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ABSTRACT

Cholera is an infection of the small intestine of humans caused by a gram-negative

bacterium called Vibrio cholerae whose cell membrane thickness is small and stains

pink when tested in the laboratory. It is spread through eating food or drinking wa-

ter contaminated with faeces from an infected person. It causes rapid dehydration

and general body imbalance, and can lead to death since untreated individuals suf-

fer severely from diarrhea and vomiting. Its dynamics involves multiple interaction

between the human host, the pathogen, and the environment which contributes to

both human to human and indirect environment to human transmission pathways.

When infected individuals move from one place to another, they also lead to an

outbreak of cholera based on their lifestyle. Mathematical models of cholera trans-

mission dynamics and protection measures such as vaccination, improved sanitation,

water chlorination, and education have been formulated but did not assess the role

of rehydration and antibiotic treatment. In this study we have formulated a mathe-

matical model based on system of ordinary differential equations (ODEs) to assess

the role of rehydration and antibiotic treatment in reduction of cholera mortality.

All solutions in our model are positive since we are dealing with human population,

we have also shown that the solution of the model is bounded. Since the solution

of the model is positive and bounded, hence the model is well posed. The basic

reproduction number is derived using the Next Generation matrix approach and the

existence of the steady states of the model are also determined. The disease free

equilibrium is shown to be locally asymptotically stable and it’s global stability has

been shown to be globally stable using the Comparison Theorem. Endemic equilib-

rium has also been shown to be locally asymptotically stable. Numerical simulation

of the model done using MATLAB software shows that rehydration and administra-

tion of antibiotics play a major role in reducing cholera deaths. The study will be

relevant to planners and policy makers in health care system in facilitating prompt

diagnosis and treatment of cholera.
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ABBREVIATIONS

WHO - World Health Organization

MATLAB - Mathematical Laboratory
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CHAPTER 1

INTRODUCTION

1.1 Background information

Cholera is an infection of small intestine caused by a gram-negative bacterium called

Vibrio cholerae whose cell membrane thickness is small and stains pink when tested

in the laboratory. Blood stream infection has been noted for Vibrio cholerae O141

and O1 in which some cases were reported Gordon et′ al[9]. In one of the cases,

a male twin was born in Queen Elizabeth Central Hospital in Blantyre, Malawi in

March 1998, at 34 weeks gestation. The child was well until day 2, when it be-

came hypothermic, hypoglycemic and peripherally cyanosed. It had no diarrhoea.

Blood culture was taken, treatment with penicilin and gentamicin was began and

expressed breast milk was fed by nasogastric tube, but the child died 13 hours later.

Blood culture was done and grew Vibrio cholerae O1 at 24 hours and stool culture

was not taken. The second twin followed similar clinical course and died on day 2.

Blood culture was negative. The mother had no diarrheal disease Jesudson et′ al[12].

The dynamics of cholera involve multiple interactions between the human host, the

pathogen, and the environment, which contribute to both human to human and in-

direct environment to human transmission pathways Mari et′ al[15]. The bacterium

is generally present in the faeces of an infected person for 7 to 14 days, though with

treatment, the symptoms do not last long Mukandavire et′ al[17]. The bacterium is

acquired by humans through eating food or drinking water contaminated by faeces

from an infected person. The incubation period of the bacteria is 12 hours to 5 days

Mwasa et′ al [16] . During infection the bacteria attach themselves to the intestinal

walls where they multiply and produce toxic proteins which cause the intestines to

secrete large amounts of fluids. Signs and symptoms of cholera infection include

stomach cramps, mild fever, vomiting and watery diarrhoea often accompanied by
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stomach pains which leads to dehydration as one can lose up to 1 litre of fluids per

hour. If untreated severe dehydration will lead to death Nelson et′ al [18].

Diagnosis is done through culture of the stool, agglutination tests are then done

for confirmation of the disease. Treatment is based on the severity of dehydration of

the patient Sulayman et′ al [20]. Simple oral rehydration solutions containing salts

and glucose are used to treat mild to moderate cases. For severe cases, treatment is

based on antibiotics that can shorten the cause and diminish the severity of cholera,

but it is important to replace the fluids that have been lost through diarrhea. To

replace the lost fluids, rehydration solutions, containing a mixture of salts and sugar

are mixed with water and drunk in large amounts as a result fatality rates are re-

duced to less than one percent Neil et′ al [19]. Antibiotics is used to treat in case

it reaches a case of bloodstream infection in which the findings show that the use

of antibiotics reduces volume of stool output by 8%− 92%, duration of diarrhea by

50%− 56% and duration of positive bacterial culture by 26%− 83% World Health

Organization[22]. The existence of acquired immunity against the cholera disease

has been known since very ancient time. Patients recovering from Vibrio cholerae

infection are either protected against reinfection with the same Vibrio cholerae, or

the subsequent episodes are less severe Lavine et′ al[13]. Prevention and control

measures of cholera include improved food safety, provision of safe drinking water,

proper sanitation, and strengthening surveillance. Health education is also very im-

portant in raising public awareness on preventive measures Zhang et′ al[26].

Diarrhoeal diseases like cholera cause most global death in children under the age

of five. It is estimated that cholera affects 3 - 5 million people and cause 100,000-

130,000 deaths in the world annually World Health Organization[8]. The disease

is more common in developing countries especially Africa such as Nigeria (2010),

Zimbabwe (2008 - 2009), Kenya (2015) parts of Asia such as Vietnam (2009), Iraq
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(2008) and South and Central America such as Haiti (2010) where there is inade-

quate sanitation and lack of clean water. In 2009 a total of 221, 226 cases with 4883

deaths were reported to the WHO with Africa accounting for 98% of the cases and

99% of the deaths CHC[3]. In Kenya for instance 5, 564 cases of cholera and 113

deaths were reported between (2010 − 2014) World Health Organization[24]. Be-

tween (2014-2016) Cholera cases have been reported in Siaya, Garissa and Homabay

counties in Kenya. Cholera deaths in Kenya is 6.8 deaths in every 1000 people in

a given population in a year CIA[5]. By developing a mathematical model on the

role of rehydration and antibiotic treatment we will therefore be able to understand

how cholera mortality is reduced.

1.2 Statement of the problem

Many control programmes have been set up to promote effective prevention of

cholera such as creating awareness through education. However, cholera has re-

mained persistently endemic which is frequently punctuated by severe outbreaks in

urban and rural areas with consequences of high mortalities. These cases are often

aggravated by the chaos of war and upsurge of slums in urban areas. Cholera deaths

are attributed to rapid dehydration and lack of timely administration of antibiotics.

Several mathematical models on transmission dynamics and control of cholera have

been formulated but none that assesses both rehydration and antibiotic treatment

has ever been developed. As a result this study will assess the role of rehydration

and antibiotic treatment on reduction of cholera mortality.

1.3 Objectives of the study

1.3.1 General Objective

The main objective of this study is to assess the role of rehydration and antibiotic

treatment on the reduction of cholera mortality.
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1.3.2 Specific Objective

The specific objectives of this study are:

(i)To formulate a system of ODEs to assess the role of rehydration and antibiotic

treatment on reduction of cholera mortality.

(ii)To perform stability analysis of the model formulated with respect to the basic

reproduction number derived using the Next Generation Matrix approach.

(iii)To assess the role of rehydration and antibiotic treatment in the model by

means of simulation using MATLAB software.

1.4 Justification of the Study

Cholera outbreaks have attracted global attention due to high cases of cholera mor-

tality attributed to dehydration. Cholera deaths are presently reduced through

rehydration and administering antibiotics to the infected individuals. We therefore

aim to better the understanding of how rehydration and antibiotics treatment help

in reducing cholera mortalities so as to gain useful guidelines on how cholera pa-

tients can be treated in good time. This is because cases of cholera deaths have been

reported after administration of Oral Rehydration Solutions when the bacteria has

reached the bloodstream level.

1.5 Significance of the Study

Mathematical modeling of cholera is a valuable component for public health plan-

ning and response. By developing and analyzing a mathematical model to inves-

tigate the role of rehydration and antibiotic treatment, the study will be relevant

in planning and decision making among stake-holders in the health system who are

responsible for equipping public health facilities that can be used to test for cholera

in KEMRI and provide medicine to treat cholera patients in good time.
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1.6 Methods

In this study, a cholera model is developed to assess the role of rehydration and

antibiotic use in reduction of cholera mortality. The existence of the steady states

of the model is determined. Stability analysis of the steady states is also determined

with respect to the basic reproduction number, derived using the next generation

matrix approach. MATLAB software is also used to carry out numerical simulation

to graphically illustrate the role played by rehydration and antibiotic use in reducing

cholera deaths.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Bloodstream infection has been noted for Vibrio cholerae O141 and O1 Gordon

et′ al[9]. Untreated individuals suffer severely from diarrhea and vomiting. It can

cause a rapid dehydration and general body imbalance, and can lead to death. As

a water/food borne disease, cholera is typically transmitted through pathogen in-

gestion, such as drinking sewage-contaminated water, or eating food prepared by an

individual with contaminated hands. Meanwhile, different transmission pathways

are possible.

Prevention and control measures of cholera include improved food safety, provision

of safe drinking water, proper sanitation,strengthening surveillance, health educa-

tion, rehydration and use of antibiotics Colwel[6].

Cholera is an ancient disease that continues to cause epidemic and pandemic infec-

tions despite ongoing efforts to limit its spread Gosh et′ al[10]. The existence of

acquired immunity against the cholera disease has been known since very ancient

time. Patients recovering from Vibrio cholerae infection are either protected against

reinfection with the same Vibrio cholerae, or the subsequent episodes are less severe

Lavine et′ al[13]. The last few years have witnessed many cholera outbreaks in devel-

oping countries, including India(2007), Congo(2008), Iraq(2008), Zimbabwe(2008-

2009), Vietnam(2009), Nigeria(2010), Haiti(2010) and Kenya(2014-2015). In the

year of 2010 alone, it is estimated that cholera affected 3-5 million people and

caused 100,000-130,000 deaths in the world World Health Orgaization[24]. Partic-

ularly, cholera represents a significant public health burden to developing countries

and cholera continues receiving worldwide attention World Health Organization[24].

This study seeks to assess role of rehydration and antibiotic treatment on reduction
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of cholera mortality.

2.2 Cholera Models

Several mathematical cholera models have been formulated and analyzed. Em-

manuel et′ al. [7] formulated an SIR-C cholera model to study the dynamics of

cholera with control strategy where C denotes the pathogen concentration. Based

on their idea, cholera deaths can be reduced by good sanitation and water treatment.

Other control strategies like vaccination and curative treatment were not considered

in the model.

Aryda et′ al[1] developed and analyzed an SIR model to investigate cholera dis-

ease with education and chlorination. They established that with no chlorination,

the disease free equilibrium is shown to be globally stable and the sensitivity anal-

ysis of basic reproduction number shows that it is most sensitive to education, per

capita birth and death rate of the bacteria. They also concluded that per capita

birth and death rate of the bacteria can be increased by water chlorination. The

model ignored factors such as environmental factors which may promote disease

outbreak among poor communities. The model also ignored the role of rehydration

and antibiotic treatment.

Wang and Modnak [23] developed an SIR model using systems of ordinary dif-

ferential equations to study the dynamics of cholera. The protection measures such

as vaccination, eating well cooked food, water chlorination and good sanitation were

incorporated. The model also represents coupling between the multiple transmis-

sion pathways and the control measures. Their stability analysis shows that the

basic reproduction number for the control model plays a crucial role in determining

the epidemic and endemic dynamics. They concluded that vaccination and treat-

ment closely interplay with each other and that combination of multiple intervention
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methods generally achieves better results than a single control such as vaccination

only. However, they have not specified the treatment.

The role of aquatic reservoir on the dynamics of cholera is investigated by Codeco[2].

This is done by use of an SIR model incorporating aquatic population of Vibrio

cholerae. Three hypothetical communities are used to illustrate the dynamics, these

are the endemic, epidemic and cholera free population. Qualitative results of the

cholera free population shows that the disease can be minimized by preventing wa-

ter contamination, drinking of treated water and by diluting cholera diarrhea using

large quantities of water. The results of the model show that endemic cholera can be

maintained even without permanent reservoirs, however, the analysis does not show

how cholera mortality can be reduced through rehydration and antibiotic treatment.

In his findings, the development of cholera modelling requires a better understanding

of Vibrio cholerae ecology and epidemiology by knowing estimates of the parameters

of Vibrio cholerae infection in endemic population as well as better description of

the relationship between dose and virulence. The model does not incorporate mea-

sures such as rehydration and antibiotic treatment on reduction of cholera mortality.

A model to study the impact of human behaviour on cholera dynamics is devel-

oped by Xueying et′ al[25]. They assumed that the population is well aware of the

development and severity of the disease and individuals will be free from cholera

bacteria through protection measures such as chlorination, good sanitation, edu-

cation, eating well cooked food and improving on their human waste disposal will

change the rate at which the disease spreads, the risk of infection in the environment

and the epidemic and endemic levels.

These models do not show the role of rehydration and antibiotic treatment in re-

duction of cholera mortality. It is for this reason this study seeks to assess role of
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rehydration and antibiotic treatment on reduction of cholera mortality.
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CHAPTER 3

MODEL FORMULATION AND ANALYSIS

3.1 Introduction

In this section we develop a cholera model using systems of ordinary differential

equations (ODEs) that classifies the human population N(t) into classes of suscep-

tible S(t) , infected I(t) and recovered R(t) , where I(t) = Ia + Ib, Ia represents

individuals infected with the bacteria in the intestine only and Ib represents indi-

viduals infected with bacteria in both the intestine and the bloodstream.

3.1.1 Assumptions of the Model

The model formulated is based on the following assumptions;

(i)Individuals recover with temporary immunity.

(ii)Bacteria shed rate is equal for both cases of infection.

(iii) Infected individuals only acquire the bacteria from the environment i.e there is

no direct human to human transmission.

(iv)There is high death rate due to infection in both the intestine and the blood-

stream

3.1.2 Description of variables and parameters

The parameters and state variables are defined as follows:
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Table 3.1: Description of Parameters and Variables
Symbol Desription
Λ Human recruitment rate
S(t) Susceptible population
I(t) Infected population
R(t) Recovered population
Ia infected individuals in the intestine only
Ib infected individuals in both the intestine and the bloodstream
µ Human natural death rate
γ1 human death rate due to infection in the intestine only
γ2 human death rate due to infection in both the intestine and the bloodstream
σ1 rate at which bacteria shed rate in the intestine reduces
σ2 rate at which bacteria shed rate in the intestine and bloodstream reduces
δ1 Recovery rate as a result of rehydration
δ2 Recovery rate as a result of rehydration and administration of antibiotics
α Effective contact rate of the bacteria
d1 bacteria shed rate due to rehydration
d2 bacteria shed rate due to rehydration and administration of antibiotics
µb bacteria death rate
K the carrying capacity of V ibrio
C per capita growth rate of V ibrio
B Population of V ibrio
CB(1− B

K
) logistic growth rate of a the pathogen population

B
K+B

probability of susceptible to catch cholera

[ αB
K+B

]Ib Force of infection for the bacteria in both the intestine and the blodstream

[ αB
K+B

]Ia Force of infection for the bacteria in the intestine only

11



3.2 The Model Description

In our model, there is a decrease in human population through natural death at a

rate µ or as a result of death due to infection either in the intestine only γ1 or death

due to infection in both the intestine and the bloodstream γ2.

When rehydration is administered the bacteria shed rate as a result of the infec-

tion in the intestine only reduces at the rate σ1 and the bacteria shed rate as a

result of the infection in both the intestine and the bloodstream is reduced at the

rate σ2 due to rehydration and administration of antibiotics. Recovery rate as a

result of rehydration is given by δ1 and recovery rate due to rehydration and ad-

ministration of antibiotics is given by δ2 , B is the concentration of V ibrio in the

environment, K the carrying capacity of V ibrio where K > 0.

The effective contact rate of the bacteria is given by α and the probability of suscep-

tible to catch Cholera is defined by the term B
K+B

. The model will take an assump-

tion that infected individuals only acquire the bacteria from the environment. The

pathogen population grows logistically and the bacteria enter the pathogen reservoir

of V ibrio cholerae at the rate CB(1− B(t)
K

) , proportional to bacteria density in this

class, where C > 0 is the per capita growth rate for V ibrio cholerae. The bacteria

shed rate due to rehydration only is d1 and d2 is the bacteria shed rate due to both

rehydration and administration of antibiotics such that d1 = d2 and bacteria death

rate is given by µb.

The total population is given by the equation;

N(t) = S(t) + I(t) +R(t) (3.1)
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The flow chart diagram for the dynamics of the transmission is given by the

figure below.
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Figure 3.1: The model flow diagram

The system of differential equations describing the model is.

dS

dt
= Λ− p(Ia)S − r(Ib)S − µS

dIa
dt

= p(Ia)S − (µ+ δ1 + γ1)Ia

dIb
dt

= r(Ib)S − (µ+ δ2 + γ2)Ib

dR

dt
= δ1Ia + δ2Ib − µR

dB

dt
= C(1− B

K
)B + d1Iaσ1 + d2Ibσ2 − µbB (3.2)

where

p(Ia) = [
αB

K +B
]Ia

r(Ib) = [
αB

K +B
]Ib. (3.3)

Substituting (3.3) into (3.2) yield;

dS

dt
= Λ− [

αB

K +B
]IaS − [

αB

K +B
]IbS − µS
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dIa
dt

= [
αB

K +B
]IaS − (µ+ δ1 + γ1)Ia

dIb
dt

= [
αB

K +B
]IbS − (µ+ δ2 + γ2)Ib

dR

dt
= δ1Ia + δ2Ib − µR

dB

dt
= C(1− B

K
)B + d1Iaσ1 + d2Ibσ2 − µbB (3.4)

Suppose that the initial condition for the system (3.4) takes the form:

S(t0) = S(0), I(t0) = (Ia, Ib) = I(0) = 0, R(t0) = R(0), B(t0) = B(0); t0 = 0 (3.5)

3.3 Positivity and Boundedness of Solutions of the Model

Since in our model we are studying human population, all solutions for the System

of Equation (3.4) are all positive for t ≥ 0.

Proposition 3.3.1. Solutions of System (3.4) with initial condition (3.5) are bounded

for t ≥ 0 such that {S(t) + Ia(t) + Ib(t) +R(t)} ∈ R4
+ for t ≥ 0.

Proof. From Proposition (3.3.1) the solutions of the system (3.4) given the initial

condition (3.5) are positive for all t ≥ 0

Consider the region D = {(S, Ia, Ib, R) ∈ R4
+ : N ≤ Λ

µ
}. Let N(t) = S(t) +

Ia(t) + Ib(t) +R(t). From the system of equation (3.4), we have

N ′(t) = Λ− µN − (γ1Ia + γ2Ib) ≤ Λ− µN(t)

(Neµt)′ ≤ Λeµt

Neµt ≤ Λ

µ
eµt + C

lim
t→∞

N ≤ Λ

µ
+ Ce−µt

N ≤ Λ

µ

Since solutions of our model are positive and bounded then the model is well-posed.
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3.4 Basic reproduction number, R0

Definition 3.4.1. The basic reproduction number (R0) is the average number of

secondary infections due to a single infectious individual introduced in a fully sus-

ceptible population. If R0< 1 it means the disease is eradicated in the population

and R0>1 means the disease is persistent in the population

The constant Ro is determined by the method of next generation matrix approach

given by Van et al[21]. Consider the matrix

M = FV −1.

F is the Jacobian of F which refers to the rate of new infections and V is the Jacobian

of V which refers to the rate of transfer of infectious individuals in and out from one

compartment to another. From the system (3.4) the associated matrices are;

F =


αB
K+B

SIa
αB
K+B

SIb
0
0

 (3.6)

V =


(µ+ δ1 + γ1)Ia
(µ+ δ2 + γ2)Ib

−(δ1Ia + δ2Ib) + µR
(−d1σ1Ia − d2σ2Ib) + µbB

 (3.7)

The Jacobian matrices of (3.6) and (3.7) evaluated at DFE yield;

F =


Λ
µ

( αB
K+B

) 0 0 0
Λ
µ

( αB
K+B

) 0 0 0

0 0 0 0
0 0 0 0

 (3.8)

V =


(µ+ δ1 + γ1) 0 0 0

0 (µ+ δ2 + γ2) 0 0
−δ1 −δ2 µ 0
−d1σ1 −d2σ2 0 µb

 (3.9)

the inverse of matrix V is;

V −1 =


( 1

(µ+δ1+γ1)
) 0 0 0

0 ( 1
(µ+δ2+γ2)

) 0 0

( −δ1
(µ+δ1+γ1)µ

) ( −δ2
(µ+δ2+γ2)µ

1
µ

0

( −d1σ1
(µ+δ1+γ1)µb

) ( −d2σ2
(µ+δ2+γ2)µb

) 0 1
µb

 (3.10)
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M = FV −1 =


( ΛαB
µ(K+B)(µ+δ1+γ1)

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 (3.11)

The reproduction number R0 = ρ(FV −1), is the spectral radius of the matrix

FV −1. Therefore;

R0 =
ΛαB

µ(K +B)(µ+ δ1 + γ1)
(3.12)

3.5 Disease Free Equilibrium (DFE) point

Disease Free Equilibrium is defined as the state at which no cholera disease is present

in the population.

Proposition 3.5.1. For the model system (3.4) there always exists a DFE point

denoted by E0 = (S0, I0
a , I

0
b , R

0, B0) = (∧
µ
, 0, 0, 0, 0).

Proof. At DFE, I = 0,R = 0,B = 0 Therefore considering the first equation in

system (3.4) and replacing Ia = Ib = 0 yields;

Λ− µS = 0

Making S the subject yield;

S =
Λ

µ
(3.13)

Therefore the DFE E0(S0, I0
a , I

0
b , R

0, B0) = (∧
µ
, 0, 0, 0, 0)

3.6 Stability Analysis of the equilibrium points

3.6.1 Local Stability of the Disease Free Equilibrium (DFE)

The stability of equilibrium point is related to the basic reproduction number R0 of

the model.

Proposition 3.6.1. For any time t ≥ 0, the disease free equilibrium E0 = (Λ
µ
, 0, 0, 0, 0)

of system (3.4) is locally asymptotically stable when R0 < 1 and unstable when

R0 > 1.
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Proof. The jacobian matrix of (3.4) is given by;

J =


−( αB

K+B
)Ia − ( αB

K+B
)Ib − µ −( αB

K+B
)S −( αB

K+B
)S 0 0

( αB
K+B

)Ia ( αB
K+B

)S − (µ+ δ1 + γ1) 0 0 0

( αB
K+B

)Ib 0 ( αB
K+B

)S − (µ+ δ2 + γ2) 0 0

0 δ1 δ2 −µ 0
0 d1σ1 d2σ2 0 θ


(3.14)

where

θ = C(1− 2B

K
)− µb

Substituting the DFE points E0(S0, I0
a , I

0
b , R

0, B0) = (Λ
µ
, 0, 0, 0, 0) into (3.14)

yield;

JDFE =


−µ −Λ

µ
( αB
K+B

) −Λ
µ

( αB
K+B

) 0 0

0 Λ
µ

( αB
K+B

)− (µ+ δ1 + γ1) 0 0 0

0 0 Λ
µ

( αB
K+B

)− (µ+ δ2 + γ2) 0 0

0 δ1 δ2 −µ 0
0 d1σ1 d2σ2 0 θ


(3.15)

The DFE in terms of R0 yield;

JDFE =


−µ −R0(µ+ δ1 + γ1) −R0(µ+ δ1 + γ1) 0 0
0 (µ+ δ1 + γ1)(R0−1) 0 0 0
0 0 (R0−1)µ+R0(δ1 + γ1)− (δ2 + γ2) 0 0
0 δ1 δ2 −µ 0
0 d1σ1 d2σ2 0 C − µb


(3.16)

The matrix has eigenvalues; λ = −µ, (µ + δ1 + γ1)(R0 − 1), (R0 − 1)µ + R0(δ1 +

γ1)− (δ2 + γ2),−µ,C − µb. For local asymptotic stability, all real parts of λ should

be negative. The eigenvalues λ = −µ,C − µb have negative real parts, also the

eigenvalues λ={(µ + δ1 + γ1)(R0 − 1), (R0 − 1)µ + R0(δ1 + γ1) − (δ2 + γ2)} are

negative if and only if R0 < 1. Hence the DFE is locally asymptotically stable.
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3.6.2 Global Stability of the Disease Free Equilibrium (DFE)

In this section, the global asymptotic stability of the DFE of the model system (3.4)

is explored.

Theorem 3.6.1. The DFE of the system (3.4) is globally asymptotically stable

whenever the R0 < 1 and unstable if R0 > 1.

Proof. It follows that S = N ′−Ia−Ib−R at the steady state. The proof is based on

Comparison Theorem Lakshmikanthan et al[14] to prove the global stability. Hence,

we have;

(
I ′a
I ′b

)
= (F − V )−F

(
Ia
Ib

)
such that {Ia(t), Ib(t)}→(0, 0) as t→∞ hence;

(
I ′a
I ′b

)
= (F − V )

where;

F − V =


(µ+ δ1 + γ1)(R0 − 1) 0 0 0

(µ+ δ1 + γ1)R0 −(µ+ δ2 + γ2) 0 0
δ1 δ2 −µ 0
d1σ1 d1σ2 0 −µb

 (3.17)

Thus all the eigenvalues of the lower triangular matrix (F − V ) have negative real

parts as seen in matrix (3.17). It follows that the Jacobian matrix of system (3.4)

is stable whenever R0 < 1. Consequently substituting Ia = Ib = R = B = 0 into

system (3.4), S(t)→ S(0) as t→∞. We therefore conclude that Ia = Ib = R =

B = 0 as t→∞. It follows that the DFE is globally asymptotically stable whenever

R0 < 1.

3.6.3 Local Stability of the Endemic Equilibrium (EE) points

Theorem 3.6.2. The endemic equilibrium E∗(S∗, I∗a , I
∗
b , R

∗) of system (3.4) is lo-

cally asymptotically stable whenever R0 > 1.
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Proof. Using the system (3.4) and equating the right hand side of 3.4 to 0 and

solving the system of equation simultaneously using MATLAB software to find the

endemic equilibrium states, the endemic equilibrium points are determined under

two cases;

CASE I: When I∗b = 0 we have;

S∗ =
K +B

αB
(µ+ δ1 + γ1)

R∗ =
δ1[Λ( αB

K+B
)− µ(µ+ δ1 + γ1)]

( αB
K+B

)[µ(µ+ δ1 + γ1)− αδ1]

I∗a =
µ[−Λ( αB

K+B
)− µ(µ+ δ1 + γ1)]

( αB
K+B

)[µ(µ+ δ1 + γ1)− αδ1]

B∗ =
K(C − µb)±

√
K2(C − µb)2 − 4CKd1I∗aσ1

2C

Writing I∗a in terms of R0 yield;

I∗a =
µ[(−µR0(µ+ δ1 + γ1)− µ(µ+ δ1 + γ1)]

(µ+ δ1 + γ1)(µR0

Λ
)[µ(µ+ δ1 + γ1)− δ1]

The system (3.4) is also solved simultaneously under the second case using MAT-

LAB software and yields;

CASE II: When I∗a = 0 we have;

S∗ =
K +B

αB
(µ+ δ2 + γ2)

R∗ =
δ2[−Λ( αB

K+B
) + µ(µ+ δ2 + γ2)]

( αB
K+B

)[αδ2 − µ(µ+ δ2 + γ2)]

I∗b =
µ[−Λ( αB

K+B
) + µ(µ+ δ2 + γ2)]

( αB
K+B

)[δ2 − µ(µ+ δ2 + γ2)]

B∗ =
K(C − µb)±

√
K2(C − µb)2 − 4CKd2I∗b σ2

2C

Writing I∗b in terms of R0 yield;

I∗b =
µ[(−µR0(µ+ δ1 + γ1) + µ(µ+ δ2 + γ2)]

(µ+ δ1 + γ1)(µR0

Λ
)[δ2 − µ(µ+ δ2 + γ2)]
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Substituting the endemic states in the linearized matrix of system (3.4) when

I∗a = 0 yield;

JEE =


(− αB

K+B
)I∗b − µ (− αB

K+B
)S∗ (− αB

K+B
)S∗ 0

0 ( αB
K+B

)S∗ − (µ+ δ1 + γ1) 0 0

( αB
K+B

)I∗b 0 ( αB
K+B

)S∗ − (µ+ δ2 + γ2) 0

0 δ1 δ2 −µ


(3.18)

Substituting the endemic states in matrix (3.18) and determining the eigen-

values when I∗a = 0 yield; λ1 =−µ, λ2 =(µ + δ2 + γ2) − (µ + δ1 + γ1) and λ3,4

=1
2
[−(µ(−µR0)(µ+δ1+γ1)+µ(µ+δ2+γ2)

δ2−µ(µ+δ2+γ2)
)]

± 1
2

√
[(µ(−µR0)(µ+δ1+γ1)+µ(µ+δ2+γ2)

δ2−µ(µ+δ2+γ2)
)2 − 4(µ+ δ2 + γ2)(µ(µR0)(µ+δ1+γ1)+µ(µ+δ2+γ2)

δ2−µ(µ+δ2+γ2)
)]

The endemic equilibrium (EE) of system (3.4) locally asymptotically stable for

λ1=−µ and for λ2=(µ+δ2+γ2)−(µ+δ1+γ1) if and only if (µ+δ1+γ1) > (µ+δ2+γ2)

. From λ3,4 we have;

(
µ[(µR0)(µ+ δ1 + γ1)− µ(µ+ δ2 + γ2)]

µ(µ+ δ2 + γ2)− δ2

) > 0

µ2

µ− δ2
(µ+δ2+γ2)

{R0(µ+ δ1 + γ1)

(µ+ δ2 + γ2)
− 1} > 0

{R0(µ+ δ1 + γ1)

(µ+ δ2 + γ2)
− 1} > 0

We have

R0 > {
(µ+ δ1 + γ1)

(µ+ δ2 + γ2)
}

From

(µ+ δ1 + γ1) > (µ+ δ2 + γ2)

It implies that

(µ+ δ1 + γ1) > (µ+ δ2 + γ2) ≈ 1

As a result R0 > 1. Therefore for R0 > 1, EE is locally asymptotically stable.

Theorem 3.6.3. For the system (3.4), endemic equilibrium is locally asymptotically

stable if and only if R0 > 1 for I∗b = 0.
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Proof. Substituting the endemic states in the linearized Jacobian matrix of system

(3.4) when I∗b = 0 yields,

JEE =


(− αB

K+B
)I∗a − µ (− αB

K+B
)S∗ (− αB

K+B
)S∗ 0

( αB
K+B

)I∗a ( αB
K+B

)S∗ − (µ+ δ1 + γ1) 0 0

0 0 ( αB
K+B

)S∗ − (µ+ δ2 + γ2) 0

0 δ1 δ2 −µ


(3.19)

Substituting the endemic states in matrix (3.19) and determining the eigenvalues

when I∗b = 0 yield; λ1 =−µ, λ2 =(µ+δ1+γ1)−(µ+δ2+γ2) and λ3,4=1
2
[−(µ(−µR0)(µ+δ1+γ1)+µ(µ+δ1+γ1)

µ(µ+δ1+γ1)−δ1 )]

±1
2

√
[(µ(−µR0)(µ+δ1+γ1)+µ(µ+δ1+γ1)

µ(µ+δ1+γ1)−δ1)
)− µ)2 − 4((µ+ δ2 + γ2))(µ(µR0)(µ+δ1+γ1)+µ(µ+δ1+γ1)

µ(µ+δ1+γ1)−δ1 )]

Therefore endemic equilibrium (EE) is locally asymptotically stable for λ1=−µ and

for λ2 =(µ + δ1 + γ1) − (µ + δ2 + γ2) if and only if (µ + δ2 + γ2) > (µ + δ1 + γ1).

From λ3,4 we have;

(
µ[(µR0)(µ+ δ1 + γ1)− µ(µ+ δ1 + γ1)]

δ1 − µ(µ+ δ1 + γ1))
) > 0

(
µ2(µ+ δ1 + γ1)[R0 − 1]

δ1 − µ(µ+ δ1 + γ1))
) > 0

µ2

δ1
(µ+δ1+γ1)

− µ
[R0 − 1] > 0

[R0 − 1] > 0

It implies that R0 > 1. For R0 > 1, EE is locally asymptotically stable. This ends

the proof.

3.7 Numerical Simulation

Introduction

In this section, we use MATLAB software to generate the numerical simulations

describing the theoretical results for the system (3.4). The numerical results depend

on the particular units chosen. The parameter values used in the simulation are

either obtained from literature or estimated. The parameter values have been varied

to better understand how rehydration and antibiotics use reduce cholera mortality.
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3.7.1 Parameter Values

The parameters values below are described in Table (3.2).

Table 3.2: Parameter values for the Cholera Model
Parameters Range/Value Source

Λ 104 Estimated
K 106 cells ml−1 [2]
α 0.05 Varies
µ 0.0068 [5]
δ1 0.2 day−1 [16]
δ2 0.25 day−1 Estimated
γ1 0.015 day−1 [11]
γ2 0.025 day−1 Estimated
σ1 0.6 [16]
σ2 0.75 Estimated
µb 0.33 day−1 [4]
C 0.73 day−1 [16]
d1 10 cells per ml day−1 [23]
d2 10 cells per ml day−1 Estimated
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3.7.2 Simulation Results

Graph of bacteria population versus time

Figure 3.2 below shows the bacteria population growth curve in absence of disease.

The graph shows that in the absence of the disease at t ≥ 0, the bacteria popu-

lation grows logistically to the carrying capacity when the disease free equilibrium

is globally asymptotically stable as shown in theorem (3.6.1). This implies that no

rehydration and antibiotic is given to individuals since there is no infection, as a

result there is no influence to the stability of the disease free equilibrium.
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Figure 3.2: bacteria population growth curve versus time

23



Graph of individuals with bacteria in the intestine against time with
rehydration

Figure 3.3 below shows the infection curve for cholera model with rehydration of

individuals infected with the bacteria in the intestine only. Initially, there is a

sharp increase in the number of those infected with the bacteria in the intestine

only. This means that even though they have been rehydrated, they are not cured

immediately. From the graph it can be seen that after the first day,the infection

level starts reducing with an increase in rehydration hence there is recovery.
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Figure 3.3: A graph showing how the number of individuals infected with bacteria
in the intestine only varies with time in days after rehydration
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Graph of individuals with bacteria in both the intestine and the blood-
stream against time with rehydration and antibiotic administration

Figure 3.4 below shows the infection curve for cholera model of individuals infected

with the bacteria in both the intestine and the bloodstream. Initially, there is a sharp

increase in the number of those infected. This shows that even though they have

been rehydrated and antibiotics given , they do not start recovering immediately.

Though the curve clearly shows that they start recovering after the first day of

treatment. As expected that the level is supposed to be slightly lower when both

rehydration and antibiotic is given, that is not the case. This could be due to large

presence of bacteria to the infected individuals at this level. The curve also shows

that the disease still remains endemic.
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Figure 3.4: A graph showing how the number of individuals infected with bacteria
in both the intestine and bloodstream varies with time in days after rehydration and
antibiotic administration
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Graph of Ia, Ib and R against time

Figure 3.5 below shows that rehydrating those infected with the bacteria in the

intestine only (Ia ) and rehydrating and administering antibiotics to those infected

with the bacteria in both the intestine and the bloodstream (Ib) reduces cholera

deaths hence they recover and the curve shows an increase in number of recovered

individuals as time increases since they acquire temporal immunity.
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Figure 3.5: a graph showing the relationship between Ia, Ib and R against time in
days

26



CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.0.1 Introduction

This research was focused on the role of rehydration and antibiotic treatment in

reduction of cholera mortality. In this chapter we therefore make conclusions in

relation to the objectives of the study and give recommendations.

4.0.2 Conclusion

We have presented a cholera epidemiological model assessing the role of rehydration

and antibiotic treatment in reduction of cholera mortality. There is only environ-

mental to human transmission pathway. The basic reproduction number R0 plays

a crucial role in determining the epidemic and endemic dynamics. We have shown

that the DFE is locally asymptotically stable when R0 < 1, and unstable when

R0 > 1. The DFE have also been shown to be globally stable when R0 < 1. This

means that given any perturbation, the disease free equilibrium remains stable.

The endemic equilibrium (EE) has also been shown to be locally asymptotically

stable when R0 > 1.

Simulation results show that rehydration plays a major role in reducing cholera

deaths when the bacteria is in the intestine only, when rehydration is done and

antibiotics given to individuals infected with the bacteria in both the intestine and

the bloodstream, cholera deaths are reduced though it still remains endemic with

both rehydration and antibiotic administration.

4.0.3 Recommendation

Any decision taken to reduce cholera death should be done in good time. Once in-

dividuals have been discovered to have been infected with the bacteria they should

be immediately rehydrated and later antibiotics given so as to kill all the microbes.
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We finally recommend to health practitioners to equip the hospital laboratories with

equipments for testing of cholera, sufficient Ringer-Lactate solutions for rehydration

and sufficient antibiotics for timely treatment of cholera cases.

4.0.4 Future work

In future, there will be need to model ”The Impact of delay in Rehydration and

Antibiotic treatment among cholera patients in a population that grows logistically.”
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