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ABSTRACT

The Vector Autoregressive (VAR) Models have been applied extensively in many

fields ranging from finance, economics, machine learning among others. In fact,

the VAR models are the mostly applied among the multivariate time series models

since they have shown to perform well especially when forecasting is done. Many

researchers have fitted the VAR models to the available data so as to come up with

a model that explains the relationship between the variables involved. However,

despite this fact that the VAR models have performed well, there is a concern of

what one should do in the event that new information is received after the model

has been fitted. In this study, an approach is provided of updating the VAR

model instead of fitting a new model whenever new information is received where

the fitted VAR model is treated as the prior, new information or measurements

as the likelihood to get an updated VAR model, the posterior, using the Bayesian

Approach. Thus, updated VAR models of order one, two and three are developed

after which generalization is done to a VAR model of order p. The performance

of the existing VAR model is compared with the updated VAR model from which

it is observed that the model performs well based on the fairly low values of root

mean square error (RMSE) obtained. Furthermore, estimation of parameters is

done using the joint estimation which estimates both the states and the param-

eters simultaneously. In the estimation, the estimated parameters converge to

the true parameter value as time evolves. An application is considered where a

penta-variate VAR(1) model is fitted using data for the contribution of five main

sub-sectors of the agriculture sector to the Kenyan economy. The data considered

was obtained from the Kenya National Bureau of Statistics (KNBS) on Statistical

abstract reports from 2000 - 2021. The model was then updated and after com-

paring with the initial model, the model was found to perform well based on the

lower values of the RMSE. From the study, it is then concluded that the updated

Vector Autoregressive model performs well based on the Root Mean Square Error

(RMSE). Finally, recommendations are also given regarding future work of updat-

ing other multivariate time series models to assimilate new information obtained

after model fitting is done.
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CHAPTER ONE

INTRODUCTION

1.1 Background Information

The univariate Autoregressive Moving Averages (ARMA) models have been used

favorably in forecasting of time series data which has resulted to researchers ex-

tending to the multivariate case since inclusion of more information increases the

precision of forecasting and even identifying the correlation between the series [27].

Multivariate time series models are widely applied in a number of fields such as

financial, economic, stock market, earth science among others. This is because

they explain not only the serial dependence within each component series {Xti}

but also interdependence between the different component series {Xti} and {Xtj},

i ̸= j. The multivariate time series models includes the Vector Autoregressive

(VAR) model, Vector Moving Average (VMA) and Vector Autoregressive Moving

Average (VARMA) models as discussed in [5] among others. [32] earlier on car-

ried out a study on multivariate Vector Autoregressive Moving Average (VARMA)

models. However, the specification and estimation of such models was much diffi-

cult as compared to the univariate case. The success of the Box-Jenkins univariate

modeling methodology in the 1970’s triggered more research into strategies of mod-

eling in the multivariate case. An example of such research is the work done by

Tiao and Box in 1981 where they studied on multivariate time series modeling

[41]. Other developments also done were the inclusion of cointegration in the mul-

tivariate modeling approach done by [11]. More recent work on modeling and

forecasting with VARMA models is given by [27].

The Vector Autoregressive (VAR) models were developed by the macroeconome-

1



trician Christopher Sims in 1980 where the main aim was to model the joint

dynamics and causal relations among a set of macroeconomic variables and they

dominate time series econometrics modeling [37]. The joint dynamics includes how

each variable in the model is explained by the past history of every variable and

how the innovations may be correlated. A vector autoregressive (VAR) model pro-

vides forecasts which are superior to those obtained from the univariate time series

models [45]. Traditionally, VAR models are widely much useful in describing the

dynamic nature of most economic and financial time series [45]. However, recently

the vector autoregressive models have gained much application in a wide range

of disciplines such as Medicine, Epidemiology, Economics, Biology and Macroeco-

nomics among others. Indeed, VAR models are one of the models mostly used for

modelling multivariate time series data [15, 45].

Although the vector autoregressive models have been applied extensively, it should

be noted that the presence of excessive parameters has been one of its main de-

merits [10, 19]. These has resulted to researchers developing the Bayesian Vector

Autoregressive (BVAR) models where the model parameters are treated as random

variables with prior probabilities. This as seen in the works of [9, 17, 19, 26, 42].

As indicated earlier on, the Vector Autoregressive models have attracted much

application in diverse fields. They have got a number of advantages such as easy

implementation where the parameters or coefficients are estimated by using the

Ordinary Least Squares (OLS) method in each equation individually, testing for

Granger causality where it is checked whether one or more variables have pre-

dictive impact to forecast the variable(s) of interest [45]. Even though the VAR

models are believed to perform well due to the superior forecasts produced, there

is a concern of what happens to the fitted VAR model when new information such

as data is available after the fitting is done. It is in the view of this study that

2



such new information should not be ignored since it may be crucial in affecting

the existing model. In addition, it is quite involving to go through the entire

process of fitting the model again when new information is obtained. Therefore,

this study has developed an updated vector autoregressive model by using the

Bayesian approach which is able to incorporate new information to update the ex-

isting VAR models where new information (considered as measurements) is used

as the likelihood to update the model. The performance of the updated model is

then compared with the performance of classical VAR model. Estimation of the

parameters for the modified model is done using joint estimation where the state

and the vector of parameters are augmented to form an extended state space and

then they are estimated simultaneously.

1.2 Statement of the Problem

The Vector Autoregressive (VAR) Models have been applied extensively in many

fields ranging from finance, economics among others. Many researchers have fitted

the VAR models to the available data so as to come up with a model that explains

the relationship among the variables involved. However, despite the fact that

the existing VAR models produce superior forecasts, they can not incorporate

new information when it is received. Therefore, there is a concern of what one

should do in the event that new information is received given that information

at time t is available. This study solves this problem by proposing an approach

to use new information as likelihood and the fitted model as the prior and then

update the initial model to come up with an updated model, the posterior. This

study therefore considered the existing VAR model by treating it as prior and new

measurement as likelihood to develop an updated VAR model that becomes the

posterior using the Bayesian Approach. The study first develops an updated VAR

model of order one, two and three after which it then generalizes to VAR model of
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order p. Afterwards, the study compares the performance of the updated model

with the performance of some existing VAR models. Estimation of parameters

is done using the joint estimation approach where the states and the vector of

parameters are augmented to form an extended state space model.

1.3 Objectives of the Study

1.3.1 Main Objective

The main objective of this study is to assimilate new information into the vector

autoregressive (VAR) model using the Bayesian approach.

1.3.2 Specific Objectives

The specific objectives of this study are:

(i) To develop an updated vector autoregressive model of order p using the

Bayesian approach.

(ii) To compare the performance of the updated VAR with the classical VAR

model.

(iii) To apply the updated VAR model in estimation of model parameters.

(iv) To apply the new model in a real life problem.

1.4 Justification of the Study

Vector Autoregressive (VAR) time series models have been widely applied in many

areas. It is argued that they are the simplest multivariate time series models to use.

Once the model is fitted, it is then used for prediction. However, as time evolves,

new information of the variables in the model is obtained. Such information could

have some impact on the model. Thus, instead of discarding the fitted model, there

is need to factor in new information to the model using the Bayesian approach
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where the fitted VAR model is treated as the prior, new measurements as the

likelihood to update the model and get the updated VAR model, the posterior.

1.5 Significance of the Study

Basically, the major role of the time series models is to perform forecasting. The

VAR models have proven to perform well due to superior forecasts produced.

However, as time goes on, more information of the variables in a time series model

is obtained which may have an effect on the fitted model. Thus this study is

significant in the sense that the inclusion of new information or measurements

in the model makes the model to be updated so that it can be used to forecast

precisely. In addition, the study is important to the consumers of time series data,

especially econometricians, in that there is need to involve new measurements so

as to get updated models. A good example is like the fluctuation of prices in the

stock market where data is received on daily basis and so instead of discarding the

fitted model, it is just updated to incorporate the new data.

1.6 Software

In this research, MATLAB R2017b and RStudio softwares were used whose ver-

sions are 9.3 and 1.4.1106 respectively.

1.7 Definition of Terms

1.7.1 V-variate Time Series

A v-variate time series is the (v × 1) vector time series written as {Yt}. More

formally the vector is given by

Yt =


Yt1

Yt2
...
Ytv

 (1.1)
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for any time t.

1.7.2 Stationary V-variate Series

The v-variate series {Yt} is (weakly) stationary if

(i) µY (t) is independent of t and

(ii) ΓY (t, t− h) is independent of t for each h.

The mean of the series and the covariance matrix at lag h are given by

µ = E(Yt) =

µ1
...
µv

 (1.2)

and

Γ(h) = E[(Yt − µ)(Yt−h − µ)′] =

γ11(h) · · · γ1v(h)
... · · · ...

γv1(h) · · · γvv(h)

 (1.3)

respectively, see [6].

1.7.3 Autocovariances, Cross lag covariances, Autocorrelations and
Cross lag correlations

The auto-covariances of yit for i = 1, 2, · · · , v are given by

γii(h) = cov(yi,t, yi,t−h) (1.4)

On the other hand, the cross lag covariances between yit and yjt for i, j = 1, 2, · · · , v

are given by

γij(h) = cov(yit, yj,t−h) (1.5)

However, it is worth noting that

γij(h) = cov(yi,t, yj,t−h)

̸= cov(yi,t, yj,t+h)

= cov(yjt, yi,t−h) = γij(−h) (1.6)
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The autocorrelations of yit for i = 1, 2, · · · , v are given by

ρii(h) = corr(yi,t, yi,t−h) =
γii(h)√

γii(0)γii(0)
=

γii(h)

γii(0)
(1.7)

while the cross lag correlations between yit and yjt for i, j = 1, 2, · · · , v are given

by

ρij(h) = corr(xi,t, xj,t−h) =
γij(h)√

γii(0)γjj(0)
(1.8)

The correlation matrix is given by

R(h) =

ρ11(h) · · · ρ1v(h)
...

. . .
...

ρv1(h) · · · ρvv(h)

 (1.9)

see [6].

1.7.4 Multivariate White Noise

Multivariate white noise is the simplest multivariate time series. It is the building

block from which variety of multivariate time series can be constructed. The

v-variate series {ut} is called white noise with mean 0 and covariance matrix

Σ written as {ut} ∼ WN(0,Σ), if {ut} is stationary with mean vector 0 and

covariance matrix function

Γ(h) =

{
Σ, if h = 0

0, otherwise

see [6]. The v-variate series {ut} is independent and identically distributed (iid)

noise with mean 0 and covariance matrix Σ written {ut} ∼ iid(0,Σ) if the ran-

dom vectors {ut} are independent and identically distributed with mean 0 and

covariance matrix Σ.

1.7.5 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a statistical measure that is used to

evaluate the quality of forecasts. It is given by

RMSE =

√∑n
i=1(yi − ŷi)2

n
(1.10)
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where yi is the actual measurements, ŷi is the forecasted value and n is the number

of data points.

1.8 Methods

In order to achieve the objectives, the methods used in the study are:

(i) Bayesian approach for Model development.

To achieve the first specific objective, Bayesian approach is used which em-

ploys the concept of using the prior and likelihood to get the posterior.

Therefore, to update the Vector Autoregressive (VAR) model, the existing

VAR model is considered to be the prior, the measurements or new informa-

tion as the likelihood while the updated VAR model is the posterior. This

is done in two steps namely: the prediction step and the update step.

(ii) Comparing the performance of the updated VAR with the classical VAR

model.

This is as indicated in the second specific objective. In doing this, the Root

Mean Square Error (RMSE) is used as a tool for checking adequacy of the

model. The errors considered are between the existing VAR model and the

predicted and between the existing VAR model and the updated.

(iii) Dual estimation precisely joint estimation to estimate the parameters which

involves augmenting the states and the vector of parameters to form the

extended state space model and then estimate the parameters to check if

there is convergence to the true parameter value as time evolves. This will

lead to achieving the third specific objective.

(iv) VAR model development technique which involves model specification, esti-

mation of model parameters and model checking to develop a classical model
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using secondary data. In model specification, the order of the VAR model is

chosen by considering Schwartz criterion while estimation of parameters is

done by the least squares approach. Diagnostic checking involves checking

the adequacy of the model which is by checking whether the residuals are

white noise, normally distributed and uncorrelated. The fitted model will

then be updated using the developed Algorithm. This will help us to achieve

our fourth objective.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter highlights the existing Vector Autoregressive (VAR) model, that is,

its origin, and how it has been applied in a wide range of fields. In addition, the

Bayesian VAR models are also highlighted. These are discussed in Sections 2.2,

2.3 and 2.4.

2.2 Existing VAR Model

The Vector Autoregressive (VAR) models were developed by the macroeconometri-

cian Christopher Sims in 1980 where the main aim was to model the joint dynamics

and causal relations among a set of macroeconomic variables and dominate time

series econometrics modeling [37, 45]. A v-variate vector autoregressive time series

model of order p, VAR(p), is given by

Yt = A1Yt−1 +A2Yt−2 + · · ·+ApYt−p + ut (2.1)

where Yt is a (v × 1) vector of time series variables and ut is a (v × 1) vector of

white noise process. In matrix form, equation 2.1 can be written as
y1,t
y2,t
...

yv,t

 =


a11,1 a12,1 · · · a1v,1
a21,1 a22,1 · · · a2v,1
...

...
. . .

...
av1,1 av2,1 · · · avv,1



y1,t−1

y2,t−1
...

yv,t−1

+


a11,2 a12,2 · · · a1v,2
a21,2 a22,2 · · · a2v,2
...

...
. . .

...
av1,2 av2,2 · · · avv,2



y1,t−2

y2,t−2
...

yv,t−2



+ · · ·+


a11,p a12,p · · · a1v,p
a21,p a22,p · · · a2v,p
...

...
. . .

...
av1,p av2,p · · · avv,p



y1,t−p

y2,t−p
...

yv,t−p

+


u1,t

u2,t
...

uv,t

 (2.2)
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However, it should be noted that the VAR models can further be classified into:

the reduced form (Equation 2.1) and the structural VAR model given by

A0Yt = A1Yt−1 +A2Yt−2 + · · ·+ApYt−p + ut (2.3)

where the the main diagonal terms of matrix A0 have been scaled to one [28]. The

structural shocks (error terms) in Equation 2.3 have zero mean and are uncorre-

lated. In the reduced form VAR model, each variable is a function of its own past

and the past values of the other variables. On the other hand, structural form

is used when the error terms are uncorrelated and that the variables can have a

contemporaneous impact on other variables [38].

The identification or fitting of a ordinary VAR model involves model specification,

estimation of model parameters and model checking to test whether the model

is adequate. The order, p, of VAR is chosen which minimizes the Schwartz and

Hannan-Quinn criteria as outlined by [28]. The Schwartz criterion is given by

SC(p) = ln |Σ̂u(p)|+
lnT

T
pv2

On the other hand, the Hannan-Quinn criterion is given by

HQ(p) = ln |Σ̂u(p)|+
2 ln lnT

T
pv2

where, for both criteria, Σ̂u is the estimated white noise covariance matrix, T is the

sample size and v is the number of time series components. The criteria compares

the residuals of the models and estimates the relative information loss of repre-

senting the original data using each of the model. In addition, the criteria weighs

the quality of fit (covariance of residuals) against the complexity (number of free

parameters) and therefore the model with least criterion value is considered [34].

The parameters of a fitted VAR model can be estimated by ordinary least squares

estimation method under the assumptions that error term has mean of zero, the
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variables are stationary and no outliers. The developed model is then subjected to

diagnostic checking for its adequacy and this involves checking whether the residu-

als are white noise, normally distributed and uncorrelated. Afterwards, the model

is used to forecast which is the main function of the VAR models. Apart from

forecasting, the VAR models can be used to give the dynamics that are predicted

by the models in addition to estimating the model’s parameters which involves

Granger-causality statistics, impulse response function and forecast error decom-

position as given in [28]. Granger-causality involves testing whether one variable

is statistically significant when predicting another variable while impulse response

function traces the dynamic path of variables in the system to shocks to other

variables in the system. On the other hand, forecast error decomposition sepa-

rates the forecast error variance into proportions attributed to each variable in the

model which enables understanding of how much of an impact one variable has on

another variable in the VAR model [28, 45].

2.3 Some Developed Vector Autoregressive Models

Vector Autoregressive (VAR) models have been extensively applied in a number

of fields to study the relationship between the variables of interest. For instance,

[35] studied on the causal relationship between crop production index (CPI) and

permanent cropland (PCL) in Nigeria. They used time series data on CPI and

PCL as the variables. The study used unrestricted Vector Autoregression (VAR)

modeling techniques to develop the model. The time series data showed an upward

trend and so differencing was applied to achieve stationarity. A VARmodel of order

3, VAR(3), was chosen as best model that fitted the data. The model developed
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is given by(
CPIt
PCLt

)
=

(
−0.721 7.054
0.007 1.134

)(
CPIt−1

PCLt−1

)
+

(
0.574 −6.25
0.003 −0.021

)(
CPIt−2

PCLt−2

)
+

(
−0.568 4.905
−0.001 −0.136

)(
CPIt−3

PCLt−3

)
+

(
−12.02
0.478

)
(2.4)

In addition, it was concluded that Nigeria’s CPI can be predicted by Nigeria’s

PCL and vice versa.

Dynamic Modeling and forecasting of data export of agricultural commodity by

Vector Autoregressive model has been done as seen in [15]. The study determined

the best model that can be used to describe the relationship among the data export

value of Indonesia’s agricultural commodities namely: coffee beans, cacao beans

and tobacco using monthly data from the year 2007 to 2018. The study applied

VAR(1), VAR(2), VAR(3), VAR(4) and VAR(5) models but trivariate VAR(2)

model given byy1,t
y2,t
y3,t

 =

−0.1002 0.0467 −0.7534
0.0082 −0.8053 −0.90327
−0.0223 −0.007 −0.522

y1,t−1

y2,t−1

y3,t−1

+

0.2713 0.0146 −0.052
0.1983 −0.296 −0.096
−0.033 −0.0067 −0.4043

y1,t−2

y2,t−2

y3,t−2

+

ε1
ε2
ε3

 (2.5)

was selected to be the best model based on Akaike Information Criterion with

correction, Akaike Information Criterion, Schwarz Bayesian Criterion and Hannan

- Quinn Information Criterion. Afterwards, the model was then used to forecast

for the next 10 months.

[21] did a study to analyze the relationships between Finnish and global milk mar-

kets using the Vector Autoregressive (VAR) model. The study found that the

greatest forecasting power for the milk price in Finland are the VAR models with

combination of three or four variables namely: lagged price of milk in Finland,

the price of oil, the world feed price and the quantity of milk produced. The
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study used time series data from January 2007 to December 2016. Forecasting

of oil prices was done from January 2017 to August 2019 and compared with the

observed series from which it was concluded that the model did well.

Another application of the VAR models is given by [34] which is on prediction of

gross domestic product using autoregressive models. They constructed a vector

autoregressive model of order 4, VAR(4), model by selecting few macroeconomic

indicators and predicted the Gross domestic product. The study relied on exten-

sive database of historical economic data by the Federal Reserve Bank of St.Louis

and found that the results from the model matched with historical data an impli-

cation that the model predicted consistently.

[30] determined the econometric connection between agriculture and gross domes-

tic product (GDP) in Morocco using the VAR modeling approach. The study

considered the macroeconomic variables: GDP per capita, agricultural GDP, in-

vestment rate, money supply, and trade openness and developed a VAR(2) model.

From the study it was found out that there is presence of bidirectional Granger

causality between agriculture and GDP, implying a feedback relationship, and on

the other hand a unidirectional causal relationships involving the other macroeco-

nomic variables used in the VAR model. In this study, we developed an updated

multivariate vector autoregressive (VAR) time series model and illustrated estima-

tion of the model parameters by dual estimation approach to check convergence

of the model parameters to the true parameters.

The Growth Domestic Product of Ghana has been modeled using VAR models

as seen in [2]. The study considered two more selected macroeconomic variables

(inflation and real exchange rate) for the period 1980 to 2013 where the data were

taken from the World Bank’s World Development Indicators and Bank of Ghana.

Co-integration test and vector error correction models (VECM) were used to ex-
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amine dynamic relationships among the variables in both the long run and short

run. It was found that there is co-integration between the the macroeconomic

variables and GDP indicating long run relationship. A VECM model of order 3

was appropriately identified as a suitable model.

[24] forecasted the spread of COVID-19 infection based on the vector autoregres-

sion model. They combined the time series data for the new number of cases and

the number of deaths to obtain a joint forecasting model. The study developed

a VAR(29) model and applied the model to predict the number of new cases and

deaths in UAE, Saudi Arabia and Kuwait using out of sample forecast from which

it was found that the model achieved high level of accuracy.

A research on analyzing the relationship between two time series namely: global

monthly oil price and global monthly gold price in dollars using Vector autore-

gressive model as seen in [1]. The study used monthly data from January 2015

to June 2019 and identified VAR(7), VAR(8) and VAR(10) models as possible

models. However, based on the Mean Square Error (MSE), VAR(10) model was

selected as the suitable model which was then used to forecast for the period June

2019 to June 2021.

[7] forecasted the dynamics of output for the Romanian economy using the Bayesian

VAR model. The study estimated several versions of Bayesian VARs and compared

with the OLS and unrestricted VAR model. From the study, it was confirmed that

the BVAR model outperformed the standard models (OLS and the unrestricted

VAR). The best BVAR model was then used for forecasting.

[16] carried out a study on modeling and forecasting of climatic parameters where

they considered both the seasonal autoregressive moving average (SARIMA) and

vector autoregressive (VAR) models approach. They developed univariate SARIMA
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and multivariate VAR models for monthly maximum and minimum temperatures,

humidity and cloud coverage in Bangladesh and performed forecasting using both

models. In the study, it was found that the VAR(9) model which was developed

gave better forecasts than the univariate SARIMA model based on the forecast

accuracy measures considered.

Furthermore, [43] forecasted prices of coffee seeds using vector autoregressive

(VAR) time series model in India. The VAR model was applied to model and

forecast monthly wholesale price of clean coffee seeds in different coffee consuming

centers namely: Bengaluru, Chennai and Hyderabad. After achieving stationarity,

model selection was done based on the Akaike Information Criterion and VAR(2)

model was selected. The model was also compared with univariate ARIMA mod-

els after which the study concluded that the VAR models fitted better that the

ARIMA models based on the forecast accuracy measures. In addition, the study

argues that when the ARIMA models are not available, then the VAR model can

be used which makes use of the information available from other series when the

series are cointegrated.

[13] investigated the effect of export and import on real economic growth of

Ethiopia using the VAR model. The study developed a VAR(2) model using

yearly data for the period 1982 to 2015 from the national Bank of the country.

From the results of the VAR analysis, lagged variables of both export and import

have significant contributions in predicting the economic growth of the country.

So far, it should be noted that in the above discussed fitted models, there is data

that has been obtained since they were developed and such information or data

could have an impact on the model. Therefore, such data or information needs to

be incorporated in the model to get an updated model instead of discarding the

model and fitting a new one which is the main objective of this study.
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2.4 Bayesian Vector Autoregressive Models

Although the vector autoregressive models have been applied extensively, the pres-

ence of excessive parameters has been one of its main demerits and leads to unsta-

ble inference and inaccurate out-of-sample forecasts particularly for models with

many variables [10, 19]. These has resulted to researchers developing the Bayesian

Vector Autoregressive (BVAR) models where the model parameters are treated

as random variables with prior probabilities. Recent research has shown that

Bayesian vector autoregression is an appropriate tool for modelling large data sets

[45]. Given the limited length of standard macroeconomic data sets relative to

the large number of parameters available, Bayesian methods have become an in-

creasingly popular way of dealing with the problem of too many parameters. As

the ratio of variables to observations increases, the role of prior probabilities be-

comes increasingly important. The general idea is to use informative priors to

shrink the unrestricted model towards a parsimonious naive benchmark, thereby

reducing parameter uncertainty and improving forecast accuracy. An example is

the shrinkage prior, proposed by Robert Litterman and subsequently developed

by other researchers which is known as the ”Minnesota prior” [23, 40]. The Min-

nesota prior captures widely held beliefs about the long-run properties of the data,

properties that are not readily apparent in the short samples typically used for es-

timation. Bayes theorem then provides the optimal way of combining these two

sources of information leading to sharper inference and more precise forecasts [23].

In particular, the Minnesota prior assumes that each variable follows a random

walk process and therefore consists of a normal prior on a set of parameters with

fixed and known covariance matrix [40].

In Bayesian inference, if the posterior probability distribution and the prior prob-

ability distribution belong to the same type of distribution, then this is referred to
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as conjugate prior distribution [19]. Assuming that the parameters are conjugate

prior distributions, the parameters can be obtained. The assumption of a conju-

gate prior distribution is advantageous in that it can greatly reduce the amount of

calculations and much studies have shown that this assumption is reliable in many

cases [19]. The Minnesota prior model is one of the conjugate prior models which

solves the problem of too many parameters in the VAR model under the conjugate

prior distribution and improves the prediction accuracy of the model [19]. Based

on this, much BVAR models have been developed. For instance, [19] used the

BVAR based on Minnesota prior to study on Application of Bayesian Vector Au-

toregressive Model in Regional Economic Forecast. From the study it was found

that the prediction error of the BVAR model is very small and the prediction abil-

ity is very satisfactory. [42] did a study on using the BVAR model to forecast the

quarterly GDP in Singapore. The study found out that the BVAR model does

forecasting accurately based on the out-of-sample forecasting done. [26] used the

BVAR model to forecast household credit in Kenya using the Sims-Zha prior. In

the study, the model parameters were treated as random variables and then prior

probabilities assigned to them. The results from the BVAR were compared from

those of ARIMA model and concluded that the BVAR outperformed the ARIMA

model.

[9] did a study to forecast the UK economy with a medium-scale Bayesian vec-

tor autoregressive model and assessed the performance of the model in forecasting

GDP growth and consumer price index (CPI) inflation in real time relative to fore-

casts from Central Organising Model for Projection Analysis and Scenario Sim-

ulation (COMPASS), the Bank of England’s dynamic stochastic general equilib-

rium (DSGE) model and other benchmarks. The BVAR outperformed COMPASS

when forecasting both gdp and its expenditure components. The study opted to
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use Bayesian since the relatively large number of variables and the limited sample

size available make classical estimation of an unrestricted VAR difficult.

Another work on the use of the Bayesian Vector Autoregressive model is given by

[17] which is on forecasting Chinese inflation and output. The study developed

several BVAR models to forecast the price inflation and output growth in China.

From the study, it was found that models with shrinkage and model selection pri-

ors that restrict some VAR coefficients to be close to zero performed better than

models with normal prior.

From this literature review, it is true that the VAR models have been shown to

perform well based on the superior forecasts produced. However, of interest is what

happens to the developed VAR model when new information is available. In this

study, we formulate an updated Vector Autoregressive model by using Bayesian

approach where the existing VAR model is treated as the prior and new measure-

ments as the likelihood to get an updated VAR model. This will be achieved in

two steps namely: the prediction step and the update step. Therefore, we develop

an updated Vector Autoregressive (VAR) time series model of order one, two and

three, after which it is then generalized to modified Vector Autoregressive (VAR)

time series model of order p. Furthermore, performance of the updated vector

autoregressive model is tested by comparing its performance with performance of

some corresponding VAR models where the root mean square error (RMSE) is

used as a measure of adequacy. In addition, the study considers estimation of pa-

rameters by means of dual estimation approach, precisely joint estimation, where

the states and the parameters are estimated simultaneously. This will involve

checking if there is convergence of the parameters to the true parameter values as

time evolves.
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CHAPTER THREE

FORMULATION OF THE UPDATED VAR MODEL AND ITS
PERFORMANCE

3.1 Introduction

In this chapter we discuss model formulation of the updated vector autoregresive

(VAR) model using the Bayesian approach. First, the study updates the Vector

Autoregressive model of order 1, 2 and 3 after which it is then generalized to

VAR model of order p. In doing this, the existing model is treated as the prior

while new information which we refer to it as measurements is treated as the

likelihood. Afterwards, the performance of the updated model is compared with

the performance of the classical model as given in Section 3.3.

3.2 Updated Vector Autoregressive VAR Model

In this section, the updated Vector Autoregressive model is discussed. First, the

updated VAR(1), VAR(2) and VAR(3) models are discussed after which the up-

dated VAR(p) model is given.

3.2.1 Updated VAR(1)

A v-variate VAR model of order 1 is given by

Yt = A1Yt−1 + ut ut ∼ N (0, Q) (3.1)

Now, let the relation between Yt, which is assumed to be the state at time t, and

Xt, the measurements at time t, be given by

Xt = PtYt + ηt ηt ∼ N (0, R) (3.2)

where P is a matrix that may depend on time t and ηt is the measurement error

which is white noise. Equation (3.1) is a transition equation giving transition
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from state t to state t+1 while Equation (3.2) is known as measurement equation.

Equations (3.1) and (3.2) now form a system of models referred to as state-space

models given by

Yt = A1Yt−1 + ut ut ∼ N (0, Q)

Xt = PtYt + ηt ηt ∼ N (0, R)
(3.3)

where: Yt is an v× 1 state vector, Xt is a n× 1 vector of measurement/observable

variables, Pt is a n× v measurement matrix, A1 is a v × v state transition matrix

which may be time dependent, ut is a v × 1 vector of transition equation errors

and ηt is a n× 1 vector of measurement errors.

The goal is to get the estimate of the state Yt given the observations Xt for the

representation given by Equation (3.3). To achieve this, we do it in two steps,

namely; the prediction and the update step. In the prediction step, we assume

that the previous belief p(Yt−1|Xt−1) is known and we wish to get p(Yt|Xt−1) given

by

p(Yt|Xt−1) =

∫
p(Yt, Yt−1|Xt−1)dYt−1 (3.4)

From conditional probability we have that Equation 3.4 can be written as

p(Yt|Xt−1) =

∫
p(Yt|Yt−1, Xt−1)p(Yt−1|Xt−1)dYt−1

or

p(Yt|Xt−1) =

∫
p(Yt|Yt−1)p(Yt−1|Xt−1)dYt−1 (3.5)

where p(Yt|Yt−1, Xt−1) = p(Yt|Yt−1), that is, under the assumption that the future

state Yt is independent of the past given the present Yt−1. The probability density

functions p(Yt−1|Xt−1) and p(Yt|Yt−1) are Gaussian, where

p(Yt−1|Xt−1) = N (E[Yt−1|Xt−1], V ar[Yt−1|Xt−1])

= N
(
Ŷt−1|t−1, St−1|t−1

)
(3.6)
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and

p(Yt|Yt−1) = N (E[Yt|Yt−1], V ar[Yt|Yt−1])

= N (A1,t−1Yt−1, Q) (3.7)

Substituting Equations (3.6) and (3.7) in the prediction posterior, Equation (3.5),

we have

p(Yt|Xt−1) =

∫
N (A1,t−1Yt−1, Q)N

(
Ŷt−1|t−1, St−1|t−1

)
dYt−1

which can then be given as

p(Yt|Xt−1) = N
(
A1,t−1Ŷt−1, St|t−1

)
= N

(
Ŷt|t−1, St|t−1

)
(3.8)

where the predicted mean in Equation (3.8) is given by

Ŷt|t−1 = E[Yt|Xt−1]

= E[A1,t−1Yt−1 + ut|Xt−1]

= E[A1,t−1Yt−1|Xt−1] + E[ut|Xt−1] (3.9)

But since ut are independent and identically distributed and not dependent on

Xt−1, then Equation (3.9) becomes

Ŷt|t−1 = A1,t−1E[Yt−1|Xt−1] + E[ut]

= A1,t−1Ŷt−1|t−1 (3.10)

since E(ut) = 0. On the other hand, the predicted covariance St|t−1 is given by

St|t−1 = V ar[Yt|Xt−1]

= V ar[A1,t−1Yt−1 + ut|Xt−1]

= V ar[A1,t−1Yt−1|Xt−1] + V ar[ut|Xt−1] (3.11)
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But since ut is independent of Xt−1, then Equation (3.11) becomes

= A1,t−1V ar[Yt−1|Xt−1]A
T
1,t−1 + V ar[ut]

= A1,t−1St−1|t−1A
T
1,t−1 +Q (3.12)

where V ar(ut) = Q. In the update step, new measurement Xt is used to obtain

the posterior p(Yt|Xt). From Bayes’ theorem,

p(Yt|Xt) =
p(Xt|Yt)p(Yt)

p(Xt)

=
p(Xt, Xt−1|Yt)p(Yt)

p(Xt, Xt−1)

=
p(Xt|Xt−1, Yt)p(Xt−1|Yt)p(Yt)

p(Xt|Xt−1)p(Xt−1)
(3.13)

But

p(Xt−1|Yt) =
p(Xt−1, Yt)

p(Yt)
=

p(Yt, Xt−1)

p(Yt)
=

p(Yt|Xt−1)p(Xt−1)

p(Yt)
(3.14)

and therefore substituting Equation (3.14) in Equation (3.13) we have

p(Yt|Xt) =
p(Xt|Xt−1, Yt)p(Yt|Xt−1)p(Xt−1)p(Yt)

p(Xt|Xt−1)p(Xt−1)p(Yt)

=
p(Xt|Xt−1, Yt)p(Yt|Xt−1)

p(Xt|Xt−1)

=
p(Xt|Yt)p(Yt|Xt−1)

p(Xt|Xt−1)
(3.15)

Furthermore,

p(Xt|Xt−1) =

∫
p(Xt, Yt|Xt−1)dYt =

∫
p(Xt|Yt, Xt−1)p(Yt|Xt−1)dYt

=

∫
p(Xt|Yt)p(Yt|Xt−1)dYt (3.16)

Substituting Equation (3.16) in Equation (3.15) we have

p(Yt|Xt) =
p(Xt|Yt)p(Yt|Xt−1)∫
p(Xt|Yt)p(Yt|Xt−1)dYt

(3.17)
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From the measurement equation we have that p(Xt|Yt) = N [PtYt, R] and since

p(Yt|Xt−1) = N [Ŷt|t−1, St|t−1], then Equation (3.17) becomes

p(Yt|Xt) =
p(Xt|Yt)p(Yt|Xt−1)∫
p(Xt|Yt)p(Yt|Xt−1)dYt

=
N [PtYt, R]N [Ŷt|t−1, St|t−1]∫
N [PtYt, R]N [Ŷt|t−1, St|t−1]dYt

(3.18)

In the numerator to Equation (3.18), we have that

N [PtYt, R]N [Ŷt|t−1, St|t−1] =
1√

det(2πR)
e−

1
2
(Xt−PtYt)TR−1(Xt−PtYt) ×

1√
det(2πSt|t−1)

e
− 1

2
(Yt−Ŷt|t−1)

TS−1
t|t−1

(Yt−Ŷt|t−1)

=
1

2π
√

det(R)det(St|t−1)
e−

1
2
[M ] (3.19)

where M = (Xt − PtYt)
TR−1(Xt − PtYt) + (Yt − Ŷt|t−1)

TS−1
t|t−1(Yt − Ŷt|t−1). But

from [29] page 699, M can be written as

M = (Xt − PtYt)
TR−1(Xt − PtYt) + (Yt − Ŷt|t−1)

TS−1
t|t−1(Yt − Ŷt|t−1)

= (Xt − PtŶt|t−1)
T (R + PtSt|t−1P

T
t )

−1(Xt − PtŶt|t−1)

+(Yt − Ŷt|t)
T (St|t−1 + P T

t R
−1Pt)(Yt − Ŷt|t) (3.20)

From which

det(R)× det(St|t−1) = det(R + PtSt|t−1P
T
t )× det(St|t−1 + P T

t R
−1Pt) (3.21)

Substituting Equations (3.20) and (3.21) in Equation (3.19) we have

N [PtYt, R]N [Ŷt|t−1, St|t−1] =
1√

det(2π(R+ PtSt|t−1P
T
t ))

×

e−
1
2
(Xt−PtŶt|t−1)

T (R+PtSt|t−1P
T
t )−1(Xt−PtŶt|t−1) ×

1√
det(2π(St|t−1 + P T

t R−1Pt)−1)
×

e−
1
2
(Yt−Ŷt|t)

T (St|t−1+PT
t R−1Pt)(Yt−Ŷt|t)

= N [PtŶt|t−1, R+ PtSt|t−1P
T
t ]×

N [Ŷt|t, (St|t−1 + P T
t R−1Pt)

−1] (3.22)
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The denominator in Equation (3.18) can be expressed as∫
N [PtYt, R]N [Ŷt|t−1, St|t−1]dYt =

∫
N [PtŶt|t−1, R + PtSt|t−1P

T
t ]×

N [Ŷt|t, (St|t−1 + P T
t R

−1Pt)
−1]dYt

= N [PtŶt|t−1, R + PtSt|t−1P
T
t ]×∫

N [Ŷt|t, (St|t−1 + P T
t R

−1Pt)
−1]dYt

= N [PtŶt|t−1, R + PtSt|t−1P
T
t ] (3.23)

where
∫
N [Ŷt|t, (St|t−1 + P T

t R
−1Pt)

−1]dYt = 1. Therefore, the updated posterior is

given by

p(Yt|Xt) =
N [PtŶt|t−1, R + PtSt|t−1P

T
t ]N [Ŷt|t, (St|t−1 + P T

t R
−1Pt)

−1]

N [PtŶt|t−1, R + PtSt|t−1P T
t ]

= N [Ŷt|t, (St|t−1 + P T
t R

−1Pt)
−1] (3.24)

Defining the covariance of the update as

Ŝ−1
t|t = S−1

t|t−1 + P T
t R

−1Pt (3.25)

then we have that

p(Yt|Xt) = N [Ŷt|t, Ŝt|t] (3.26)

By definition, see [29],

Ŝ−1
t|t Ŷt|t = S−1

t|t−1Ŷt|t−1 + P T
t R

−1Xt (3.27)

Thus to obtain Ŝt|t, we apply the Woodbury matrix identity given as

(E + FGH)−1 = E−1 − E−1F (G−1 +HE−1F )−1HE−1 (3.28)
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see [29] page 702. Hence, applying Equation (3.28) to Equation (3.25) we have

that

[Ŝ−1
t|t ]

−1 = Ŝt|t = (S−1
t|t−1 + P T

t R
−1Pt)

−1

= St|t−1 − St|t−1P
T
t (R + PtSt|t−1P

T
t )

−1PtSt|t−1

= (I − St|t−1P
T
t (R + PtSt|t−1P

T
t )

−1Pt)St|t−1

= (I −KtPt)St|t−1 (3.29)

where Kt =
St|t−1P

T
t

R+PtSt|t−1P
T
t
. To obtain the updated state, suppose that (3.27) is

multiplied by Ŝt|t so that we have

Ŝt|tŜ
−1
t|t Ŷt|t = (I −KtPt)St|t−1[S

−1
t|t−1Ŷt|t−1 + P T

t R
−1Xt] (3.30)

Thus

Ŷt|t = (I −KtPt)Ŷt|t−1 + (I −KtPt)St|t−1P
T
t R

−1Xt

= Ŷt|t−1 −KtPtŶt|t−1 + St|t−1P
T
t R

−1Xt −KtPtSt|t−1P
T
t R

−1Xt

= Ŷt|t−1 + (St|t−1P
T
t (R + PtSt|t−1P

T
t )

−1(R + PtSt|t−1P
T
t )R

−1

−KtPtSt|t−1P
T
t R

−1)Xt −KtPtŶt|t−1

= Ŷt|t−1 + (Kt(I + PtSt|t−1P
T
t R

−1)−KtPtSt|t−1P
T
t R

−1)Xt −KtPtŶt|t−1

= Ŷt|t−1 + (Kt +KtPtSt|t−1P
T
t R

−1 −KtPtSt|t−1P
T
t R

−1)Xt −KtPtŶt|t−1

= Ŷt|t−1 +Kt(Xt − PtŶt|t−1)

= A1,t−1Ŷt|t−1 +Kt(Xt − PtŶt|t−1) (3.31)

Therefore, the algorithm equations for the modified VAR(1) model are given as

Ŷt|t−1 = A1,t−1Ŷt−1|t−1

St|t−1 = A1,t−1St−1A
T
1,t−1 +Q

Kt =
St|t−1P

T
t

PtSt|t−1P T
t +R

Ŷt|t = A1,t−1Ŷt|t−1 +Kt

(
Xt − PtŶt|t−1

)
St|t = St|t−1 −KtPtSt|t−1

(3.32)
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The equation

Kt =
St|t−1P

T
t

PtSt|t−1P
T
t +R

(3.33)

is known as the gain while the term
(
Xt − PtŶt|t−1

)
is referred to as the innovation,

the residual in the measurement, which is equivalent to the measurement noise.

The summarised Algorithm is given by:

Algorithm 1 Algorithm for Modified VAR(1) model

1: Predict the State: Ŷt|t−1 = A1,t−1Ŷt−1|t−1 and Error covariance: Ŝt|t−1 =
A1,t−1St−1A

T
1,t−1 +Q

2: Compute the gain: Kt =
St|t−1P

T
t

PtSt|t−1P
T
t +R

3: Update the state: Ŷt|t = A1,t−1Ŷt|t−1 +Kt

(
Xt − PtŶt|t−1

)
4: Update the error covariance: Ŝt|t = St|t−1 −KtPtSt|t−1

3.2.2 Updated VAR(2)

Now, suppose we consider the VAR(2) model given by

Yt = A1Yt−1 + A2Yt−2 + ut ut ∼ N (0, Q)

with the corresponding measurement equation given by

Xt = PtYt + ηt ηt ∼ N (0, R)

Then, we have model given by

Yt = A1Yt−1 + A2Yt−2 + ut ut ∼ N (0, Q)

Xt = PtYt + ηt ηt ∼ N (0, R)
(3.34)

As indicated earlier on, the main focus is to get p(Yt|Xt). Similarly, we do this in

two steps, the prediction and the update steps. In the prediction step, we need to

get p(Yt|Xt−1, Xt−2) on the assumption that p(Yt−1|Xt−1, Xt−2) is known. But it

can be assumed that

p(Yt|Xt−1, Xt−2) = p(Yt|Xt−1) (3.35)
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see [18]. Likewise, from [18] we can assume that

p(Yt−1|Xt−1, Xt−2) = p(Yt−1|Xt−1)

Thus equation 3.35 can be expressed as

p(Yt|Xt−1, Xt−2) = p(Yt|Xt−1)

=

∫
p(Yt|Yt−1)p(Yt−1|Xt−1)dYt−1

= N (Ŷt|t−1, St|t−1) (3.36)

where

Ŷt|t−1 = E[Yt|Xt−1, Xt−2]

= E[Yt|Xt−1]

= E[A1Yt−1 + A2Yt−2 + ut|Xt−1]

= E[A1Yt−1|Xt−1] + E[A2Yt−2|Xt−1] + E[ut|Xt−1]

= A1E[Yt−1|Xt−1] + A2E[Yt−2|Xt−1] + E[ut]

= A1,t−1Ŷt−1|t−1 + A2,t−2Ŷt−2|t−2 (3.37)

and

St|t−1 = V ar(Yt|Xt−1)

= V ar[A1Yt−1|A2Yt−1 + ut|Xt−1]

= V ar[A1Yt−1|Xt−1] + V ar[A2Yt−2|Xt−1] + V ar[ut|Xt−1]

= A1V ar[Yt−1|Xt−1]A
T
1 + A2V ar[Yt−2|Xt−1]A

T
2 + V ar[ut]

= A1,t−1St−1|t−1A
T
1,t−1 + A2,t−2St−2|t−2A

T
2,t−2 +Q (3.38)

Therefore, the prediction equations for the VAR(2) model are

Ŷt|t−1 = A1,t−1Ŷt−1|t−1 + A2,t−2Ŷt−2|t−2 (3.39)
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and

St|t−1 = A1,t−1St−1|t−1A
T
1,t−1 + A2,t−2St−2|t−2A

T
2,t−2 +Q (3.40)

respectively.

In the update step we need p(Yt|Xt), that is the new state after getting new

information. Previously, it has been obtained that

p(Yt|Xt) =
p(Xt|Yt)p(Yt)

p(Xt)

=
p(Xt|Yt)p(Yt|Xt−1)∫
p(Xt|Yt)p(Yt|Xt−1)dYt

which after simplification gives

p(Yt|Xt) = N [Ŷt|t, (St|t−1 + P T
t R

−1Pt)
−1]

Thus the updated state and the error covariance for the VAR(2) is given by

Ŷt|t = A1,t−1Ŷt|t−1 +Kt(Xt − PtŶt|t−1)

and

St|t = St|t−1 −KtPtSt|t−1

respectively where Kt =
St|t−1P

T
t

PtSt|t−1P
T
t +R

is the gain.

3.2.3 Updated VAR(3)

Extending to VAR(3) model, when augmented with measurement equation, we

have the model given by

Yt = A1Yt−1 + A2Yt−2 + A3Yt−3 + ut ut ∼ N (0, Q)

Xt = PtYt + ηt ηt ∼ N (0, R)

where the predicted state and error covariance are given by

Ŷt|t−1 = A1,t−1Ŷt−1|t−1 + A2,t−2Ŷt−2|t−2 + A3,t−3Ŷt−3|t−3 (3.41)
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and

St|t−1 = A1,t−1St−1|t−1A
T
1,t−1 +A2,t−2St−2|t−2A

T
2,t−2 +A3,t−3St−3|t−3A

T
3,t−3 +Q (3.42)

respectively. On the other hand, the updated state and the error covariance for

the VAR(3) are

Ŷt|t = A1,t−1Ŷt|t−1 +Kt(Xt − PtŶt|t−1)

and

St|t = St|t−1 −KtPtSt|t−1

respectively.

3.2.4 Generalization to the Updated VAR(p) model

Having obtained the algorithm for the updated VAR(1), VAR(2) and VAR(3)

models, then the same approach can be applied to a vector autoregressive model

of order p, VAR(p). Therefore it can be generalized that the updated vector

autoregressive model of order p, VAR(p) model, is

Ŷt|t = A1,t−1Ŷt|t−1 +Kt

(
Xt − PtŶt|t−1

)
and the corresponding covariance is

Ŝt|t = St|t−1 −KtPtSt|t−1 (3.43)

This can be used to update the existing vector autoregressive model given the new

information which is considered as the likelihood. Therefore, the algorithm for the

updated generalized vector autoregressive model of order p is
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Algorithm 2 Algorithm for Generalized updated VAR(p) model

1: Predict the state: Ŷt|t−1 = A1,t−1Ŷt−1|t−1 + · · ·+ Ap,t−pŶt−p|t−p

2: Predict the error covariance: Ŝt|t−1 = A1,t−1St−1A
T
1,t−1+· · ·+Ap,t−pSt−pA

T
p,t−p+

Q

3: Compute the gain: Kt =
St|t−1P

T
t

PtSt|t−1P
T
t +R

4: Update the state: Ŷt|t = A1,t−1Ŷt|t−1 +Kt

(
Xt − PtŶt|t−1

)
5: Update the error covariance: Ŝt|t = St|t−1 −KtPtSt|t−1

3.3 Comparing Performance of the Updated Model with Classical Model

This section gives the discussion of the results on comparing performance of the

updated model with that of the classical model. We begin with a 1×1 vector, that

is, one-dimension which we consider to be the simplest and then later on proceed

to dimensions two, three and then five respectively.

3.3.1 Case I: One Dimension

Here we begin by considering the model in scalar form up to lag 1. If the model

is in one dimension, then A1 is a scalar. We set A1 = 0.9999, Pt = 1, Q = 0.001,

R = 0.001 and S0 = 0.001 so that the state space model becomes

Yt = 0.9999Yt−1 + ut

Xt = Yt + ηt

(3.44)

With this values and using Algorithm 2, we have the plot in Figure 3.1 where

the first subplot represents the output for AR(1), modified AR(1) estimate and

modified AR(1) prediction, denoted by the blue line, red line and the yellow line,

respectively. The second subplot represents the RMSE in the estimate and predic-

tion, denoted by the blue and the red lines, respectively. In Figure 3.1 subplot one,

the AR(1), modified AR(1) estimate and modified AR(1) prediction are seen to

move together as time evolves. On the other hand, subplot two shows that errors

between AR(1) and the modified AR(1) estimate are less. Furthermore, the errors
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Figure 3.1: Univariate modified AR(1). Subplot one gives the comparison of the
AR(1), modified AR(1) estimate and modified AR(1) prediction, denoted by the
blue line, red line and the yellow line, respectively while the second subplot gives
the errors between AR(1) and the modified AR(1) and between AR(1) and the
modified AR(1) prediction.

between AR(1) and the modified AR(1) prediction are as well low. This indicates

that the updated model performs well due to the small values of RMSE obtained

in the estimate and in the prediction.

In the case of lag 2, the model becomes

Yt = A1Yt−1 + A2Yt−2 + ut

Xt = PtYt + ηt

(3.45)
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where both ut and ηt are white noise processes with covarianceQ andR respectively

as earlier on assumed. Suppose, under lag 2, that the model is

Yt = 0.5Yt−1 + 0.5Yt−2 + ut

Xt = 1Yt + ηt

(3.46)

where A1 = 0.5, A2 = 0.5, Pt = 1, Q = 0.001, R = 0.001 and S0 = 0. Then the

plot in Figure 3.2 is obtained.
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Figure 3.2: Univariate modified AR(2). In the first subplot, comparison of the
AR(2), modified AR(2) estimate and modified AR(2) prediction, denoted by the
blue line, red line and the yellow line, respectively is given while the second subplot
gives the errors between AR(2) and the modified AR(2) and between AR(1) and
the modified AR(1) prediction.

From Figure 3.2 subplot one, it can be observed that the output for AR(2), mod-

ified AR(2) estimate and modified AR(2) prediction, almost lie together. In ad-

dition, the errors between AR(2) and the modified AR(2) estimate and between
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AR(2) and the modified AR(2) prediction are small an indication that the model

performs well as seen in subplot two.

3.3.2 Case II: Two Dimensions

In two dimensions, consider the model given by(
y1,t
y2,t

)
=

(
0.99 0.01
0.01 0.99

)(
y1,t−1

y2,t−1

)
+

(
u1,t

u2,t

)
(
x1,t

x2,t

)
=

(
1 0
0 1

)(
y1,t
y2,t

)
+

(
η1,t
η2,t

) (3.47)

where setting A1 =

(
0.99 0.01
0.01 0.99

)
, Pt =

(
1 0
0 1

)
, Q =

(
0.001 0
0 0.001

)
, R =(

0.001 0
0 0.001

)
, S0 =

(
0.001 0
0 0.001

)
and using MATLAB, we have the plots

in Figure 3.3 where (a) and (b) represent the first and second variable respec-

tively. The first subplot in (a) and (b) represents the output for VAR(1), modified

VAR(1) estimate and modified VAR(1) prediction denoted by the blue line, red

line and the yellow line, respectively. The second subplot in (a) and (b) represents

the RMSE in the estimate and prediction denoted by the blue and the red lines,

respectively.

From Figure 3.3 it can be observed that the VAR(1), modified VAR(1) estimate

and modified VAR(1) prediction move together as time grows. In addition, the

errors between VAR(1) and the modified VAR(1) estimate and between VAR(1)

and the modified VAR(1) prediction are small implying that the model can be

considered adequate.
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Figure 3.3: Bivariate modified VAR(1). The first subplot in (a) and (b) gives
comparison of the VAR(1), modified VAR(1) estimate and modified VAR(1) pre-
diction, denoted by the blue line, red line and the yellow line, respectively while
the second subplot in (a) and (b) gives the errors between VAR(1) and the modi-
fied VAR(1) and between VAR(1) and the modified VAR(1) prediction.

Furthermore, consider the Bivariate VAR(2) model given by

yt = ν +

(
0.5 0.1
0.4 0.5

)
yt−1 +

(
0 0

0.25 0

)
yt−2 + ut (3.48)

where it is assumed that Σu =

(
0.09 0
0 0.04

)
and ν is assumed to be a null matrix,
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see [28]. We use the model in Equation 3.48 to test the performance of the updated

model given by Algorithm 2. Setting A1 =

(
0.5 0.1
0.4 0.5

)
, A2 =

(
0 0

0.25 0

)
, Pt =(

1 0
0 1

)
, Q = Σu =

(
0.09 0
0 0.04

)
, R =

(
0.09 0
0 0.04

)
and S0 =

(
0.09 0
0 0.04

)
we

obtain the output in Figure 3.4 where (a) is for the first variable and (b) is for

the second variable. From Figure 3.4, it can be observed that the updated model
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Figure 3.4: Bivariate modified VAR(2). Here, subplot one in (a) and (b) shows
the comparison of the VAR(2), modified VAR(2) estimate and modified VAR(2)
prediction, denoted by the blue line, red line and the yellow line, respectively
while the second subplot in (a) and (b) shows the errors between VAR(2) and the
modified VAR(2) and between VAR(2) and the modified VAR(2) prediction.
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performs well due to the fairly small values of RMSE obtained.

3.3.3 Case III: Three Dimensions

In three dimensions, then A1 and Pt are 3× 3 matrices. Let the state space model

be given byy1,t
y2,t
y3,t

 =

0.19 0.38 −0.74
0.38 −0.21 −0.14
0.01 0.05 0.99

y1,t−1

y2,t−1

y3,t−1

+

u1,t

u2,t

u3,t


x1,t

x2,t

x3,t

 =

1 0 0
0 1 0
0 0 1

y1,t
y2,t
y3,t

+

η1,t
η2,t
η3,t

 (3.49)

Upon setting Q =

0.001 0 0
0 0.001 0
0 0 0.001

, R =

0.001 0 0
0 0.001 0
0 0 0.001

 and S0 =0.001 0 0
0 0.001 0
0 0 0.001

, we have the plots in Figures 3.5 - 3.7 which represent the

first, second and the third variables respectively.
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Figure 3.5: First Trivariate VAR(1) - Variable 1. The first subplot gives compar-
ison of the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction,
denoted by the blue line, red line and the yellow line, respectively while the second
subplot shows the errors between VAR(1) and the modified VAR(1) and between
VAR(1) and the modified VAR(1) prediction for variable 1.
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Figure 3.6: First Trivariate VAR(1) - Variable 2. Subplot one gives comparison of
the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction, denoted
by the blue line, red line and the yellow line, respectively while the second subplot
gives the errors between VAR(1) and the modified VAR(1) and between VAR(1)
and the modified VAR(1) prediction in the second variable.
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Figure 3.7: First Trivariate VAR(1) - Variable 3. In the first subplot, we have
the comparison of the VAR(1), modified VAR(1) estimate and modified VAR(1)
prediction, denoted by the blue line, red line and the yellow line, respectively while
the second subplot displays the errors between VAR(1) and the modified VAR(1)
and between VAR(1) and the modified VAR(1) prediction in the third variable.
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The plots in Figures 3.5 - 3.7 give small values of the RMSE between VAR(1)

and the modified VAR(1) estimate and between VAR(1) and the modified VAR(1)

prediction for each variable in the model implying good model performance.

Suppose we consider the tri-variate VAR(1) model given in [28] where

yt = ν +

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

 yt−1 + ut (3.50)

where we assume ν is a null matrix, Σu = Q =

2.25 0 0
0 1 0.5
0 0.5 0.74

,

R =

2.25 0 0
0 1 0.5
0 0.5 0.74

 and S0 =

2.25 0 0
0 1 0.5
0 0.5 0.74

. We test the performance

of the updated model under the model given by Equation 3.50 whose output is

given in Figures 3.8 - 3.10 for the first, second and third variables respectively.
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Figure 3.8: Second Trivariate VAR(1) - Variable 1. Subplot one gives comparison
of the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction, de-
noted by the blue line, red line and the yellow line, respectively while the second
subplot gives the errors between VAR(1) and the modified VAR(1) and between
VAR(1) and the modified VAR(1) prediction in variable 1.
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Figure 3.9: Second Trivariate VAR(1) - Variable 2. The first subplot gives compar-
ison of the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction,
denoted by the blue line, red line and the yellow line, respectively while the second
subplot shows the errors between VAR(1) and the modified VAR(1) and between
VAR(1) and the modified VAR(1) prediction for variable 2.
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Figure 3.10: Second Trivariate VAR(1) - Variable 3. Here, the first subplot gives
comparison of the VAR(1), modified VAR(1) estimate and modified VAR(1) pre-
diction, denoted by the blue line, red line and the yellow line, respectively while
the second subplot shows the errors between VAR(1) and the modified VAR(1)
and between VAR(1) and the modified VAR(1) prediction for variable 3.
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From Figures 3.8 - 3.10 it can be seen that the updated model performs well due

to the small RMSE values obtained between VAR(1) and the modified VAR(1)

estimate and between VAR(1) and the modified VAR(1) prediction in each of the

variables for the model.

Now, assume we consider the tri-variate VAR(2) model given by

yt = ν +

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

 yt−1 +

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

 yt−2 + ut (3.51)

where we assume ν is a null matrix, Σu = Q =

2.25 0 0
0 1 0.5
0 0.5 0.74

,

R =

2.25 0 0
0 1 0.5
0 0.5 0.74

 and S0 =

2.25 0 0
0 1 0.5
0 0.5 0.74

. From Equation 3.50, we

assume that the parameters for the matrix at lag 1 are the same as parameters for

the matrix at lag 2. Running Algorithm 2 in MATLAB under Equation 3.51, we

have the output in Figures 3.11 - 3.13.
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Figure 3.11: Trivariate VAR(2) - Variable 1. The first subplot gives comparison
of the performance of classical VAR(2) and the updated VAR(2) while the second
subplot gives the errors between classical VAR(2) and updated model.
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Figure 3.12: Trivariate VAR(2) - Variable 2. Subplot one gives comparison of the
VAR(2), modified VAR(2) estimate and modified VAR(2) prediction, denoted by
the blue line, red line and the yellow line, respectively while the second subplot
the errors between VAR(2) and the modified VAR(2) and between VAR(2) and
the modified VAR(2) prediction as time grows.
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Figure 3.13: Trivariate VAR(2) - Variable 3. In the first subplot, we have compar-
ison of the VAR(2), modified VAR(2) estimate and modified VAR(2) prediction,
denoted by the blue line, red line and the yellow line, respectively while the second
subplot displays the errors between VAR(2) and the modified VAR(2) and between
VAR(2) and the modified VAR(2) prediction.
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Figures 3.11 - 3.13 shows that the updated model performs well since the VAR(2),

the modified VAR(2) estimate and the modified VAR(2) prediction are observed

to move together. This is supported further by the fact that small values of the

root mean square error are obtained.

3.3.4 Case IV: Five Dimensions

Lastly, we check the performance of the updated model by considering the model

in five dimensions. In five dimensions, then A1 and Pt are 5×5 matrices. Suppose

now that the state space model is given by
y1,t
y2,t
y3,t
y4,t
y5,t

 =


0.99 0 0 0 0
0 0.99 0 0 0
0 0 0.99 0 0
0 0 0 0.99 0
0 0 0 0 0.99



y1,t−1

y2,t−1

y3,t−1

y4,t−1

y5,t−1

+


u1,t

u2,t

u3,t

u4,t

u5,t



x1,t

x2,t

x3,t

x4,t

x5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



y1,t
y2,t
y3,t
y4,t
y5,t

+


η1,t
η2,t
η3,t
η4,t
η5,t


(3.52)

Upon setting Q =


0.001 0 0 0 0
0 0.001 0 0 0
0 0 0.001 0 0
0 0 0 0.001 0
0 0 0 0 0.001

,

R =


0.001 0 0 0 0
0 0.001 0 0 0
0 0 0.001 0 0
0 0 0 0.001 0
0 0 0 0 0.001


and

S0 =


0.001 0 0 0 0
0 0.001 0 0 0
0 0 0.001 0 0
0 0 0 0.001 0
0 0 0 0 0.001


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we have the plots in Figures 3.14 - 3.18 which represent the first, second, third,

fourth and fifth variables respectively.
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Figure 3.14: Pentavariate VAR(1) - Variable 1. The first subplot gives comparison
of the performance o classical VAR(1) and updated model while the second subplot
shows the errors between classical VAR(1) and updated model.
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Figure 3.15: Pentavariate VAR(1) - Variable 2. In subplot one compares of the
performance of the models while the second subplot gives the errors between the
models.
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Figure 3.16: Pentavariate VAR(1) - Variable 3. Subplot one gives comparison of
the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction, denoted
by the blue line, red line and the yellow line, respectively while the second subplot
displays the errors between VAR(1) and the modified VAR(1) and between VAR(1)
and the modified VAR(1) prediction.
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Figure 3.17: Pentavariate VAR(1) - Variable 4. In the first subplot, we have
comparison of the VAR(1), modified VAR(1) estimate and modified VAR(1) pre-
diction, denoted by the blue line, red line and the yellow line, respectively while
in the second subplot the errors between VAR(1) and the modified VAR(1) and
between VAR(1) and the modified VAR(1) prediction.
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Figure 3.18: Pentavariate VAR(1) - Variable 5. Here, subplot one gives comparison
of the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction, de-
noted by the blue line, red line and the yellow line, respectively while subplot two
shows the errors between VAR(1) and the modified VAR(1) and between VAR(1)
and the modified VAR(1) prediction.

From Figures 3.14 - 3.18, it can be observed that the updated model gives precise

estimates as seen from the small value of root mean square error between VAR(1)

and the modified VAR(1) estimate and between VAR(1) and the modified VAR(1)

prediction for each variable.
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CHAPTER FOUR

PARAMETER ESTIMATION

4.1 Introduction

Many statistical models, be it deterministic or stochastic, usually contain a number

of parameters that make up the model(s). Therefore, parameter estimation is a

key step that cannot be avoided as far as modelling or model building is concerned.

Commonly, the mostly applied parameter estimation methods include the maxi-

mum likelihood estimation, Bayesian estimation and the least squares methods

among others. For instance, the maximum likelihood method is usually applied

to a density function f(X|θ) which depends on a set of parameters θ and data set

x1, x2, · · · , xn that are independent and identically distributed (i.i.d) [14, 41]. The

likelihood function is given by

L(θ|X) =
n∏

i=1

fX|θ

which is then maximised though mostly the log-likelihood function given by

l(θ) = lnL(θ|X)

is used [5, 14, 28]. However, this work attends not to these estimation procedures

but by considering the use of derived algorithm in the estimation of state and

parameter in the updated VAR models.

In state-space models, estimation of parameters and the state is key. Some re-

searches have been done on the estimation of the parameters excluding the state

while others have tried to estimate both the parameters and the states after deriv-

ing their algorithm. For instance, Kantas et al [22] did a study on comprehensive

review on particle methods proposed to perform static parameter estimation in
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state space models. The work mainly focuses on the estimation of the parameters

by use algorithms on particle filter. In addition [3] did a research about on-line

parameter estimation in non-linear non-Gaussian state-space models with inten-

tion to estimate static parameters by point estimation.

[33] did a study on parameter and state estimation for state space models. In

the work, a least squares parameter identification algorithm is derived which is

then used to estimate the parameters. Thereafter, the estimated parameters are

then used to compute the system states by incorporating input-output data. In-

deed, it can be noted that the estimation of parameters and states in state space

models has attracted interest for most researchers based on the algorithm derived

depending on the nature of the state space model as seen in other works such as

[8, 12, 31, 36].

In this Chapter, we consider estimation of the parameters by use of the dual

estimation approach which estimates both the state and the parameters though

our main focus is on the parameter estimation. The approach, dual estimation,

involves the estimation of the state and the parameters simultaneously [4, 25].

However, dual estimation can be done in two ways namely: joint estimation and

dual filter whereby joint estimation requires only one filter whereas dual filter re-

quires two filters. Joint estimation is advantageous over the dual estimation in

that the former allows for dependencies in parameters and states while the later

assumes no autocorrelation, that is, the cross covariances are zero, [25]. Joint esti-

mation involves augmenting the state vector with vector of parameters to form an

extended state-space and then the algorithm is run forward in time to update both

the state and the parameters with expectations of the algorithm converging to the

optimal state and parameter values. In this work, joint estimation is considered.
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4.2 Joint Estimation

As mentioned earlier, joint estimation involves augmenting the state vector with

vector of parameters to form an extended state-space and then the algorithm is

run forward in time to update both the state and the parameters with expectations

of the algorithm converging to the optimal state and parameter values. Therefore,

for the VAR(1) model, let

zt = φt (4.1)

where

zt =

(
Yt

θt

)
and φt =

(
A1Yt−1 + ut

θt−1

)
On the other hand, for the VAR(p) model

zt =

(
Yt

θt

)
and φt =

(
A1Yt−1 + A2Yt−2 + · · ·+ ApYt−p + ut

θt−1

)
Algorithm 2 is then applied on the joint state space system given in Equation 4.1

which estimates the states and the parameters simultaneously. Therefore, next we

proceed to estimate the parameters of the models to check if their is convergence

to the true parameter values. First, a case of one dimension is considered after

which we consider the case of two dimension. As the estimation is done, it should

be noted that we assume that the parameters are time-invariant, that is, they are

static.

4.2.1 Case I: One Dimension

We consider the model given by

Yt = A1Yt−1 + · · ·+ ApYt−p + ut

Xt = PtYt + ηt

(4.2)
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where we assume it is in scalar form and proceed to estimate the parameters,

A1, · · · , Ap and the state, Yt through joint estimation. We assume the initial

state, Y0, and the values of A1, · · · , Ap, Pt, ut and ηt are given and then run the

algorithm to investigate if it converges to the true parameter value. Suppose that

we have the model given by

Yt = A1Yt−1 + ut

Xt = PtYt + ηt

(4.3)

We set A1 = −0.2 so that the model can be written as

Yt = −0.2Yt−1 + ut

Xt = Yt + ηt

(4.4)

where in Equation 4.4, A1 = a = −0.2. Using Algorithm 2, we proceed to estimate

the parameter a. Using MATLAB, and setting Q = 0.01 and R = 0.001 in

Algorithm 2, we have the panels as given in Figure 4.1 which gives the estimates

of the parameter a over time plus its corresponding Box-plot. From Figure 4.1 it

can be observed that the algorithm yields converging results to the true parameter

value as time evolves which is -0.2 with some margin of error. In addition, the

accompanying Box-plot for parameter a in Figure 4.1 shows the dispersion in the

results though with some outliers present on both the lower and upper sides of

the Box-plot, with most of them on the lower side than on the upper side. Next,

suppose that we have the model given by

Yt = A1Yt−1 + A2Yt−2 + ut

Xt = PtYt + ηt

(4.5)

Suppose we set A1 = −0.2 and A2 = 0.2. Then the model in Equation (4.5) can

be written as

Yt = −0.2Yt−1 + 0.2Yt−2 + ut

Xt = Yt + ηt

(4.6)
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Figure 4.1: Parameter Estimation in AR(1) model. Subplot one gives the cor-
responding box plot showing the dispersion while the second subplot shows the
convergence of the parameter a to the true parameter value -0.2 as time evolves.

where in Equation 4.6, A1 = a = −0.2 and A2 = b = 0.2. Using the Algorithm 2,

we estimate parameters a and b. Setting Q = 0.01, R = 0.001, from MATLAB, we

have the panels as given in Figure 4.2 which gives the estimates of the parameters

a and b over time plus their corresponding Box-plots. From Figure 4.2 it is clear

that the algorithm yields converging results to the true parameter values as time

evolves which are -0.2 for a and 0.2 for b but with some margin of error. The

accompanying Box-plots for parameters a and b in Figure 4.2 shows the dispersion

in the results and it can be observed that there are few outliers present which

appear on the lower side of the Box-plots for both parameters a and b.
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Figure 4.2: Parameter Estimation in AR(2) model. The first subplot gives the
corresponding box plots showing the dispersion in both parameters a and b, while
the second subplot shows the convergence of the parameters a and b to the true
parameter values -0.2 and 0.2, respectively as time evolves.

4.2.2 Case II: Two Dimensions

Next we proceed to estimate the parameters in the two dimensions model. Consider

the model given by(
y1,t
y2,t

)
=

(
−0.2 0
0 0

)(
y1,t−1

y2,t−1

)
+

(
u1,t

u2,t

)
(
x1,t

x2,t

)
=

(
1 0
0 1

)(
y1,t
y2,t

)
+

(
η1,t
η2,t

) (4.7)

Again using Algorithm 2, we estimate the parameters (elements) of matrix a =(
−0.2 0
0 0

)
where a11 = −0.2, a12 = 0, a21 = 0 and a22 = 0. Using MATLAB,

setting Q =

(
0.001 0
0 0.001

)
and R =

(
0.0101 0

0 0.0101

)
, we have the panels as
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given in Figure 4.3 which gives the estimate of parameter a11 over time plus its

corresponding Box-plot. From Figure 4.3 it is evident that the algorithm yields

a_11 = -0.2

-5000

0

5000
Estimate of parameter a11

0 50 100 150 200

Time

-4

-2

0

2
105 Estimate of parameter a11 over time

Figure 4.3: Parameter Estimation in VAR(1) model. Subplot one shows the cor-
responding box plot showing the dispersion while the second subplot shows the
convergence of the parameter to the true parameter value as time evolves.

converging results to the true parameter value as time evolves which are -0.2. How-

ever, there is some margin of error present in the convergence. The accompanying

Box-plot for parameter a11 in Figure 4.3 represents the dispersion in the results

with outliers present on both the lower and upper sides of the Box-plot. However,
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the outliers appear more on the lower side as compared to the upper side.
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CHAPTER FIVE

APPLICATION OF THE UPDATED VAR MODEL

5.1 Introduction

In this chapter, illustration is given regarding the application of the updated VAR

model to some real data.

5.2 Modeling the Contribution of the Agricultural Sub-sectors to the
National GDP using the Updated VAR Model

In this section, we consider secondary data obtained from the Kenya National

Bureau of statistics, Statistical Abstract reports from 2000-2021. The data is on

monetary value marketed at current prices (Ksh. Million) from crops, horticulture,

livestock and related products, fisheries and forestry. We consider the contribu-

tion of the listed agricultural sub-sectors to the national gross domestic product

due to the fact that the agriculture sector plays a key role as far as a country’s

economic GDP is concerned. The data was entered into Excel and saved under

CSV format. It was then read in R software for analysis. First, a time series plot

of the variables is done which is as given in Figure 5.1. From figure 5.1, we observe

that almost all the variables depict an increasing trend implying that the GDP

from the variables has been increasing steadily over the years. Thus the series are

non-stationary as confirmed by Dickey-Fuller test. We make the series stationary

by applying differencing twice to the log of the variables. This gives the plot in

Figure 5.2.

From Figure 5.2, it is observed that the variables appear stationary and can be

adopted. The Augmented Dickey Fuller test also shows that the series are sta-

tionary. Using the lagselect function, we find that the Akaike information criteria
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Figure 5.1: Time series plot of GDP from the variables, namely; crops, livestock
and related products, horticulture, fisheries and forestry.

(AIC), Hannan-Quinn (HQ) criteria, Schwartz Criteria (SC) and Final Prediction

Error (FPE) selects order of the model as 1 i.e p = 1 implying VAR(1) model is a

suitable model. The model is given by


y1,t
y2,t
y3,t
y4,t
y5,t

 =


−0.3930 −0.0627 −0.1585 −0.0901 0.0852
0.2784 −0.4275 0.1043 −0.0419 0.2829
0.6599 0.0578 −0.2950 −0.0195 0.4020
−0.2265 0.0063 0.1889 −0.6139 0.1257
0.1563 −0.2264 −0.0798 −0.0194 −0.4631



y1,t−1

y2,t−1

y3,t−1

y4,t−1

y5,t−1



+


0.0001487
−0.001047
−0.0008652
0.0001187
−0.0000301

+


ω1,t

ω2,t

ω3,t

ω4,t

ω5,t

 (5.1)

The eigenvalues of the matrix of the penta-variate VAR model in equation 5.1 are

obtained by solving for λ in the equation

det[Φ1 − λI5] = 0 (5.2)
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Figure 5.2: Time series plot of twice differenced log GDP from the Variables, that
is, after applying second differencing to the log of the variables.

where

Φ1 =


−0.3930 −0.0627 −0.1585 −0.0901 0.0852
0.2784 −0.4275 0.1043 −0.0419 0.2829
0.6599 0.0578 −0.2950 −0.0195 0.4020
−0.2265 0.0063 0.1889 −0.6139 0.1257
0.1563 −0.2264 −0.0798 −0.0194 −0.4631

 (5.3)

Equivalently, this is given by

det


−0.3930− λ −0.0627 −0.1585 −0.0901 0.0852

0.2784 −0.4275− λ 0.1043 −0.0419 0.2829
0.6599 0.0578 −0.2950− λ −0.0195 0.4020
−0.2265 0.0063 0.1889 −0.6139− λ 0.1257
0.1563 −0.2264 −0.0798 −0.0194 −0.4631− λ

 = 0 (5.4)

The eigenvalues are λ1 = −0.7078666 + 0i, λ2 = −0.2623644 + 0.4698648i, λ3 =

−0.2623644− 0.4698648i, λ4 = −0.4799684 + 0.0770515i and λ5 = −0.4799684−

0.0770515i whose moduli are 0.7078666, 0.5381524, 0.5381524, 0.4861138 and

0.4861138 respectively. All the eigenvalues have modulus less than one (lie within
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the complex unit circle) thus the model is stable.

We tested for Granger-Causality of the variables and found that Crops, Livestock,

Horticulture, Fishing and Forestry do not Granger-cause the other variables. The

test on normality of the residuals for the model in Equation 5.1 found that the

residuals are normally distributed. Also, the residuals were found to be uncorre-

lated as seen from the ACF plots of the residuals (see appendices) of the developed

model in Equation 5.1.

Suppose we now combine the fitted model given in equation 5.1 with the measure-

ment equation so that we have,
y1,t
y2,t
y3,t
y4,t
y5,t

 =


−0.3930 −0.0627 −0.1585 −0.0901 0.0852
0.2784 −0.4275 0.1043 −0.0419 0.2829
0.6599 0.0578 −0.2950 −0.0195 0.4020
−0.2265 0.0063 0.1889 −0.6139 0.1257
0.1563 −0.2264 −0.0798 −0.0194 −0.4631



y1,t−1

y2,t−1

y3,t−1

y4,t−1

y5,t−1

+


u1,t

u2,t

u3,t

u4,t

u5,t



x1,t

x2,t

x3,t

x4,t

x5,t

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



y1,t
y2,t
y3,t
y4,t
y5,t

+


η1,t
η2,t
η3,t
η4,t
η5,t


(5.5)

We then subject equation 5.5 to algorithm 2 to update the model. Setting

Q =


0.0190578 0.001970 0.005758 0.0002899 0.009302
0.0019701 0.008454 0.005498 0.0043966 0.001251
0.0057579 0.005498 0.047239 0.0244832 0.004615
0.0002899 0.004397 0.024483 0.0982311 0.029322
0.0093015 0.001251 0.004615 0.0293222 0.046527

,

R =


0.001 0 0 0 0
0 0.001 0 0 0
0 0 0.001 0 0
0 0 0 0.001 0
0 0 0 0 0.001


and
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S0 =


0.001 0 0 0 0
0 0.001 0 0 0
0 0 0.001 0 0
0 0 0 0.001 0
0 0 0 0 0.001


the plots in Figure 5.3 - Figure 5.7 are obtained for the five variables being referred

to.
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Figure 5.3: Fitted Pentavariate VAR(1) - Variable 1. Subplot one gives compar-
ison of the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction,
denoted by the blue line, red line and the yellow line, respectively while the second
subplot shows the errors between VAR(1) and the modified VAR(1) and between
VAR(1) and the modified VAR(1) prediction as time evolves.
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Figure 5.4: Fitted Pentavariate VAR(1) - Variable 2. The first subplot gives com-
parison of the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction,
denoted by the blue line, red line and the yellow line, respectively while the second
subplot the errors between VAR(1) and the modified VAR(1) and between VAR(1)
and the modified VAR(1) prediction.
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Figure 5.5: Fitted Pentavariate VAR(1) - Variable 3. In subplot one, comparison of
the VAR(1), modified VAR(1) estimate and modified VAR(1) prediction, denoted
by the blue line, red line and the yellow line, respectively is shown, while the
second subplot displays the errors between VAR(1) and the modified VAR(1) and
between VAR(1) and the modified VAR(1) prediction.
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Figure 5.6: Fitted Pentavariate VAR(1) - Variable 4. Here, the first subplot gives
comparison of the VAR(1), modified VAR(1) estimate and modified VAR(1) pre-
diction, denoted by the blue line, red line and the yellow line, respectively while
the second subplot shows the errors between VAR(1) and the modified VAR(1)
and between VAR(1) and the modified VAR(1) prediction.
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Figure 5.7: Fitted Pentavariate VAR(1) - Variable 5. In the first subplot, we
have comparison of the VAR(1), modified VAR(1) estimate and modified VAR(1)
prediction, denoted by the blue line, red line and the yellow line, respectively
while in the second subplot, we have the errors between VAR(1) and the modified
VAR(1) and between VAR(1) and the modified VAR(1) prediction.
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From Figures 5.3 - 5.7, it can be observed that the values of the root mean square

error are fairly small an indication that the updated model performs well. Figures

5.3 - 5.7 represent the first, second, third, fourth and fifth variables respectively.

In addition, it is evident that if the model has too many parameters, its ability to

perform well is lowered since the values of the RMSE are observed to be high in

Figures 5.3 - 5.7 for the model with many parameters than in Figures 3.14 - 3.18

which is for the model with few parameters.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

In this chapter, conclusions for the findings from the research are given. In addi-

tion, recommendations regarding future work which may be done regarding other

time series models are given.

6.2 Conclusions

This study developed an updated VAR model to incorporate new information.

Using the Bayesian technique, an updated VAR model of order 1 is developed as

seen in Algorithm 1. Afterwards, VAR models of order 2 and 3 are considered after

which generalization to the VAR model of order p is done as given in Algorithm 2.

The performance of the updated VAR model is compared with the performance

of corresponding VAR models from which it is observed that the updated model

performs well based on the low values of the root mean square error (RMSE)

which is used as a tool for adequacy checking. From the analysis, the values of the

root mean square error between the existing VAR model and the modified VAR

estimate and between the existing VAR model and the modified VAR predicted

were low an indication of good model performance. In addition, it is observed that

as time goes on, the existing VAR model, modified VAR estimate and modified

VAR predicted are seen not to diverge from each other an indication of good

performance from the models. Furthermore, estimation of parameters for some

VAR models is done using the joint estimation. In joint estimation, both the

states and the parameters are estimated simultaneously using Algorithm 2 as time

evolves where it is checked whether there is convergence to the true parameter
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values. From the results, by incorporating Algorithm 2, it is found that there is

convergence to the true parameters as time goes on which signifies the betterment

of the model as time goes on when new information is obtained.

6.3 Recommendations

In this study, an updated Vector Autoregressive (VAR) model has been formulated

using the Bayesian approach where the existing VAR model is considered as the

prior, the new information (the measurements) as the likelihood to update the VAR

model and hence get the updated VAR model. However, other multivariate time

series models such as the Vector Autoregressive Moving Average (VARMA), Vector

Moving Average (VMA) and Factor Augmented Vector Autoregressive Moving

Average (FAVARMA) models also need to be considered incase new information

emerges after the model has been developed. Therefore, as recommendations for

future work, we suggest that future work be done to update the models (other

multivariate time series models) to cater for the new information which is obtained

after the model has been developed.
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APPENDICES

(i) ACF Plots of the Residuals for the Fitted Pentavariate VAR(1)

Model

Residuals of CROPS

5 10 15

−
0

.2
0

.0
0

.2

0 2 4 6 8 10 12

−
0

.5
0

.0
0

.5
1

.0

ACF of Residuals

0 2 4 6 8 10 12

−
0

.5
0

.0
0

.5
1

.0

ACF of squared Residuals

Histogram and EDF

D
e

n
si

ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
.0

0
.4

0
.8

2 4 6 8 10 12

−
0

.4
0

.0
0

.4

PACF of Residuals

2 4 6 8 10 12

−
0

.4
0

.0
0

.4

PACF of squared Residuals

Figure 0.1: Residuals from Crops. The plot shows the residuals from the crops, the
corresponding histogram, the autocorrelation function (ACF) plot of the residuals
and the partial autocorrelation function (PACF) plot of the residuals. From the
ACF plot, all the autocorrelation values are within the boundaries an indication
that the residuals are uncorrelated.
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Residuals of LIVESTOCK
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Figure 0.2: Residuals from Livestock. The plot shows the residuals from the
livestock, the corresponding histogram, the autocorrelation function (ACF) plot of
the residuals and the partial autocorrelation function (PACF) plot of the residuals.
From the ACF plot, all the autocorrelation values are within the boundaries an
indication that the residuals are uncorrelated.
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Residuals of HORTICULTURE
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Figure 0.3: Residuals from Horticulture. The plot shows the residuals from the
horticulture, the corresponding histogram, the autocorrelation function (ACF) plot
of the residuals and the partial autocorrelation function (PACF) plot of the resid-
uals. From the ACF plot, all the autocorrelation values are within the boundaries
an indication that the residuals are uncorrelated.
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Residuals of FISHING
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Figure 0.4: Residuals from Fishing. The plot shows the residuals from the fish-
ing, the corresponding histogram, the autocorrelation function (ACF) plot of the
residuals and the partial autocorrelation function (PACF) plot of the residuals.
From the ACF plot, all the autocorrelation values are within the boundaries an
indication that the residuals are uncorrelated.
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Residuals of FORESTRY
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Figure 0.5: Residuals from Forestry. The plot shows the residuals from the forestry,
the corresponding histogram, the autocorrelation function (ACF) plot of the resid-
uals and the partial autocorrelation function (PACF) plot of the residuals. From
the ACF plot, all the autocorrelation values are within the boundaries an indica-
tion that the residuals are uncorrelated.
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(ii) Data

Figure 0.6: The secondary data that was used in the study. The data is yearly,
2000 to 2021, in million Kenyan shillings.
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