortality among children younger than 5
years in Africa. Studies investigating the association between malnutrition and subsequent malaria outcomes are in-
consistent.Westudied theeffects ofmalnutrition on incidenceandprevalenceofmalaria parasitemia indata fromacohort
studied in the 1990s. Data came from the Asembo Bay cohort study, which collected malaria and health information on
children from 1992 to 1996 in western Kenya. Infants were enrolled at birth and followed up until loss to follow-up, death,
end of study, or 5 years old. Anthropometric measures and blood specimens were obtained monthly. Nutritional expo-
sures included categorized Z-scores for height-for-age, weight-for-age, and weight-for-height. Febrile parasitemia and
afebrile parasitemia were assessed with thick and thin blood films. Multiply imputed and weighted multinomial gener-
alized estimating equationmodels estimated odds ratios (OR) for the association between exposures and outcomes. The
sample included 1,182 children aged 0–30 months who contributed 18,028 follow-up visits. There was no significant
association betweenmalnutrition and either incident febrile parasitemia or prevalent febrile parasitemia. Prevalence ORs
for afebrile parasitemia increased from 1.07 (95% CI: 0.89, 1.29) to 1.35 (1.03, 1.76) as stunting severity increased from
mild to severe, and from 1.16 (1.02, 1.33) to 1.35 (1.09, 1.66) as underweight increased from mild to moderate. Stunting
andunderweight didnot showasignificant associationwith subsequent febrile parasitemia infections, but theydid showa
modest association with subsequent afebrile parasitemia. Consideration should be given to testing malnourished chil-
dren for malaria, even if they present without fever.

INTRODUCTION

Malaria andmalnutrition remainprimary causesofmorbidity
and mortality among children younger than 5 years. Recent
estimates indicate 270,000 children younger than five globally
died frommalaria in 2018.1 In Africa, malaria remains a leading
cause of childhood mortality.2 In 2019, 57.5 million African
children (29%) younger than 5 years were stunted (low height-
for-age [HAZ]), and 12.7 million (6.4%) were wasted (low
weight-for-height).3 East Africa and Kenya have particularly
high burdens of malnutrition. More than one-third (36%) of all
children in EastAfrica are stunted.4 InKenya alone, almost two
million children (26%) younger than 5 years were stunted in
2014.4

Malnutrition, a syndrome of inadequate intake and ab-
sorption of protein, energy, andmicronutrients combinedwith
frequent infections that results in poor growth,5 affects a large
proportion of children in malaria-endemic regions. Malnutri-
tion may alter susceptibility to malaria infection, increase se-
verity of the disease by weakening the immune system and
preventing an adequate immune response against malaria,
or influence therapeutic effectiveness of antimalarial drugs.6

Malnutrition can impair the adaptive and innate immune re-
sponses, both of which are involved in the immune response
tomalaria.7 The innate immune system limits parasite density,
whereas the adaptive immune response works to remove the
parasite.8 Malnutrition may impair children’s ability to clear
an infection, resulting in higher population prevalence or

increased severity of disease. Malnutrition may also increase
children’s susceptibility to infection, resulting in higher pop-
ulation incidence. Different types of malnutrition, such as
stunting or wasting, may also have different effects on child-
ren’s susceptibility and response to malaria.
Results of previous studies on the relationship between

malnutrition and malaria have been inconsistent.9 Most pre-
vious studies investigated the association of malnutrition,
measured as anthropometric Z-score, with clinical malaria
incidence. Although most studies defined clinical malaria as
fever with diagnostically confirmed malaria, at least one10

used a clinical definition only, without laboratory confirmation.
Previous studies have used varying parasitemia thresholds
depending on the local epidemiology of malaria. Two longi-
tudinal studies found a significant association between mal-
nutrition and increased malaria incidence,11,12 whereas two
others found a significant association between wasting13 or
stunting14 and decreased malaria incidence. Most studies
have found no statistically significant association between
undernutrition and malaria.10,13,15–18 Inconsistency in the re-
sults of previous studies may be due to differences in study
population; differences in study design aspects such as
measures of malnutrition, malaria, or control for confounding;
and other factors involved in the host–parasite relationship.19

Half of the previous studies were conducted in the era before
widespread use of effective malaria interventions such as
distribution of insecticide-treated nets (ITNs), indoor residual
spraying, and treatment with artemisinin-based combination
therapy.10,11,14–16

A proportion of malaria infections, especially in highly en-
demic areas, may be asymptomatic.20,21 Many asymptomatic
infections go untreated, yet they can adversely affect child-
ren’s health, contributing to low-grade inflammation, lower
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hemoglobin and platelet counts,21 chronic anemia, cognitive
impairment, and reduced school performance.22 Asymptom-
atic infections can also contribute to ongoing malaria
transmission.20,22Only threeprevious studies investigated the
association of malnutrition with asymptomatic parasitemia,
also with inconsistent results.14,23,24

This study used a rich dataset from an era predating mass
scale-up of malaria interventions to investigate whether in-
cident or prevalent afebrile or febrile parasitemia was asso-
ciated with prior malnutrition among children younger than
3 years in western Kenya. The recent slowing of progress in
malaria control25 and continued increase in the absolute
number of stunted children in Africa26 make elucidating the
interactions between malaria and malnutrition a high priority.
As the public health community strives to further reduce the
burdens of both malnutrition and malaria, effective targeting
of limited services and supplies will be crucial. Using data
that were collected before the mass scale-up of malaria in-
terventions allows for an analysis with greater power to detect
associations, given the high prevalence of both malaria and
malnutrition during this time period. The results may be used
to prioritize interventions and research priorities as the global
response for both malnutrition and malaria becomes more
focused and strategic in an effort tomeet long-termgoals.27,28

METHODS

Study site and sample. Data for this study were collected
from theAsemboBayCohortStudy conducted in 15villages in
the Asembo Bay area of Siaya district in Nyanza Province,
western Kenya, between 1992 and 1996. The study was
designed to assess the epidemiology, entomology, immu-
nology, host factors, molecular biology, antigenic variation,
and population genetics of Plasmodium falciparum in a large
cohort of women and children in an area with intense malaria
transmission. Malaria was holoendemic in the study site, with
an estimated entomologic inoculation rate of 0.75 infective
bites per person per day.29 This area has two rainy seasons
from March to May and October to December, and two dry
seasons from January to February and June to September.
During the study period, chloroquine was the only malaria
intervention recommended by the Kenyan Ministry of Health
for treatment of uncomplicated malaria.30 Bed nets were
available but not systematically used.
Beginning in June 1992, all pregnantwomen in participating

villages were identified during a monthly census by trained
community health workers or birth attendants residing in the
same village. Women who provided informed consent were
enrolled in the study and visited every month at home by vil-
lage monitors who administered standard questionnaires and
obtained axillary temperatures, thick and thin blood smears,
and capillary blood samples preceding delivery. Mother–
infant pairs were visitedwithin 2weeks of birth, and then every
2 weeks thereafter. Siblings younger than 5 years were also
enrolled and followed up with the same procedures. At each
visit, questionnaires were administered and children’s health
was reported by the mother or an adult sibling or guardian.
Axillary temperatures were obtained using a digital ther-
mometer. Thick blood films were obtained for any children
with an elevated axillary temperature (³ 37.5�C). Capillary
blood, thick and thin blood films, and anthropometrics were
also routinely collected every 4 weeks. Height and weight

were measured in centimeters and kilograms (respectively) to
the nearest 10th. Childrenwhowere old enough to standwere
measured standing, and all othersweremeasured recumbent.
Blood films fromchildrenwith an elevated axillary temperature
(³ 37.5�C) were examined in the CDC/Kenya Medical Re-
search Institute laboratory the day they were collected. Any
participant with documented fever and malaria parasitemia
was visited the following day and treated with a single dose of
sulfadoxine/pyrimethamine (SP), as per the approved study
protocol. Children with documented parasitemia and no fever
were not treated; however, village monitors were available at
any time between visits to take temperatures and blood
smears for children who may have become ill. More severe
illnesses were referred to local health facilities. Mother–infant
pairswere followed upuntil loss to follow-up, death, end of the
study, or the infant’s fifth birthday.31

All blood films were stained with Giemsa, and parasites
were visually identified. Hemoglobin concentration (g/dL) was
measured using the HemoCue system (HemoCue, Anglholm,
Sweden).32 Hemoglobin genotyping was performed retro-
spectively using a PCRmethod.33 Additional details regarding
laboratory procedures and data collection have been de-
scribed previously.31

Measures. Malnutrition. Z-scores comparing a child’s
length/HAZ, weight-for-age (WAZ), and weight-for-length/
height (WHZ) to a reference population were calculated using
the WHO Multi Centre Growth Reference Study.34 Linear
growth was considered as length for children younger than 2
years, and height for children aged 2 years and older. For
simplicity, we will refer to height as the linear growth mea-
surement, regardless of the age of the child. Categorical ex-
posure variables were used to allow for more flexibility in
estimating the relationship between the exposures and the
outcomes, which was found to depart from linearity on the log
scale. Three different four-level ordinal categorical exposure
variables were created for each Z-score measure: 1) HAZ:
severe stunting (£ −3), moderate stunting (> −3 and £ −2), mild
stunting (>−2and<0), andnot stunted (³0); 2)WAZ:moderate
underweight (£ −2), mild underweight (> −2 and < 0), not un-
derweight (³ 0 and < 1), and overweight (³ 1); and 3) WHZ:
moderate wasting (£ −2), mild wasting (> −2 and < 0), not
wasted (³ 0 and <2), and overweight (³ 2). Severe underweight
and wasting were not included as exposure categories be-
cause the number of children in these categories was too
small for analysis. If more than two height and weight mea-
surements were made within a 1-month period, the Z-scores
for these measurements were averaged together before cre-
ating categorical variables.
Z-scores outside plausible bounds were flagged and

changed to missing, according to the following guidelines
defined by the WHO34: WAZ Z-score less than −6 or greater
than 5; HAZ Z-score less than −6 or greater than 6; weight-
for-height Z-score less than −5 or greater than 5. Accordingly,
215 (0.5%) HAZ, 54 (0.1%) WAZ, and 223 (0.5%) WHZ mea-
surements were flagged and changed to missing.
Beyond the WHO guidelines for plausible Z-score records,

there is a lack of research on methods to further assess the
accuracy of longitudinal anthropometric data. A method to
visually assess plausibility of height measurements was de-
fined based on previously described methods.35 Height for
each child was graphed over time and flagged for visual in-
spection if it indicated a decrease from the previous measure
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ofmore than2cm (regardless of the lengthof timebetween the
twoconsecutivemeasures). Flaggedheights that appeared as
a “divot,”deviating from the height trend,were discarded if the
following point returned to the original height trend. The pre-
vious height was discarded if it appeared as a “peak,” where
it deviated above the height trend, and the following height
returned to the original trend. The last height measurement
on a child was not flagged formissing unless it was clear there
was a loss of height from a consistent height trend in the
previous measurements. If no immediate trend could be seen
in the measurements before or after the flagged height, the
flagged measurement remained in the data. In the original
dataset, 1,057 (6%) height measurements were flagged and
visually inspected, and 847 (< 5%) were discarded. A similar
method was not used to assess weight measures as a de-
crease, and subsequent rebound in weight is plausible, es-
pecially in young children.
Malaria. Both prevalent and incident parasitemia were in-

vestigated as outcomes. All malaria parasite infections were
counted as prevalent cases, whereas infections were only
considered incident cases if the previous month showed no
parasites. Malaria infections were further categorized into
afebrile and febrile parasitemia. We considered malaria in-
fections to be afebrile if the child did not present with fever. A
repeated measure, three-level, ordinal categorical variable
was created indicating 1) no parasitemia, 2) afebrile para-
sitemia (presence of parasites without fever), and 3) febrile
parasitemia (presence of parasites with fever—axillary tem-
perature ³ 37.5�C). For analysis of prevalent parasitemia, the
entire sample was included, and both afebrile and febrile
parasitemia were defined as the presence of parasites with
(febrile) or without (afebrile) fever in the month following the
exposure, regardless of the child’s malaria status when the
exposurewasmeasured. For incident parasitemia, the sample
was restricted to visits with a negative blood film in the month
before the outcome measurement, limiting the population to
children who could be at risk for an incident infection when
the outcomewasmeasured. Incident afebrile parasitemia and
incident febrile parasitemia were then defined as the presence
of parasiteswith (febrile) orwithout (afebrile) fever in themonth
following exposure, among children with a negative blood film
in themonth before the outcomemeasurement (see Figure 1).
Outcomes measured 2 and 3 months after the exposure were
also considered. According to the study protocol, only chil-
dren presenting with febrile parasitemia were treated. There-
fore, repeated, prevalent, febrile infections may have been
recrudescent infections posttreatment, whereas repeated,
prevalent, afebrile infections likely resulted from untreated,
persistent infections.

Covariates. Covariates were identified from a directed
acyclic graph36 (DAG) informed by the literature (see Figure 2).
Time-varying covariates included non-malarial anemia,37–39

season,40–42 age,40 and non-malarial illness.43–45 Non-malarial
anemia was defined as a dichotomous variable indicating any
anemia (< 110 g/L hemoglobin) occurring without a concurrent
parasite density (density = 0), and notwithin 1month following a
febrile parasitemia infection. This was assessed in the month
before the exposure. This variable was included as a proxy for
iron-deficiency anemia, which may be a confounder of the re-
lationship between malnutrition and malaria. However, given
the numerous causes of anemia in this population, the effec-
tiveness of this variable as a proxy for iron-deficiency anemia
may be limited. Season was a three level-indicator variable
denoting dry, rainy, and transition months. Non-malarial illness
was a dichotomous variable assessed in the month before the
exposure, indicating inability to drink, experience of chills, di-
arrhea, vomiting, difficulty breathing, or fever, in the absence of
malaria parasitemia. Time was included as age (months from
birth) and modeled as a cubic term, based on the quasi-Akaike
information criterion comparing multiple functional forms.46

Time-fixed covariates included child gender,47 mother’s
education,48,49 socioeconomic status (SES),50,51 residence
sector,50,52–54maternal peripheral parasitemia at delivery,55,56

and sickle cell genotype.57,58 Mother’s education was a di-
chotomous variable indicating less than 7 years of schooling
or 7 years ormore. Socioeconomic status was a dichotomous
variable based on three indicators: ownership of more than
one building within a compound, ownership of a bicycle, and
ownership of a pressure lamp, based on perceptions of resi-
dents in the study area at the time of data collection.31 Villages
were grouped into four different sectors and coded as in-
dicator variables.Maternal peripheral parasitemia densitywas
a dichotomous variable indicating the presence or absence of
peripheral blood parasitemia at delivery. Sickle cell genotype
was coded as indicator variables (negative [HbAA], sickle cell
trait [HbAS], or sickle cell disease [HbSS]).
Auxiliary variables. Auxiliary variables that were used in the

multiple imputation model included mother’s height, birth
rank, andgestational age.Mother’sheightwasadichotomous
variable indicating less than 158 cm or 158 cm or more, as
maternal height < 158 cmmay increase the risk of intrauterine
growth restriction.59 Birth rank was a dichotomous variable
indicating the child’s rank at birth (singleton or twin). Gesta-
tional age was an ordinal variable indicating weeks of gesta-
tional age at birth.
Statistical analysis. Multinomial generalized estimating

equation models with an independent working correlation
structure were used to estimate the association between

FIGURE 1. Time line of exposure and outcome measurements. For prevalent parasitemia, all children were included in the analysis, and the
outcomewas measured 1 month after the exposure. For incident parasitemia, only children with a negative blood film at time t (1 month before the
outcome measurement) were included in the analysis.
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malnutrition and subsequent parasitemia while accounting
for repeated observations on the same children over time.60

First, an unweightedmodelwasused that adjusted for gender,
season, mother’s education, age (time), sector of residence,
maternal peripheral parasitemia, sickle cell genotype, and
non-malarial anemia and non-malarial illness in the month
before the exposure. This model provided estimates for odds
ratios (OR) comparing odds of parasitemia incidence or
prevalence across different levels of stunting, under/
overweight, and wasting. Effect measure modification by
non-malarial anemia and age was also explored. Results from
interaction models were compared with the single effect
models, and the interactions were assessed usingWald tests.
Therewere twotypesofmissingdata in theAsemboBayCohort

Studycompletelymissedvisits,wherenodatawerecollectedona
child for a particular month, and missing data within completed
visits, where some data were collected on a child in a particular
month, but not all. To address these two types of missing data,
multiple imputation methods were combined with inverse

probability weighting methods to provide effect estimates that
were potentially less biased than a complete case analysis.61

To address missing data values within completed visits,
multiple imputation by chained equations (MICE) was used for
all variables included in the analysis62 (see Supplement B).
Multiple imputation by chained equations is a flexible method
of multiple imputation that allows for different imputation
models for each variable with missing values. For each vari-
able with missing data, 40 cycles of imputation were carried
out before making one imputed dataset. In each cycle, each
variable with missing values was regressed on all other vari-
ables, and missing values were replaced by simulated draws
from the posterior predictive distribution of the missing vari-
able.63 A total of 50 separate datasets were imputed. Each
variable in the analysis was used to predict all other variables
with the following exceptions: HAZ was used as a predictor
for WAZ and vice versa, but neither was used as a predictor
for WHZ because of collinearity concerns (see Tables 1 and
2 for information on which variables were imputed).

FIGURE 2. Directedacyclic graphs showing the relationshipbetweenZ-score andprevalent parasitemia (A), andZ-score and incident parasitemia
(B). The yellow lines are paths we want to leave open because they are on the causal path from the exposure to the outcome. Red lines are
associations that will be removed through inverse probability of exposure weights. t is an indicator of time in months. U is an unmeasured
confounder that creates a potential link between two separate incident malaria parasite infections. In Figure A, prevalent parasitemia at one time
point may be associated with prevalent parasitemia at a subsequent time point because it may either be the same, unresolved, untreated infection
(because afebrile infections were untreated), or it may be a recrudescent, treated infection (because febrile infections were treated). Unmeasured
confounders are not depicted in Figure A because there is already a direct link between subsequent prevalent malaria infections.

TABLE 1
Asembo Bay cohort study sample characteristics, Nyanza Province, Kenya, 1992–1996

Children ages 0–30 months

Original data (N = 1,182) 50 Datasets with imputed data (N = 59,100)

Variable N (%) or mean (SE) Missing (%)* N (%) or mean (SE)

Gender – 0 –

Male 598 (50.6) – 29,900 (50.6)
Female 584 (49.4) – 29,200 (49.4)

Age at enrollment (days) 5.4 (28.2) 0 5.4 (28.2)
SES (value of goods, animals, and houses) – 4 (0.33) –

Level 1 (lowest SES) 588 (49.9) – 29,513 (49.9)
Level 2 (highest SES) 590 (50.1) – 29,587 (50.1)

Mother’s education (years) – 4 (0.33) –

< 7 454 (38.5) – 22,758 (38.5)
³ 7 724 (61.5) – 36,342 (61.5)

Village residence (sector) – 3 (0.25) –

1 380 (32.2) – 19,047 (32.2)
2 315 (26.7) – 15,787 (26.7)
3 283 (24.0) – 14,183 (24.0)
4 201 (17.1) – 10,083 (17.1)

Maternal peripheral parasitemia – 22 (1.9) –

Y 407 (35.1) 20,738 (35.1)
N 753 (65.0) 38,362 (65.0)

Sickle cell genotype – 173 (14.6) –

Homozygous (SS) 36 (3.6) – 2,122 (3.6)
Heterozygous (AS) 173 (17.2) – 10,310 (17.5)
Negative (AA) 800 (79.3) – 46,668 (79.0)
* The missing column indicates the number (%) of children for whom missing baseline data were imputed. Gender and age were complete variables and were not imputed.
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In addition to the covariates and the outcome from the
analysis model, other variables that predicted the incomplete
variables and whether they were missing (auxiliary variables)
were also included in the imputation models.63 Gestational
age, birth rank, and mother’s height were chosen as auxiliary
variables based on their association with either the exposure
or the outcome, or missingness of the exposure or the out-
come. All three were included as auxiliary variables for all
models, except formodels imputing parasitemia variables and
non-malarial anemia, in which only gestational age and birth
rank were used. To take advantage of the longitudinal struc-
ture of the models, for each time-varying variable, the two
previous measurements and two following measurements
were included as auxiliary variables.64,65 All Z-score variables
were imputed as continuous variables using predictive mean
matching models, which provided imputed values that were
consistent with observed values.66 Parasitemia variables and
non-malarial anemia were imputed as categorical/binary var-
iables in their final analytic form using logisticmodels. Logistic
models for non-malarial anemia and parasitemia variables
used the data augmentation method to account for perfect
prediction when themaximum likelihood parameter estimates
did not exist. In this method, the data were augmented with a
small number of additional observations that were weighted
to limit their impact on the imputation model. The addition of
the augmenting variables averted perfect prediction and
allowed the imputation model to converge.67 The discrimi-
nant function method (the default method for classification
variables) was used to impute all other variables.68 Para-
sitemia outcome variables were included in the imputation
models, but only observed outcomes were used in the final
analysis models.69

The purpose of the study was to assess the association
between malnutrition and subsequent malaria parasitemia.
However, because malnutrition may also result from previous
episodes of parasitemia, analytic techniques that allowed for
the estimation of the association between malnutrition and
subsequent parasitemia while preventing confounding by
previous parasitemia episodes were necessary. Figure 2 de-
picts a DAG showing the relationship between Z-score and
prevalent parasitemia (A), and Z-score and incident para-
sitemia (B). An arrow between two variables indicates that one
variable directly affects the other variable (e.g., in Figure 2A,
arrow a indicates that Z-score at time t affected prevalent

parasitemia at time t1). The purpose of this study was to es-
timate the association between Z-score and subsequent
parasitemia. Therefore, we needed to leave open all the paths
from the exposure to the outcome (including those that pass
through intermediate variables), indicated by yellow arrows in
Figure 2.
In the prevalence models, previous and concurrent para-

sitemia status may have affected both current Z-score (the
primary exposure) and future parasitemia status (the primary
outcome), making previous parasitemia status a time-varying
confounder affected by prior exposure (see Figure 2). In this
model, previous parasitemia may be on a causal path from
previous Z-score at time t through parasitemia at time t1 to
parasitemia at time t2 to the outcomeat time t3 (arrows a, f and
g). Inverse probability of exposure weights (IPEW) was used
to remove the association between parasitemia at times t1
and t2with Z-score at time t2 (arrows c and d) in the weighted
analysis models. This removed potential bias due to time
varying confounding by previous parasitemia status, while
also keeping all causal paths open.
Likewise, the incident parasitemia models may also have

been confounded by previous parasitemia status affected by
prior exposure (Figure 1B). In the incident parasitemiamodels,
we restricted the analysis to childrenwith a negative blood film
in themonth before the outcomemeasurement (indicated by a
box around parasitemia at time t2). In this model, parasitemia
at subsequent time points was only associated through U,
an unmeasured confounder linking the likelihood of a previous
malaria parasite infection to future incidence, suchasstanding
water outside the house. Malaria transmission is strongly
associated with location, although the strength of this asso-
ciation decreases as transmission intensity increases.70

However, it has been shown that household location can be a
predictor of variations in malaria incidence in children, even in
high-transmission areas.71 It is important to consider that
separate, incident parasitemia infections may have been as-
sociated through an unmeasured confounder such as U. By
including only children with a negative blood film at time t2 in
the model, we open up a backdoor path from the exposure to
the outcome through parasitemia at time t1 and U. To avoid
potential bias introduced by previous parasitemia status, we
again used IPEW to remove the association between incident
malaria at times t1 and t2 with Z-score at time t2 (arrows c
and d).

TABLE 2
Asembo Bay cohort study sample characteristics, Nyanza Province, Kenya, 1992–1996

Children ages 0–30 months (n = 1,182)

Observed data visits = 18,028 50 Datasets with imputed data visits = 901,400

Variable N (%) or mean (SE) Missing, n (%) N (%) or mean (SD)

Height-for-age Z score −1.57 (0.01) 4,934 (27.4) −1.61 (0.01)
Weight-for-age Z score −0.45 (0.01) 4,353 (24.2) −0.46 (0.01)
Weight-for-height Z score 0.63 (0.01) 5,073 (28.1) 0.63 (0.01)
Non-malarial illness* 5,225 (37.5) 4,106 (22.8) 414,982 (46.0)
Non-malarial anemia* 1,434 (10.5) 4,342 (24.1) 152,618 (16.9)
Febrile parasitemia prevalence 3,123 (21.3) 3,375 (18.7) –

Afebrile parasitemia prevalence 6,365 (43.4) 3,375 (18.7) –

Febrile parasitemia incidence 1,400 (9.6) 3,375 (18.7) –

Afebrile parasitemia incidence 2,452 (16.7) 3,375 (18.7) –

SES = socioeconomic status. Outcome data (parasitemia variables) were imputed but not used in the final outcomemodels. Themissing column indicates the number (%) of visits for which data
were imputed.
* Non-malarial anemia and non-malarial illness were measured in the month before the exposure.
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Three different IPEWs were created—one for each type of
anthropometric exposure (HAZ, WAZ, and WHZ). The use of
IPEWs made the exposure in the weighted dataset in-
dependent of measured confounders, including previous and
concurrent parasitemia status (see Figure 1A and B, times t1
and t2). Inverse probability of exposure weights were calcu-
lated as the inverse probability of exposure to Z-score dec-
iles.72 Ordinal logistic regression was used to calculate the
denominator of the weights as the probability of each child’s
observed Z-score decile in each month, conditional on all
time-fixed covariates and time-varying covariates, including
previous andconcurrent parasitemia status. Theweightswere
stabilized by themarginal probability of each child’s observed
Z-score decile, conditional on age. Weights were truncated at
the first and 99th percentiles.73

To account for potential selection bias arising from missed
visits, inverse probability of observation weights (IPOWs) were
calculated with a logistic model for the inverse probability of
completing a visit or having an observed outcome, conditional
on predictors of completing a visit or having an observed
outcome.74 Predictors included the following time-varying
variables: observation history (a categorical indicator of
months since last visit), exposure (HAZ, WAZ, and WHZ), age
(modeled as a cubic variable, based on likelihood ratio tests),
non-malarial illness, non-malarial anemia, and season. The
following time-fixed variables were also used in the IPOW
models: gender, residence, mother’s parasitemia, mother’s
education, and sickle cell genotype. Time-varying variables
were the last recorded value before the visit or outcome that
was missed. Inverse probability of observation weights were
stabilized by observation history, exposure, age, and baseline
covariates mentioned earlier. Inverse probability of observa-
tion weights were then combined with inverse probability of
censoring weights (IPCWs), which addressed potential selec-
tion bias from right censoring at last study encounter due to
dropout.75–77 Variables in the IPCW logistic model included
exposures (HAZ, WAZ, and HWZ), age (modeled as a cubic
variable, based on likelihood ratio tests), non-malarial illness,
non-malarial anemia, season, residence, mother’s education,
mother’s parasitemia, and sickle cell genotype. Inverse prob-
ability of censoring weights were stabilized by exposures,
time-fixed covariates, and age. Final analysis results were
similar whether deaths were included or excluded from the
IPCWs. The final IPCWs used in the analysis models do not
include weighting for death. Administrative censoring was not
found to be differential with respect to the exposures or out-
come, and therefore was also not included in the IPCWs. In-
verse probability of exposure weights, IPOWs, and IPCWs
weremultiplied together into a final weight for each record and
used to weight the final prevalence exposure outcome model
for the multiply imputed data.61 The weight used for each
analysis was dependent on the exposure in each model (HAZ,
WAZ, or WHZ).
All analyses were conducted in SAS version 9.4 (SAS In-

stitute, Cary, NC). The protocol was reviewed and approved
by the CDC (#1555) and the Ethical Review Board within the
Kenya Medical Research Institute.

RESULTS

Study population.The original study included 1,408 infants
and their siblings with follow-up data. Enrolled infants were

followed up from birth through 4 years of age. The analysis
sample was limited to the first child from eachmother enrolled
in the study, and follow-up was stopped at 30 months, when
only 20% of the original sample remained. This resulted in a
sample of 1,182 children followed up from age 0 to 30months.
Of these, 1,176 were enrolled within 5 months of birth, six
were enrolled between 6 and 12 months, and one enrolled
at 21 months. The mean age at the start of the study was
0.18 months (5.4 days) (SD = 0.94), and the mean age at the
end of the study (average follow-up time) was 16.4 (SD = 10.2)
months. A total of 18,028 visits were recorded among the
1,182 children in the study, and 72% had at least one episode
of febrile parasitemia, 79%had at least one episode of afebrile
parasitemia, 64%had at least one episode of each (febrile and
afebrile parasitemia events), and 13% had neither. Sixty per-
cent of study participants had an episode of non-malarial
anemia, and 92% had at least one non-malarial infection.
Prevalent parasitemia analyseswere limited to recordswith an
observed parasitemia outcome, which included 13,240 visits
on 1,119 children. Incident parasitemia analyses were further
limited to records with a negative blood film in the month be-
fore the outcome measurement, and included 4,020 obser-
vations on 995 children.
Missing data. Multiple imputation was used to impute

missing values for the following baseline variables: residence
sector, maternal peripheral parasitemia, maternal education,
SES, and sickle cell genotype (seeTable 1). Among completed
visits, the following time-varying variables were also imputed:
non-malarial illness, non-malarial anemia, HAZ, WAZ, and
WHZ (see Table 2). Gender, age, and season were complete
variables, and were not imputed. Time-fixed (Table 1) and
time-varying (Table 2) study sample characteristics, including
the percentage of missing variables that were imputed, and
the distribution of imputed variables are presented in the fol-
lowing text.
Inverse probability of observation weights were calculated

toaccount for 2,338 (11%)missedvisits and4,788 (24%) visits
with missing outcome data (IPOWs accounted for a total of
7,126 [35%] missed visits). Of the 1,182 study subjects, 501
(42%) terminated participation before the age of 30months or
at the endof the study, and209 (18%) died. Inverse probability
of censoring weights were calculated to account for right
censoring due to dropout among all 18,028 visits. Although
death was associated both with febrile parasitemia (incidence
rate ratio = 1.7, 95% confidence limit [CL] = 1.6–1.7) and
malnutrition (HAZ OR = 2.08, 95%CL = 1.12–3.87; WAZOR =
6.02, 95% CL = 3.08–11.79); WHZ OR = 7.17 95% CL =
2.43–21.23, IPCWs were not used to account for loss to
follow-up due to death. The use of IPCWs to account for death
would have approximated a study in which no children died.
This would be an unreasonable assumption, given the pop-
ulation and time of the study. In addition, although death was
associated with both the exposure and the outcome, the
confounding path through death is blocked, because both
malnutrition andmalaria affect death, making death a variable
we would not want to adjust for in traditional analyses. Last,
results of the final analysis models did not differ significantly
when deaths were included in the IPCWs. The combined final
weights were well behaved, with means close to one and
range not exceeding 0.2–3.4.
In general, there was not a strong association between

any type of malnutrition and either prevalent or incident
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parasitemia. Odds ratios for the association of stunting or
underweight on prevalent and incident parasitemia were
higher for afebrile parasitemia than for febrile parasitemia. This
trend was more pronounced in the prevalence models. The

association between stunting or underweight and prevalent
afebrile parasitemia also showed a modest dose response,
with prevalence ORs (PORs) increasing as Z-score decreased
(see Figure 3).

FIGURE 3. Associations among height-for-age, weight-for-age, and weight-for-height Z-score categories, and prevalent and incident malaria
parasitemia outcomes in the following month. Odds ratios are from multiply imputed data with observed outcomes analyzed with weighted
generalizedestimatingequationmodels.Prevalencemodelsare shown incolumn1,N=1,119. Incidencemodelswere limited toobservationswitha
negative malaria parasite film in the month before the outcome. N = 995. This figure appears in color at www.ajtmh.org.
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Reported results are from the weighted, imputed data
analysis. The complete case analysis models were only
slightly further from the null than the weighted, imputed data
analysis (see Supplemental Table 1). These differences were
not significant. Alternate time lags between the exposure and
theoutcomeof 2 and3monthswere also explored. The results
from these models were attenuated toward the null and have
not been reported here.
Across both incident and prevalent malaria models, there

was a modest association among stunting and underweight
and afebrile parasitemia. The effects were slightly larger in the
prevalence models. The POR for the association between
severe or moderate stunting (HAZ) and prevalent afebrile
parasitemia in the following month was as follows: severe =
1.35 (95%CL: 1.03, 1.76) andmoderate = 1.20 (95%CL: 0.95,
1.53). The POR for the association between moderate or mild
WAZ and subsequent prevalent afebrile parasitemia was as
follows: moderate = 1.35 (95%CL: 1.09, 1.66) andmild = 1.16
(95% CL: 1.02, 1.33). The OR for the association between
stunting and incident afebrile parasitemia was as follows:
severe = 1.31 (95%CL: 0.93, 1.85) andmoderate = 1.28 (95%
CL: 0.95, 1.74). For underweight, the OR for incident afebrile
parasitemia was as follows: moderate = 1.43 (95% CL: 1.05,
1.94) and mild = 1.20 (95% CL: 0.98, 1.46).
There was no significant association between any category

of wasting and prevalent or incident malaria in the following
month. There was also no association seen between any type
of malnutrition and either type of febrile parasitemia in the
following month (prevalent or incident).

DISCUSSION

Using data from the Asembo Bay cohort study in western
Kenya, we found that stunting and underweight were asso-
ciated with slightly increased odds of subsequent prevalent
and incident afebrile parasitemia in children younger than
30months. However, there was no evidence of an association
between anymeasure of malnutrition and either type of febrile
parasitemia in the following month, nor was there an associ-
ation between wasting and any type of incident or prevalent
malaria.
The null association between malnutrition and febrile par-

asitemia is consistent with most of the previous longitudinal
studies,whichalso found thatmalnutritiondidnot increase the
risk of malaria with fever.10,13,15–18 Two previous studies did
find an increased incidence of febrile malaria among stunted
(moderate–severe) children compared with non-stunted
children.11,12 However, neither adjusted for non-malarial in-
fections, which may modulate the response to malaria.78 In
addition, both could be subject to reverse causality bias, given
that exposures were either measured at the same time as the
outcome12 or only at baseline (and therefore might have
changed during the follow-up period).11

There are few previous studies on the association be-
tweenmalnutrition and asymptomatic parasitemia. One study
showed an association between stunting and concurrent
asymptomatic parasitemia,23 and two studies found no
association.14,24 An increased OR for afebrile parasitemia,
although not for febrile parasitemia, was an unexpected
finding in this study. A later cross-sectional study conducted
in the same region among children who received ITNs also
found a higher OR for the association between moderate

stunting and any parasitemia (1.98) than for stunting and
clinical malaria (1.77).79

It is unclear why underweight and stunted children in this
populationwould have increased odds of afebrile infection, but
not febrile infection. The paucity of previous research with
afebrile or asymptomatic infections as an outcome makes it
difficult to determine if this was a regularly occurring phenom-
enonwithin areasof intensemalaria transmission, or something
particular to this population. The relationship between malnu-
trition and malaria is complex, and findings from other studies
are potentially dependent on the epidemiology of malaria and
the determinants of malnutrition specific to each study pop-
ulation. Nevertheless, we can develop hypotheses based on
our current knowledge of the immune system among children
with malnutrition. One possible explanation may be immune
dysfunction among chronically malnourished children. There is
limited research on the effects of malnutrition on the immune
system, including the development of fever. A recent review
highlighted that theType1Thelper cells inflammatory response
andthenumberofactivateddendriticcells tend tobe reduced in
malnourished children compared with well-nourished children,
whereas the type 2 T helper cells response is increased in
moderately malnourished children.80 A lowered response by
Type 1 T helper cells cytokines and dendritic cells among
chronically malnourished children could potentially lead to a
reduced febrile response to malaria parasites in this group,
resulting in higher odds of afebrile parasitemia.
Alternatively, immune exhaustion may play a role in in-

creasing odds of afebrile parasitemia among stunted and
underweight children. Fontana discussed the role that
exhausted T cells may play in asymptomatic parasitemia. She
suggests that these exhausted T cellsmay bemediators of the
relationship between the host and the pathogen during
chronic infection, whereby exhausted T cells fail to clear the
infection yet can limit theparasite load to avoid “overwhelming
pathology to the host.”81 Chronic malnutrition such as stunt-
ing or underweight may have a larger effect on afebrile para-
sitemia rather than febrile parasitemia ifmalnourished children
aremore likely to experience immuneexhaustionplacing them
at higher risk of afebrile parasitemia,whereby theparasites are
regulated by exhausted T cells.
The wasting exposure models did not show an association

with subsequent incident or prevalent parasitemia. This is
consistent with most of the longitudinal studies that also
found no association between wasting and malaria
outcomes.11,15,16,18,82 Wasting and stunting represent differ-
ent forms of malnutrition. Wasting represents acute malnu-
trition, often occurring over a short period of time, whereas
stunting represents chronic malnutrition, developing over a
longer period of time. It should also be noted that stunting
could be the result of a previous episode of growth faltering
that the child has failed to recover from. These different forms
of malnutrition may have different effects on the immune re-
sponse to malaria. When comparing malnourished children
with non-stunted or non-wasted controls, Fillol et al.83 found
the adaptive immune response to malaria was significantly
lower in stunted children but did not see this effect in wasted
children.No studies have specifically investigated the effect of
malnutrition on the innate immune response to malaria. Our
study only investigated the association of moderate wasting
(WHZ £ −2) with subsequent malaria outcomes, due to a lim-
ited number of children with severe wasting (WHZ £ −3). It is
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possible that severe wasting could show an association with
subsequent malaria, due to the effects severe wasting can
have on immune function and its association with increased
mortality.84

STRENGTHS AND LIMITATIONS

This study had several strengths and limitations. Strengths
included a large sample of children followed from birth with
data on both febrile parasitemia and afebrile parasitemia, bi-
weekly blood collections, and monthly anthropometric mea-
surements, and the availability of a wide-ranging set of
potential confounders to use in multivariable models. Al-
though the dataset is older, the higher incidence of malaria
that occurred in this studypopulation thancurrent populations
likely provided the studyprovide greater power to detect these
associations than a similar study conducted in a present day
population benefiting from broad scale-up of both preventive
and curative malaria interventions.
The ageof thedatasetmakes the study less generalizable to

most current populations across Africa. The current epide-
miology ofmalaria inwestern Kenyamaybe different from that
experiencedby this cohort. Since2000, incidenceofmalaria in
Kenya has decreased from 237.7/1,000 people at risk to 166/
1,000, and the prevalence of children sleeping under ITNs has
increased from 3% to 56.1%.85 Associations detected be-
tweenmalnutrition andmalaria in this 1992–1996 dataset may
not necessarily represent associations that currently exist in
western Kenya if the relationship between malaria and nutri-
tion is influenced by the specific epidemiology of malaria. In
addition, differences in historic and current malaria treatment
may also make the findings less generalizable. The close
follow-up of participants, prompt diagnosis, treatment with
SP, and protocol for treatment failures (halofantrine) should
have ensured that all children were treated adequately for
malaria, whileminimizing andmanaging any treatment failures
during this era of decreased chloroquine efficacy.86

There have also been improvements in health and nutrition
status of children younger than 5 years over the past 25 years.
From 1998 to 2014, the prevalence of stunting in Kenya
decreased from 37% to 26%. Likewise, optimal child feed-
ing practices such as exclusive breastfeeding have im-
proved.87,88 As children’s health and nutrition have improved,
and malaria incidence has declined, the relationship between
malnutrition and malaria may have changed. Proximal deter-
minants ofmalnutritionmayhavechangedwith improvements
in nutrition practices and sanitation, which may, in turn, have
an effect on children’s immune systems, rendering themmore
or less susceptible to malaria. Likewise, changes in the epi-
demiology of malaria, such as increasing age of acquired
immunity, and decreasing attack rates may change how
malnourished children respond to malaria.
This study used low hemoglobin as a proxy for iron-

deficiency anemia. Low hemoglobin can be caused by iron
deficiency, but also by various infections and other nutritional
deficiencies, and is not an ideal proxy for iron-deficiency
anemia. We increased the specificity of low hemoglobin as a
marker for iron deficiency by excluding anemia within 1month
ofmalaria parasitemia, and controlling for sickle cell disease. It
is possible that some non-malarial anemia in this study could
still have been associated with previous repeated bouts of
parasitemia.89 Most previous studies of the relationship

between malnutrition and subsequent malaria did not control
for iron-deficiency anemia.11–15,17 The inclusion of the proxy
measure as a confounder, although not ideal, is an improve-
ment over previous research.
The high proportion of missing data in this study is a limi-

tation. Measures were taken to minimize bias due to missing
data and dropout, which includedmultiple imputation and the
use of inverse probability weights to account for missed visits
and dropout. However, if missingnesswas due to unobserved
variables that were also associated with the exposure or the
outcome, selection bias may still be present.
The evaluation of malaria was performed by thick and thin

blood smears, which may have missed submicroscopic in-
fections. This diagnostic limitation may have biased results
toward null if the outcome misclassification was non-
differential with respect to malnutrition. Alternatively, if mal-
nourished children were more likely to have microscopically
identifiable parasites, then this would have biased the results
away from null.
HIV may be a confounder of the relationship between both

growth faltering and malaria, and data on HIV status were not
available for this study. TheprevalenceofHIVamongpregnant
women at the time of the study was estimated at 30%.90 HIV
may increase the prevalence of malaria in children91 or in-
crease parasite density.92 If children with HIV were more likely
to have afebrile parasitemia and be underweight or stunted,
theORsmay have been biased away from the null. However, if
HIV was associated with a measured confounder (such as
non-malarial infection, SES, or mother’s education) condi-
tional on the exposure, confounding bias due to HIVmay have
been partially controlled by these other variables.93 The re-
lationship between stunting and malaria has previously been
shown to be consistent across HIV-infected and uninfected
children.12 Given the demonstrated independence of the
malnutrition–malaria relationship from HIV status and the
potential for residual control by included covariates, the re-
sults of this study are unlikely to be significantly biased by
unmeasured confounding from HIV. However, interactions
between various coinfections thatwere prevalent in the area at
this time, such as tuberculosis and HIV, and their potential
to influence the malaria–malnutrition relationship cannot be
ruled out.94–96

The potential cyclical nature of the relationship between
malnutrition and malaria makes epidemiologic research on
this topic challenging. Malnutrition may increase the risk of
malaria, whereas malaria may also increase the risk of mal-
nutrition. The use of IPEWs to adjust for time-varying con-
founding affected by prior exposure allowed for an estimation
of the association while preventing potential reverse causality
bias due to prior malaria infection. The use of these methods
makes this study a novel addition to the literature on this
complex relationship. The similarities between the complete
case analysis and the imputed, weighted model indicate that
missing data and time-varying confounding were not a large
source of bias in this population.

CONCLUSION

Stunting and underweight do not show an association with
febrile parasitemia, but theydoshowa limitedassociationwith
afebrile parasitemia in the month following the exposure. This
association was seen even in mildly underweight children.
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Current malaria control efforts may consider prioritizing test
and treat strategies for specific populations of children at
greater risk of stunting and underweight. Malaria testing for
stunted and underweight children in malaria endemic areas
should be considered, even if children do not present with
fever.
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